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ABSTRACT

Liquidity Risk and Expected Stock Returns*

This Study investigates whether market-wide liquidity is a state variable
important for asset pricing. We find that expected stock returns are related
cross-sectionally to the sensitivities of returns to fluctuations in aggregate
liquidity. Our monthly liquidity measure, an average of individual-stock
measures estimated with daily data, relies on the principle that order flow
induces greater return reversals when liquidity is lower. Over a 34-year period,
the average return on stocks with high sensitivities to liquidity exceeds that for
stocks with low sensitivities by 7.5% annually, adjusted for exposures to the
market return as well as size, value, and momentum factors.
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I. Introduction

In standard asset pricing theory, expected stock returns are related cross-sectionally to re-

turns' sensitivities to state variables with pervasive e®ects on investors' overall welfare. A

security whose lowest returns tend to accompany unfavorable shifts in that welfare must

o®er additional compensation to investors for holding the security. Liquidity appears to be

a good candidate for a priced state variable. It is often viewed as an important feature of

the investment environment and macroeconomy, and recent studies ¯nd that °uctuations in

various measures of liquidity are correlated across assets.1 This empirical study investigates

whether market-wide liquidity is indeed priced. That is, we ask whether cross-sectional dif-

ferences in expected stock returns are related to the sensitivities of returns to °uctuations

in aggregate liquidity.

It seems reasonable that many investors might require higher expected returns on assets

whose returns have higher sensitivities to aggregate liquidity. Consider, for example, any

investor who employs some form of leverage and faces a margin or solvency constraint, in that

if his overall wealth drops su±ciently he must liquidate some assets to raise cash. If he holds

assets with higher sensitivities to liquidity, then such liquidations are more likely to occur

when liquidity is low, since drops in his overall wealth are then more likely to accompany

drops in liquidity. Liquidation is costlier when liquidity is lower, and those greater costs are

especially unwelcome to an investor whose wealth has already dropped and who thus has

higher marginal utility of wealth. Unless the investor expects higher returns from holding

these assets, he would prefer assets less likely to require liquidation when liquidity is low,

even if the latter assets are just as likely to require liquidation on average.2

The well-known 1998 episode involving Long-Term Capital Managment (LTCM) seems

1Chordia, Roll, and Subrahmanyam (2000), Hasbrouck and Seppi (2001), Huberman and Halka (1999),
and Lo and Wang (2000) empirically analyze the systematic nature of stock-market liquidity. Chordia,
Sarkar, and Subrahmanyam (2002) ¯nd that improvements in stock-market liquidity are associated with mon-
etary expansions and that °uctuations in liquidity are correlated across stocks and bond markets. Eisfeldt
(2002) develops a model in which endogenous °uctuations in liquidity are correlated with real fundamentals
such as productivity and investment.

2This economic story has yet to be formally modeled, but recent literature presents related models that
lead to the same basic result. Lustig (2001) develops a model in which solvency constraints give rise to
a liquidity-risk factor, in addition to aggregate consumption risk, and equity's sensitivity to the liquidity
factor raises its equilibrium expected return. HolmstrÄom and Tirole (2001) also develop a model in which
a security's expected return is related to its covariance with aggregate liquidity. Unlike more standard
models, their model assumes risk-neutral consumers and is driven by liquidity demands at the corporate
level. Acharya and Pedersen (2002) develop a model in which each asset's return is net of a stochastic
liquidity cost, and expected returns are related to return covariances with the aggregate liquidity cost (as
well as to three other covariances).
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an acute example of the above liquidation scenario. The hedge fund was highly levered

and by design had positive sensitivity to market-wide liquidity, in that many of the fund's

spread positions, established across a variety of countries and markets, went long less liquid

instruments and short more liquid instruments. When the Russian debt crisis precipitated

a widespread deterioration in liquidity, LTCM's liquidity-sensitive portfolio dropped sharply

in value, triggering a need to liquidate in order to meet margin calls. The anticipation of

costly liquidation in a low-liquidity environment then further eroded LTCM's position. (The

liquidation was eventually overseen by a consortium of 14 institutions organized by the New

York Federal Reserve.) Even though exposure to liquidity risk ultimately spelled LTCM's

doom, the fund performed quite well in the previous four years, and presumably its managers

perceived high expected returns on its liquidity-sensitive positions.3

Liquidity is a broad and elusive concept that generally denotes the ability to trade large

quantities quickly, at low cost, and without moving the price. We focus on an aspect of

liquidity associated with temporary price °uctuations induced by order °ow. Our monthly

aggregate liquidity measure is a cross-sectional average of individual-stock liquidity measures.

Each stock's liquidity in a given month, estimated using that stock's within-month daily

returns and volume, represents the average e®ect that a given volume on day d has on the

return for day d + 1, when the volume is given the same sign as the return on day d. The

basic idea is that, if signed volume is viewed roughly as \order °ow," then lower liquidity is

re°ected in a greater tendency for order °ow in a given direction on day d to be followed by

a price change in the opposite direction on day d+1. Essentially, lower liquidity corresponds

to stronger volume-related return reversals, and in this respect our liquidity measure follows

the same line of reasoning as the model and empirical evidence presented by Campbell,

Grossman, and Wang (1993). They ¯nd that returns accompanied by high volume tend to

be reversed more strongly, and they explain how this result is consistent with a model in

which some investors are compensated for accommodating the liquidity demands of others.

We ¯nd that stocks' \liquidity betas," their sensitivities to innovations in aggregate

liquidity, play a signi¯cant role in asset pricing. Stocks with higher liquidity betas exhibit

higher expected returns. In particular, between January 1966 and December 1999, a spread

between the top and bottom deciles of predicted liquidity betas produces an abnormal return

(\alpha") of 7.5% per year with respect to a model that accounts for sensitivities to four other

factors: the market, size, and value factors of Fama and French (1993) and a momentum

factor. The alpha with respect to just the three Fama-French factors is over 9% per year.

The results are both statistically and economically signi¯cant, and similar results occur in

3See, for example, Jorion (2000) and Lowenstein (2000) for accounts of the LTCM experience.
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both halves of the overall 34-year period.

This study investigates whether expected returns are related to systematic liquidity risk

in returns, as opposed to the level of liquidity per se. The latter's relation to expected

stock returns has been investigated by numerous empirical studies, including Amihud and

Mendelson (1986), Brennan and Subrahmanyam (1996), Brennan, Chordia, and Subrah-

manyam (1998), Datar, Naik, and Radcli®e (1998), and Fiori (2000).4 Using a variety of

liquidity measures, these studies generally ¯nd that less liquid stocks have higher average

returns. Amihud (2002) and Jones (2002) document the presence of a time-series relation

between their measures of market liquidity and expected market returns. Instead of in-

vestigating the level of liquidity as a characteristic that is relevant for pricing, this study

entertains market-wide liquidity as a state variable that a®ects expected stock returns be-

cause its innovations have e®ects that are pervasive across common stocks. The potential

usefulness of such a perspective is recognized by Chordia, Roll, and Subrahmanyam (2000,

2001).

Chordia, Subrahmanyam, and Anshuman (2001) ¯nd a signi¯cant cross-sectional relation

between stock returns and the variability of liquidity, where liquidity is proxied by measures

of trading activity such as volume and turnover. The authors report that stocks with more

volatile liquidity have lower expected returns, an unexpected result. Liquidity risk in that

study is measured as ¯rm-speci¯c variability in liquidity. Our paper focuses on systematic

liquidity risk in returns and ¯nds that stocks whose returns are more exposed to market-wide

liquidity °uctuations command higher expected returns.

Section II explains the construction of the liquidity measure and brie°y describes some

of its empirical features. The sharpest troughs in market-wide liquidity occur in months

easily identi¯ed with signi¯cant ¯nancial and economic events, such as the 1987 crash, the

beginning of the 1973 oil embargo, the 1997 Asian ¯nancial crisis, and the 1998 collapse

of Long Term Capital Management (LTCM). Moreover, in months of large liquidity drops,

stock returns are negatively correlated with ¯xed-income returns, in contrast to other months.

This observation seems consistent with \°ight-to-quality" e®ects. We also ¯nd signi¯cant

commonality across stocks in our monthly liquidity measure. That result, in accord with

the high-frequency evidence of previous studies, enhances the prospect that market-wide

liquidity could be a priced state variable.

4Theoretical studies that investigate the relation between liquidity and asset prices include Amihud and
Mendelson (1986), Constantinides (1986), Heaton and Lucas (1996), Vayanos (1998), Huang (2002), and Lo,
Mamaysky, and Wang (2001), among others.
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Section III presents the asset pricing investigation. We ¯nd that stocks' liquidity betas

can be predicted not only by their simple historical estimates but by other variables as well.

Each year, we sort stocks by their predicted liquidity betas and form ten portfolios. This

procedure yields a substantial spread in the estimated post-formation liquidity betas as well

as the large spread in abnormal returns reported above. Sorting stocks on their historical

liquidity betas alone produces results that are slightly less strong but still signi¯cant. A sort

on ¯rm size reveals that stocks of the smallest ¯rms tend to have high liquidity betas as well

as signi¯cantly positive alphas with respect to the four-factor model.

Section IV provides an investment perspective on liquidity risk by examining the degree

to which spreads between stocks with high and low liquidity risk expand the mean-variance

opportunity set. In an investment universe that also includes the market portfolio and

spreads based on size, value, and momentum, we ¯nd that liquidity-risk spreads receive

substantial weight in the portfolio with the highest ex post Sharpe ratio. The importance

of the momentum spread in that portfolio is especially reduced as compared to a universe

without a liquidity-risk spread. Moreover, an equally weighted liquidity-risk spread reduces

momentum's alpha by half in the overall 34-year period and eliminates it completely (driving

it to a small negative value) in the more recent 17-year subperiod from 1983{99. Section V

brie°y reviews our conclusions and suggests directions for future research.

II. Market-Wide Liquidity

A. Constructing a Measure

Liquidity has many dimensions. This study focuses on a dimension associated with tempo-

rary price changes accompanying order °ow. We construct a measure of market liquidity in

a given month as the equally weighted average of the liquidity measures of individual stocks

on the NYSE and AMEX, using daily data within the month.5 Speci¯cally, the liquidity

5All of the individual-stock return and volume data used in the study are obtained from the Center for
Research in Security Prices (CRSP) at the University of Chicago. Daily returns and volume are from the
CRSP daily stock ¯le; all month-end (or year-end) codes and values are from the CRSP monthly stock
¯le. We exclude NASDAQ in constructing the aggregate liquidity measure, because NASDAQ returns and
volume data are available from CRSP for only part of this period (beginning in 1982). Also, reported
volumes on NASDAQ include inter-dealer trades, unlike the volumes reported on the NYSE and the AMEX.
To exclude NASDAQ, we omit stocks with exchange codes of 3 or 33 as of the end of the previous year. We
use only stocks classi¯ed as ordinary common shares (CRSP share codes 10 and 11), excluding ADRs, SBIs,
certi¯cates, units, REITs, closed-end funds, companies incorporated outside the U.S., and Americus Trust
Components.
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measure for stock i in month t is the ordinary-least-squares (OLS) estimate of °i;t in the

regression

rei;d+1;t = µi;t + Ái;tri;d;t + °i;tsign(r
e
i;d;t) ¢ vi;d;t + ²i;d+1;t; d = 1; : : : ; D; (1)

where quantities are de¯ned as follows:

ri;d;t: the return on stock i on day d in month t,

rei;d;t: ri;d;t ¡ rm;d;t, where rm;d;t is the return on the CRSP value-weighted market
return on day d in month t, and

vi;d;t: the dollar volume for stock i on day d in month t.

A stock's liquidity is computed in a given month only if there are more than 15 observations

with which to estimate the above regression (D > 15), and we exclude a stock for the ¯rst

and last partial month that it appears on the CRSP tape. The daily observations are not

required to be consecutive (except that each observation requires data for two successive

days). Stocks with share prices less than $5 and greater than $1000 at the end of the

previous month are excluded, and volume is measured in millions of dollars.

The basic idea is that \order °ow," constructed here simply as volume signed by the

contemporaneous return on the stock in excess of the market, should be accompanied by a

return that one expects to be partially reversed in the future if the stock is not perfectly

liquid. We assume that the greater is that expected reversal for a given dollar volume,

the lower is the stock's liquidity. That is, one would expect °i;t to be negative in general

and larger in absolute magnitude when liquidity is lower.6 Viewing volume-related return

reversals as arising from liquidity e®ects is motivated by Campbell, Grossman, and Wang

(1993). Those authors present a model in which risk-averse \market makers," de¯ned in

the general sense of Grossman and Miller (1988), accommodate order °ow from liquidity-

motivated traders and are compensated with higher expected return (by buying at a low

price or selling at a high one). The greater the order °ow, the greater the compensation, so

this liquidity-induced e®ect on expected future return is larger when current volume is high.

Campbell, Grossman, and Wang present empirical evidence consistent with this argument.

As illustrated below, the estimates of the liquidity measure °i;t are typically negative,

although there are months in which the average estimate is positive. The preponderance of

negative values is consistent with the basic intuition underlying our liquidity measure, but

6An alternative class of liquidity measures is based on a positive contemporaneous relation between returns
and order °ow. Typically, these measures are estimated with intraday transactions data, and the volume
for a transaction is signed by comparing the transaction price to the bid-ask midpoint. See, for example,
Hasbrouck (1991), Foster and Viswanathan (1993), and Brennan and Subrahmanyam (1996).
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it must be recognized that the measure abstracts from other potential roles that volume can

play in the relation between current and lagged return. For example, Llorente, Michaely,

Saar, and Wang (2001) explain that asymmetric information (not considered by Campbell,

Grossman and Wang, 1993) can weaken the volume-related reversal e®ect and even produce

volume-related continuations in returns on stocks for which information-motivated trading

is su±ciently important. Using daily data, the authors report empirical evidence consistent

with that prediction. Other related evidence is reported by Lee and Swaminathan (2000),

who conclude that momentum e®ects in monthly returns are stronger for stocks with high

recent volume.

The speci¯cation of the regression in (1) is somewhat arbitrary, as is any liquidity mea-

sure. We use rei;d;t, the return in excess of the market, both as the dependent variable as well as

to sign volume, in order to remove market-wide shocks and better isolate the individual-stock

e®ect of volume-related return reversals. Moreover, daily returns of zero are not uncommon

with lower-priced stocks for which a one-tick move represents a greater relative price change.

Signing volume based on total return is problematic in those zero-return cases, whereas re-

turns in excess of the market are unlikely to be zero. On a day when a stock's price does not

change but the market goes up, it seems reasonable to identify the stock's order °ow on that

day as more likely initiated by sellers than buyers. We also include the lagged stock return

as a second independent variable with the intention of capturing lagged-return e®ects that

are not volume-related, such as reversals due to a minimum tick size. Since we use rei;d;t to

sign volume, we use the total return ri;d;t as this second variable to have it be less correlated

with the variable whose coe±cient we take as the liquidity measure. (A higher correlation

between the independent variables generally reduces the precision with which one can mea-

sure the individual slope on either one.) The precise speci¯cation of the variables in (1), as

compared to seemingly close alternative speci¯cations, is addressed below in subsection C.

In order to investigate the ability of the regression slope °i;t in (1) to capture a liquidity

e®ect, we examine a simple model in which the return on a given day has an order-°ow

component that is partially reversed on the subsequent day. Speci¯cally, the return on stock

i on day d is given by

ri;d = fd + ui;d + Ái(qi;d¡1 ¡ qi;d) + ´i;d ¡ ´i;d¡1: (2)

The ¯rst two terms on the right-hand side represent permanent changes in the price, where

fd is a market-wide factor and ui;d is a stock-speci¯c e®ect. The term Ái(qi;d¡1 ¡ qi;d) is
intended to capture the liquidity-related e®ect arising from order °ow qi;d, in the sense that

both current and lagged order °ow enter the return, but in the opposite directions. The
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coe±cient Ái is negative and represents the stock's liquidity. We assume that qi;d = q
¤
i;d+ qd,

where q¤i;d is independent across stocks and qd is a market-wide component whose standard

deviation is one-third as large as that of q¤i;d, so the market-wide component then explains

10% of the total variance of order °ow. (Hasbrouck and Seppi, 2001, report that the ¯rst

principal component explains 7.8% of total order-°ow variance.)

We use (2) to simulate returns on 10,000 stocks. The quantities fd, ui;d, q
¤
i;d, and qd are

all mean-zero draws from normal distributions. The values of fd are drawn independently

across d with standard deviation ¾ = (0:20=250); ui;d and q
¤
i;d are drawn independently across

d and i with standard deviations equal to ¾; and qd is drawn independently across d with

standard deviation equal to 1
3
¾. The liquidity coe±cient Ái is drawn independently across i

from a uniform [¡1; 0] distribution. The term ´i;d ¡ ´i;d¡1 represents an additional reversal
e®ect that is independent of the order-°ow e®ect, and this component of the return is best

viewed as bid-ask bounce or a tick-size e®ect. On a given day, ´i;d takes the value ¡si, 0,
or si with probabilities

1
4
, 1
2
, and 1

4
, and the realizations are independent across days and

stocks. The value of si for a given stock is drawn as 0:01(U[0; 1]¡Ái), where U[0;1] is a uniform
[0; 1] variate, so the mean value of si across stocks is 0.01, and there is some association

between the typical magnitude of ´i;d and the stock's liquidity (less liquid stocks tend to

have larger si's). In this simulation setting, the average standard deviation of a daily stock

return is 0.023, the average standard deviation of each of the ¯rst three right-hand side terms

in (2) is 0.013, and the average standard deviation of ´i;d ¡ ´i;d¡1 is 0.010. The regression
in (1) requires returns in excess of the market, so we also construct a market return as

rm;d =
1
n

Pn
i=1 ri;d, for n = 10; 000. (The average R-squared in a regression of ri;d on rm;d is

0.33.) We also specify a stock's \volume" on day d as vi;d = jqi;dj.7 For each stock, we then
compute the population value of the coe±cient °i in (1) by estimating that regression across

50,000 simulated daily values. We ¯nd that the cross-sectional correlation between Ái and °i

is 0.98, which suggests that the regression in (1) is a reasonable speci¯cation for estimating

the hypothesized liquidity e®ect.

The use of signed volume as a predictor of future return can also be motivated using the

equilibrium model of Campbell, Grossman, and Wang (1993). In their model, the stock's

excess return Qt and order °ow ¢t are jointly normal, along with Qt+1, and the regression

relating expected future return to current return and volume Vt (= j¢tj) is given by a relation
7Due to the common factor in order °ow, the market return is correlated with lagged order °ow. Moreover,

if we compute a lagged aggregate \volume" measure as Vd =
P

i jqi;dj, then the correlation between rm;d and
rm;d¡1Vd is -0.03. This feature of our simulation is consistent with the negative relation between the market
return and the lagged product of return and volume reported by Campbell, Grossman, and Wang (1993).
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of the form

E(Qt+1jQt; Vt) = Á1Qt ¡ Á2 tanh(Á3VtQt)Vt; (3)

where Á2 < 0 and Á3 < 0. As the correlation between Qt and ¢t increases, (3) becomes well

approximated by

E(Qt+1jQt; Vt) = Á1Qt + Á2sign(Qt)Vt; (4)

which is roughly analogous to (1).8 To the extent that order °ow plays an important role in

determining high-frequency return variation, a conjecture that seems plausible, we see that

the model of Campbell, Grossman, and Wang gives some justi¯cation for the use of signed

volume. Of course, their model of a single-stock economy with continuous price variables (no

minimum tick) is only suggestive when applied to our empirical setting, but the intuition

underlying their model corresponds to our interpretation of °i;t as a liquidity measure.

Although the OLS slope coe±cient °̂i;t is an imprecise estimate of a given stock's °i;t,

the market-wide average liquidity in month t is estimated more precisely. The disturbances

in (1) are less than perfectly correlated across stocks (recall that the dependent variable is

the return in excess of the market). Thus, as the number of stocks, N , grows large, the true

unobserved average °t = (1=N)
PN
i=1 °i;t becomes more precisely estimated by

°̂t = (1=N)
NX
i=1

°̂i;t: (5)

We construct the above market-wide measure for each month from August 1962 through

December 1999. The number of stocks in the index (N) ranges from 951 to 2,188.

Given the regression speci¯cation in (1), the value of °i;t can be viewed as the liquidity

\cost," in terms of return reversal, of \trading" $1 million of stock i, so the average in (5)

can be viewed as the cost of a $1 million trade distributed equally across stocks. Obviously,

a dollar trade size of $1 million was more substantial in relative terms in the 1960's than in

the 1990's, so not surprisingly the raw values of °̂t tend to be smaller in magnitude later in

the period. It seems reasonable to construct a liquidity measure that re°ects the cost of a

trade whose size is commensurate with the overall size of the stock market, so we construct

8Equation (3) relies on a result given in Wang (1994). It is straightforward to show that Wang's equation
B.6 allows (3) to be restated as

E(Qt+1jQt; Vt) = Á1Qt + Á2 tanh
·µ

½

1¡ ½2
¶µ

Qt
¾Q

¶µ
Vt
¾¢

¶¸
Vt;

where ½ is the correlation between Qt and ¢t, and ¾Q and ¾¢ are the standard deviations of those variables.

Note that as ½ ! 1, tanh
h³

½
1¡½2

´³
Qt

¾Q

´³
Vt
¾¢

´i
converges in distribution to sign(Qt), since Vt ¸ 0 and

tanh(x) approaches 1(¡1) as x!1(¡1).
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the scaled series (mt=m1)°̂t, where mt is the total dollar value at the end of month t¡ 1 of
the stocks included in the average in month t, and month 1 corresponds to August 1962.

This scaled series is plotted in Figure 1. It can essentially be viewed as an estimate of

the liquidity cost, averaged across stocks at a given point in time, of trading $1 million in

1962 \stock-market" dollars (about $34 million at the end of 1999). The average value of

this liquidity measure over time is -0.03 (the median is -0.02), indicating about a 2-3% cost

for such a trade. Chordia, Roll, and Subrahmanyam (2001) report that the average daily

dollar volume per stock over the 1988{98 period is about $7 million. For the same period,

the average value of $1 million in 1962 stock-market dollars is $14 million. Based on this

comparison, one can also view our measure as the cost, for the average stock, of trading

twice the daily volume.

In the next section we explore the importance of liquidity risk, measured as comovement

between returns and unanticipated innovations in liquidity. The liquidity series plotted in

Figure 1 has a ¯rst-order serial correlation of 0.22. In constructing innovations, we do not

work directly with that series, since to do so could introduce a return component through

°uctuations in the scaling factor, (mt=m1). Although any such return e®ects would be

lagged, since mt uses values at the end of month t¡ 1, we nevertheless wish to minimize the
possibility that any estimated relation between returns and liquidity innovations could arise

in that fashion. At the same time, the innovation series should also appropriately re°ect the

growth in size of the stock market. Therefore, rather than di®erence the scaled series, we

¯rst di®erence and then scale. Speci¯cally, to construct innovations in liquidity, we ¯rst scale

the monthly di®erence in liquidity measures, averaged across the Nt stocks with available

data in both the current and previous month,

¢°̂t =
µ
mt

m1

¶
1

Nt

NtX
i=1

(°̂i;t ¡ °̂i;t¡1) : (6)

We then regress ¢°̂t on its lag as well as the lagged value of the scaled level series:

¢°̂t = a+ b¢°̂t¡1 + c
µ
mt¡1
m1

¶
°̂t¡1 + ut: (7)

This regression allows the predicted change to depend on the most recent change as well as

on the deviation of the most recent level from its long-run mean (impounded in a). Aside

from the scaling issues, the regression is analogous to a second-order autoregression in the

level series, and it produces residuals that appear serially uncorrelated.9 The innovation in

liquidity, Lt, is taken as the ¯tted residual divided by 100:
Lt = 1

100
ût: (8)

9Note that the equation (yt ¡ yt¡1) = a + b(yt¡1 ¡ yt¡2) + cyt¡1 + ut is equivalent to yt = a+ b0yt¡1 +
c0yt¡2 + ut, with b0 = 1 + b+ c and c0 = ¡b.
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The arbitrary scaling by 100 simply produces more convenient magnitudes of the liquidity

betas reported in the next section. If expected changes in liquidity are correlated with time-

variation in expected stock returns, then failure to use liquidity innovations can contaminate

risk measures. We ¯nd that expected liquidity changes can indeed predict future stock

returns one month ahead, thereby con¯rming the desirability of forming innovations.10

B. Empirical Features of the Liquidity Measure

Perhaps the most salient features of the liquidity series plotted in Figure 1 are its occasional

downward spikes, indicating months with especially low estimated liquidity. Many of these

spikes occur during market downturns, consistent with the evidence in Chordia, Roll, and

Subrahmanyam (2001) and Jones (2002), who use di®erent liquidity measures. Chordia,

Roll, and Subrahmanyam observe that their liquidity measures plummet in down markets,

and Jones ¯nds that his average-spread measure exhibits frequent sharp spikes that often

coincide with market downturns.

The largest downward spike in our measure of aggregate liquidity occurs in October 1987,

the month of the stock-market crash. Grossman and Miller (1988) argue that both spot and

futures stock markets were \highly illiquid" on October 19, the day of the crash, and Amihud,

Mendelson, and Wood (1990) contend that the crash occured in part because of a rise in

market illiquidity during and before October 19. The second largest spike is in November

1973, the ¯rst full month of the mideast oil embargo. Estimated liquidity is generally low

in the early 1970s, again consistent with the evidence in Jones (2002). The third largest

negative value is in September 1998, when liquidity is widely perceived to have dried up due

to the LTCM collapse and the recent Russian debt crisis.11 The next largest spike occurs in

May 1970, a month of signi¯cant domestic political unrest.12 The third biggest spike in the

second half of the sample is observed in October 1997 at the height of the Asian ¯nancial

crisis. There is obviously a risk in pushing such anecdotal analysis very far, but a drop in

10Regressions of the value-weighted and equally weighted liquidity-risk spreads LIQV and LIQE (de¯ned
in section III) on the lagged ¯tted values in (7) produce t-statistics of -3.33 and -2.30. The correlation
between the innovations and the level series in Figure 1 is 0.88. We repeated the historical-beta analysis
reported in Table 8 using the level series in place of the innovations, and obtained weaker results that go in
the same direction as those reported.
11The Economist magazine (September 25, 1999) writes that \In August 1998, after the Russian govern-

ment had defaulted on its debts, liquidity suddenly evaporated from many ¯nancial markets, causing asset
prices to plunge." The article also asserts that \The possibility that liquidity might disappear from a market
... is a big source of risk to an investor."
12On April 30, President Nixon announced the invasion of Cambodia and the need to draft 150,000 more

soldiers, the Kent State and Jackson State shootings occurred on May 4 and May 14, and nearly 500 colleges
and universities closed that month due to anti-war protests.
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stock-market liquidity during these months seems at least plausible.

The monthly innovation in liquidity, Lt, has a correlation of 0.36 with the returns on
both the value-weighted and equally weighted NYSE-AMEX indexes, constructed by CRSP.

This result goes in the same direction as that reported by Chordia, Roll, and Subrahmanyam

(2001), who ¯nd a positive association at a daily frequency between stock returns and changes

in other market-wide liquidity measures. As mentioned earlier, the downward spikes in our

liquidity series often coincide with market downturns, and this observation is con¯rmed by

comparing correlations between Lt and the value-weighted market return for months in which
that return is negative versus positive. The correlation is 0.52 in negative-return months but

only 0.03 in positive-return months, and the di®erence between the liquidity-return relation

in these two subsamples is statistically signi¯cant.13 The simple correlation between Lt and
stock-market returns is larger than those between Lt and other factors typically included
in empirical asset pricing studies. In particular, Lt's correlations with SMB and HML, the
size and value factors constructed by Fama and French (1993), are 0.23 and -0.12.14 Recall

that SMB is the di®erence in returns between small and large ¯rms, while HML is the

return di®erence between stocks with high and low book-to-market ratios (i.e., value minus

growth). The correlation between Lt and a momentum factor is only 0.01. The inclusion

of momentum as an asset pricing factor, here and in other studies, is motivated by the

evidence in Jegadeesh and Titman (1993) that ranking stocks by performance over the past

year produces abnormal returns.15

Our measure of aggregate liquidity also tends to be low when market volatility is high.

Speci¯cally, the within-month daily standard deviation of the value-weighted market return

has a correlation of -0.57 with the liquidity series in Figure 1. This association between

volatility and our liquidity measure seems reasonable, in that the compensation required by

providers of liquidity for a given level of order °ow could well be greater when volatility is

higher.

13We run the regression,
Lt = a+ bRS;t + cDtRS;t + et;

where RS;t is the market return and Dt = 1 if RS;t > 0 and zero otherwise. The estimate of b is 1.01 with a
t-statistic of 9.7, and the estimate of c is -0.99 with a t-statistic of -6.2.
14We are grateful to Ken French for supplying the Fama-French factors.
15To construct the momentum factor in month t, which we denote as MOM, all stocks in the CRSP ¯le

with return histories back to at least month t¡ 12 are ranked at the end of month t¡ 1 by their cumulative
returns over months t¡12 through t¡2, and MOM is the payo® on a spread consisting of a $1 long position
in an equally weighted portfolio of the top decile of the stocks in that ranking and a corresponding $1 short
position in the bottom decile. This particular speci¯cation is the same as the \12{2" portfolio in Fama and
French (1996).
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To describe further the nature of months with exceptionally low liquidity, we note that a

kind of \°ight to quality" e®ect appears in such months. That is, months in which liquidity

drops severely tend to be months in which stocks and ¯xed-income assets move in opposite

directions. Table 1 reports correlations between the monthly return on the CRSP value-

weighted NYSE-AMEX index (RS;t) and three ¯xed-income variables: minus the change in

the rate on one-month Treasury bills (¡¢Rf;t), the return on long-term government bonds

(RGB;t), and the return on long-term corporate bonds (RCB;t).
16 The ¯rst row reports the

correlations across all months, and the next two rows report correlations in subsamples split

according to the values of Lt. The second row of Table 1 shows the correlation between

RS;t and the other variables during the 14 months in which Lt is at least 2 standard devi-
ations below its mean. The correlations between stock returns and the three ¯xed-income

series during those months are negative, in contrast to the correlations during the remaining

months, and the bootstrap p-values indicate that those di®erences are signi¯cant at levels

of either 5% (for the bond returns) or 10% (for the T-bill rate change).17 The results across

both subperiods generally support the inference drawn for the overall period, in that ¯ve of

the six correlations between RS;t and the ¯xed-income series are negative in the months of

large liquidity drops.

Also shown in Table 1 is the correlation between the stock return RS;t and the change in

volume Volt, de¯ned as the equally weighted average percentage change in monthly dollar

volume for NYSE-AMEX stocks. Stock returns are positively correlated with volume changes

in all months, but the correlation is negative in months with large liquidity drops, and the

bootstrap p-value for the overall period is 0.002. The subperiod results again support the

inference that the correlation is lower in the months of severe liquidity drops. There is no

obvious story here, other than perhaps that, in such months, higher volume accompanying

a larger liquidity drop is another manifestation of a °ight to quality. We also ¯nd that,

in low liquidity months, the correlation between volume changes and Lt is equal to -0.27,
whereas it equals 0.18 in other months (and in all months). But, again, we do not wish to

push the descriptive analysis of the market-wide liquidity series too far. The primary goal

of the paper is to investigate whether liquidity is a source of priced systematic risk in stock

returns, and we use the series constructed here for that purpose.

An important motive for entertaining a market-wide liquidity measure as a priced state

variable is evidence that °uctuations in liquidity exhibit commonality across stocks. Chordia,

Roll, and Subrahmanyam (2000) and Huberman and Halka (1999) ¯nd signi¯cant common-

16The ¯xed-income data are obtained from Ibbotson Associates.
17The p-values are computed by resampling the original series and then randomly assigning observations

to subsamples of the same size as in the reported results.
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ality in various liquidity measures at a daily frequency, while Hasbrouck and Seppi (2001)

¯nd only weak commonality in intraday (15-minute) °uctuations in liquidity. Our stock-

by-stock measure °̂it a®ords an additional perspective on commonality, since it measures

liquidity di®erently, it is constructed at a monthly frequency, and our sample period is sub-

stantially longer. We conduct a simple exploration of commonality in °̂it across stocks by

¯rst sorting all stocks at the end of each year by market value and then assigning them to

decile portfolios based on NYSE breakpoints (i.e., each decile has an equal number of NYSE

stocks). Each decile portfolio's change in liquidity for a given month is then computed as the

cross-sectional average change in the individual-stock measures, and this procedure yields

a 1963{1999 monthly series of liquidity changes for each decile. The sample correlation of

these series between any two deciles is positive. If the decile series are averaged separately

across the odd-numbered and even-numbered deciles, the sample correlation between the

two resulting series is 0.56, and the t-statistic for a test of zero correlation is 14.20. This

commonality in our liquidity measure across stocks enhances the prospect that market-wide

liquidity represents a priced source of risk.

C. Speci¯cation issues

Our liquidity measure relies on a large cross-section of stocks and yields a monthly series

spanning more than 37 years. As such, the series seems well suited for this study's focus on

liquidity risk and asset pricing. Aggregate stock-market liquidity is measured in a variety of

alternative ways by recent studies that explore other interesting issues. Those studies include

Amihud (2002), Chordia, Roll, and Subrahmanyam (2000, 2001, 2002), Jones (2002), and

Lo and Wang (2000). Chordia, Roll, and Subrahmanyam form daily time series of various

measures of liquidity (such as depth and bid-ask spread) and trading activity (such as dollar

volume), averaged across NYSE stocks over the period 1988 through 1998. Jones collects

an annual time series of average quoted bid-ask spreads on the stocks in the Dow Jones

index, covering the period of 1898 through 1998. Amihud constructs an annual aggregate

liquidity series for the period of 1963 through 1997 by averaging across NYSE stocks the

ratios of average absolute price change to trading volume. Lo and Wang form a weekly series

of average turnover across NYSE and AMEX stocks from July 1962 to December 1996.

While measures of trading activity such as volume and turnover seem useful in explaining

cross-sectional di®erences in liquidity, they do not appear to capture time variation in liquid-

ity. Although liquid markets are typically associated with high levels of trading activity, it is

often the case that volume is high when liquidity is low. One example is October 19, 1987,
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when the market was highly illiquid in many respects but trading volume on the NYSE

set its historical record. More generally, the previous subsection shows that the positive

time-series correlation between our liquidity measure and dollar volume turns negative when

calculated only across low-liquidity months. For this reason, we do not proxy for time varia-

tion in liquidity using measures of trading activity. Bid-ask spreads and depth are not used

either because suitable data are not available for a long enough sample period. The data

of Chordia, Roll, and Subrahmanyam span 11 years, which is too short for an asset pricing

study. Notably, their liquidity measures (quoted share and dollar depth, quoted absolute

and proportional spreads, and e®ective absolute and proportional spreads) covary with ours

in the expected direction (depth positively and spreads negatively). These measures are also

jointly signi¯cant in explaining the time variation in our measure, as one might expect from

measures that capture di®erent dimensions of market liquidity.18

As explained earlier, our liquidity measure re°ects reversals in returns in excess of the

market. Another potential source of negative serial correlation in excess returns is nonsyn-

chronous trading. (When returns are measured with reported closing prices, an infrequently

traded security is more likely to outperform the market on a day following one on which it

underperforms.) With nonsynchronous trading, however, a reversal on day d + 1 is more

likely when volume on day d is low, as opposed to high as under the liquidity interpretation

of °i;t in (1). Moreover, nonsynchronous trading is likely to be more important when trading

activity is low, but we ¯nd that average turnover is in fact slightly higher in the months iden-

ti¯ed as having the lowest liquidity by our measure. Nevertheless, it remains possible that

nonsynchronous trading makes some contribution to a negative value of °i;t. If the negative

serial correlation in excess returns, arising from either liquidity-related reversals or nonsyn-

chronous trading, is relatively more stable through time than volatility, then °uctuations in

volatility are likely to be re°ected in the value of °i;t. Recall from the earlier discussion that

our aggregate liquidity series exhibits a negative association with market volatility.

The liquidity measure used in this paper has substantial ex ante appeal and a number of

empirical liquidity-like features, as argued earlier. One class of alternative measures involves

merely changing the precise speci¯cation of regression (1). In fact, one can consider 24

di®erent speci¯cations (including ours). The variable on the left-hand side of (1) can be

either the excess or total stock return. On the right-hand side, the ¯rst regressor can be

either total return, or excess return, or it can be absent. Next, one can use not only excess

18Changes in our measure are regressed on changes in theirs in the overlapping period of January 1988
through December 1998, excluding the change between June and July 1997 when the quoted depth dropped
sharply due to a reduction in the tick size on the NYSE. The regression R2 is 0.115, and the F-test rejects
the hypothesis that all slopes are jointly equal to zero with a p-value of 0.03.
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return but also total return to sign volume for the purpose of obtaining a proxy for order °ow.

Finally, the return sign can be replaced by the return itself, for both excess and total return,

motivated by the empirical implementation of Campbell, Grossman, and Wang (1993).

The various speci¯cations described above produce aggregate series that are all substan-

tially di®erent from ours. The correlations between the innovations in the aggregate series

produced by our speci¯cation and those for the remaining 23 choices are low, ranging from

-0.47 to 0.80 and averaging 0.21. The highest correlation is achieved by the speci¯cation that

di®ers from ours only in replacing sign(rei;d;t) by r
e
i;d;t itself. The plot of the resulting series,

shown in the upper left panel of Figure 2, departs noticeably from the plot of our series in

Figure 1. For example, the well-known low-liquidity episodes of October 1987 and September

1998 are much less prominent, and there are a number of downward spikes (e.g. in the late

1990s) in months that are not commonly identi¯ed with low-liquidity events. Moreover, this

alternative series does not exhibit the °ight-to-quality e®ects documented for our measure

in Table 1: the stock-bond correlations in low-liquidity months are actually positive. Our

liquidity measure therefore seems more appealing than its most highly correlated alternative.

Figure 2 also plots the aggregate series for two other speci¯cations of regression (1)

obtained by making only one change to ours. In the upper right panel, the lagged total

return ri;d;t is replaced by its excess counterpart r
e
i;d;t. In the lower left panel, the excess

return is replaced by total return throughout, on the left-hand side as well as within the sign

operator on the right-hand side. Both alternative series have a correlation of only 0.41 with

ours, and the °ight-to-quality e®ects are again absent from both measures. In addition, both

series exhibit a negative correlation with the market in negative-return months, in contrast

to the signi¯cantly positive correlation obtained for our measure (0.52) as well as for liquidity

measures such as bid-ask spreads and depth considered in other studies. Finally, the ¯rst

series does not pick up the best-known low-liquidity periods at all, and its time series average

is in fact positive, not negative. All of these facts make the alternative speci¯cations less

appealing than ours.

Another test of the usefulness of the various alternative speci¯cations of (1) is to what ex-

tent they capture the liquidity e®ect modeled in the simulation exercise described in Section

II.A. To explore this issue, we repeated the simulation described there for each of the other 23

speci¯cations. The version with the same independent variables as ours but total returns on

the left achieves the same correlation (0.98) with the true liquidity value Ái as does our mea-

sure. This is not surprising, since the additional noise in the dependent variable under this

alternative matters little in the population (large-sample) value for the slope. More inter-
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esting is that all 22 remaining speci¯cations produce smaller correlations with true liquidity,

which lends additional support to our measure as being a sensible speci¯cation relative to

seemingly close alternatives.

The last panel of Figure 2 plots the aggregate series obtained by value-weighting our

individual stock measures across stocks. This series di®ers substantially from our equal-

weighted measure, as the correlation between the innovations in the two series is only 0.77.

One less attractive feature of the value-weighted series is that certain months when liquidity

was notoriously low are relatively unimportant, largely due to the high volatility of the series

in the ¯rst half of the sample. When all months are sorted by their value-weighted liquidity

measures, the October 1987 liquidity crunch appears sixth and September 1998 appears only

25th in the order of importance. Moreover, the value-weighted series fails to exhibit any

°ight-to-quality e®ects: the correlations between stocks and bonds in low-liquidity months

are in fact positive. These unappealing features of the value-weighted measure are likely

due to its domination by large-cap stocks, whose liquidity often remains high even when

smaller-cap stocks experience a liquidity crunch. Our interest centers on a broad liquidity

measure, as opposed to a large-stock liquidity measure, so we attempt to measure changes in

aggregate liquidity using an equally weighted average of the liquidity measures for individual

stocks.19

One might prefer to replace dollar volume on the right-hand side of regression (1) by

turnover, de¯ned as dollar volume divided by market capitalization. Note that, with such

a change, the resulting gamma coe±cients are very close to our coe±cients multiplied by

the stock's market cap at the beginning of the month, since the e®ects on the independent

variable of within-month variation in market cap are likely to be small. Equal-weighting such

modi¯ed gamma coe±cients across stocks hence produces the same series as value-weighting

our original coe±cients and scaling them by the average market cap of all stocks used to

compute the average. The resulting series therefore looks very similar to the series discussed

in the previous paragraph, and it inherits all the unappealing features of that series.

To summarize, the various series produced by alternative speci¯cations and weightings

of our regression-based liquidity measure are signi¯cantly di®erent from our measure and

exhibit various features that render them less appealing as measures of aggregate liquidity.

19We did repeat the historical-beta analysis reported in Table 8 using the value-weighted series; the results
are weaker but go in the same direction as those reported.
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III. Is Liquidity Risk Priced?

This section investigates whether a stock's expected return is related to the sensitivity of

its return to the innovation in aggregate liquidity, Lt. That sensitivity, denoted for stock i
by its liquidity beta ¯Li , is the slope coe±cient on Lt in a multiple regression in which the
other independent variables are additional factors considered important for asset pricing. To

investigate whether the stock's expected return is related to ¯Li , we follow a straightforward

portfolio-based approach to create a universe of assets whose liquidity betas are su±ciently

disperse. At the end of each year, starting with 1965, we sort stocks based on their predicted

values of ¯Li and form ten portfolios. The post-formation returns on these portfolios during

the next 12 months are linked across years to form a single return series for each decile

portfolio. The excess returns on those portfolios are then regressed on return-based factors

that are commonly used in empirical asset pricing studies. To the extent that the regression

intercepts, or alphas, di®er from zero, ¯Li explains a component of expected returns not

captured by exposures to the other factors.

For the purpose of portfolio formation, we de¯ne ¯Li as the coe±cient on Lt in a regression
that also includes the three factors of Fama and French (1993),

ri;t = ¯
0
i + ¯

L
i Lt + ¯Mi MKTt + ¯Si SMBt + ¯Hi HMLt + ²i;t; (9)

where ri;t denotes asset i's excess return, MKT denotes the excess return on a broad mar-

ket index, and the other two factors, SMB and HML, are payo®s on long-short spreads

constructed by sorting stocks according to market capitalization and book-to-market ratio.

This de¯nition of ¯Li captures the asset's comovement with aggregate liquidity that is dis-

tinct from its comovement with other commonly used factors. We allow ¯Li for any given

stock to vary through time, and the predicted values of ¯Li used to sort stocks are obtained

using two methods. The ¯rst allows the predicted ¯Li to depend on the stock's historical

least-squares estimate as well as a number of additional stock characteristics observable at

the time of the sort. The results using that method, reported in subsection A, reveal large

di®erences in expected returns on ¯Li -sorted portfolios that are unexplained by the other

factors. The second method uses only historical betas and is presented to con¯rm that the

¯rst set of results is not driven solely by sorting stocks on the other characteristics that help

predict liquidity betas. The results from that method, reported in subsection B, also reveal

large and signi¯cant di®erences in alphas on the ¯Li -sorted portfolios. Subsection C reports

results obtained for portfolios formed by sorting stocks on market capitalization.

Our analysis covers all stocks traded on the NYSE, AMEX, and NASDAQ that are
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ordinary common shares (CRSP sharecodes 10 and 11). Stocks with prices below $5 or

above $1,000 are also excluded from the portfolio sorts. The portfolio-formation procedure

uses data available only as of the formation date, and this requirement applies to the liquidity

series as well. Thus, the formation procedure each year begins with a re-estimation of (7)

using only the raw liquidity series (°̂t) available up to that point in time. The historical

values of Lt used in that formation year are then recomputed using (8), where ût is the ¯tted
residual from that re-estimated regression.

A. Sorting by Predicted Liquidity Betas

A.1. Predicting Liquidity Betas

We model each stock's liquidity beta as a linear function of observable variables,

¯Li;t¡1 = Ã1;i + Ã
0
2;iZi;t¡1: (10)

The vector Zi;t¡1 contains seven characteristics: (i) the historical liquidity beta estimated

using all data available from months t¡60 through t¡1 (if at least 36 months are available),
(ii) the average value of °̂i;t from month t¡6 through t¡1, (iii) the natural log of the stock's
average dollar volume from months t ¡ 6 through t ¡ 1, (iv) the cumulative return on the
stock from month t ¡ 6 through t ¡ 1, (v) the standard deviation of the stock's monthly
return from month t¡6 through t¡1, (vi) the natural log of the price per share from month
t¡1, and (vii) the natural log of the number of shares outstanding from month t¡1. (These
seven characteristics are listed in Table 2.) The list of characteristics is necessarily arbitrary,

although they do possess some appeal ex ante. Historical liquidity beta should be useful if the

true beta is fairly stable over time. The average of the stock's °̂i;t and volume can matter

if liquidity risk is related to liquidity per se. Stocks with di®erent market capitalization

could have di®erent liquidity betas, so we include shares outstanding and stock price, whose

product is equal to the stock's market capitalization. The level and variability of recent

returns simply allow some role for short-run return dynamics. Each characteristic is \de-

meaned" by subtracting the time-series average (through month t¡1) of the characteristic's
cross-sectional average in each previous month.

Substituting the right-hand side of (10) for ¯Li in (9), we obtain

ri;t = ¯
0
i + ¯

M
i MKTt + ¯

S
i SMBt + ¯

H
i HMLt + (Ã1;i + Ã

0
2;iZi;t¡1)Lt + ²i;t: (11)

The above regression for stock i contains 11 independent variables, 7 of which are cross-

products of the elements of Zi;t¡1 with Lt. (This approach to incorporating time-variation in
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betas follows Shanken, 1990.) To increase precision in the face of the substantial variance in

individual-stock returns, we restrict the coe±cients Ã1;i and Ã2;i in equation (10) to be the

same across all stocks and estimate them using the whole panel of stock returns. Speci¯cally,

at the end of each year between 1965 and 1998, we ¯rst construct for each stock the historical

series of

ei;t = ri;t ¡ ^̄M
i MKTt ¡ ^̄S

i SMBt ¡ ^̄H
i HMLt; (12)

where the ^̄'s are estimated from the regression of the stock's excess returns on the Fama-

French factors and Lt, using all data available up to the current year-end. Then we run a
pooled time-series cross-sectional regression of ei;t on the characteristics,

ei;t = Ã0 + Ã1Lt + Ã02Zi;t¡1Lt + ºi;t; (13)

again using all data available up to the current year-end. The ¯rst year-end considered here

is that of 1965, since the data on Lt begin in August 1962, and it seems reasonable to use
at least three years of data to conduct the estimation. A stock is excluded for any month in

which it has any missing characteristics.

Table 2 reports the estimated coe±cients Ã̂1 and Ã̂2 from the pooled regression, together

with their t-statistics.20 Results are reported for several periods, each beginning in August

1962 but ending in December of a di®erent year; the estimated coe±cients are those used

in the ranking at that year-end. Each coe±cient is multiplied by the time-series average of

the cross-sectional standard deviation of the corresponding de-meaned characteristic. This

scaling helps clarify the relative contributions of the individual characteristics to the pre-

dicted betas. Historical liquidity beta is the most important determinant of the predicted

beta in the longest sample period, used for the most recent ranking in December 1998. The

coe±cient of 2.30 (t = 9:97) indicates that if a stock's historical liquidity beta is one cross-

sectional standard deviation above the cross-sectional mean of the historical betas, then the

stock's predicted liquidity beta is higher by 2.30, holding constant the other characteristics

and averaging the e®ect over time. Historical beta is also the most robust determinant of

the predicted beta across the di®erent periods. The coe±cient on stock price is signi¯cantly

positive early in the sample, but its e®ect weakens in the longer period. Volatility enters

negatively, again more strongly in the earlier periods. The coe±cients on the stock's past

return, shares outstanding, and average volume are less stable over time.21 The coe±cient

20The t-statistics are computed assuming independence of the regression residuals, which are purged of
common variation in returns attributable to the three Fama-French factors together with Lt.
21As mentioned earlier, the trading volume of the NASDAQ stocks is overstated relative to the

NYSE/AMEX volume. When the NASDAQ stocks are excluded from the pooled regression, the coe±-
cient on volume remains negative in the ¯rst two subperiods and turns insigni¯cantly negative in the overall
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on the stock's recent average °̂it is signi¯cantly negative in the longest period (and insigni¯-

cantly negative in the subperiods), suggesting that stocks with lower liquidity (as measured

by °̂it) tend to be more exposed to aggregate liquidity °uctuations.

A.2. Post-Ranking Portfolio Betas

At the end of each year, stocks are sorted by their predicted liquidity betas and assigned to

ten portfolios. The predicted beta for each stock is calculated from equation (10), using the

year-end values of the stock's characteristics along with the values of Ã̂1 and Ã̂2 estimated

using data through the current year-end. Portfolio returns are computed over the following

12 months, after which the estimation/formation procedure is repeated. The post-ranking

returns are linked across years, generating a single return series for each decile covering the

period from January 1966 through December 1999. On average, there are 187 stocks in each

portfolio, and no portfolio ever contains fewer than 103 stocks.

Panel A of Table 3 reports the post-ranking liquidity betas of the decile portfolios when

the stocks within each portfolio are value weighted. (The results for equally weighted port-

folios, not shown, are nearly identical.) The liquidity betas are estimated by running the

regression in (9) over the whole sample period, January 1966 through December 1999, as well

as over two subperiods. The post-ranking liquidity betas increase across deciles, consistent

with the objective of the sorting procedure. The \10-1" spread, which goes long decile 10

(stocks with high liquidity betas) and short decile 1 (stocks with low liquidity betas), has

an overall-period liquidity beta of 8.23, with a t-statistic of 2.37.

Panel B of Table 3 reports some additional properties of portfolios sorted by predicted

liquidity betas. The low-beta portfolios contain stocks of somewhat smaller ¯rms: the value-

weighted average size in portfolio 1 is $2.83 billion, as compared to $14.28 billion in portfolio

ten (averaged over time). Stocks in the low-beta portfolios also tend to be less liquid, as

measured by the average value of °̂it, although this pattern is not monotonic. Panel B also

reports the decile portfolios' betas with respect to the Fama-French factors, MKT, SMB,

and HML, and the previously described momentum factor, MOM. The Fama-French and

momentum betas are estimated by regressing the decile excess returns on the returns of

period. In addition, the results presented in this section lead to similar conclusions about the relation be-
tween liquidity risk and expected stock returns. We retain the NASDAQ stocks in the analysis, because their
inclusion increases the dispersion of the post-ranking liquidity betas of the portfolios sorted on predicted
betas, in line with the purpose of the sorting procedure. Stocks with prices outside the $5-1000 range are also
included in the pooled regression for the same reason: their inclusion increases the spread in the post-ranking
betas, even if these stocks are subsequently excluded from the portfolio sorts.
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the four factor portfolios. All three Fama-French betas of the 10-1 spread are signi¯cantly

negative: -0.30 for MKT, -0.65 for SMB, and -0.40 for HML. The SMB betas con¯rm the

pattern in average capitalizations, and the HML betas indicate that the 10-1 spread has a

tilt toward growth stocks. The 10-1 spread's momentum beta is signi¯cantly positive (0.11),

suggesting some tilt toward past winners.

A.3. Alphas

If our liquidity risk factor is priced, we should see systematic di®erences in the average returns

of our beta-sorted portfolios. The evidence in Table 4 indeed favors the pricing of liquidity

risk. The table reports the value-weighted portfolios' post-ranking alphas estimated under

three di®erent factor speci¯cations. The CAPM alpha is computed with respect to MKT,

the Fama-French alpha with respect to the Fama-French factors, and the 4-factor alpha

with respect to the Fama-French factors and MOM. All three alphas of the 10-1 spread are

signi¯cantly positive: the CAPM alpha is 6.40% per year (t = 2:54), the Fama-French alpha

is 9.23% per year (t = 4:29), and the 4-factor alpha is 7.48% per year (t = 3:42). (Annual

alphas are computed as 12 times the monthly estimates.) The alphas are also robust across

the subperiods. For example, the subperiod Fama-French alphas of the 10-1 spread are 8.50%

(t = 2:77) and 10.74% (t = 3:53), and the subperiod 4-factor alphas are 6.21% (t = 1:95)

and 9.49% (t = 3:12). Table 5 reports alphas when the decile portfolios are equally weighted

rather than value weighted. These results are even slightly stronger. For example, the full-

period CAPM, Fama-French, and 4-factor alphas of the equally weighted 10-1 spread are

8.23%, 10.49%, and 7.66%, respectively. The subperiod results are comparably strong, too.

We also test the hypothesis that all ten alphas are jointly equal to zero, using the test of

Gibbons, Ross, and Shanken (1989). For both equally weighted and value-weighted portfolios

and for all three models, the hypothesis is rejected at a 1% signi¯cance level in the overall

period. The hypothesis is also rejected at the 5% level in both subperiods, for both equally

weighted and value-weighted portfolios and for all three models. The only exception occurs

with the four-factor alphas for the value-weighted portfolios in the second subperiod, in

which case the hypothesis is rejected at the 10% level.

Overall, the evidence strongly supports the hypothesis that our liquidity risk factor is

priced. The premium for this risk is positive, in that stocks with higher sensitivity to

aggregate liquidity shocks o®er higher expected returns. The latter result is consistent with

the notion that a pervasive drop in liquidity is seen as undesirable by the representative

investor, so that investor requires compensation for holding stocks with greater exposure to
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this risk.

A.4. Estimating the Premium Using All Ten Portfolios

The discussion above relies on the 10-1 spread to infer that the expected-return premium

associated with liquidity risk is positive. We also estimate the liquidity risk premium using

all ten decile portfolios. De¯ne the multivariate regression,

rt = ¯0 +BFt + ¯
LLt + et; (14)

where rt is a 10£ 1 vector containing the excess returns on the decile portfolios, and Ft is a
4£1 vector containing the realizations of the \traded" factors MKT, SMB, HML, and MOM,
B is a 10 £ 4 matrix, and ¯0 and ¯L are 10 £ 1 vectors. We also consider a speci¯cation
with only three traded factors, excluding MOM. Assume the decile portfolios are priced by

the returns' sensitivities to the traded factors and the non-traded liquidity factor:

E(rt) = B¸F + ¯
L¸L; (15)

where E(¢) denotes the unconditional expectation. Taking expectations of both sides of
equation (14) and substituting from equation (15) gives

¯0 = ¯
L[¸L ¡ E(Lt)]; (16)

since the vector of premia on the traded factors, ¸F, is equal to E(Ft). The liquidity factor

Lt is not the payo® on a traded position, so in general the liquidity risk premium ¸L is

not equal to E(Lt). We estimate ¸L using the Generalized Method of Moments (GMM) of
Hansen (1982). Let µ denote the set of unknown parameters: ¸L, ¯L, B, and E(Lt). The
GMM estimator of µ minimizes g(µ)0Wg(µ), where g(µ) = (1=T )

PT
t=1 ft(µ),

ft(µ) =

Ã
ht − et

Lt ¡ E(Lt)
!
; (17)

h0t = ( 1 F 0t Lt );
et = rt ¡ ¯L[¸L ¡ E(Lt)]¡BFt ¡ ¯LLt; (18)

and W is a consistent estimator of the optimal weighting matrix.22

Estimates of the liquidity risk premium ¸L are reported in Table 6, along with asymptotic

t-statistics. Results are reported for both value-weighted and equally weighted portfolios.

22Following Hansen (1982), we estimate W as the inverse of (1=T )
PT

t=1 f̂tf̂
0
t , where f̂t is equal to ft(µ)

evaluated at a consistent estimator of µ, obtained by minimizing g(µ)0g(µ).
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The full-period estimate of ¸L is signi¯cantly positive for both sets of portfolios under both

speci¯cations (three traded factors or four). The subperiod estimates are all positive, and

the majority are statistically signi¯cant. Overall, estimating the liquidity risk premium

using all ten portfolios con¯rms the previous inferences based on the extreme deciles.23

Again, liquidity risk appears to be an economically important determinant of expected stock

returns.

The magnitude of the liquidity risk premium ¸L depends on the arbitrary scaling of Lt
described earlier, but that scaling does not a®ect the t-statistic or the product ¯Li ¸L, the

contribution of liquidity risk to asset i's expected return. Table 6 also reports the GMM

estimates of (¯L10 ¡ ¯L1 )¸L, the di®erence between expected returns on the extreme decile
portfolios implied by their liquidity betas. In the overall period, the annualized estimate

of (¯L10 ¡ ¯L1 )¸L is 9.63% with three traded factors and 7.56% with four (the corresponding

values for equally weighted portfolios are 11.06% and 8.56%). These values are close to the

10-1 spread alphas in Table 4 of 9.23% and 7.48% (the corresponding values in Table 5 for

equally weighted portfolios are 10.49% and 7.66%). Thus, even when the liquidity premium

is estimated using all ten portfolios, the contribution of liquidity risk to the 10-1 expected-

return di®erence remains virtually unchanged. The contributions of the traded factors to

the expected return of the 10-1 spread are much smaller, all below 2% per year in absolute

value for the overall period.

B. Sorting by Historical Liquidity Betas

As discussed earlier, a stock's historical liquidity beta is the most important predictor of its

future liquidity beta (Table 2). If liquidity betas are su±ciently stable over time, sorting

on the historical liquidity betas alone could produce dispersion in the post-ranking betas.

This section shows that this is indeed the case, although the dispersion in the betas is not as

large as when liquidity betas are predicted using additional variables. Although our study

focuses primarily on the results produced by sorts on betas predicted with the larger set of

variables, we present here some results based on historical-beta sorts in order to show that

the results do not hinge on the inclusion of the additional variables.

At the end of each year between 1967 and 1998, we identify stocks with at least ¯ve years

of monthly returns continuing through the current year-end. For each stock, we estimate

its historical liquidity beta by running the regression in (9) using the most recent ¯ve years

23In no case does the asymptotic chi-square test reject the restriction in (15) at standard signi¯cance levels.
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of monthly data. We impose a ¯ve-year minimum here in estimating the historical beta, as

compared to the minimum of three years required to compute historical betas in the previous

analysis. With no other information about liquidity beta brought to bear, it seems reasonable

to require a somewhat more precise historical estimate. The series of innovations (Lt's) is
again recomputed at the end of each year. Stocks are then sorted by these historical betas

into ten value-weighted portfolios. Analogous to our sort on the predicted betas, we obtain

a January 1968 through December 1999 series of monthly returns on each decile portfolio by

linking across years the post-ranking returns during the next 12 months. On average, there

are 217 stocks in each decile portfolio, and no portfolio ever contains fewer than 108 stocks.

Table 7 reports, in the same format as Table 3, the post-ranking liquidity betas as well as

the average market capitalization, liquidity, and Fama-French and momentum betas of the

decile portfolios. Note that, although the pattern in the post-ranking liquidity betas is not

monotonic, sorting on historical betas achieves some success in spreading the post-ranking

betas. The liquidity beta of the 10-1 spread is positive at 5.99 (t = 1:88), not as large as the

corresponding value of 8.23 (t = 2:37) obtained by sorting on the predicted betas. The SMB

beta of the 10-1 spread is signi¯cantly negative, as in Table 3, but the low-beta portfolio no

longer has the lowest market capitalization. Rather, smaller ¯rms now occupy both extremes

of the historical-beta sort. The latter result is consistent with smaller (and more volatile)

stocks producing noisier historical liquidity betas. Also, average liquidity is now lower at

both extremes, unlike the pattern in Table 3. Finally, the tilt toward growth stocks and past

winners observed in Table 3 disappears when sorting on historical liquidity betas.

Table 8 reports the value-weighted decile portfolios' post-ranking alphas. The dispersion

in the alphas is now smaller compared to the previous results, which is consistent with the

smaller dispersion in the post-ranking liquidity betas. Nevertheless, all three alphas of the

10-1 spread are still signi¯cantly positive in the overall period: the CAPM alpha is 4.66%

per year (t = 2:36), the Fama-French alpha is 4.15% per year (t = 2:08), and the 4-factor

alpha is 4.87% per year (t = 2:38).24 Moreover, the liquidity risk premium estimated from

the universe of all ten portfolios, obtained by the same GMM procedure used to produce

the values in Table 6, is positive and signi¯cant at the 10% level. With three traded factors

the estimated premium is 0.80 with a t-statistic of 1.77, and with four traded factors it is

1.04 with a t-statistic of 1.76. Note that the magnitude of the premium in either case is

fairly close to its counterpart in Table 6. In summary, the analysis based solely on historical

betas supports the conclusion that stocks with greater sensitivity to innovations in aggregate

24When the decile portfolios are equally weighted, the post-ranking betas are less disperse than when the
portfolios are value-weighted, and the alphas lose signi¯cance but are still positive. This is consistent with
greater estimation error in historical liquidity betas for smaller stocks, which are typically more volatile.
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liquidity o®er higher expected returns.

C. Sorting By Size

Total market capitalization, or \size," is a common criterion for sorting stocks in empirical

investment studies, and size sorts often produce dispersion in a number of other character-

istics. Table 9 reports various properties of decile portfolios formed by sorting on size at

the end of each year, where the breakpoints are based on all eligible NYSE, AMEX, and

NASDAQ stocks. Not surprisingly, smaller stocks are less liquid, in that the average value

of °̂it increases nearly monotonically across deciles. The liquidity betas of the two or three

portfolios containing the smallest stocks are large and signi¯cantly positive, while the betas

for the other deciles exhibit no discernible pattern and are not signi¯cantly di®erent from

zero. When the size sort is instead based on breakpoints for NYSE stocks only, so that each

decile contains the same number of NYSE stocks but more AMEX and NASDAQ stocks are

assigned to the lower deciles, then the pattern in liquidity betas is fairly °at across all ten

deciles, except for the large liquidity beta for the ¯rst decile. In other words, in a sort on

size, the very smallest ¯rms tend to be those with high liquidity betas.

It seems plausible that small and illiquid stocks might be those whose values are most

impacted by drops in market-wide liquidity, particularly if those drops prompt some investors

concerned with the overall liquidity of their portfolios to \°ee" such stocks and move to

assets with greater liquidity. At the same time, though, size and liquidity are not the sole

determinants of liquidity betas. Recall from Table 3 that, when sorting by predicted liquidity

betas, the high-beta portfolios actually have somewhat higher liquidity and average market

capitalizations than the low-beta portfolios. It is easy to see why stocks with high liquidity

betas need not be illiquid. When market liquidity declines, many investors sell stocks and

buy bonds (see Table 1 for indirect evidence), and those investors might prefer to sell liquid

stocks in order to save on transaction costs. As a result, the price reaction to aggregate

liquidity changes could actually be stronger for stocks that are more liquid. Also, prices

of liquid stocks could have greater sensitivity to aggregate liquidity shocks if such stocks

are held in larger proportion by the more liquidity-conscious investors. In general, liquidity

betas need not bear a simple relation to size and liquidity.

Table 9 also reports the size-sorted portfolios' alphas computed with respect to the four

factors used previously (the excess market return and size, value, and momentum spreads).

Note that, for both the value- and equal-weighted portfolios, the estimated alpha for the

decile of smallest ¯rms is over 3% annually, with a t-statistic of 2.3. This 3% positive
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abnormal return can be compared to the portion of expected return attributable to liquidity

risk, computed as the product of the portfolio's liquidity beta and the estimate of the liquidity

risk premium ¸L reported earlier. If we take the premium estimated using the value-weighted

beta-sorted portfolios, reported in Panel A in Table 6 (and the lower of the overall-period

estimates), that product is 3.7% (= 4:73 £ 0:78) for the equally weighted lowest size decile
and 4.1% (= 5:26 £ 0:78) for the value-weighted version. In other words, the liquidity risk
of the small-¯rm portfolio appears to be more than su±cient to explain its abnormal return

with respect to the other four factors.

D. Individual stock liquidity

This paper investigates whether the cross-section of returns is related to stocks' liquidity

betas. A natural separate question is whether stocks whose liquidity is high according to

our measure earn high average returns, in the spirit of Amihud and Mendelson (1986). This

question cannot be conclusively answered here. While our estimated liquidity measure seems

appealing at the aggregate level, it is too noisy to be useful at the individual stock level. In

particular, when stocks are sorted into ten portfolios based on their °̂it coe±cients averaged

over the past one or three years, the pattern in the post-ranking portfolio °̂'s is rather

°at across the deciles. The sorting procedure fails due to the large sampling error in the

individual stock °̂it's. For this reason, we do not work with individual stock liquidity. It

seems our most successful sort on liquidity is the simple size sort described in the previous

subsection.

Our result that stocks with high liquidity betas tend to have high average returns does

not appear to be explained by liquidity e®ects µa la Amihud and Mendelson. Although the

least liquid stocks in Table 9 tend to have the highest liquidity betas, recall that when stocks

are sorted on their predicted liquidity betas, as in Table 3, stocks with the highest liquidity

betas actually have somewhat higher average post-ranking liquidity measures than stocks

with the smallest betas. The pricing results in Tables 4 and 5 therefore seem distinct from

any pure liquidity e®ects.

Given the mounting evidence on commonality in liquidity, it seems natural to ask whether

the sensitivity of stock liquidity to market liquidity is related to the cross-section of returns.

This question is di®erent from the one addressed in this paper, since stocks whose liquidities

are the most sensitive to market liquidity are not necessarily those whose prices are the most

sensitive to market liquidity, but the issue is of independent interest nonetheless. One might

conjecture, for example, that stocks whose liquidity dries up the most during market-wide

26



liquidity crises need to compensate investors by higher average returns (e.g. Acharya and

Pedersen, 2002). Our lack of reliable time series of liquidity for individual stocks prevents us

from investigating this hypothesis, since sorts on betas (or correlations) of individual liquidity

with respect to aggregate liquidity are unable to achieve any signi¯cant post-ranking spread

in those quantities. This intriguing topic presents an obvious direction for future research.

IV. An Investment Perspective

The evidence presented in the previous section reveals that liquidity risk is related to

expected-return di®erences that are not explained by stocks' sensitivities to MKT, SMB,

HML, and MOM. An equivalent characterization of this evidence is that no combination

of the latter four factors (and riskless cash) is mean-variance e±cient with respect to the

universe of common stocks.25 In particular, the large and signi¯cant alphas for the 10-1

spreads reported in Tables 4 and 5 imply that adding such positions to an opportunity set

consisting of the other four factors increases the maximum Sharpe ratio.

In a linear pricing model in which expected returns are explained by betas with respect to

non-traded factors, expected returns are also explained by betas with respect to portfolios

whose returns are maximally correlated with those factors.26 Constructing a maximum-

correlation portfolio for Lt from the universe of common stocks is a challenging problem

that lies beyond the scope of this study. It is the case that, if the ex post maximum

correlation portfolio is constructed from the six-asset universe consisting of the ¯rst and last

decile portfolios of the liquidity-beta sort as well as the four factors MKT, SMB, HML, and

MOM, then the weight on the high-liquidity-beta portfolio is positive and the weight on the

low-liquidity-beta portfolio is negative (for both the value-weighted and equally weighted

versions of those portfolios). In this sense, adding the 10-1 spread to an investment universe

consisting of the original four factors is motivated by a model in which expected returns are

related to liquidity risk.

Let LIQV denote the payo® on the 10-1 spread constructed using value-weighted decile

portfolios sorted on predicted liquidity betas, and let LIQE denote the payo® on the equally

25The equivalence between multi-beta asset pricing and mean-variance e±ciency of some combination of
benchmark portfolios is well known. For an early recognition of this point see Merton (1973), and for later
discussions see Jobson and Korkie (1982, 1985), Grinblatt and Titman (1987), and Huberman, Kandel, and
Stambaugh (1987).
26Huberman, Kandel, and Stambaugh (1987) characterize the \mimicking" portfolios that can be used in

place of non-traded factors when betas with respect to the latter explain expected returns.
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weighted version. To provide an additional perspective on the importance of liquidity risk,

we examine here the degree to which the mean-variance opportunity set is enhanced by

adding LIQV or LIQE to MKT, SMB, HML, and MOM. Of course, a mean-variance-

e±cient portfolio is not necessarily the optimal choice of an investor in a world that gives

rise to multi-beta pricing, but we believe a mean-variance setting is of interest to many

investors nevertheless. Panel A of Table 10 reports, for the overall 1966{1999 period, the

maximum ex post Sharpe ratio and the weights in the corresponding tangency portfolio for

various subsets of the six factors. For ease of discussion, let S¤ denote the maximum Sharpe

ratio for a given set of assets. The original four factors have an S¤ of 0.33 (on a monthly

basis). When LIQV is added, S¤ increases to 0.37, and LIQV receives a greater weight in the

ex post tangency portfolio than MOM (15.6% versus 11.9%). When LIQE is added to the

original four, S¤ increases to 0.42, and the weight in MOM drops by more than two-thirds,

from 20.9% to 6.5%. In contrast, the weight on LIQE in that case is 25.6%, which is higher

than the weights on all but HML (29.6%). Moreover, we see that when adding a fourth

factor to the three Fama-French factors, which by themselves have an S¤ of 0.22, LIQE is

more valuable than MOM by the mean-variance comparison: LIQE raises S¤ to 0.40 while

MOM raises it to 0.33.

Since LIQV and LIQE ¯gure prominently in the ex-post tangency portfolio, at the expense

of MOM especially, we are led to investigate a bit further the extent to which the momentum

factor's importance is reduced by our liquidity-risk spreads. Panel B of Table 10 reports the

alpha for MOM when regressed on the three Fama-French factors plus either LIQV or LIQE.

In the overall period, momentum's annualized alpha with respect to just the three Fama-

French factors is 16.3% with a t-statistic of 4.85, con¯rming a well-known result. Adding

LIQV reduces MOM's alpha somewhat, to 13.9% with a t-statistic of 4.09. The momentum

factor MOM is a spread between equally weighted portfolios, and perhaps for that reason

the e®ect on its alpha of adding LIQE to the Fama-French factors is more dramatic. That

equally weighted liquidity-risk spread cuts momentum's full-period alpha nearly in half, to

8.4% with a t-statistic of 2.55. In the more recent 17-year subperiod from 1983 through

1999, MOM's estimated alpha in the presence of LIQE is actually negative, at -1.29.

Although such evidence is tantalizing, it is di±cult to conclude that liquidity risk provides

a partial explanation for momentum. On one hand, MOM's alpha is substantially reduced

by the addition of liquidity-risk spreads, and MOM's loadings on those spreads are highly

signi¯cant in the overall period as well as in both subperiods (in the full period, MOM's beta

on LIQV is 0.26 with t = 3:41, and MOM's beta on LIQE is 0.75 with t = 7:77, in a multiple

regression that includes the three Fama-French factors). On the other hand, the liquidity
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beta of MOM, estimated as the multiple-regression coe±cient on the non-traded factor Lt, is
positive but not statistically signi¯cant at conventional levels in the overall period (6.9 with

a t-statistic of 1.3). Moreover, in the later subperiod, when LIQE eliminates MOM's alpha,

the estimated liquidity beta of MOM is negative (-1.65 with a t-statistic of -0.23). At the

same time, though, we must remember that Lt is at best an imperfect proxy for whatever
correct measure of liquidity could be relevant for asset pricing. It remains possible that the

10-1 spread constructed by ranking on betas with respect to Lt comes closer to the correct
mimicking portfolio than does Lt to the correct liquidity measure. At this point, however,
we can simply observe that momentum's importance in an investment context is impacted

signi¯cantly by the addition of spreads based on liquidity risk.

V. Conclusions

Market-wide liquidity appears to be a state variable that is important for pricing common

stocks. We ¯nd that expected stock returns are related cross-sectionally to the sensitivities

of stock returns to innovations in aggregate liquidity. Stocks that are more sensitive to

aggregate liquidity have substantially higher expected returns, even after accounting for

exposures to the market return as well as size, value, and momentum factors.

Our liquidity measure captures a dimension of liquidity associated with the strength

of volume-related return reversals. Over the last four decades, this measure of market-wide

liquidity exhibits a number of sharp declines, many of which coincide with market downturns

and apparent °ights to quality. Our liquidity measure is also characterized by signi¯cant

commonality across stocks, supporting the notion of aggregate liquidity as a priced state

variable. Smaller stocks are less liquid, according to our measure, and the smallest stocks

have high sensitivities to aggregate liquidity.

One direction for future research is to explore whether liquidity risk plays a role in vari-

ous pricing anomalies in ¯nancial markets. This study takes a step on this path by showing

that the momentum strategy of buying recent winning stocks and selling recent losing stocks

becomes less attractive from an investment perspective when portfolio spreads based on

liquidity risk are also available for investment. Future research could investigate whether

expected returns are related to stocks' sensitivities to °uctuations in other aspects of aggre-

gate liquidity. It would also be useful to explore whether some form of systematic liquidity

risk is priced in other ¯nancial markets, such as ¯xed income markets or international equity

markets.
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Figure 1. Aggregate liquidity. Each month's observation is constructed by averaging
individual-stock measures for the month and then multiplying by (mt=m1), where mt is the
total dollar value at the end of month t¡ 1 of the stocks included in the average in month t,
and month 1 corresponds to August 1962. An individual stock's measure for a given month
is a regression slope coe±cient estimated using daily returns and volume data within that
month. Tick marks correspond to July of the given year.
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Figure 2. Alternative aggregate series. Each panel plots an alternative to our
aggregate liquidity measure. The ¯rst three panels are based on a simple modi¯cation of
the liquidity-de¯ning regression (1). In the top left panel, sign(rei;d;t) is replaced by r

e
i;d;t on

the right-hand side of the regression. In the top right panel, ri;d;t is replaced by r
e
i;d;t on

the right-hand side. In the bottom left panel, rei;d+1;t is replaced by ri;d+1;t on the left-hand
side and sign(rei;d;t) is replaced by sign(ri;d;t) on the right-hand side. These three panels plot
equal-weighted averages of the slope coe±cients on order °ow in regression (1), multiplied by
(mt=m1), where mt is the total dollar value at the end of month t¡ 1 of the stocks included
in the average in month t, and month 1 corresponds to August 1962. The bottom right panel
plots the value-weighted average of the individual stock measures from the unaltered version
of regression (1). Tick marks correspond to July of the given year.
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Table 1

Correlations of Monthly Stock Market Returns with Other
Variables in Months with Large Liquidity Drops

The table reports the correlation between the monthly return on the CRSP value-weighted NYSE-AMEX
index, RS;t, and (i) minus the change in the rate on one-month Treasury bills, ¡¢Rf;t, (ii) the return on
long-term government bonds, RGB;t, (iii) the return on long-term corporate bonds, RCB;t, and (iv) the
equally weighted average percentage change in monthly dollar volume for NYSE-AMEX stocks, Volt. \Low-
liquidity" months are those in which the innovation in the liquidity series is at least two standard deviations
below zero. The p-values for the hypothesis that the correlations during these months are equal to those in
other months are computed by a bootstrap approach.

Correlation of RS;t with Number of
-¢Rf;t RGB;t RCB;t Volt observations

Jan 1962 { Dec 1999
All months 0.047 0.323 0.372 0.491 449
Low-liquidity months (by 2 std. dev.'s) -0.387 -0.197 -0.278 -0.360 14
Other months 0.092 0.362 0.406 0.522 435
P-value 0.087 0.045 0.018 0.002

Aug 1962 { Mar 1981
All months 0.077 0.285 0.376 0.567 224
Low-liquidity months (by 2 std. dev.'s) -0.194 0.247 -0.370 -0.362 7
Other months 0.079 0.285 0.378 0.572 217
P-value 0.279 0.426 0.070 0.016

April 1981 { Dec 1999
All months 0.007 0.353 0.365 0.394 225
Low-liquidity months (by 2 std. dev.'s) -0.573 -0.401 -0.307 -0.306 8
Other months 0.105 0.433 0.434 0.459 217
P-value 0.048 0.033 0.040 0.038
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Table 2

Determinants of Predicted Liquidity Betas

Each column reports the results of estimating a linear relation between a stock's liquidity beta and the seven
characteristics listed (in addition to the intercept, shown ¯rst). At each year-end shown, the estimation
uses all stocks de¯ned as ordinary common shares traded on the NYSE, AMEX, or NASDAQ with at least
three years of monthly returns continuing through the given year-end. The estimation uses a two-stage
pooled time-series and cross-sectional approach. Each value reported is equal to the coe±cient estimate
multiplied by the time-series average of the annual cross-sectional standard deviations of the characteristic.
The t-statistics are in parentheses.

Aug 1962 through
Dec 1998 Dec 1983 Dec 1968

Intercept -1.79 -4.39 -2.75
(-6.75) (-12.94) (-2.95)

Historical beta 2.30 3.75 9.18
(9.97) (10.87) (9.99)

Average liquidity -0.87 -0.02 -0.48
(-4.12) (-0.08) (-0.61)

Average volume 1.54 -3.37 0.07
(3.29) (-5.03) (0.05)

Cumulative return -0.04 1.00 0.93
(-0.14) (2.86) (0.86)

Return volatility -0.24 -1.13 -2.61
(-1.60) (-3.39) (-2.25)

Price 0.59 7.51 4.32
(1.85) (15.00) (3.38)

Shares outstanding -1.43 0.67 -0.69
(-3.37) (1.26) (-0.54)
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Table 3

Properties of Portfolios Sorted on Predicted Liquidity Betas

At each year-end between 1965 and 1998, eligible stocks are sorted into 10 portfolios according to predicted liquidity betas. The betas are
constructed as linear functions of seven stock characteristics at the current year-end, using coe±cients estimated from a pooled time-series
cross-sectional regression approach. The estimation and sorting procedure at each year-end uses only data available at that time. Eligible
stocks are de¯ned as ordinary common shares traded on the NYSE, AMEX, or NASDAQ with at least three years of monthly returns continuing
through the current year-end and with stock prices between $5 and $1,000. The portfolio returns for the 12 post-ranking months are linked
across years to form one series of post-ranking returns for each decile. Panel A reports the decile portfolios' post-ranking liquidity betas,
estimated by regressing the value-weighted portfolio excess returns on the aggregate liquidity innovation and the Fama-French factors. Panel
B reports the time-series averages of the deciles portfolios' market capitalization and liquidity, obtained as value-weighted averages of the
corresponding measures across the stocks within each decile. Market capitalization is reported in billions of dollars. A stock's liquidity in
any given month is the slope coe±cient °i;t from equation (1), multiplied by 100. Also reported are post-ranking betas with respect to the
three Fama-French factors and a momentum factor, estimated by regressing value-weighted portfolio excess returns on the four factors. The
t-statistics are in parentheses.

1 2 3 4 5 6 7 8 9 10 10{1

Panel A. Post-ranking liquidity betas

Jan 1966{Dec 1999 -5.75 -6.54 -4.66 -3.16 0.90 -0.63 -0.86 0.68 2.44 2.48 8.23
(-2.22) (-2.98) (-2.59) (-2.18) (0.69) (-0.54) (-0.68) (0.52) (1.77) (1.35) (2.37)

Jan 1966{Dec 1982 -7.28 -8.29 -3.47 -3.15 2.58 -0.34 -0.47 0.73 -2.51 4.19 11.47
(-1.84) (-2.54) (-1.19) (-1.36) (1.23) (-0.17) (-0.22) (0.33) (-1.10) (1.38) (2.06)

Jan 1983{Dec 1999 -3.00 -4.27 -5.09 -2.36 -1.10 -0.84 -1.60 1.94 5.67 0.85 3.85
(-0.85) (-1.37) (-2.12) (-1.22) (-0.63) (-0.57) (-1.06) (1.22) (3.23) (0.36) (0.84)

Panel B. Additional properties, Jan 1966 { Dec 1999

Market cap 2.83 5.90 8.30 7.65 10.67 16.61 15.99 16.02 16.05 14.28

Liquidity -0.46 -0.16 -0.10 -0.15 -0.08 -0.07 -0.03 -0.03 -0.04 -0.10

MKT beta 1.24 1.21 1.09 1.05 1.04 1.03 1.00 1.01 0.98 0.94 -0.30
(37.70) (44.61) (48.31) (56.83) (62.83) (68.89) (62.56) (60.75) (55.76) (40.75) (-6.85)

SMB beta 0.70 0.31 0.05 0.01 -0.09 -0.12 -0.12 -0.09 -0.12 0.05 -0.65
(14.47) (7.64) (1.61) (0.26) (-3.51) (-5.63) (-5.04) (-3.82) (-4.76) (1.36) (-10.14)

HML beta 0.07 0.19 0.23 0.20 0.11 0.14 0.08 -0.00 -0.01 -0.34 -0.40
(1.31) (4.36) (6.45) (6.69) (4.02) (5.68) (3.07) (-0.06) (-0.37) (-9.04) (-5.74)

MOM beta -0.06 -0.10 -0.07 -0.03 -0.03 -0.01 0.01 -0.01 0.03 0.05 0.11
(-2.43) (-5.35) (-4.29) (-2.19) (-2.51) (-0.72) (0.53) (-0.72) (2.72) (3.02) (3.41)
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Table 4

Alphas of Value-Weighted Portfolios Sorted on Predicted Liquidity Betas

At each year-end between 1965 and 1998, eligible stocks are sorted into 10 portfolios according to predicted liquidity betas. The betas
are constructed as linear functions of seven stock characteristics at the current year-end, using coe±cients estimated from a pooled time-
series cross-sectional regression approach. The estimation and sorting procedure at each year-end uses only data available at that time.
Eligible stocks are de¯ned as ordinary common shares traded on the NYSE, AMEX, or NASDAQ with at least three years of monthly
returns continuing through the current year-end and with stock prices between $5 and $1,000. The portfolio returns for the 12 post-
ranking months are linked across years to form one series of post-ranking returns for each decile. The table reports the decile portfolios'
post-ranking alphas, in percent per year. The alphas are estimated as intercepts from the regressions of excess portfolio post-ranking
returns on excess market returns (CAPM alpha), on the Fama-French factor returns (Fama-French alpha), and on the Fama-French and
momentum factor returns (4-factor alphas). The t-statistics are in parentheses.

1 2 3 4 5 6 7 8 9 10 10{1

Jan 1966 { Dec 1999

CAPM alpha -5.16 -1.88 -0.66 -0.07 -1.48 1.48 1.22 1.38 1.68 1.24 6.40
(-2.57) (-1.24) (-0.56) (-0.08) (-1.80) (1.93) (1.52) (1.72) (1.93) (1.01) (2.54)

Fama-French alpha -6.05 -3.36 -2.15 -1.23 -2.10 0.78 0.86 1.41 1.90 3.18 9.23
(-3.77) (-2.47) (-1.93) (-1.37) (-2.61) (1.08) (1.11) (1.76) (2.22) (2.82) (4.29)

4-factor alpha -5.11 -1.66 -1.02 -0.76 -1.61 0.91 0.76 1.55 1.34 2.36 7.48
(-3.12) (-1.23) (-0.91) (-0.83) (-1.96) (1.22) (0.96) (1.88) (1.54) (2.06) (3.42)

Jan 1966 { Dec 1982

CAPM alpha -2.26 1.63 0.54 0.67 -3.09 1.44 0.61 1.78 1.43 -0.93 1.34
(-0.81) (0.76) (0.31) (0.50) (-2.69) (1.29) (0.54) (1.46) (1.14) (-0.52) (0.36)

Fama-French alpha -7.32 -2.22 -1.80 -0.75 -3.29 1.03 0.20 1.91 2.32 1.18 8.50
(-3.36) (-1.23) (-1.13) (-0.59) (-2.85) (0.95) (0.17) (1.56) (1.86) (0.71) (2.77)

4-factor alpha -6.43 -0.25 -0.22 -0.03 -2.46 1.09 0.31 2.89 1.67 -0.22 6.21
(-2.82) (-0.13) (-0.13) (-0.02) (-2.05) (0.95) (0.25) (2.28) (1.28) (-0.13) (1.95)

Jan 1983 { Dec 1999

CAPM alpha -8.01 -5.33 -1.76 -1.01 0.20 1.55 1.74 0.70 1.81 3.38 11.39
(-2.76) (-2.49) (-1.08) (-0.77) (0.17) (1.46) (1.54) (0.67) (1.47) (1.98) (3.36)

Fama-French alpha -5.23 -5.08 -2.69 -1.80 -0.82 0.37 0.89 0.76 1.25 5.51 10.74
(-2.23) (-2.46) (-1.67) (-1.41) (-0.72) (0.38) (0.89) (0.72) (1.05) (3.51) (3.53)

4-factor alpha -4.43 -3.72 -1.94 -1.52 -0.63 0.53 0.70 0.47 0.84 5.06 9.49
(-1.88) (-1.85) (-1.21) (-1.17) (-0.54) (0.54) (0.69) (0.44) (0.70) (3.20) (3.12)

35



Table 5

Alphas of Equally-Weighted Portfolios Sorted on Predicted Liquidity Betas

At each year-end between 1965 and 1998, eligible stocks are sorted into 10 portfolios according to predicted liquidity betas. The betas
are constructed as linear functions of seven stock characteristics at the current year-end, using coe±cients estimated from a pooled time-
series cross-sectional regression approach. The estimation and sorting procedure at each year-end uses only data available at that time.
Eligible stocks are de¯ned as ordinary common shares traded on the NYSE, AMEX, or NASDAQ with at least three years of monthly
returns continuing through the current year-end and with stock prices between $5 and $1,000. The portfolio returns for the 12 post-
ranking months are linked across years to form one series of post-ranking returns for each decile. The table reports the decile portfolios'
post-ranking alphas, in percent per year. The alphas are estimated as intercepts from the regressions of excess portfolio post-ranking
returns on excess market returns (CAPM alpha), on the Fama-French factor returns (Fama-French alpha), and on the Fama-French and
momentum factor returns (4-factor alphas). The t-statistics are in parentheses.

1 2 3 4 5 6 7 8 9 10 10{1

Jan 1966 { Dec 1999

CAPM alpha -5.46 -1.47 -0.73 0.34 0.02 0.94 1.97 2.78 2.43 2.77 8.23
(-2.27) (-0.75) (-0.46) (0.24) (0.02) (0.84) (1.91) (2.71) (2.37) (2.06) (4.12)

Fama-French alpha -7.53 -3.47 -3.04 -1.58 -1.67 -0.76 0.46 1.49 1.46 2.96 10.49
(-6.35) (-3.39) (-3.63) (-2.13) (-2.47) (-1.21) (0.78) (2.50) (2.18) (3.14) (6.50)

4-factor alpha -5.80 -1.64 -1.68 -0.68 -1.02 -0.17 0.16 1.32 0.95 1.86 7.66
(-4.98) (-1.68) (-2.07) (-0.92) (-1.50) (-0.26) (0.26) (2.16) (1.40) (1.98) (4.95)

Jan 1966 { Dec 1982

CAPM alpha 1.74 5.52 5.22 4.49 2.99 4.15 4.76 6.00 4.11 4.68 2.95
(0.49) (1.90) (2.22) (2.25) (1.70) (2.49) (3.15) (4.10) (2.77) (2.54) (0.98)

Fama-French alpha -6.50 -1.12 -0.80 -0.51 -1.21 0.02 1.12 2.70 1.23 2.76 9.25
(-4.02) (-0.76) (-0.69) (-0.52) (-1.25) (0.02) (1.32) (3.17) (1.22) (1.95) (4.19)

4-factor alpha -5.32 1.00 1.28 0.80 0.20 0.93 0.85 2.79 0.84 1.18 6.49
(-3.16) (0.67) (1.14) (0.81) (0.20) (1.00) (0.96) (3.12) (0.79) (0.81) (2.91)

Jan 1983 { Dec 1999

CAPM alpha -11.47 -7.36 -6.09 -3.06 -2.21 -1.58 0.06 0.29 1.77 1.78 13.25
(-3.70) (-2.94) (-2.92) (-1.63) (-1.41) (-1.10) (0.04) (0.21) (1.34) (0.92) (5.13)

Fama-French alpha -8.90 -5.83 -5.58 -2.58 -2.08 -1.56 0.13 0.54 2.37 4.12 13.02
(-5.02) (-4.07) (-4.62) (-2.26) (-2.16) (-1.70) (0.15) (0.64) (2.72) (3.33) (5.50)

4-factor alpha -7.10 -4.34 -4.73 -2.00 -1.92 -1.19 -0.13 0.29 1.87 3.42 10.51
(-4.40) (-3.35) (-4.05) (-1.77) (-1.97) (-1.30) (-0.15) (0.34) (2.18) (2.80) (4.94)
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Table 6

Liquidity Risk Premium and its Contribution to Expected Return

The table reports the estimates of the risk premium associated with the liquidity factor, as well as the
contribution of liquidity risk to the expected return on the \10-1" spread. Stocks are sorted into 10 portfolios
by their predicted liquidity betas at each year-end. The premium ¸L is estimated using post-ranking returns
on all 10 portfolios. The decile portfolios are value-weighted in Panel A and equally weighted in Panel B.
The premium is reported as a monthly value multiplied by 1200, so that the product of the liquidity beta
and the reported premium can be interpreted as annual percentage return. The 10-1 spread goes long decile
10, with high liquidity beta ¯L10, and short decile 1, with low liquidity beta ¯L1 . The contribution of liquidity
risk to the portfolio's expected return, (¯L10 ¡ ¯L1 )¸L, is also expressed in percent per year. The asymptotic
t-statistics are in parentheses.

Jan 1966 { Dec 1999 Jan 1966 { Dec 1982 Jan 1983 { Dec 1999

Panel A. Value-weighted portfolios sorted on predicted betas
Three traded factors

¸L 0.91 0.81 1.13
(2.92) (2.05) (2.73)

(¯L10 ¡ ¯L1 )¸L 9.63 8.37 10.59
(4.57) (2.91) (3.22)

Four traded factors

¸L 0.78 0.23 0.82
(2.43) (1.36) (2.93)

(¯L10 ¡ ¯L1 )¸L 7.56 2.61 9.27
(3.42) (1.32) (2.78)

Panel B. Equally weighted portfolios sorted on predicted betas
Three traded factors

¸L 1.65 1.28 1.10
(2.74) (1.82) (3.38)

(¯L10 ¡ ¯L1 )¸L 11.06 9.90 10.77
(7.19) (4.26) (4.05)

Four traded factors

¸L 1.72 3.01 1.02
(2.33) (0.74) (3.49)

(¯L10 ¡ ¯L1 )¸L 8.56 8.20 10.14
(5.53) (3.03) (4.07)
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Table 7

Properties of Portfolios Sorted on Historical Liquidity Betas

At each year-end between 1967 and 1998, eligible stocks are sorted into 10 portfolios according to historical liquidity betas. The betas are
estimated as the slope coe±cients on the aggregate liquidity innovation in regressions of excess stock returns on that innovation and the
three Fama-French factors. The regressions are estimated using the most recent ¯ve years of data, and eligible stocks are de¯ned as ordinary
common shares traded on the NYSE, AMEX, or NASDAQ with ¯ve years of monthly returns continuing through the current year-end and
with stock prices between $5 and $1,000. The portfolio returns for the 12 post-ranking months are linked across years to form one series of
post-ranking returns for each decile. Panel A reports the decile portfolios' post-ranking liquidity betas, estimated by regressing value-weighted
portfolio excess returns on the liquidity innovation and the Fama-French factors. Panel B reports the time-series averages of each decile's
market capitalization and liquidity, obtained as value-weighted averages of the corresponding measures across the stocks within each decile.
Market capitalization is reported in billions of dollars. A stock's liquidity in any given month is the slope coe±cient °i;t from equation (1),
multiplied by 100. Also reported are post-ranking betas with respect to the Fama-French and momentum factors, estimated by regressing
value-weighted portfolio excess returns on the four factors. The t-statistics are in parentheses.

1 2 3 4 5 6 7 8 9 10 10{1

Panel A. Liquidity betas

Jan 1968 { Dec 1999 -6.02 -0.65 -0.62 -0.54 1.12 -1.58 1.37 2.00 3.04 -0.04 5.99
(-2.57) (-0.37) (-0.48) (-0.41) (0.96) (-1.24) (1.00) (1.49) (1.99) (-0.02) (1.88)

Jan 1968 { Dec 1983 -7.59 -1.17 3.87 -1.54 -0.48 1.65 -1.18 0.02 1.26 0.41 7.99
(-1.84) (-0.44) (1.86) (-0.68) (-0.25) (0.71) (-0.55) (0.01) (0.54) (0.14) (1.60)

Jan 1984 { Dec 1999 -4.17 -1.49 -4.10 -0.30 2.55 -2.75 2.80 3.79 4.38 1.18 5.35
(-1.52) (-0.63) (-2.46) (-0.18) (1.72) (-2.00) (1.56) (2.08) (2.07) (0.39) (1.26)

Panel B. Additional properties, Jan 1968 { Dec 1999

Market cap 7.11 7.69 10.44 17.65 16.76 22.18 16.26 11.64 9.89 6.97

Liquidity -0.52 -0.19 -0.06 -0.04 -0.02 -0.05 -0.05 -0.05 -0.05 -0.12

MKT beta 1.12 1.09 1.02 0.96 0.98 0.99 1.02 1.01 1.02 1.09 -0.03
(37.25) (48.37) (61.23) (56.63) (65.92) (59.99) (58.01) (58.52) (51.53) (40.84) (-0.74)

SMB beta 0.37 -0.00 -0.13 -0.16 -0.09 -0.15 -0.11 -0.00 0.04 0.16 -0.20
(8.02) (-0.02) (-5.11) (-6.03) (-4.21) (-6.10) (-4.19) (-0.02) (1.20) (4.06) (-3.25)

HML beta -0.20 -0.05 0.02 -0.02 0.10 0.12 0.07 0.09 -0.01 -0.15 0.05
(-4.04) (-1.31) (0.87) (-0.80) (4.22) (4.40) (2.60) (3.27) (-0.38) (-3.39) (0.76)

MOM beta 0.04 -0.00 0.02 0.01 -0.02 -0.00 -0.01 0.01 -0.02 -0.01 -0.05
(1.64) (-0.18) (1.25) (1.13) (-1.91) (-0.17) (-0.76) (0.65) (-1.11) (-0.46) (-1.51)
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Table 8

Alphas of Value-Weighted Portfolios Sorted on Historical Liquidity Betas

At each year-end between 1967 and 1998, eligible stocks are sorted into 10 portfolios according to historical liquidity betas. The betas
are estimated as the slope coe±cients on the aggregate liquidity innovation in regressions of excess stock returns on that innovation and
the three Fama-French factors. The regressions are estimated using the most recent ¯ve years of data, and eligible stocks are de¯ned as
ordinary common shares traded on the NYSE, AMEX, or NASDAQ with ¯ve years of monthly returns continuing through the current
year-end and with stock prices between $5 and $1,000. The portfolio returns for the 12 post-ranking months are linked across years to
form one series of post-ranking returns for each decile. The table reports the decile portfolios' post-ranking alphas, in percent per year.
The alphas are estimated as intercepts from the regressions of excess portfolio post-ranking returns on excess market returns (CAPM
alpha), on the Fama-French factor returns (Fama-French alpha), and on the Fama-French and momentum factor returns (4-factor alphas).
The t-statistics are in parentheses.

1 2 3 4 5 6 7 8 9 10 10{1

Jan 1968 { Dec 1999

CAPM alpha -2.06 -0.36 0.63 0.49 0.07 0.49 1.42 1.36 -0.02 2.60 4.66
(-1.30) (-0.34) (0.76) (0.57) (0.10) (0.58) (1.64) (1.63) (-0.02) (1.96) (2.36)

Fama-French alpha -0.62 -0.09 0.46 0.57 -0.62 -0.28 0.90 0.84 0.03 3.53 4.15
(-0.42) (-0.08) (0.57) (0.68) (-0.86) (-0.35) (1.06) (1.00) (0.03) (2.71) (2.08)

4-factor alpha -1.20 -0.04 0.22 0.34 -0.29 -0.25 1.05 0.71 0.29 3.67 4.87
(-0.79) (-0.04) (0.26) (0.40) (-0.40) (-0.31) (1.20) (0.82) (0.29) (2.74) (2.38)

Jan 1968 { Dec 1983

CAPM alpha -1.10 1.04 0.94 0.35 -0.28 0.46 0.09 0.83 0.33 2.51 3.62
(-0.46) (0.70) (0.79) (0.27) (-0.26) (0.34) (0.08) (0.72) (0.25) (1.51) (1.32)

Fama-French alpha -1.24 2.32 1.66 1.53 -1.05 -0.49 -0.06 -0.07 0.17 1.61 2.85
(-0.53) (1.56) (1.41) (1.21) (-0.98) (-0.38) (-0.05) (-0.06) (0.13) (1.01) (1.01)

4-factor alpha -3.74 1.50 0.87 0.86 -0.20 0.21 0.59 -0.18 0.59 1.64 5.38
(-1.58) (0.96) (0.71) (0.66) (-0.18) (0.16) (0.47) (-0.15) (0.43) (0.98) (1.86)

Jan 1984 { Dec 1999

CAPM alpha -2.79 -1.63 0.21 0.40 0.37 0.23 3.12 1.70 -0.11 2.70 5.49
(-1.31) (-1.04) (0.18) (0.36) (0.36) (0.23) (2.51) (1.40) (-0.08) (1.28) (1.90)

Fama-French alpha 0.03 -2.04 -0.60 -0.33 -0.40 -0.55 2.21 1.50 -0.11 4.41 4.38
(0.02) (-1.29) (-0.53) (-0.30) (-0.40) (-0.59) (1.83) (1.22) (-0.07) (2.20) (1.54)

4-factor alpha 0.57 -1.50 -0.50 -0.28 -0.39 -0.87 2.06 1.35 0.02 4.55 3.98
(0.30) (-0.94) (-0.44) (-0.25) (-0.38) (-0.93) (1.68) (1.08) (0.01) (2.23) (1.38)
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Table 9

Portfolios Sorted on Market Capitalization

At each year-end between 1962 and 1998, eligible stocks are sorted into 10 portfolios according to market capitalization. Eligible stocks are
de¯ned as ordinary common shares traded on the NYSE, AMEX, or NASDAQ with stock prices between $5 and $1,000. The breakpoints
for the sort are based on all eligible stocks, so that all decile portfolios contain approximately the same number of stocks in each month.
The portfolio returns for the 12 post-ranking months are linked across years to form one series of post-ranking returns for each decile.
Panel A reports the time-series averages of the deciles portfolios' market capitalization and liquidity, obtained as value-weighted averages
of the corresponding measures across the stocks within each decile. Market capitalization is reported in millions of dollars. A stock's
liquidity in any given month is the slope coe±cient °i;t from equation (1), multiplied by 100. Panels B and C report the decile portfolios'
post-ranking liquidity betas, estimated by regressing excess portfolio returns on the aggregate liquidity innovation and the Fama-French
factors. Also reported are the portfolios' alphas, estimated as intercepts from the regressions of excess portfolio post-ranking returns on
the Fama-French and momentum factor returns. The t-statistics are in parentheses. All statistics are calculated over the period January
1963 through December 1999.

1 2 3 4 5 6 7 8 9 10 1-10

Panel A. General properties

Market cap 13.00 23.85 38.13 57.34 84.98 129.90 206.61 373.89 837.34 17068.24

Liquidity -3.35 -3.16 -1.47 -1.87 -1.48 -1.14 -0.92 -0.46 -0.19 -0.01

Panel B. Return-based measures for value-weighted portfolios

Liquidity beta 5.26 3.84 1.95 -0.42 0.34 -1.13 -0.48 -1.02 -1.60 0.17 5.09
(2.57) (2.46) (1.52) (-0.43) (0.37) (-1.25) (-0.54) (-1.04) (-1.66) (0.67) (2.51)

4-factor alpha 3.01 1.09 0.57 -0.67 -0.75 -0.91 -0.33 -1.05 -0.81 0.50 2.51
(2.34) (1.12) (0.71) (-1.07) (-1.30) (-1.64) (-0.61) (-1.73) (-1.34) (3.14) (1.96)

Panel C. Return-based measures for equal-weighted portfolios

Liquidity beta 4.73 4.22 2.61 0.43 0.82 0.06 -0.25 -1.29 -0.63 0.59 4.14
(2.18) (2.64) (1.89) (0.40) (0.79) (0.07) (-0.28) (-1.23) (-0.63) (0.80) (1.75)

4-factor alpha 3.15 0.47 -0.45 -1.48 -1.42 -1.83 -0.70 -1.40 -1.04 -0.68 3.83
(2.34) (0.48) (-0.55) (-2.34) (-2.27) (-3.10) (-1.24) (-2.12) (-1.65) (-1.48) (2.59)
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Table 10

Liquidity-Risk Spreads and Investment Opportunities

Each row of Panel A reports the ex-post tangency portfolio weights (in percent) as well as the ex-post monthly
Sharpe ratio of the tangency portfolio in the given asset universe. The assets available for investment are
various subsets of six traded factors. This set comprises the Fama-French factors MKT, SMB, and HML,
a momentum factor MOM, and two liquidity-risk spreads, both of which go long decile 10, containing the
stocks with the highest predicted liquidity betas, and short decile 1, containing the stocks with the lowest
betas. Each leg of the spread is value-weighted in LIQV and equally-weighted in LIQE . Panel B reports the
alphas (in percent per year) of the momentum portfolio with respect to the factors listed in the row label.
The t-statistics are in parentheses.

Panel A. Weights in the ex-post tangency portfolio, Jan 1966 { Dec 1999

MKT SMB HML MOM LIQV LIQE Sharpe ratio

100.00 { { { { { 0.12
35.08 5.83 59.10 { { { 0.22
20.05 16.07 43.03 20.85 { { 0.33
22.34 18.77 36.41 { 22.49 { 0.31
17.32 22.33 29.10 { { 31.25 0.40
17.70 20.62 34.23 11.86 15.59 { 0.37
15.88 22.51 29.56 6.47 { 25.58 0.42

Panel B. Alphas from the regression of momentum on portfolios listed

Jan 1966 { Dec 1999 Jan 1966 { Dec 1982 Jan 1983 { Dec 1999

MKT,SMB,HML 16.30 21.65 11.10
(4.85) (4.53) (2.29)

MKT,SMB,HML,LIQV 13.89 19.46 8.03
(4.09) (4.04) (1.63)

MKT,SMB,HML,LIQE 8.41 16.11 -1.29
(2.55) (3.35) (-0.28)

41



References

Acharya, Viral V. and Lasse Heje Pedersen, 2002, Asset pricing with liquidity risk, working
paper, London Business School.

Amihud, Yakov, 2002, Illiquidity and stock returns, Journal of Financial Markets 5, 31-56.

Amihud, Y., and H. Mendelson, 1986, Asset pricing and the bid-ask spread, Journal of
Financial Economics 17, 223{249.

Amihud, Yakov, Haim Mendelson, and Robert Wood, 1990, Liquidity and the 1987 stock
market crash, Journal of Portfolio Management, Spring, 65-69.

Brennan, Michael J., Tarun Chordia, and Avanindhar Subrahmanyam, 1998, Alternative
factor speci¯cations, security characteristics, and the cross-section of expected stock re-
turns, Journal of Financial Economics 49, 345{373.

Brennan, Michael J., and Avanindhar Subrahmanyam, 1996, Market microstructure and
asset pricing: On the compensation for illiquidity in stock returns, Journal of Financial
Economics 41, 441{464.

Campbell, John, Sanford J. Grossman, and Jiang Wang, 1993, Trading volume and serial
correlation in stock returns, Quarterly Journal of Economics 108, 905{939.

Chordia, Tarun, Richard Roll, and Avanidhar Subrahmanyam, 2000, Commonality in liq-
uidity, Journal of Financial Economics 56, 3{28.

Chordia, Tarun, Richard Roll, and Avanidhar Subrahmanyam, 2001, Market liquidity and
trading activity, Journal of Finance 56, 501-530.

Chordia, Tarun, Richard Roll, and Avanidhar Subrahmanyam, 2002, Order imbalance, liq-
uidity, and market returns, Journal of Financial Economics, forthcoming.

Chordia, Tarun, Asani Sarkar, and Avanidhar Subrahmanyam, 2002, An empirical analysis
of stock and bond market liquidity, working paper, Emory University.

Chordia, Tarun, Avanindhar Subrahmanyam, and V. Ravi Anshuman, 2001, Trading activity
and expected stock returns, Journal of Financial Economics 59, 3{32.

Constantinides, George, 1986, \Capital market equilibrium with transaction costs", Journal
of Political Economy 94, 842{862.

Datar, Vinay T., Narayan Y. Naik, and Robert Radcli®e, 1998, Liquidity and asset returns:
An alternative test, Journal of Financial Markets 1, 203{219.

The Economist, 1999, When the sea dries up, September 25, page 93.

Eisfeldt, Andrea L., 2002, \Endogenous liquidity in asset markets", working paper, North-
western University.

Fama, Eugene F. and Kenneth R. French, 1993, Common risk factors in the returns on stocks
and bonds, Journal of Financial Economics 33, 3{56.

42



Fama, Eugene F. and Kenneth R. French, 1996, Multifactor explanations of asset pricing
anomalies, Journal of Finance 51, 55{84.

Fiori, Filippo, 2000, Liquidity premia in the equity markets: An investigation into the
characteristics of liquidity and trading activity, working paper, University of Chicago.

Foster, F. Douglas, and S. Viswanathan, 1993, Variations in trading volume, return volatility,
and trading costs: Evidence on recent price formation models, Journal of Finance 48,
187{211.

Gibbons, Michael R., Stephen A. Ross, and Jay Shanken, 1989, A test of the e±ciency of a
given portfolio, Econometrica 57, 1121{1152.

Grinblatt, Mark, and Sheridan Titman, 1987, The relation between mean-variance e±ciency
and arbitrage pricing, Journal of Business 60, 97{112.

Grossman, Sanford J. and Merton H. Miller, 1988, Liquidity and market structure, Journal
of Finance 43, 617{633.

Hansen, Lars P., 1982, Large Sample Properties of Generalized Method of Moments Estima-
tors, Econometrica 50, 1029{1054.

Hasbrouck, Joel, 1991, Measuring the information content of stock trades, Journal of Finance
46, 179{207.

Hasbrouck, Joel, and Duane J. Seppi, 2001, Common factors in prices, order °ows, and
liquidity, Journal of Financial Economics, 59, 383{411.

Heaton, John, and Deborah J. Lucas, 1996, \Evaluating the e®ects of incomplete markets
on risk sharing and asset pricing", Journal of Political Economy 104, 443{487.

HolmstrÄom, Bengt, and Jean Tirole, 2001, \LAPM: A liquidity-based asset pricing model",
Journal of Finance 56, 1837{1867.

Huang, Ming, 2002, \Liquidity shocks and equilibrium liquidity premia", Journal of Eco-
nomic Theory, forthcoming.

Huberman, Gur, and Dominika Halka, 2001, Systematic liquidity, Journal of Financial Re-
search 24 (Spring), 161{178.

Huberman, Gur, Shmuel Kandel, and Robert F. Stambaugh, 1987, Mimicking portfolios and
exact arbitrage pricing," Journal of Finance 42, 1{9.

Jegadeesh, Narasimhan, and Sheridan Titman, 1993, Returns to buying winners and selling
losers: Implications for stock market e±ciency, Journal of Finance 48, 65{91.

Jobson, J.D., and Bob Korkie, 1982, Potential performance and tests of portfolio e±ciency,
Journal of Financial Economics 10, 433{466.

Jobson, J.D., and Bob Korkie, 1985, Some tests of linear asset pricing with multivariate
normality, Canadian Journal of Administrative Sciences 2, 114{138.

43



Jones, Charles M., 2002, A century of stock market liquidity and trading costs, working
paper, Columbia University.

Jorion, Philippe, 2000, Risk management lessons from Long Term Capital Management,
European Financial Management 6, 277{300.

Lee, Charles M.C., and Bhaskaran Swaminathan, 2000, Price momentum and trading vol-
ume, Journal of Finance 55, 2017{2069.

Llorente, Guillermo, Roni Michaely, Gideon Saar, and Jiang Wang, 2001, Dynamic volume-
return relation of individual stocks, Review of Financial Studies, forthcoming.

Lo, Andrew W., Harry Mamaysky, and Jiang Wang, 2001, \Asset prices and trading volume
under ¯xed transaction costs", working paper, MIT.

Lo, Andrew W., and Jiang Wang, 2000, Trading volume: De¯nitions, data analysis, and
implications of portfolio theory, Review of Financial Studies 13, 257{300.

Lowenstein, Roger, 2000, When Genius Failed, New York: Random House.

Lustig, Hanno, 2001, The market price of aggregate risk and the wealth distribution, working
paper, Stanford University.

Shanken, Jay, 1990, Intertemporal asset pricing: An empirical investigation, Journal of
Econometrics 45, 99{120.

Vayanos, Dimitri, 1998, \Transaction costs and asset prices: A dynamic equilibrium model",
Review of Financial Studies 11, 1{58.

Wang, Jiang, 1994, A model of competitive stock trading volume, Journal of Political Econ-
omy 102, 127{168.

44


