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ABSTRACT

Asset Pricing Implications of Firms’ Financing Constraints*

We incorporate costly external finance in a production based asset pricing
model and investigate whether financing frictions are quantitatively important
for pricing a cross-section of expected returns. We show that the common
assumptions about the nature of the financing frictions are captured by a
simple ‘financing cost’ function, equal to the product of the financing premium
and the amount of external finance. This approach provides a tractable
framework to examine the role of financing frictions in pricing across-section of
asset returns. Using the Generalized Method of Moments (GMM) we estimate
a pricing kernel that incorporates the effects of financing constraints on
investment behaviour. The key ingredients in this pricing kernel depend not
only on ‘fundamentals’, such as profits and investment, but also on the
financing variables. Our findings, however, suggest that the role played by
financing frictions is fairly negligible, unless the premium on external funds is
procyclical, a property not evident in the data and not satisfied by most models
of costly external finance.
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1 Introduction

In this paper we ask whether financing constraints are quantitatively important in explaining

a cross-section of expected returns. Specifically, we incorporate costly external finance into

a production based asset pricing model and investigate whether financing frictions help in

pricing the cross-section of expected returns.

Our analysis, as in Cochrane (1991, 1996), focuses on the link between asset returns

and the returns on physical investment implied by the optimal production and investment

decisions of the firm. Our contribution is in augmenting this basic framework to explicitly

consider the impact of financing frictions on the optimal decisions of the firm. To avoid

specifying the underlying source of these frictions (e.g., asymmetric information, costly state

verification or “lemon problems”) we show that the typical assumptions about the nature

of the financing frictions, as modelled in the existing literature, are captured by a simple

“financing cost” function, equal to the product of the financing premium and the amount of

external finance. Since both of these quantities are relatively easy to observe, this approach

provides a tractable (and fairly general) framework to examine the role of financing frictions

in pricing a cross-section of asset returns.

Our empirical analysis uses the Generalized Method of Moments (GMM) to explore the

Euler equation restrictions imposed on expected returns by optimal investment behavior.

Since this behavior is affected by the presence of the financing frictions, the returns to

physical investment will depend on the financing variables. Thus, the ability of investment

returns to price the cross section of expected returns will depend not only on “fundamentals”

such as profits and investment, as in Cochrane (1996), but also on the financing variables.

As with any asset pricing model, financial frictions will be relevant for the pricing of

expected returns only to the extent that they provide a common factor — in this context
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one associated with financial distress as systematic (aggregate) risk, e.g. Chan and Chen

(1991) and Fama and French (1993, 1996). Thus, our focus on the importance of financing

frictions through their effects on pricing expected returns seems a natural benchmark from

the standpoint of asset pricing.

Our empirical findings suggest that the role played by financing frictions is fairly

negligible, unless the premium on external funds is procyclical, a property not evident in the

data and not satisfied by most models of costly external finance. Our results are also robust

to several alternative formulations of our model, particularly the form of the financing cost

function, the specific data used, and the set of returns used in our GMM implementations.

The intuition for this result is simple. Absent financing frictions, firms would increase

investment immediately in response to positive news about expected future productivity

growth. This, in turn, generates a series of investment returns that lead the cycle, and results

in a large correlation between current investment returns and future profits — a feature also

documented by Fama and Gibbons (1982) for observed stock returns. In the presence of

financing constraints, however, the countercyclical nature of the financing premium implies

that the expected rise in future productivity is also associated with lower future expected

financing costs. This induces firms to try to capitalize on the lower expected costs by delaying

their investment response, which changes the implied dynamics of investment returns and

lowers their correlation with the observed stock returns.

Our findings contribute to two strands of the literature in economics and finance. First,

from an asset pricing perspective, they suggest that financing variables are not an important

factor in pricing the cross-section of asset returns. Although our approach to incorporate

financing frictions as a pricing factor is more structural, our results seem to complement those

in Lamont, Polk, and Saá-Requejo (2000). Using an aggregate index of financing frictions as
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a common factor in an asset pricing model, they also document that the cyclical fluctuations

in asset returns do not appear to be linked to financial frictions. Together, these results

seem to support recent work that emphasizes the role of firm productivity and growth in

generating the observed cross-sectional variations in returns in a risk based paradigm (e.g.,

Berk, Green, and Naik (1999), Gomes, Kogan, and Zhang (2002), and Zhang (2002)).

In addition, in the macroeconomic literature, several authors have argued that financing

constraints improve the ability of macroeconomic models to replicate the behavior of typical

macro aggregates.1 Our findings suggest, however, that those models’ ability to match

financial data is severely strained unless the implied costs of external finance are procyclical,

thus placing important restrictions on the nature of the financing frictions supported by the

data.

In addition to Cochrane (1991, 1996) we also build on additional theoretical work by

Restoy and Rockinger (1994) who generalize some of the results in Cochrane (1991) to an

environment with investment constraints, and on Bond and Meghir (1994) who explicitly

characterize the effects of financing frictions on the optimal investment decisions of the firm.

Finally, our work is also related to research by Li, Vassalou and Xing (2001) who compare

the performance of alternative investment growth factors in pricing the Fama and French

(1993) size and book to market portfolios, and to work by Lettau and Ludvigson (2001)

who re-examine the empirical link between aggregate investment and stock returns using

information about the consumption to wealth ratio.

The remainder of this paper is organized as follows. Section 2 shows that much of the

existing literature on firms’ financing constraints can be characterized by specifying a simple

dynamic problem to describe firm behavior. Section 2 also derives the expression for returns

1See, among others, Bernanke and Gertler (1989), Bernanke, Gertler, and Gilchrist (2000), den Haan,
Ramey, and Watson (1999), and Kiyotaki and Moore (1997).
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to physical investment, and its relation to stock and bond returns, which can be used to

evaluate the asset pricing implications of the model. The next section describes our data

sources and econometric methods, while Section 4 reports the results of our GMM tests

and examines both the performance of the model and the role of financing constraints. The

robustness of our results to the use of alternative data or modelling assumptions is examined

in Section 5. Finally, Section 6 offers some concluding remarks.

2 Investment Based Asset Pricing with Costly

External Finance

In this section we incorporate costly external finance in Cochrane’s (1996) production based

asset pricing framework. We do this by summarizing the common properties of alternative

models of financing frictions with a very simple set of restrictions on the costs of external

funds. We then show that this formulation leads to a fairly simple characterization of the

optimal investment decisions of the firm and derive a set of easily testable asset pricing

conditions that shed light on the role of financing frictions.

2.1 Modelling Financing Frictions

Theoretical foundations of financing frictions have been provided by several researchers over

the years and we do not attempt to provide yet another rationalization for their existence.

Rather, we seek to summarize the common ground across much of the existing literature with

a representation of financing constraints that is both parsimonious and empirically useful.

While exact assumptions and modelling strategies can differ quite significantly across the

various models, most share the key feature that external finance (equity or debt) is more

“costly” than internal funds. It is this crucial property that we explore in our analysis below
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by assuming that the financial market imperfections will be entirely captured by the unit

costs of raising external finance.

Consider first the case of equity finance. Suppose a firm issues an amount N in new

shares and let W denote the reduction on the claim of existing shareholders associated with

the issue of one dollar of new equity. Clearly, in a Modigliani-Miller world W =1 since the

total value of the firm is unaffected by financing decisions. If Modigliani-Miller fails to hold

however, new equity lowers the total value of the firm, and W > 1. Now, new issues are

costly to existing shareholders, not only because they reduce claims on future dividends, but

because they also reduce value due to the presence of additional transaction or informational

costs.2

Suppose now that the firm decides to use debt financing, B, and let the function R denote

the future repayment costs of this debt.3 If Modigliani-Miller holds these repayments will

just equal the opportunity cost of internal funds, captured by the relevant discount factor for

shareholders, M . In this case we will simply have that E[MR(·)] = 1, where E[·] denotes the

expectation over the relevant probability measure. Absent Modigliani-Miller, debt is more

costly than internal funds and E[MR(·)] > 1, at least when B > 0.4

In addition, it is often assumed that the “financing costs” are increasing in the amount of

external finance, so that ∂W (·)/∂N and ∂R(·)/∂B are positive. It also seems reasonable to

assume that the costs depend on the amount of financing normalized by firm size, K, which

allows for the possibility that large firms will face lower financing costs. Finally, these costs

may also be state-dependent. In this case we would write W (·) = W (N/K,X) , where X

summarizes both firm-level and aggregate uncertainty, and similarly R(·) = R (B/K,X).

2E.g., Jensen and Meckling (1976), Myers and Majluf (1984), and Greenwald, Stiglitz, and Weiss (1984)
3If there is no possibility of default these costs will just equal the gross interest on the loan. If default is

allowed, they may depend on the liquidation value of the firm.
4E.g., Myers (1977), Townsend (1979), Stiglitz and Weiss (1981), Diamond (1984), Gale and Hellwig

(1985), and Bernanke and Gertler (1990)
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These additional properties are also common and fairly intuitive. We summarize them

in Assumption 1.

Assumption 1 Let X summarize all forms of uncertainty. The cost functions W (·) and

R(·) satisfy:

W (N/K,X) > 1, W1(·) ≡ ∂W (·)/∂N ≥ 0 for N > 0 (1)

and

Et[MR(B/K,X)] ≥ 1, R1(·) ≡ ∂R(·)/∂B ≥ 0 for B > 0 (2)

This is a very weak assumption as it merely requires that external finance, whether debt

or equity, is more expensive than internal funds, with non-decreasing unit costs.

Essentially, the existing corporate finance literature has focused so far on establishing the

nature and properties of the functions W (·) and R(·), by concentrating on optimal contracts

in the presence of transaction costs, moral hazard, asymmetric information or costly-

state verification. These alternative arguments provide different rationales, and sometimes

different forms, for the functions W (·) and R(·), but most share the basic properties captured

by our assumption. By focusing on the common ground across much of this existing literature

on financing frictions, we seek to provide a fairly general test of the role that these constraints

play in determining asset prices.5

5A recent strand of literature on financing frictions focus instead on “quantity” constraints of varying
complexity (e.g. Kehoe and Levine (1993), Hart and Moore (1996), Kotcherlakotta (1996), Zhang (1997),
Alvarez and Jermann (2000), Albuquerque and Hopenhayn (2001), Clementi and Hopenhayn (2001) and
Cooley, Quadrini, and Marimon (2001)). In general these models do not satisfy our assumptions. Strictly
speaking then, our characterization below applies only to models of “costly” external finance.
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2.2 Firm’s Problem

Consider the problem of a firm seeking to maximize the value to existing shareholders,

denoted V (·), in an environment where external finance is costly. This firm makes investment

decisions by choosing now the optimal amount of capital to have at the beginning of the

next period, Kt+1. Investment spending, It, as well as dividends, Dt, can be financed with

internal cash flows Π(·), new equity issues, Nt, or one period debt Bt+1.
6

The problem of this firm can then be summarized by the following dynamic program:

V (Kt, Bt, Xt) = max
Dt,Bt+1,
Kt+1,Nt

{Dt − W (Nt/Kt, Xt) Nt + Et [Mt,t+1V (Kt+1, Bt+1, Xt+1)]} (3)

s.t. Dt = Ct + Nt + Bt+1 − R(Bt/Kt, Xt)Bt (4)

It = Kt+1 − (1 − δ)Kt, δ ≥ 0 (5)

Ct = Π(Kt, Xt) − It − a

2
[It/Kt − δ]2 Kt a ≥ 0 (6)

Dt ≥ D, Nt ≥ 0

where Mt,t+1 is the stochastic discount factor (of the owners of the firm) from time t to

t + 1 and D is the firm’s minimum, possibly zero, dividend payment. Note that firms can

accumulate financial assets, in which case debt is negative. The cash flow function, Π(·), is

assumed to exhibit constant returns scale, but its exact form is unimportant.

Equation (4) shows the resource constraint of the firm. It implies that dividends must

equal internal funds, net of investment spending, Ct, plus new external funds, net of debt

repayments. Equation (5) is the standard capital accumulation equation, relating current

investment spending, It, to future capital, Kt+1. We assume that old capital depreciates at

the rate δ. As in Cochrane (1991, 1996), investment requires the payment of adjustment

6One-period debt simplifies the algebra considerably but has no bearing on our results.
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costs, captured by the term a
2
[It/Kt − δ]2 Kt.

Given our assumptions, it is immediate that the firm will only use external finance after

internal cash flows are exhausted and no dividends are paid, above the required level D.

Conversely, dividends will exceed this minimum only if no external funds are required to

finance them. Hence, the model extends the familiar hierarchical financing derived by Myers

(1984) in a static framework to a dynamic setting.

2.3 Asset Pricing Implications

To save notation it is convenient to combine the constraints (4)-(6) by eliminating investment,

and noting that Ct = C(Kt, Kt+1, Xt). The asset pricing implications of the model can then

be summarized by arranging the optimality conditions with respect to Kt+1 and Bt+1 to

obtain:

Et[Mt,t+1R
I
t+1] = Et

[
Mt,t+1

(
V1(Kt+1, Bt+1, Xt+1)

−µtC2(Kt, Kt+1, Xt)

)]
= 1 (7)

Et[Mt,t+1R
B
t+1] = Et

[
Mt,t+1

(
V2(Kt+1, Bt+1, Xt+1)

−µt

)]
= 1 (8)

where RI
t+1 and RB

t+1 denote the returns on physical investment and debt, respectively, and

µt is the Lagrange multiplier on the combined constraint.

Equations (7) and (8) provide a simple summary of the role of financing constraints

for the optimal behavior of firms. For empirical purposes, however, this characterization is

extremely difficult to implement, since it requires an explicit solution to the value function,

V (Kt, Bt, Xt), as well as the multiplier, µt. More importantly, this procedure requires

more stringent assumptions about the nature of the cost functions, W (·) and R(·) than

those provided in Assumption 1, thus rendering our tests below dependent on these specific

functional form restrictions.
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Instead, we pursue an alternative approach by exploiting the fact that the solution to

the problem above can be characterized by solving the following “frictionless” problem

Ṽ (Kt, Bt, Xt) = max
Kt+1

{
C̃(Kt, Kt+1, Xt) + Et

[
Mt,t+1Ṽ (Kt+1, Bt+1, Xt+1)

]}
, (9)

where

C̃(Kt, Kt+1, Xt) = C(Kt, Kt+1, Xt) − b(Xt) × Et (10)

and Ṽ (·) denotes the total value of the firm for both stock and bond holders.

The linear term b(Xt) × Et captures the role of the financing frictions. Here, b(Xt) ≥ 0

is the (possibly stochastic) premium on external finance, and Et = Bt+1 + Nt denotes the

total amount of external finance used by the firm. Using the resource constraint, Et can be

computed as:

Et = Bt+1 + Nt = RtBt + D − C(Kt, Kt+1, Xt) (11)

Proposition 1 formally establishes the equivalence between the formulation in (9) and the

original problem in (3).7

Proposition 1 Let the adjusted cash flow function C̃(·) be given by (10). Then the two

dynamic programs (3) and (9) produce the same solution.

Proof We present the proof for the case of equity finance only. The proof for the case with

debt is provided in the appendix. When firms issue only new equity, Bt = Bt+1 = 0, and

Et = Nt. Replacing the resource constraints in (3) we obtain

V (Kt, Xt) = max
Kt+1,Nt

{C(Kt, Kt+1, Xt) − (W (·) − 1)Nt + Et [Mt,t+1V (Kt+1, Xt+1)]}

7Gilchrist and Himmelberg (1998) use a similar cost representation for the case of debt finance. Effectively
Proposition 1 rationalizes their result for a much larger class of models.
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Letting b(Xt) = (W (·) − 1) be the premium on external finance, it follows that

C̃(Kt, Kt+1, Xt) = C(Kt, Kt+1, Xt) − (W (·) − 1)Nt.

While the proof for the case of debt financing requires a fairly elaborate verification of

integrability conditions, the basic argument of the proof lies in the characterization of the

multiplier. In some sense this proposition merely explores the fact that one can always

rewrite a constrained problem as an unconstrained one with embedded multipliers. What is

novel here is the precise characterization of the multiplier, µt, as a measure of the premium

on external finance. By linking this “shadow-price” to an essentially observable variable, we

are able to recast the problem in a way that lends itself to empirical analysis.

Our financing cost function provides a very simple, but quite general, characterization of

the financing constraints. It implies that they can be effectively summarized by the product

of two terms, one, Et, which captures the amount of external finance raised, and the other,

b(·), summarizing the premium on external funds.

In addition, the optimality conditions from the “frictionless” problem (9) imply that the

return on investment equals:

RI
t+1(i, π, b) =

(1 + b(Xt+1))(πt+1it+1 + a
2
i2t+1 + (1 + ait+1)(1 − δ))

(1 + b(Xt))(1 + ait)
(12)

where i ≡ (I/K) is the investment to capital ratio, and π ≡ (Π/I) is the profit to investment

ratio. Note that Et does not enter 12 since the amount of external finance depends on these

two variables. To complete our description of investment returns all we need is a specification

for the premium on external finance. While several measures can be used it seems natural
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to start by assuming that it is proportional in the default premium, DFt:

b(Xt) = b × DFt b ≥ 0.

and b is a parameter to be estimated in our empirical work. Thus, investment returns are

entirely driven by the two “fundamentals”, i and π, as well as the cyclical properties of the

financing premium. This implementation is very appealing from an empirical point of view,

since it requires only a measure of the premium on external finance as well as data on profits,

investment and financing variables.

Finally, our approach also provides a measure of the economic magnitude of the financing

costs. Specifically, the ratio of these costs to investment spending provides a meaningful

measure of the importance of the financing costs. Hence, our alternative characterization

provides not only a useful tool for empirical analysis but also a simple and straightforward

measure of the magnitude of the financing costs.

3 Investment Based Factor Pricing Models

This section describes our empirical methodology in detail and it provides an overview of

our data sources and the construction of the series of returns.

3.1 Asset Pricing Tests

The essence of our strategy is to use the information contained in the asset prices restrictions

above to formally investigate the importance of financing constraints. As we have seen in

the previous section, these restrictions are summarized by the Euler equations:

Et(Mt,t+1R
I
n,t+1) = Et(Mt,t+1R

B
l,t+1) = 1 (13)
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for investment returns, RI
n,t+1, n = 1, 2, ...JI , and bond returns RB

l,t+1, l = 1, 2, ...JB. In

addition, Proposition 2 shows a similar restriction must also hold for stock returns RS
j,t+1,

j = 1, 2, ..JS.

Proposition 2 Stock returns satisfy the following conditions

Et(Mt,t+1R
S
t+1) = 1 (14)

RI
t+1 = ωtR

S
t+1 + (1 − ωt)R

B
t+1 (15)

where (1 − ωt) is the leverage ratio.

Proof See Appendix A

Although the proof is somewhat elaborate, equation (15) merely states that stock returns

are a weighted average of investment and bond returns. Given (15) and (13) it is immediate

to verify that stock returns must satisfy the moment condition (14).

Equations (13)-(15) offer two alternative ways to examine the asset pricing implications

of financing frictions. While the identity (15) focuses on ex-post returns, the Euler equations

(13) and (14) are about expected returns. Thus, while firm specific risks may play an

important role in examining the former, for the latter only systematic risk is relevant.

In Gomes, Yaron, and Zhang (2002) we investigate the importance of these idiosyncratic

components using firm level data. Here, we concentrate on the role financing frictions

play in pricing the cross-section of expected returns, by focusing only on aggregate factors.

Specifically then, we use a pricing kernel that depends only on the returns to aggregate

investment and a bond index:

Mt,t+1 = l0 + l1R
I
t+1 + l2R

B
t+1, (16)
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a specification that only requires individual returns to be approximately linear in aggregate

returns.8 In the context of production based asset pricing this approach seems a reasonable

first step. Cross-sectional variations in firms’s investment opportunities may be important

in pricing asset returns only to the extent that they affect some aggregate systematic risk.

Unlike the consumption-based literature on asset pricing, where the use of the cross-sectional

distribution was motivated by the lack of success of aggregate consumption-based models (see

Constantinides and Duffie (1996)), aggregate investment returns actually work very well in

pricing the cross-section of returns (Cochrane (1996)); thus, the scope for firm heterogeneity

affecting the systematic risk for financial distress seems fairly limited.9

As we can see from (12), information about the degree of financial frictions is contained in

investment returns, which will then serve as a factor capturing the extent to which aggregate

financial conditions are priced. In this sense, our formulation is essentially a structural

version of an APT-type framework in which one of the factors proxies for an aggregate

distress variable (and where different portfolios have varying loading on this factor), such as

that taken in Fama and French (1993,1996) and Lamont, Polk, and Saá-Requejo (2000).

In essence, our metric for evaluating whether financing frictions are important is whether

they show as a systematic risk for the cross section of returns. This seems a natural

benchmark from the standpoint of asset pricing.

8From Harrison and Kreps (1979) and Hansen and Richard (1987) we know that one pricing kernel that
satisfies (13) is Mt,t+1 =

∑
j ljR

S
j +

∑
n lnRI

n +
∑

l llR
B
l . Stock returns can be eliminated since (15) implies

that only two of these returns are independent. For using aggregate investment return, we formally only
need that RI

d,t+1 ≈ γ0
d + γ1

dR
I
t+1 + εd,t+1 for portfolio d and the εd,t+1 be i.i.d. This is only a statement

about technologies and not about market completeness, and it appears reasonable provided that the level of
portfolio disaggregation is not too fine, as will be the case.

9It is important to note, however, that, in principle, there is no problem in modifying our approach to
include measures of cross-section variation across firms in the pricing kernel, by adding more disaggregated
investment returns. For example, Li, Vassalou and Xing (2001) study the effects of cross-sectional variation
by including investment growth in five separate sectors in their construction of the pricing kernel.
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3.2 Econometric Methodology

Our estimation strategy allows us to estimate factor loadings, l, as well as the parameters,

a and b, by utilizing M as specified in (16) in conjunction with moment conditions (13).

We follow Cochrane’s (1996) estimation techniques for assessing the asset pricing

implications of our model. Specifically, three alternative sets of moment conditions in

implementing (13) are examined. First, we look at the relatively weak restrictions implied by

the unconditional moments. We then focus on the conditional moments by scaling returns

with instruments, and finally we look at time variation in the factor loadings, by scaling the

factors.

For the unconditional factor pricing we apply standard GMM procedures to estimate the

cost parameters, a and b, and loading factors, l, by simply minimizing a weighted average

of the sample moments (13). Letting
∑

T denote the sample mean, we can rewrite these

moments, gT as:

gT ≡ gT (a, b, l) ≡ ∑
T [MR − p]

where R = [RS, RI(y; a, b), RB] is the menu of asset returns being priced, p =[1, 1, 1] is a

vector of prices, and y = (i, π,DF ). One can then choose (a, b, l) to minimize a weighted

sum of squares of the pricing errors across assets:

JT = g′
TWgT (17)

A convenient feature of our setup is that given a and b, the criterion function above is linear

in l — the factor loading coefficients. Standard χ2 tests of over-identifying restrictions follow

from this procedure. This also provides a natural framework to assess whether the loading

factors or technology parameters are important for pricing assets. Note that the investment
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return appears both in the pricing kernel and the menu of assets being priced. As Cochrane

(1996) notes, this consistency is required so that investment returns do not have arbitrary

properties.

It is straightforward to include the effects of conditioning information by scaling the

returns and/or scaling the factors by instruments. The essence of this exercise lies in

extracting the conditional implications of (13) since, for a time-varying conditional model,

these implications may not be well captured by a corresponding set of unconditional moment

restrictions as was noted by Hansen and Richard (1987).

To test conditional predictions of (13), we expand the set of returns to include returns

scaled by instruments to obtain the moment conditions:

E [pt ⊗ zt] = E [Mt,t+1 (Rt+1 ⊗ zt)]

where zt is some instrument in the information set at time t and ⊗ denotes the Kronecker

product.

A more direct way to extract the potential non-linear restrictions embodied in (13) is to

let the stochastic discount factor be a linear combination of factors with weights that vary

over time. That is, the vector of factor loadings l is a function of instruments z that vary

over time.10 Therefore, to estimate and test a model in which factors are expected to price

assets only conditionally, we simply expand the set of factors to include factors scaled by

instruments. The stochastic discount factor utilized in estimating (13) is then,

Mt,t+1 =
[
l0 + l1R

I
t+1 + l2R

B
t+1

] ⊗ zt

10With sufficiently many powers of z′s the linearity of l can actually accommodate nonlinear relationships.
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3.3 Data

This section provides an overview of the data used in our study. A more detailed description

is provided in Appendix B. Our data for the economic aggregates comes from NIPA and

the Flow of Funds Accounts. Information about financial assets is obtained from CRSP

and Ibbotson. The construction of investment returns requires data on profits, investment

and capital. Capital consumption data is used to compute the time series average of the

depreciation rate and pin down the value of δ, the only technology parameter that we do

not formally estimate. To avoid measurement problems due to chain weighting in the

earlier periods our sample starts in the first quarter of 1954 and ends in the last quarter

of 2000. Since models of financing frictions are usually applied to non-financial firms we first

construct series on investment, capital and profits of the Non-Financial Corporate Sector.

For comparison purposes, we also report results for the aggregate economy. Investment data

are quarterly averages, while asset returns are from the beginning to the end of the quarter.

As a correction, we follow Cochrane (1996) and average monthly asset returns over the

quarter and then shift them so they go from approximately the middle of the initial quarter

to the middle of the next quarter.11

In order to implement the estimation procedure, we require a sufficient number of moment

conditions. As described above, we limit ourselves to examining the model’s implications

for aggregate investment and bond returns. This means that we need to look at more than

just the aggregate stock return. Thus, we focus on the ten size portfolios of NYSE stocks.

Table 1 reports the summary statistics of these asset returns. In addition, we also provide

results for the 25 Fama and French (1993) size and book-to-market portfolio returns. Bond

data comes from Ibbotson’s index of Long Term Corporate Bonds. The default premium

11See also Lamont (2001) and Lettau and Ludvigson (2001) for a discussion of the important consequences
of aligning investment and asset returns.
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is defined as the difference between the yields on AAA and BAA corporate bonds, both

obtained from DRI.

Conditioning information comes from two sources: the term premium, defined as the yield

on ten year notes minus that on three-month Treasury Bills, and the dividend-price ratio of

the equally weighted NYSE portfolio. We follow Cochrane (1996) and limit the number of

moment conditions and scaled factors in three ways: (i) we do not scale the Treasury-Bill

return by the instruments since we are more interested in the time-variation of risk premium

than that of risk-free rate. (ii) Instruments themselves are not included as factors. (iii) We

use only deciles one, two, five, and ten in the conditional estimates.

4 Results

4.1 GMM Estimates

Table 2 reports iterated GMM estimates for the unconditional, conditional, and scaled

models. First-stage estimates are very similar, particularly those concerning the role of

financing costs. In all cases we report the value of the parameters a and b as well as the

estimated loadings l and corresponding t-statistics. Also included are the results of J tests

on the model’s overall ability to match the data, the corresponding p-values, and the root

mean square (RMSE) of the pricing errors, α — mean return less predicted mean return.

Our model is quite successful at pricing the cross-section of returns. In spite of the

inclusion of the last few years of stock market data, the model cannot be rejected using the

overidentifying restriction tests, JT . The root mean squared errors are all low (in particular

when we use both investment and bond returns as pricing factors) — suggesting the statistical

significance of the J tests is not due to an excessively large covariance matrix.12 This is

12RMSE (α) are actually cut in half if we truncate our sample in 1997.
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verified by Figure 1 that plots predicted versus actual mean excess returns from first stage

estimation, and it clearly displays the goodness of fit of the model. In addition, the hypothesis

that all factor loadings are zero is almost always rejected at the standard 5% significance

level.

Although our model uses only a single aggregate investment return as a pricing factor (in

addition to the corporate bond return) these results are generally comparable to Cochrane’s

(1996) findings. The reason for this empirical success is that our construction of investment

returns, RI , uses independent information on variations in the marginal productivity of

capital, πt, and investment, it. Cochrane (1996) on the other hand, abstracts from the

variation in the marginal productivity of capital in constructing investment returns and

hence uses two separate investment series (residential and non-residential) to construct two

investment returns.13

Although our model requires the use of two pricing factors (RI and RB), our results are

essentially the same whether or not we use bond returns as a pricing factor. The estimated

loadings on the corporate bond returns are also statistically insignificant, suggesting that

their role in pricing financial assets is fairly minor.

4.2 The Effect of Financing Constraints

The focus of our analysis, however, is the role of the financing cost parameter b. Here the

message from all panels is very clear. In all cases the actual point estimate of b is exactly

zero!14

Why are the financing constraints not useful in pricing the cross-section of expected

returns? Alternatively, why do they seem irrelevant for the construction of the stochastic

13Economically, our estimates for a are also quite sensible, since the implied adjustment costs are about
8-9% of total investment spending, which is comparable to Cochrane’s (1996) estimate.

14Note that since costs can not be negative, values of a or b below zero are not admissible.
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discount factor? The answer lies in the countercyclical properties of the premium on external

finance.

4.2.1 The Financing Premium

To gain some intuition on the role of the financing frictions on the pricing kernel, consider

their impact on investment returns by decomposing (12) as:

RI
t+1 ≈

1 + b(Xt+1)

1 + b(Xt)
R̂I (18)

where R̂I denotes investment returns with no financing costs. Loosely, this return summarizes

the effects of the fundamentals, and is determined by the cyclical properties of both profits

and physical investment. The role of the financing frictions is captured by 1+b(Xt+1)
1+b(Xt)

.

Figure 2 displays the correlation structure between DFt+1/DFt, R̂I
t+1, RI

t+1 with a positive

b, and RS
t+1, with leads and lags of it (Panel A) and πt (Panel B). The pattern is striking. In

both cases, the pattern of R̂I is very similar to that of observed RS. Both returns lead future

economic activity, while their contemporaneous correlation with fundamentals is somewhat

low. As Cochrane (1991) notes, this is to be expected if firms adjust current investment in

response to an anticipated rise in future productivity.

The behavior of the default premium, however, is quite different. Its negative correlation

with future economic activity implies a series of investment returns that behaves much less

like the observed stock returns, thus straining the ability of RI
t+1, inclusive of financing

constraints, to be a useful pricing factor.

Alternatively, since a rise in expected future productivity (or profits) is associated with an

expected decline in the financing premia (because of its counter-cyclical properties), there

is an incentive for the firm to delay its investment response in the presence of financing

constraints. From equation (12) we learn that this lowers investment returns. Given the
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observed pattern of stock returns in the data this leads to a lower correlation between

investment and stock returns.

To summarize, productivity and financing costs provide two competing forces that

determine the reaction of investment, and hence investment returns, to business cycle

conditions. Productivity implies that firms should respond by investing immediately. On

the other hand, since the future entails lower financing costs firms should delay investment.

Figure 2 shows that consistency with asset return data requires the financing channel to be

unimportant.

Figure 2 also suggests that these results are not likely to rely on timing issues such as

those created by the existence of time to plan (or perhaps time to finance in this context),

since there is no obvious phase shift between the premium and the return series.

What seems crucial is the countercyclical pattern of the premium on external finance,

induced by the behavior of the default premium. However almost any realistic measure

of the cost of external finance would exhibit this same countercyclical pattern, with costs

increasing in relatively bad times. Thus, while our measure of financing costs as propotional

to the default premium might be something of an oversimplification, particularly in the case

of equity, our conclusions are likely to be robust to alternative measures.

4.2.2 Limitations of Reduced Form Analysis

It is important to point out the benefits of imposing in our estimation strategy the

theoretical restrictions implied by our structural approach. An alternative and common

approach is simply to allow for some measure of financial distress (say Ft+1) to appear

as a factor in an APT-like model. An example would be to model the pricing kernel as

Mt+1 = l0 + l1Rm,t+1 + l2Ft+1, without any restriction on the sign and magnitude of l2. The

fact that financing frictions appear explicitly as costs in our framework requires that b ≥ 0,
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since costs can not be negative. Ignoring this restriction by allowing b < 0 also reverses the

countercyclical properties of the financing costs, a feature that would enhance the correlation

between the return on investment and profits. This in turn would lead one to conclude that

financing frictions are relevant for pricing assets without realizing that it implies negative

financing costs.

4.2.3 The Pricing Kernel

Financing frictions obviously change the dynamics of the pricing kernel. Table 3 shows a few

statistical measures of the way these frictions influence the pricing kernel and pricing errors.

It describes the effects of increasing the value of b in each set of moment conditions, while a

is kept constant at its optimal level reported in columns 5–7 of Table 2.

As we can readily observe, the presence of financing constraints effectively lowers the

market price of risk σ(M)/E(M), as well as the (absolute) correlation between the pricing

kernel and value-weighted returns for all three models, thus deteriorating the performance of

the pricing kernel. Perhaps more direct evidence is given by examining the implied pricing

errors. A simple way of doing this is to compute the beta representation:

Ri − Rf =αi + β1i(R
I − Rf ) + β2i(R

B − Rf )

Given the assumed structure of the pricing kernel this representation exists, with αi = 0

(see discussion in Cochrane (2001)). Therefore, large values of α are evidence against the

model. Table 3 reports the implied αs for the regressions on both decile 1 (small firms)

and value-weighted returns. It displays a clear pattern of increasing α as we increase the

magnitude of the financing costs. Indeed, while we cannot reject that α=0 when b = 0, this

hypothesis is rejected for most of the other parameter configurations.

We also report the implications of financing costs for the raw moments of investment
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returns and their correlation with market returns. While both the mean and the variance

of investment returns are not changed by much as b increases (at least initially), the main

implication of increasing financing constraints is to lower their correlation with asset returns.

Since the overall performance of a factor model hinges on its covariance structure with

returns, it is not surprising that financing costs are not important for the construction of

the pricing kernel as documented in Table 2.15

5 Robustness

This section examines the robustness of our results by exploring several alternatives to our

benchmark approach.

5.1 Small Firms Effects

Several studies on firm financing constraints emphasize that they are more likely to be

detected when looking only at the behavior of small firms. An easy way to assess the

model’s implications for different firms is to test the moment conditions (13) for portfolios

of small firms only. We investigate this possibility in Table 4. We have also included are

the χ2-statistics and corresponding p-values for the relevant Wald tests when our estimate

of b is non-zero. As columns 2–4 show, we cannot find any evidence for a significant role of

financing frictions, even in this case. Even when b is slightly positive, the hypothesis that it

is statistically zero can be rejected only at extremely high significance levels.

15An alternative way of representing the impact of financing constraints is to compare their effect on
the pricing kernels with the Hansen-Jagannathan (1991) bounds. Increasing b has the effect of moving the
estimated kernels farther way from the bounds.
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5.2 Fama-French Portfolios

Several authors interpret the cross-sectional variation in the Fama and French (1993) size and

book-to-market portfolio returns as proxies for some measure of relative financial distress.

Columns 5–7 in Table 4 report the results when our model is used to price the 25 Fama and

French (1993) portfolio returns. However, the estimated value of b is zero, again suggesting

that financing frictions do not play a crucial role in determining the cross-section of returns.

5.3 Different Macroeconomic Data

Table 5 shows the effects of using alternative data in the construction of the investment

returns. Columns 2–4 report the results of using after tax profits in the construction

of investment returns, while columns 5–7 report similar results when data on overall

macroeconomic aggregates is used. It is easy to see that these alternative constructions

have no impact on our main conclusions from Table 2.

5.4 Non-Linear Pricing Kernels

The use of a linear factor representation may be restrictive, and several alternative

approaches modelling nonlinear pricing kernels have been recently advanced in the

literature.16 We explore this possibility by re-estimating the moment conditions using several

nonlinear pricing kernels. Specifically, we consider examples where the pricing kernel is

quadratic in either RI alone or in both RI and RB. Again, as columns 2–7 in Table 6 show,

none of these cases reveals any evidence for financing costs.

16E.g., Bansal and Vishwanathan (1993), Chapman (1997), and Brandt and Yaron (2001).
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5.5 Alternative Cost Functions

While our financing cost function is derived from first principles, given our model’s

assumptions, we can also apply our methodology to investigate the consequences of using

alternative, less structural, functional forms. While these may not correspond exactly to the

underlying constrained problem in (3), they may nevertheless provide a useful approximation

for empirical purposes.

In this section we explore the implications of a simple alternative characterization of the

cost function:

(b × DFt × Et) × Et = b × DFt × E2
t ,

where the term b × DFt × Et now captures the premium which multiplies external finance,

Et. Quadratic cost functions of this form correspond to some popular models of financing

frictions, such as that in Stein (2001). Intuitively they correspond to the assumption that

the premium on external finance, b(·), is linear in the amount of external finance raised.

Columns 8–10 in Table 6 confirm that this modification has a negligible impact on our

results. Even when the actual point estimate of b is not exactly zero, the hypothesis that it

differs from zero is easily rejected.

6 Conclusion

Despite its empirical success, the production based asset pricing model (Cochrane (1991,

1996)) has been, until recently, relatively neglected by researchers, in favor of either

standard consumption based or APT-like asset pricing models. This is unfortunate since,

by concentrating on optimal firm behavior, this approach holds the promise of endogenously

linking firm characteristics with asset returns. Moreover, it also provides a natural way
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of integrating new developments in the theory of corporate finance into an asset pricing

framework.

In this paper we pursue this line of research by incorporating costly external finance in

a production based asset pricing model and ask whether financing frictions help in pricing

the cross-section of expected returns. To avoid specifying the underlying source of these

frictions we show that the typical assumptions about the nature of the financing frictions

are captured by a simple “financing cost” function, which provides a tractable framework to

examine the role of financing frictions in pricing asset returns.

Our empirical findings suggest that the role played by financing frictions is fairly

negligible, unless the premium on external funds is procyclical, a property not evident in

the data and not satisfied by most models of costly external finance. This finding is robust

to several alternative formulations of our model, particularly the form of the financing cost

function, the specific macroeconomic data used, and the set of returns used in our GMM

implementations.

These findings question whether financing frictions are important for explaining the cross-

section of returns and for determining investment behavior. Moreover, our results also cast

doubt on whether financing constraints provide a realistic propagation mechanism in several

macroeconomic models.

A few aspects of our empirical implementation suggest promising directions for future

research. First, investment may have an important time-to-build component, and financing

procedures may precede the actual investment spending by a quarter or more, leading firms

to look at lagged measures of fundamentals when making their decisions. Although our

results suggest that this explanation is unlikely to account for the rejection of financing

frictions, only an explicit examination of the potential time aggregation implications can
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formally address this issue. Second, although financing constraints seem to play no role in

determining the portfolio returns in this paper, they may still be fairly important at the

individual firm level. Since our model holds for every firm it can also be used to investigate

this issue by looking directly at firm level implications as well.
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A Proofs

To prove Proposition 1 we need to establish the following Lemma first.

Lemma 1 When debt is positive, the multiplier µt satisfies the following conditions:

∂µt

∂Kt
=

∂µt

∂Bt
= 0

Proof. The envelope conditions for respect to Kt and Bt imply:

V21(Kt, Bt, Xt) = − ∂µt

∂Kt
[R(Bt/Kt) + R1(Bt/Kt)(Bt/Kt)]

+µt

[
R1(Bt/Kt)(2Bt/K2

t ) + R11(Bt/Kt)(B2
t /K3

t )
]

(A1)

V22(Kt, Bt, Xt) = − ∂µt

∂Bt
[R(Bt/Kt) + R1(Bt/Kt)(Bt/Kt)]

−µt

[
R1(Bt/Kt)(2/Kt) + R11(Bt/Kt)(Bt/K2

t )
]

Now homogeneity of the value function implies that

0 = V21(Kt, Bt, Xt)Kt + V22(Kt, Bt, Xt)Bt

= − [R(Bt/Kt) + R1(Bt/Kt)(Bt/Kt)]
(

∂µt

∂Kt
Kt +

∂µt

∂Bt
Bt

)

thus confirming that µt is indeed homogeneous of degree zero in Kt and Bt.
Now since

V21(K, B, X) = V12(K, B, X) =
∂µt

∂Bt

[
C1(Kt, Kt+1, Xt) + R1(Bt/Kt)(Bt/Kt)2

]
+µt

[
R1(Bt/Kt)(2Bt/K2

t ) + R11(Bt/Kt)(B2
t /K3

t )
]

(A2)

equating (A1) and (A2) and simplifying yields

− ∂µt

∂Kt
[R(Bt/Kt) + R1(Bt/Kt)(Bt/Kt)] =

∂µt

∂Bt

[
C1(Kt, Kt+1, Xt) + R1(Bt/Kt)(Bt/Kt)2

]
Thus,

∂µt

∂Kt
R(Bt/Kt) +

∂µt

∂Bt
C1(Kt, Kt+1, Xt) =

(
∂µt

∂Kt
Kt +

∂µt

∂Bt
Bt

)
R1(Bt/Kt)(Bt/K2

t ) = 0

Therefore, the derivatives of µt satisfy the following two conditions

∂µt

∂Kt
R(Bt/Kt) +

∂µt

∂Bt
C1(Kt, Kt+1, Xt) = 0(

∂µt

∂Kt
Kt +

∂µt

∂Bt
Bt

)
= 0

But since Bt >0
R(Bt/Kt)Bt + C1(Kt, Kt+1, Xt)Kt > 0
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and we must have that
∂µt

∂Kt
=

∂µt

∂Bt
= 0

Proof of Proposition 1. In the case of debt financing only, investment returns can be written
as:

RI
t+1 =

µt+1

[
C1(Kt+1, Kt+2, Xt+1) + R1(Bt+1/Kt+1)(Bt+1/Kt+1)2

]
−µtC2(Kt, Kt+1, Xt)

(A3)

Define the function:
G(Kt, Kt+1, Xt)=(µt − 1)Bt+1 (A4)

it follows that

G1(Kt, Kt+1, Xt) = −(µt − 1)
[
C1(Kt, Kt+1, Xt) + R1(Bt/Kt)(Bt/Kt)2

]
(A5)

G2(Kt, Kt+1, Xt) = −(µt − 1)C2(Kt, Kt+1, Xt) (A6)

Integration of (A6) yields

G(Kt, Kt+1, Xt) =
∫

G2(Kt, Kt+1, Xt) dKt+1 = −(µt − 1)C(Kt, Kt+1, Xt) + f1(Kt, Xt)

where f1(·) is independent of Kt+1. Using Lemma 1 we know that the integral of (A5) equals

G(Kt, Kt+1, Xt) = −(µt−1)C(Kt, Kt+1, Xt)−(µt−1)

∫
R1(Bt/Kt)(Bt/Kt)

2 dKt+f2(Kt+1, Xt)

where f2(·) is independent of Kt. Combining two equations above yields

G(Kt, Kt+1, Xt) = (µt − 1)
[
R(Bt/Kt)Bt + D − C(Kt, Kt+1, Xt)

]
= (µt − 1)Bt+1

where the second equality follows from (4) and the fact that Bt > 0 =⇒ Dt = D. Equation (A3)
now implies that:

RI
t+1 =

C1(Kt+1, Kt+2, Xt+1) − G1(Kt+1, Kt+2, Xt+1)
−C2(Kt, Kt+1, Xt) + G2(Kt, Kt+1, Xt)

=
C̃1(Kt+1, Kt+2, Xt+1)

−C̃2(Kt, Kt+1, Xt)

To prove Proposition 2 we need to establish the following Lemma first.

Lemma 2 The value of the firm equals the sum of (cum-dividend) equity value and the value of
outstanding debt:

qtKt = V (Kt, Bt, Xt) + µtBt [R(Bt/Kt) + R1(Bt/Kt) (Bt/Kt)] (A7)

where qt = V1(Kt, Bt, Xt) denotes the marginal q. Moreover, (A7) implies that marginal q equals
Tobin’s (average) q.
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Proof For simplicity consider the case where D = 0. Rewrite the value of the firm as

V (Kt, Bt, Xt) = max
Dt,Bt+1,
Kt+1,Nt

{
(1 − µt + λd

t )Dt + [µt − W (Nt/Kt) + λn
t ]Nt + µt[C(Kt, Kt+1, Xt)

+Bt+1 − R(Bt/Kt)Bt] + Et [Mt,t+1V (Kt+1, Bt+1, Xt+1)]

}

The complementarity-slackness conditions imply that the first term on the right-hand side is zero
and the second equals W1 (Nt/Kt) (Nt/Kt)Nt.

Next, homogeneity of the value function and the envelope conditions imply that:

Et [Mt,t+1V (Kt+1, Bt+1, Xt+1)] = −µtC2(Kt, Kt+1, Xt)Kt+1 − µtBt+1

while homogeneity of C yields

C1(Kt, Kt+1, Xt)Kt = C(Kt, Kt+1, Xt) − C2(Kt, Kt+1, Xt)Kt+1

Hence the value function collapses to

V (Kt, Bt, Xt) = W1 (Nt/Kt) (Nt/Kt)Nt + µt [C1(Kt, Kt+1, Xt)Kt − R(Bt/Kt)Bt]

Rearranging, and using the envelope condition, we have:

V (Kt, Bt, Xt) + µt [R(Bt/Kt)Bt + R1(Bt/Kt) (Bt/Kt) Bt] = V1(Kt, Bt, Xt)Kt

Proof of Proposition 2. By definition stock returns are given by

RS
t+1 =

V e(Kt+1, Bt+1, Xt+1) + [Dt+1 − W (Nt+1/Kt+1, Xt+1)Nt+1]

V e(Kt, Bt, Xt)
, (A8)

where
V e(Kt, Bt, Xt) ≡ V (Kt, Bt, Xt) − [Dt − W (Nt/Kt, Xt)Nt] (A9)

is the (current period) value of the firm to shareholders after new issues take place and dividends
are paid.

Again consider the simple case where D = 0. Starting from the definition of investment returns
(12), we have

RI =
V1(Kt+1, Bt+1, Xt+1)
−µtC2(Kt, Kt+1, Xt)

=
V1(Kt+1, Bt+1, Xt+1)

µt [C1(Kt, Kt+1, Xt)Kt − C(Kt, Kt+1, Xt)]
(A10)

=
V (Kt+1, Bt+1, Xt+1) + µt+1Bt+1 [R(Bt+1/Kt+1) + R1(Bt+1/Kt+1) (Bt+1/Kt+1)]

V (Kt, Bt, Xt) − µtDt + µtBt+1 + Nt [µt − W1 (Nt/Kt) (Nt/Kt)]
,(A11)

where the second equality follows from homogeneity of C(·), and the third from the envelope
condition and Lemma 2. Next, observe that the complementarity slackness conditions imply:
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Dt(1 − µt) = 0
Nt[µt − W1 (Nt/Kt) (Nt/Kt)] = W (Nt/Kt)Nt

Thus

RI
t+1 =

V (Kt+1, Bt+1, Xt+1) + µt+1Bt+1 [R(Bt+1/Kt+1) + R1(Bt+1/Kt+1) (Bt+1/Kt+1)]
V (Kt, Bt, Xt) − Dt + µtBt+1 + W (Nt/Kt)Nt

Using the definitions of RS
t+1, RB

t+1 it follows that:

RI
t+1 = (1 − ωt)RS

t+1 + ωtR
B
t+1

where the leverage ratio, ωt, equals

ωt =
µtBt+1

V e(Kt, Bt, Xt) + µtBt+1

. (A12)

With this result established, it follows immediately that

1 = Et

[
Mt,t+1R

S
t+1(1 − ωt)

]
+ Et

[
Mt,t+1R

B
t+1ωt

]
= (1 − ωt)Et

[
Mt,t+1R

S
t+1

]
+ ωt

or, simply
Et

[
Mt,t+1R

S
t+1

]
= 1 (A13)

B Data Construction

Macroeconomic data comes from NIPA, published by the BEA, and the Flow of Funds Accounts,
available from the Federal Reserve System. These data are cross-referenced and mutually consistent,
so they form, for practical purposes, a unique source of information. Most of our experiments
use data for the Nonfinancial Corporate Sector. Specifically Table F102 is used to construct
measures of profits before (item FA106060005) and after tax accruals (item FA106231005). To
these measures we add both consumption capital (item FA106300015) and inventory valuation (item
FA106020601) adjustments to obtain a better indicator of actual cash flows. Investment spending is
gross investment (item 105090005). The capital stock comes from Table B102 (Item FL102010005).
Since stock valuations include cash flows from operations abroad, we also include in our measures
of profits the value of foreign earnings abroad (item FA266006003) and that of net foreign holdings
to the capital stock (items FL103092005 minus FL103192005, from Table L230) and investment
(the change in net holdings). Financial liabilities come also from Table B102. They are constructed
by subtracting financial assets, including trade receivables, (Item FL104090005) from liabilities in
credit market instruments (Item FL104104005) plus trade payables (Item FL103170005). Interest
payments come from NIPA Table 1.16, line 35. All these are available at quarterly frequency and
require no further adjustments. Series for the aggregate economy come from NIPA.

Financial data come from CRSP and Ibbotson. We use the ten size portfolios of NYSE stocks
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(CRSP series DECRET1 to DECRET10). Corporate bond data comes from Ibbotson’s index of
Long Term Corporate Bonds. The default premium is defined as the difference between the yields
on AAA and Baa corporate bonds, from CRSP. Term premium, defined as the yield on 10 year
notes minus that on three-month Treasury bills, and the dividend-price ratio of the equally weighted
NYSE portfolio (constructed from CRSP EWRETD and EWRETX).17

Table 1 : Summary Statistics of the Assets Returns in GMM

This table reports the means, volatilities, Sharpe ratios, and first-order autocorrelations of excess returns of
deciles 1–10, excess value-weighted market return (vwret), real t-bill rate (RF ), and corporate bond return
(RB). These returns are used in GMM estimation and tests. The sample period is from 1954:2Q to 2000:3Q.
Means and volatilities are in annualized percent.

Decile Returns vwret RF RB

1 2 3 4 5 6 7 8 9 10 mean

mean 11.80 9.49 9.03 9.07 8.50 8.57 7.67 8.16 7.34 6.64 7.10 1.86 0.51
std 19.61 17.49 16.73 16.16 15.49 15.19 14.51 13.80 12.90 11.35 11.87 1.32 7.23
Sharpe 0.60 0.54 0.53 0.55 0.54 0.56 0.52 0.58 0.56 0.57 0.58 0.00 0.09
ρ(1) 0.26 0.29 0.29 0.31 0.29 0.28 0.32 0.27 0.27 0.36 0.33 0.67 0.29

17Dividend-price ratios are also normalized so that scaled and non-scaled returns are comparable.
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Table 2 : GMM Estimates and Tests — The Benchmark

This table reports GMM estimates and tests of the benchmark model with linear G function where bt =b×DFt

and DFt is the default premium. Investment return series are constructed from flow of funds accounts using
nonfinancial profits before tax. T -statistics are reported in parentheses to the right of parameter estimates.
Finally, we also report the root mean square pricing error α — mean return less predicted mean return
— in percentage per quarter, where pricing errors are calculated as αj = 100 × E[MRj − pj ]/E[M ], the
χ2 statistic and corresponding p-value for the JT test on over-identification, and p-values of the Wald
test on the null hypothesis that a = 0. We conduct GMM estimates and tests for the unconditional
model, unscaled and scaled conditional model, for both one-factor and two-factor specifications of the
pricing kernel. The unconditional model uses as moment conditions the excess returns of 10 CRSP size
decile portfolio and one investment return and the real Treasury-bill return (12 moment conditions). The
unscaled and scaled conditional models use the deciles 1, 2, 5, 10, and investment returns, scaled by
instruments, and the real Treasury-bill return (16 moment conditions). Instruments are the constant,
term premium (tp), and equally weighted dividend-price ratio (dp). So the scaled factor model in the
one-factor case features pricing kernel M = l0 + l1R

I + l2(RI · tp) + l3(RI ·dp) and in the two-factor case
M = l0 + l1R

I + l2R
B + l3(RI ·tp) + l4(RI ·dp) + l5(RB ·tp) + l6(RB ·dp).

One Factor Model Two Factor Model

Unconditional Conditional Scaled Factor Unconditional Conditional Scaled Factor

Parameters

a 9.63 (3.98) 8.42 (6.16) 8.90 (4.93) 13.65 (2.30) 9.71 (3.88) 8.79 (4.41)
b 0.00 0.00 0.00 0.00 0.00 0.00

Loadings

l0 60.50 ( 1.83) 108.79 ( 4.29) 96.13 ( 3.32) 55.02 ( 1.64) 103.01 ( 3.41) 89.68 ( 2.52)
l1 -58.65 (-1.81) -106.16 (-4.26) -93.52 (-3.27) -41.94 (-1.30) -90.43 (-2.77) -109.65 (-3.11)
l2 -0.19 (-1.13) -11.40 (-1.92) -10.11 (-1.52) 23.10 ( 1.73)
l3 0.08 ( 0.48) 9.81 (3.29)
l4 6.37 ( 1.01)
l5 -10.28 (-3.36)
l6 -6.40 (-0.98)

Root Mean Squared Pricing Error

α 1.15 2.13 0.45 0.30 0.67 0.33

JT Test

χ2 14.01 18.62 16.55 8.27 15.60 8.20
p 0.08 0.10 0.08 0.31 0.16 0.32
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Table 3 : Properties of Pricing Kernels, Jensen’s α, and Investment Returns

This table reports, for each combination of parameters a and b, properties of the pricing kernel, including
market price of risk (σ[M ]/E[M ]), the contemporaneous correlation between pricing kernel and real market
return (ρM,RS ), Jensen’s α and its corresponding t-statistic (tα), summary statistics of investment return,
including mean, volatility (σRI ), first-order autocorrelation (ρ(1)), and correlation with the real value-
weighted market return (ρRI ,RS ). Jensen’s α is defined from the following regression: Rp − Rf =
α + β1(RI − Rf ) + β2(RB − Rf ) where Rp is either real value-weighted market return (Rvw) or real decile
one return (R1), Rf is real interest rate proxied by real treasury-bill rate, RI is investment return, and RB

is real corporate bond return. In each case the cost parameters a’s are held fixed at their GMM estimates.
The assets returns used in the unconditional estimates are the 10 CRSP size decile portfolio, one investment
excess return, one corporate bond excess return, and the real treasury-bill return. The assets returns used
in the conditional estimates, in both unscaled and scaled model, are the deciles 1, 2, 5, 10 returns, and
investment and corporate bond excess returns, scaled by instruments, plus the real Treasury-Bill return.
Instruments are the constant, term premium, and equally weighted dividend-price ratio. θ2 is the share of
financing cost in investment.

Pricing Kernel Jensen’s α Investment Return

b θ2
σ[M ]
E[M ] ρM,RS αvw tvw

α αd1 td1
α mean σRI ρ(1) ρRI ,RS

Unconditional Model

0.00 0.00 0.76 -0.51 0.54 1.21 1.25 1.59 5.54 3.13 0.00 0.35
0.25 0.04 0.67 -0.20 1.74 3.65 3.37 4.12 5.56 3.35 -0.04 -0.10
0.50 0.09 0.41 -0.03 2.16 4.88 3.98 5.29 5.58 4.85 0.11 -0.29

Conditional Model

0.00 0.00 1.07 -0.47 0.25 0.51 0.81 0.95 5.82 2.44 0.06 0.35
0.25 0.05 0.69 -0.24 1.22 2.05 4.15 4.66 5.85 3.01 0.06 -0.19
0.50 0.10 0.72 -0.19 2.12 2.35 5.32 5.74 5.87 4.74 0.18 -0.35

Scaled Factor Model

0.00 0.00 1.31 -0.31 0.17 0.33 0.70 0.80 5.89 2.27 0.08 0.35
0.25 0.05 1.04 -0.01 2.15 4.32 4.11 4.84 5.92 2.94 0.09 -0.21
0.50 0.10 0.78 0.10 2.40 5.44 4.37 5.85 5.94 4.73 0.20 -0.36
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Table 4 : GMM Estimates and Tests — Alternative Moment Conditions

This table reports results of GMM estimates and tests of the benchmark model with alternative sets of
moment conditions. Under alternative one, unconditional model uses the excess returns of CRSP size
deciles 1, 2, and 3 portfolios and one investment excess return, and the real Treasury-bill return (5 moment
conditions). The conditional estimates, in nonscaled and scaled model, use the deciles 1 and 2 and investment
excess returns, scaled by instruments, and the real Treasury-bill return (10 moment conditions). Under
alternative two, the unconditional model uses the excess returns of portfolios 11, 13, 15, 21, 23, 25, 41, 43,
45, 51, 53, 55 of the Fama and French (1993) 25 portfolios, one investment excess return, and real Treasury-
bill return (14 moment conditions). The FF portfolios are numbered such that the first digit denotes the
size group and the second digit denotes the book-to-market group, both of which are in ascending order.
For example, portfolio 15 denotes the one formed from the intersection of smallest size and highest book-to-
market ratio. The conditional estimates, in nonscaled and scaled model, use excess returns of FF portfolio
11, 15, 33, 51, and 55, scaled by instruments, and the real Treasury-bill return (19 moment conditions). For
simplicity, only results for the two factor specification of the pricing kernel are presented.

Small Deciles FF Portfolios

Unconditional Conditional Scaled Factor Unconditional Conditional Scaled Factor

Parameters

a 1.13 (0.12) 8.60 (3.07) 8.16 (2.45) 22.61 (2.34) 18.04 (2.95) 10.37 (4.01)
b 0.00 0.015 (1.24) 0.00 0.00 0.00 0.00

Root Mean Squared Pricing Error

α 0.10 0.69 0.07 0.78 1.08 0.42

JT Test

χ2 - 9.66 2.46 43.91 49.80 28.85
p - 0.09 0.12 0.00 0.00 0.00

Wald Test (a=0)

χ2
(1) 0.77
p 0.38

Wald Test (b=0)

χ2
(1) 0.93
p 0.33
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Table 5 : GMM Estimates and Tests — Alternative Measures of Profits

This table reports GMM estimates and tests of the benchmark model with a linear G (as in Table 2) using
alternative sources of data. Specifically, we consider two alternatives for profit series: nonfinancial profits
after tax and aggregate (both financial and nonfinancial) profits. T -statistics are reported in parentheses
to the right of parameter estimates. Finally, we also report the root mean square pricing error α —
mean return less predicted mean return — in percentage per quarter, where pricing errors are calculated
as αj = 100 × E[MRj − pj ]/E[M ], the χ2 statistic and corresponding p-value for the JT test on over-
identification, and p-values of Wald test on the null hypothesis that a=0. We conduct GMM estimates and
tests for the unconditional model, the unscaled and scaled conditional models, for both one-factor and two-
factor specifications of the pricing kernel. The unconditional model uses as moment conditions the excess
returns of 10 CRSP size decile portfolio and one investment return, and the real Treasury-bill return (12
moment conditions). The unscaled and scaled conditional model use the deciles 1, 2, 5, 10, and investment
returns, scaled by instruments, and the real Treasury-bill return (16 moment conditions). Instruments are
the constant, term premium (tp), and equally weighted dividend-price ratio (dp). For brevity, only results
for two factor specifications of the pricing kernel are presented.

Nonfinancial After Tax Aggregate Profits

Unconditional Conditional Scaled Factor Unconditional Conditional Scaled Factor

Parameters

a 4.16 (2.32) 4.60 (2.85) 3.67 (3.70) 7.36 (1.12) 13.61 (3.16) 6.35 (1.61)
b 0.00 0.00 0.01 (0.70) 0.00 0.00 0.00

Root Mean Square Pricing Error

α 0.27 0.67 0.26 0.22 0.54 0.29

JT Test

χ2 4.67 14.60 10.46 9.56 17.72 9.04
p 0.70 0.20 0.16 0.21 0.09 0.25

Wald Test (a=0)

χ2
(1) 5.89 11.17
p 0.02 0.00

Wald Test (b=0)

χ2
(1) 0.35
p 0.55
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Figure 1 : Predicted Versus Actual Mean Excess Returns

This figure plots the mean excess returns against predicted mean excess return, both of which are in % per
quarter, for conditional model (Panel A), conditional model (Panel B), and scaled factor model (Panel C).
All plots are from first-stage GMM estimates.
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Panel B: Conditional Estimates Panel C: Scaled Factor
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Figure 2 : Correlation Structure

This figure presents the correlations of investment return RI , real value-weighted market return RS , the
growth rate of default premium DFt+1/DFt with I/K and Π/K with various leads and lags. Panel A plots
the correlation structure of the above series with I/K and Panel B plots that with Π/K.
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