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ABSTRACT

Moral Hazard and Capital Structure Dynamics*

We base a contracting theory for a start-up firm on an agency model with
observable but non-verifiable effort, and renegotiable contracts. Two essential
restrictions on simple contracts are imposed: the entrepreneur must be given
limited liability, and the investor’s earnings must not decrease in the realized
profit of the firm. All message game contracts with pure strategy equilibria
(and no third parties) are considered. Within this class of contracts/equilibria,
and regardless of who has the renegotiating bargaining power, debt and
convertible debt maximize the entrepreneur’s incentives to exert effort. These
contracts are optimal if the entrepreneur has the bargaining power in
renegotiation. If the investor has the bargaining power, the same is true unless
debt induces excessive effort. In the latter case, a non-debt simple contract
achieves efficiency − the non-contractibility of effort does not lower welfare.
Thus, when the non-contractibility of effort matters, our results mirror typical
capital structure dynamics: an early use of debt claims, followed by a switch to
equity-like claims.
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1. Introduction

We base a theory of optimal contracting for a start-up firm on an agency model with

observable but nonverifiable effort. Contracts can be renegotiated after an entrepreneur

has taken his effort, but before its consequence is realized. Both parties may be risk

averse. Our goal is to determine the effects of two natural restrictions on contracts:

limited liability for the entrepreneur, and monotonicity of the investor’s income in the

output of the firm. We show that within the set of contracts that satisfy these restric-

tions, under certain conditions debt and its renegotiation-proof equivalent, convertible

debt, maximize incentives and are often optimal.

We thus obtain a simple theory of capital structure dynamics. It describes the case

of an entrepreneur who first obtains debt finance from a bank, but then later adopts

equity financing by going public. It also fits the case of an entrepreneur who issues con-

vertible debt to a venture capitalist. Such dynamic patterns are well documented (e.g.,

Diamond, 1991; Sahlman, 1990). Real-world contracts are of course more complicated

than the ones considered here; for example, they typically include provisions for dealing

with projects that “go sour”.1 Our model nonetheless generates a dynamic pattern of

financial contracting that is fairly realistic, despite its relative simplicity.

As is well known, the classical agency model of, e.g., Mirrlees (1999) and Holmström

(1979), does not yield optimal schemes that resemble standard instruments like debt or

equity. The “security design” literature has therefore looked elsewhere to show that debt

(or equity) are optimal. For example, Townsend (1979) and Gale and Hellwig (1985)

consider “costly state verification” models in which output can be observed only at a

cost. Bolton and Scharfstein (1990), Berglof and von Thadden (1994), and Hart and

Moore (1994, 1998) consider “stealing models” in which output is entirely unverifiable,

but debt holders can seize assets in some contingencies. In Aghion and Bolton (1992),

and Dewatripont and Tirole (1994), output is costlessly verifiable, but actions that affect

continuation values are not contractible.

1Kaplan and Stromberg (2000) document the details of venture capital contracting. See also Cornelli

and Yosha (1997) and Schmidt (2000).
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Although our model is closer to the classical moral hazard paradigm, it departs in

three ways. First, contracts can be renegotiated after the effort is chosen, but before

the output is realized. This is an appropriate assumption for situations in which the

entrepreneur (agent) is crucial to the initial stage of business, before the fruits of his

labor are realized. This paper thus joins the literature on the renegotiation of moral

hazard contracts, which is discussed below.

Second, although the entrepreneur’s effort remains noncontractable, it is observed

by the investor (principal). This is an appropriate assumption for situations like venture

capital financing in which investors typically have expertise and engage in monitoring.

Because of this assumption, and the previous one regarding renegotiation, the model

resembles that of Hermalin and Katz (1991).

Third, feasible contracts must take account of the entrepreneur’s limited resources,

and give the investor a payoff that does not decrease in the firm’s output. The former

“limited liability” restriction holds naturally for an entrepreneur with little wealth. The

latter “monotonicity” restriction can be derived as an equilibrium outcome from ex post

moral hazard considerations. It arises, for example, if the investor can “burn output”

in order to make the firm’s performance appear lower than it really was. Alternatively,

it arises if the entrepreneur can secretly borrow from an outside lender in order to make

the firm’s performance appear greater than it really was. Assuming such ex post moral

hazards weakens the assumption that output is verifiable, but less so than in the costly

state verification models, and much less so than in the stealing models.

Under these liability and monotonicity restrictions, Innes (1990) shows that debt is

optimal if the parties are risk neutral. Debt gives the entrepreneur a return of zero —

the minimal possible return when he has limited liability — if the firm’s realized earnings

are lower than the face value of the debt. This property of debt is useful for giving the

entrepreneur incentives to choose an effort that lowers the probability of this low return.

But it also makes debt a poor risk-sharing scheme if the entrepreneur is risk averse, in

which case debt is not optimal in Innes’ no-renegotiation model.

On the other hand, if the debt can be renegotiated after the effort is chosen but
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before the output is realized, it may be possible to renegotiate it to a better risk-sharing

contract without destroying incentives. A result of this type is due to Hermalin and Katz

(1991), who examine a model like ours, with renegotiation, effort that is observable but

not verifiable, and a risk averse entrepreneur (but risk neutral investor). They show that

if the entrepreneur has the renegotiation bargaining power, then a riskless debt contract,

i.e., a contract that pays the investor a fixed amount regardless of the realized output,

achieves a first-best outcome.2 The riskless debt provides appropriate incentives, and it

is renegotiated to an efficient risk-sharing contract after the effort is chosen.

Riskless debt, however, will generally give the investor too low a return when the

limited liability of the entrepreneur prevents him from paying back more than the firm

earns. In this case, if the smallest possible output of the firm is less than the required

start-up investment, and if the investor has no bargaining power in the renegotiation,

any feasible riskless debt contract gives her a negative return on her investment. Our

task, therefore, is to determine the nature of an optimal contract that gives the investor

a higher payoff than would any feasible riskless debt contract.

We first restrict attention to “simple contracts”, which are contracts that specify a

fixed rule for sharing the firm’s output. Within the class of simple contracts satisfying

the liability and monotonicity restrictions, we find that any debt contract is optimal if

the entrepreneur has all the bargaining power in the renegotiation. Thus, risky debt,

instead of riskless debt, emerges when the latter gives the investor too low a payoff. The

reason, roughly, is that within the set of simple contracts that give the investor some

payoff, a debt contract elicits the greatest effort. Unless the debt is riskless, this effort

is not high enough to be efficient, i.e., if effort were to be contractible, prescribing a

higher effort would make both parties better off.

The “separation” theme that runs through these results is worth emphasizing. Rene-

gotiation allows incentive provision to be separated from risk sharing, even given a

2This describes both the proof and statement of Proposition 3 in Hermalin and Katz (1991). The

result, unlike that of Innes (1990) and most of ours here, does not rely on the monotone likelihood ratio

propety. A similar result is obtained in Matthews (1995) for unobservable effort.
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restriction to simple contracts. The initial contract provides only incentives, and the

renegotiated contract provides only risk sharing. Accordingly, the optimal contract

takes the same form as it does when the entrepreneur is risk neutral and renegotiation

is not possible. Thus, it is well known that riskless debt is optimal when the agent is

risk neutral, and Hermalin and Katz (1991) show that it is also optimal when he is risk

averse but renegotiation is possible (and the agent has the bargaining power). In the

presence of the liability and monotonicity constraints, Innes (1990) shows that debt is

optimal when the agent is risk neutral, and we show that it is also optimal when he is

risk averse but renegotiation is possible (and the agent has the bargaining power).

In addition to simple contracts, we consider “general contracts” that require the par-

ties, after the effort is chosen, to send messages to the contract enforcer. The messages

determine a (sometimes random) simple contract for sharing the output; the prescribed

(random) simple contract can then be renegotiated. Such general contracts can be of

value for implementation, as the literature following Maskin (1999) shows. For example,

consider a contract in which both parties report the effort, and if they disagree, both

are “shot” (made to pay big fines). Truthful reporting is then an equilibrium for any

effort, which essentially makes it contractible. But of course, paying big fines violates

our limited liability condition. More importantly, renegotiation prevents this scheme

from working, since the parties will renegotiate the fines away if it ever becomes clear

they are to be imposed.

An “investor-option contract” is a general contract in which only the investor sends

a message. It can be viewed as a set of (random) simple contracts from which the

investor will select after the effort is chosen. Our first result about general contracts is

that investor-option contracts are optimal, given a restriction to pure strategy equilibria.

(We show in Appendix B that both parties sending messages may be of value in a mixed

strategy equilibrium.) Thus, subject to the pure strategy proviso, there is no need to

consider contracts that require the entrepreneur to send a message. This result holds

for any renegotiation bargaining procedure that achieves an ex post efficient outcome

which is continuous in the disagreement outcome. Segal and Whinston (2002) prove
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a similar result, but in a quasilinear framework and for a somewhat smaller class of

bargaining rules.

Our focus returns to debt contracts when we consider in the general setting the case

in which the entrepreneur has all the renegotiation bargaining power. Our main result

here is that no investor-option contract, and hence no general contract, outperforms debt

(again restricting attention to pure strategies). Of course, an investor-option contract

that contains debt can be payoff-equivalent to debt. We view convertible debt as such

a contract: it is an investor-option contract that consists of a debt contract and the

simple contract to which, in equilibrium, it is renegotiated after the effort is chosen. In

the equilibrium of a convertible debt contract, the entrepreneur takes the same effort as

he would have given just the debt contract, and then the investor selects the alternative

simple contract instead of the debt. The entrepreneur is deterred from shirking by

the credible threat that the investor would then select the debt contract. This is like

“converting” to equity some or all of the debt in a real convertible debt contract if the

entrepreneur is observed to have performed well.

We then turn to the case in which the investor has the renegotiation bargaining

power. We show that then debt still provides the strongest incentives. However, we also

show that, if the entrepreneur is risk averse, the incentives provided by debt may be

too strong. This is because the entrepreneur now does not gain from the renegotiation,

and so the risk characteristics of the initial contract matter. Debt is very risky for

him, since it gives him a zero return if the realized output is low. He may therefore

over-exert himself in order to reduce the probability of low outputs. This possibility

of excessive effort is surprising; one typically thinks effort should be too low when the

entrepreneur chooses it without regard for the positive externality that increasing effort

has on investors. Our excessive effort result is thus at odds with the conventional wisdom

that external funding reduces managerial effort through the externality it induces on

investors, the “debt overhang” problem that has been stressed in the corporate finance

literature since Jensen and Meckling (1976) and Myers (1977).

Our final result is that under standard but strong concavity-like assumptions, either
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a debt contract is optimal in the set of deterministic general contracts (again with

the pure strategy proviso), or a simple contract that is not debt achieves an efficient

allocation. In the latter case, the inability to contract on effort does not lower welfare.

Debt is optimal when the non-contractibility of effort matters.

Our finding that a simple contract is optimal resembles the result of other models

that an optimal contract has no messages, as in Hart and Moore (1988) and Segal

and Whinston (2002), or is the null contract, as in Che and Hausch (1999), Segal

(1999), Hart and Moore (1999), and Reiche (2001). It is renegotiation that causes

simple contracts to arise in these models and ours, for two reasons. First, to some

extent renegotiation “completes” an initial contract, since the renegotiated contract

can depend on observable but non-contractible variables. Second, by ensuring ex post

efficiency, renegotiation makes any message game strictly competitive, and hence of

limited use. In our paper debt emerges as the simple contract because it maximizes

incentives. In the other papers, either a simple profit sharing rule or the null contract

are optimal because contracting is unable to strengthen incentives.3

Other related papers also consider renegotiation of incentive contracts, but under the

assumption that the principal does not observe the agent’s effort. Fudenberg and Tirole

(1990), Ma (1991, 1994), and Matthews (1995) study such models without liability or

monotonicity restrictions. Matthews (2001) studies a model with these restrictions.

Our environment differs from his only in so far as the investor observes the effort.

Matthews (2001) shows that debt is optimal within the set of simple contracts, assuming

the entrepreneur has the renegotiation bargaining power. The complications due to

asymmetric information make his result more fragile than ours; e.g., multiple, non-

equivalent equilibria may exist, non-debt simple contracts may also be optimal, and

general contracts with pure strategy equilibria may outperform debt.

3The inability to enforce trade ex post in Hart-Moore (1988) implies that the optimal contract is

a simple profit-sharing rule. The null contract is optimal in the other papers; its optimality is due to

either the presence of direct investment externalities (Che-Hausch, 1999), or to an inability to specify

the nature of the good to be traded (Segal, 1999, Hart and Moore, 1999, and Reiche, 2001).
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The paper is organized as follows. The environment is described in Section 2. The

special case in which the investor is risk neutral, and the entrepreneur has the rene-

gotiation bargaining power, is studied in Section 3. The case of general contracts and

renegotiation is analyzed in Section 4. Sections 5 and 6 contain results for the general

model in which the entrepreneur or, respectively, the investor has the bargaining power.

Section 7 concludes. Appendix A contains proofs. Appendix B has two examples of non-

debt contracts that outperform debt if third parties are introduced, or if joint lotteries

controlled by mixed strategies can be implemented.

2. Preliminaries

An entrepreneur (agent) must contract with an investor (principal) to obtain the K

dollars required to start a project. After contracting, the entrepreneur chooses an effort

level e from an interval E = [e, ē] ⊂ R. His effort determines a probability distribution,
g(e) = (g1(e), . . . , gn(e)), over the set of possible (monetary) outputs, {π1, . . . ,πn}. We
assume n > 1 and πi < πi+1. Each gi is twice continuously differentiable and positive

on E. Output increases stochastically with effort in the sense of the strict monotone

likelihood ratio property:

(MLRP)
g0i(e)
gi(e)

increases in i for any e ∈ E.

The only contractible variable is output. Accordingly, a simple contract is a vector

r = (r1, . . . , rn) specifying a payment from the entrepreneur to the investor for each

possible output. An allocation is a pair (r, e).

Given an allocation (r, e), the entrepreneur’s utility if πi is realized is u(πi − ri, e).
His payoff (expected utility) from an allocation is

U(r, e) ≡P gi(e)u(πi − ri, e).4

The function u is twice continuously differentiable. With respect to income, the entre-

preneur’s utility increases, u1 > 0, and he is weakly risk averse: u11 ≤ 0. His utility
4We omit the summation index if it is i = 1, . . . , n.
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decreases with effort at all interior efforts: u2(·, e) < 0 for e ∈ (e, ē). Corner solutions
are eliminated by assuming u2(·, e) = 0 and u2(·, ē) = −∞.

The investor’s net utility is v(y) if she makes the start-up investment and receives

y dollars in return.5 The function v has continuous derivatives v0 > 0 and v00 ≤ 0. The
investor’s payoff from an allocation is

V (r, e) ≡P gi(e)v(ri).

We assume at least one party is risk averse: u11 < 0 or v00 < 0.

The timing and information structure of the game are as follows. After a contract is

adopted, the entrepreneur chooses effort. The investor observes the effort immediately.

Any messages that the contract may require the parties to send are then sent. As a

function of the messages sent, the contract specifies a (possibly random) simple contract

that, together with the chosen effort, determines a status quo allocation. The parties

then renegotiate to another simple contract. Finally, output is realized and payments

made according to the renegotiated contract.

At the heart of our model is a set of restrictions on what makes a simple contract

feasible. The first important one is a limited liability constraint for the entrepreneur:

(LE) ri ≤ πi for i ≤ n.

This constraint reflects the reality that entrepreneurs often have limited wealth, and

so cannot pay back more than the project earns. If the start-up investment satisfies

K > π1, then LE rules out the riskless debt contract that requires the investor to be

paid back K after any output realization.

The second important restriction is a monotonicity constraint for the investor that

requires her income to weakly increase with the project’s output:

(MI) ri ≤ ri+1 for i < n.
5 If the investor’s utility function for income is v̂, then v(y) ≡ v̂(y) − v̂ (K). Her utility gain is thus

v(y) if she makes the investment and receives y in return.
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This constraint has a different status that does LE. It is the consequence of an ex post

moral hazard that, for simplicity, we have chosen not to model explicitly. For example, it

is easy to show that MI must be satisfied by any implementable contract if the investor

can engage in sabotage that distorts the apparent πi downwards. Alternatively, MI

must be satisfied if the entrepreneur can borrow secretly from a lender after a contract

has been signed, thereby distorting the apparent πi upwards. Constraint MI, and the

arguments for it, were first introduced by Innes (1990).6

We denote the set of feasible simple contracts as C, and assume it is defined by LE,

MI, and one other constraint:

C ≡ {r ∈ Rn | r satisfies LE, MI, and LI}.

The additional constraint,

(LI) ri ≥ r for i ≤ n,

is a limited liability constraint for the investor that imposes a lower bound on how

much she can be paid back. It simplifies the analysis by insuring that C is compact.

We assume r < π1, so that C has an interior. It is also convex.

An efficient risk-sharing contract for a fixed effort e is a contract in C that solves

the following program,

H(V̂ , e) ≡ max
r∈C

U(r, e) such that V (r, e) ≥ V̂ , (1)

for some investor payoff V̂ . This is a “constrained efficiency” notion, taking as given

the constraints that define C. (The modifier “first-best” will denote outcomes that are

efficient in the full, unconstrained sense.) Any solution of (1) is unique, since both

parties are weakly, and at least one is strictly, risk averse. The graph of H(·, e) is the
Pareto frontier of possible payoff pairs when the effort is fixed at e. The following lemma

6It is equally likely that the entrepreneur can destroy output ex post, or that the investor can inject

cash so as to inflate apparent profit. These ex post moral hazards lead to the constraint πi − ri ≤
πi+1 − ri+1. Most of our results would be unchanged if we were to include this constraint too.
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confirms that it is downward sloping on its domain, [v(r), V (π, e)].7 The proof, like all

others missing from the text, is in Appendix A.

Lemma 1. For all e ∈ E, H(·, e) is continuous and concave on [v(r), V (π, e)]. For all
e ∈ E and V̂ ∈ (v(r), V (π, e)) , the partial derivative H1(V̂ , e) exists and is negative. If
also e ∈ int(E), then H(·, ·) is differentiable, and has continuous partial derivatives, at
(V̂ , e).

We refer to an allocation (r∗, e∗) as efficient if e∗ maximizes H(V̂ , ·) for some V̂ , and
r∗ solves (1) when e = e∗. Such allocations set the welfare benchmark: they determine

the Pareto frontier that would be achievable if effort as well as output were contractible,

the parties could commit not to renegotiate, but the constraints MI, LE, and LI had to

be respected.

Two types of contract will play a major role. The first is a wage contract that pays

the entrepreneur a fixed wage regardless of the realized output. The wage contract with

wage w is denoted by rw, where

rwi ≡ πi −w for i ≤ n.

Because of the liability constraints, rw ∈ C if and only if w ∈ [0,π1 − r].
Debt is the second important contract type. The debt contract with face value D,

denoted as δ(D), is defined by

δi(D) ≡ min(D,πi) for i ≤ n.

We sometimes denote δ(D) merely as δ. Note that δ ∈ C if and only if D ∈ [r,πn]. The
debt is risky if δ1 < δn, which is equivalent to D > π1.

The following proposition characterizes debt in terms of efficiency. It implies that

if the entrepreneur is risk neutral, then for any effort, a contract in C is an efficient

risk-sharing contract for that effort if and only if it is debt.

7No feasible investor payoff is less than v(r), or greater than V (π, e) ≡P gi(e)v(πi).
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Proposition 1. Suppose the investor is risk averse and the entrepreneur is risk neutral.

Then, given any effort, a contract satisfying LE is not Pareto dominated by any other

contract satisfying LE if and only if it is debt.

3. Illustrative Case

In this section we examine, largely graphically, the canonical case in which the investor

is risk neutral and the entrepreneur is risk averse. We further assume the entrepreneur

has all the renegotiation bargaining power, so that he is able to offer a new contract on

a take-it-or-leave-it-basis.8

Since the chosen effort is observed by both parties, in equilibrium the entrepreneur

will propose to renegotiate to an efficient risk-sharing contract for that effort. Because

now the investor is risk neutral, such a contract perfectly insures the entrepreneur: it is

a wage contract. Thus, the renegotiation consists of the entrepreneur selling his entire

stake in the firm to the investor.9

Suppose the parties have agreed to contract r ∈ C. Then, after he has chosen an
effort e, the entrepreneur will offer the wage contract rw that has the highest wage the

investor will accept, i.e., the highest w satisfying

P
gi(e)πi −w ≥

P
gi(e)ri.

This constraint binds — the investor receives no gain from the renegotiation. The re-

sulting wage is given by the wage function defined by

w∗(r, e) ≡P gi(e)(πi − ri).10 (2)

8 In order to simplify matters, we also assume the wage contracts that arise in this section are feasible.

In particular, we assume they satisfy the investor’s liability constraint, LI.

9 If the investor were to be risk averse, efficient risk sharing would require the entrepreneur to bear

risk. Thus, in this case renegotiation would yield a contract that is more like equity sharing; both

party’s earnings would increase in the realized output (linearly if they they both had CARA utility).

10Because (2) implies w∗(r, e) ∈ [0,π1 − r], we see that rw∗(r,e) ∈ C.
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When he chooses effort, the entrepreneur realizes that his ultimate wage will be deter-

mined by w∗(r, ·). Thus, as is shown in Figure 1, an equilibrium outcome of r is a pair,

(e∗, w∗), that solves the following program:

max
w,e

u(w, e) subject to w = w∗(r, e). (3)

Observe that renegotiation separates incentive provision and risk sharing. The risk-

sharing features of the initial contract, and the incentive provisions of the final contract,

are both irrelevant. The initial contract provides incentives by its effect on the derivative

w∗e(r, e), a measure of how responsive the wage is to changes in effort.

Only an efficient risk-sharing contract, i.e., a wage contract, will not be renegotiated.

If r is a wage contract, the wage curve in Figure 1 is a horizontal line, and so the

entrepreneur’s optimal effort is the lowest possible, e. Incentives are thus provided only

by contracts that do not provide efficient risk sharing; any simple contract that provides

incentives will be renegotiated.

A (first-best) efficient allocation can be represented now as a pair (e,w) at which

the indifference curves of the entrepreneur and investor are tangent. The investor’s

indifference curve that gives her a payoff V is the graph of the equation

w =
P
gi(e)πi − V.

Thus, if this graph coincides with that of w∗(r, ·), the equilibrium outcome of contract

r is first-best efficient. The obvious candidate for such an r is the riskless debt contract

that surely pays back V,

δV ≡ (V, . . . , V ).

Since w∗(δV , e) =
P
gi(e)πi−V, its graph is indeed an indifference curve of the investor.

Riskless debt thus achieves first-best outcomes.11.

11The proof of Proposition 3 in Hermalin and Katz (1991) also shows that the renegotiation can

achieve the first-best under the assumptions of this section. For a risk averse investor, we show in

Section 5 that riskless debt still achieves efficient, but not necessarily first-best, allocations when the

entrepreneur has the bargaining power.
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The non-contractibility of effort may therefore be irrelevant. Even if any (e,w) could

be directly enforced, both parties could not be made better off than they are when a

riskless debt contract is adopted and renegotiated. However, any riskless debt contract

that satisfies the entrepreneur’s liability constraint gives the investor a payoff no greater

than π1. She will not accept such a contract if, for example, K > π1 and she must earn

a nonnegative return on her investment.

The non-contractibility of debt does matter if the investor must be given a payoff

greater than π1. As we have seen, no riskless debt contract in C gives her this payoff,

and no risky r ∈ C has an efficient equilibrium outcome. This is because the incentives

provided by any risky contract satisfying the monotonicity constraint MI are too low.

The argument is shown in Figure 2. Let (e∗, w∗) be an equilibrium outcome of the

risky r ∈ C, and let V be the investor’s payoff at this outcome. Her indifference curve

at (e∗, w∗) is the graph of w∗e(δ
V , ·). By MLRP, the fact that r satisfies MI and is not

riskless implies that this indifference curve is everywhere steeper than the wage curve:

for any e ∈ E,
w∗e(δ

V , e)−w∗e(r, e) =
P
g0i(e)ri > 0.

The efficient outcome, (eF , wF ), that gives the investor payoff V therefore satisfies

eF > e∗. Thus, the efficient effort that gives the investor a payoff of V is greater than

the equilibrium effort achieved by any risky contract in C. Consequently, this efficient

effort cannot be achieved if V > π1.

Of all the contracts in C, debt provides the greatest incentives. To see why, suppose

δ is risky or riskless debt, and r ∈ C is not debt. Assume neither contract always pays
back more than the other. Then, since r satisfies LE, ri ≤ δi for low outputs πi. But

since r satisfies MI, ri ≥ δi for high outputs. In other words, the debt contract pays less

to the entrepreneur for low outputs, but more for high outputs. The debt contract thus

gives the entrepreneur a greater incentive to shift probability from low to high outputs

by increasing effort. This causes the wage curve generated by the debt to cross the wage

curve generated r only from below. This single-crossing property is established by the

following lemma.
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Lemma 2. Suppose δ is debt and r ∈ C is not. If w∗(δ, e∗) = w∗(r, e∗), then
(i) w∗e(δ, e∗) > w∗e(r, e∗), and

(ii) (e− e∗) [w∗(δ, e)−w∗(r, e)] > 0 for all e 6= e∗.

Lemma 2 implies that of all the feasible contracts that give the investor some equi-

librium payoff, a debt contract achieves the largest equilibrium effort. But, as we have

seen, no feasible contract has an equilibrium effort that is larger than the efficient effort

that gives the investor this payoff. It follows that no feasible simple contract has an

equilibrium that Pareto dominates that of a debt contract.

To see this more formally, refer to Figure 3. The outcome of a non-debt contract

r ∈ C is (w∗, e∗), and it gives the investor payoff V. The indicated δ is the debt contract
satisfying w∗(δ, e∗) = w∗. By Lemma 2, w∗(δ, ·) lies above w∗(r, ·) to the right of e∗.
As shown above, since δ satisfies MI, the investor’s indifference curve w∗(δV , ·) is even
higher than w∗(δ, ·) to the right of e∗, and lower to the left. Any equilibrium outcome

of δ must be on the thick portion of w∗(δ, ·), which is in the lens between the parties’
indifference curves. The equilibrium of δ thus Pareto dominates (w∗, e∗). This yields

the following proposition (which is a special case of the upcoming Theorems 2 and 3.)

Proposition 2. Given entrepreneur-offer renegotiation and a risk neutral investor, any

equilibrium of a non-debt r ∈ C is Pareto dominated by an equilibrium of a debt

contract.

We now turn to more complicated contracts that require messages to be sent. Con-

vertible debt, a standard way of financing venture capital, is an example. It is a debt

security that the investor has the option of converting to equity in the future. Convert-

ible preferred equity is similar; it prescribes a schedule of dividends like debt does, and

it can be converted at the investor’s option to common stock. These are examples of

investor-option contracts in which the implemented simple contract is determined by

the investor’s message only.

In this section we restrict attention to investor-option contracts. This will be nearly

without loss of generality, as we show in Section 4. We further restrict attention here to
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contracts that have only a finite number of options. Such an investor-option contract

can be represented as a finite set R ⊂ C. After the contract has been agreed and the
entrepreneur has chosen his effort, the investor selects a simple contract from R. Then

renegotiation may occur; the entrepreneur offers a new simple contract on a take-it-or-

leave-it basis to supplant the one the investor selected from R.12

Renegotiation is still efficient, and so the entrepreneur offers a wage contract. It will

be the wage contract that gives the investor the same payoff as does the simple contract

she had selected from R. Foreseeing this, when she observes that the entrepreneur has

chosen an effort e, the investor selects an r ∈ R to maximize P gi(e)ri. Renegotiation

thus yields a wage contract with wage

w∗(R, e) ≡P gi(e)πi −max
r∈R

P
gi(e)ri

= min
r∈R

w∗(r, e).

So, the wage curve generated by an investor-option contract R is the lower envelope of

the wage curves generated by the simple contracts in R. An equilibrium outcome of R

is a pair (e,w) that maximizes u(w, e) subject to w = w∗(R, e).

The possible value of an investor-option contract can be seen in Figure 4. The

outcome of contract ra is the point â, which has a lower effort. But if the investor is

given the option of selecting rb instead of ra, i.e. if the parties adopt the investor-option

contract R = {ra, rb}, the equilibrium outcome is a, which has a relatively high effort.

Contract rb results in a very low wage if the entrepreneur chooses a low effort, and so the

entrepreneur is induced to work hard in order to prevent the investor from selecting rb.

The investor’s option of choosing rb increases the incentives that ra alone can provide.

However, an investor-option contract cannot improve upon a debt contract. The

argument is essentially the same as before, and is again based on the single-crossing

property of Lemma 2. Let the outcome of an investor-option contract R be (w∗, e∗),

and denote by V the payoff it gives the investor. Let δ be the debt contract satisfying

w∗(δ, e∗) = w∗. Because it is a lower envelope, the wage curve w∗(R, ·) never has a
12The same results obtain if renegotiation instead occurs before the investor selects from R.
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greater slope, as given by either its right or left derivatives, than any of the supporting

curves w∗(r, ·), r ∈ R. Lemma 2 thus implies that w∗(δ, ·) lies above w∗(R, ·) to the
right of e∗, and below w∗(R, ·) to the left of e∗. Hence, δ yields an effort no lower than
e∗, and strictly higher unless some contract in R is debt (or e = e). By the same logic

as before, the investor also prefers this higher effort to e∗, since her payoff is as though

the debt contract is not renegotiated. These arguments, made more generally in the

upcoming Theorems 2 and 3, yield the following proposition.

Proposition 3. Assume entrepreneur-offer renegotiation, and that the investor is risk

neutral. Then any equilibrium of a finite investor-option contract is weakly Pareto

dominated by that of some debt contract. At least one party strictly prefers the latter

if the investor-option contract does not contain debt.

We can now see that a debt contract is equivalent to a type of convertible debt. The

following argument is shown in Figure 5. Let δ be debt, and let r∗ = rw∗ be the wage

contract to which it is renegotiated. It specifies the wage w∗ = w∗(δ, e∗), where e∗ is

the equilibrium effort. The investor-option contract R∗ = {δ, r∗} is convertible debt: it
can be viewed as a security that will implement the debt contract δ unless the investor

exercises her option of converting it to r∗. The wage curve w∗(r∗, ·) is horizontal at w∗,
but w∗(δ, ·) is upward sloping.13 Hence, if the entrepreneur chooses an effort less than
e∗, the investor will select δ because it results in a lower wage. If the entrepreneur

chooses an effort greater than e∗, the investor will instead select r∗ because it now

results in the lower wage. Since e∗ is the entrepreneur’s optimal effort from w∗(δ, ·), it
also his optimal choice from the lower envelope of the two curves. The convertible debt

contract thus gives rise to an equilibrium in which the entrepreneur chooses e∗ and the

investor exercises her “converting” option of selecting r∗. This yields the same outcome

as would the adoption and renegotiation of δ.

On the equilibrium path, the convertible debt contract R∗ is renegotiation proof.

When the entrepreneur chooses e∗ or any greater effort, the investor selects r∗. Since

13Assume the face value of δ is less than πn.
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it shares risk efficiently, r∗ will not be renegotiated. In this sense the convertible debt

contract is the renegotiation-proof equivalent of the debt contract. (However, off the

equilibrium path, at efforts lower than e∗, R∗ would be renegotiated because the investor

then selects δ, a contract that shares risk inefficiently.)

4. The General Model

We now consider general “message game” contracts, in the general model in which both

parties may be risk averse. We make no assumptions here about the distribution of

bargaining power. Furthermore, the results of this section do not depend on our specific

definition of a feasible simple contract: they hold for any feasible set C ⊂ R that is

non-empty and compact, and leads to a downward sloping Pareto function H(·, e). The
main result is that any pure strategy equilibrium outcome of a general contract is also

an equilibrium outcome of an investor-option contract.

A general contract (game form, mechanism) is a function

f :ME ×MI → ∆C,

where ME and MI are sets of messages that the entrepreneur and investor can respec-

tively send, and∆C is the space of probability distributions on C.14 LetM =ME×MI ,

and denote a message pair as m = (mE,mI). When m is sent, the contract prescribes

a random simple contract, r̃ = f(m) ∈ ∆C that would, if it were not renegotiated,

determine the entrepreneur’s payment to the investor.

Bargaining and renegotiation occur according to the following time line:

contract effort messages r̃ = f(m) π realized,

f signed e taken m sent renegotiated payments made

↓ ↓ ↓ ↓ ↓
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

14Endow ∆C with the topology of weak convergence. Note that it is compact, since C is compact in

Rn.
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Two features are noteworthy. First, renegotiation takes place ex post, after the messages

are sent. This, however, is assumed only for simplicity. So long as the parties cannot

commit to not renegotiate at this ex post date, our results still hold if renegotiation

is also possible at the interim date that occurs after the effort is chosen but before

the messages are sent. This is made clear below. Second, renegotiation occurs before

the randomness in the mechanism’s prescribed outcome r̃ is realized. This is the same

convention as in Segal and Whinston (2002), but differs from that in Maskin and Moore

(1999).15

We let V̂ (r̃, e) and Û(r̃, e) denote the post-renegotiation payoffs of the investor and

entrepreneur, respectively, when effort e has been taken and messagesm have been sent,

where r̃ = f(m). We assume that renegotiation is efficient,

Û(r̃, e) = H(V̂ (r̃, e), e) for all (r̃, e) ∈ ∆C ×E, (4)

and that the post-renegotiation payoffs are continuous in the prescribed outcome:

V̂ (·, ·) and Û(·, ·) are continuous on ∆C ×E. (5)

The efficient renegotiation assumption (4) implies that r̃ is renegotiated to an efficient

risk-sharing contract; any randomness in r̃ has no efficiency consequence. The continuity

assumption (5) is weaker than the continuity and differentiability assumed in Segal and

Whinston (2002), and it holds fairly generally. It requires the bargaining powers of the

parties in the renegotiation game not to shift discontinuously in (r̃, e), the allocation

that determines their disagreement payoffs.

Given a contract f, the message game following effort e is the game in which the

strategies are messages, and the payoff functions are Û(f(·), e) and V̂ (f(·), e). This game
is “strictly competitive”, which means that the two players have opposing preferences

on the set of message pairs. This is because renegotiation is efficient, and so any mes-

sage profile results in a post-renegotiation payoff pair on the downward-sloping Pareto

15 In Maskin and Moore (1999), the parties can commit not to renegotiate during the time interval

between the sending of messages and the realization of the contract’s random outcome.
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frontier for the given effort. In particular, since

Û(f(m), e) = H(V̂ (f(m), e), e),

the entrepreneur’s best reply to any mI minimizes the investor’s payoff V̂ (f(·,mI), e).
Unless explicitly stated otherwise, the term “equilibrium” denotes a pure strategy

subgame perfect equilibrium. (Mixed strategy equilibria are considered in Appendix B.)

Consider an equilibrium m∗(e) of the message game. Denote the corresponding

equilibrium payoffs as V ∗(e) and U∗(e) = H(V ∗(e), e). Because the message game is

strictly competitive, m∗(e) is also an equilibrium of the zero-sum game in which the

investor’s payoff is V̂ (f(m), e) and the entrepreneur’s is −V̂ (f(m), e). (This is not true
of mixed strategy equilibria, as we discuss below.) Therefore, by a standard “maxmin”

argument,

V ∗(e) = sup
mI

inf
mE

V̂ (f(mI ,mE), e).
16 (6)

An equilibrium of (the game generated by) contract f is a pair (e∗,m∗(·)), where
e∗ is an effort that maximizes the entrepreneur’s equilibrium continuation payoff in the

message game:

e∗ ∈ argmax
e∈E

U∗(e). (7)

We now prove that an investor-option contract performs as well as any general

contract. For a quasilinear model the result is Proposition 9 in Segal and Whinston

(2002). The heuristic argument is the following. Consider an equilibrium (e∗,m∗(·))
of a contract f . Define an investor-option contract f I : MI → ∆C by holding the

entrepreneur’s message fixed at m∗E(e
∗) :

fI(mI) = f(m
∗
E(e

∗),mI).

Given this option contract, after any effort the investor can obtain a payoff at least as

large as she would get from the equilibrium of the message game determined by f . This

is because, as we discussed above, the entrepreneur chooses a message to minimize the

investor’s payoff when the contract is f . But fI does not allow him to choose a message

16Since m∗(e) is an equilibrium, the “sup” in (6) can be replaced by “max”.
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to harm the investor in this way. Hence, if fI generates equilibrium payoffs V I(e) and

UI(e), we have V I(·) ≥ V ∗(·), with equality at e∗ because m∗I(e∗) is a best reply to
m∗E(e

∗). Efficient renegotiation then implies UI(·) ≤ U∗(·), with equality at e∗. Thus,
since it maximizes U∗(·), e∗ indeed maximizes UI(·).

The unwarranted assumption in this heuristic proof is that fI has an equilibrium.

A correct proof is given in Appendix A.

Theorem 1. Given any equilibrium of any contract, an investor-option contract exists

that has the same equilibrium payoffs and effort.

Theorem 1 also holds if the parties can renegotiate at the interim stage, after the

effort is chosen but before any messages are sent, so long as they are also able to

renegotiate ex post. This is because the theorem refers to equilibria that are in pure

strategies, and hence yield, after any effort choice e, continuation payoffs (V ∗(e), U∗(e))

that are on the Pareto frontier given e. Knowing that these payoffs will obtain when e

is chosen and the contract is not renegotiated, every interim renegotiation proposal by

one party will be rejected by the other. It is consequently irrelevant whether the parties

can commit not to renegotiate at the interim date.

5. Entrepreneur-Offer Renegotiation

We now show in the general model that if the entrepreneur has all the bargaining power

in the renegotiation stage, then any general contract is weakly Pareto dominated by

debt. The general contract is Pareto dominated by debt if it does not resemble debt in

a particular sense.

Since the entrepreneur has the bargaining power, the investor receives the same

payoff regardless of whether she agrees to renegotiate. Thus, after and effort e is taken

and a message pairm is sent, renegotiation of the prescribed r̃ = f(m) yields an efficient

risk-sharing contract for e that gives the investor the same payoff as does r̃. Her post-

renegotiation payoff is

V̂ (r̃, e) = V (r̃, e) = Er̃ {
P
gi(e)v(r̃i)} , (8)
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and the entrepreneur’s is

Û(r̃, e) = H(V (r̃, e), e). (9)

The two assumptions made in Section 4 are satisfied: renegotiation is efficient, and the

post-renegotiation payoffs are continuous in r̃.

We first dispense with random contracts. The investor’s certainty equivalent for

r̃ ∈ ∆C is the rci ∈ Rn defined by v(rcii ) ≡ Er̃v(r̃i). Since V (rci, ·) = V (r̃, ·), we see
from (8) and (9) that for any effort, rci and r̃ yield the same post-renegotiation payoffs.

Thus, for any contract f, an equivalent deterministic contract f̄ is defined by letting

f̄(m) be the investor’s certainty equivalent for f(m). The contracts f and f̄ have the

same equilibrium efforts and payoffs. Since the certainty equivalent of any r̃ ∈ ∆C is in
C,17 we have proved the following.

Lemma 3. The equilibrium efforts and payoffs of any contract f : M → ∆C are the

same as those of a contract f̄ : M → C defined by letting f̄(m) be the investor’s

certainty equivalent for f(m).

In light of Theorem 1 and Lemma 3, we can restrict attention to deterministic

investor-option contracts. By the revelation principle, we can further restrict attention

to revelation mechanisms for the investor, r∗ : E → C, that are incentive compatible.

Given such an r∗, its truthful equilibrium yields post-renegotiation payoffs

V ∗(e) = V (r∗(e), e) and U∗(e) = H(V ∗(e), e). (10)

Any maximizer of U∗(·) is an equilibrium effort.

It is now easy to see that when the entrepreneur has the bargaining power, an equi-

librium of a riskless debt contract is efficient. Suppose that for all possible reports,

r∗(·) specifies a riskless debt contract, δD ≡ (D, . . . ,D). By (10), the investor’s post-
renegotiation payoff is then V (δD, e) = v(D), which is independent of e. The equilibrium

effort maximizes U∗(·) = H(v(D), ·), and is hence the effort component of the efficient
17 In particular, rci satisfies MI because v(rcii+1)−v(rcii ) = Er̃ [v(r̃i+1)− v(r̃i)] ≥ 0, since any realization

of r̃ satisfies MI because it is in C.
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allocation that gives the investor payoff v(D). This efficient allocation is thus the equi-

librium outcome, since renegotiation is efficient and does not benefit the investor.

Of course, as we observed in Section 3, a riskless debt contract that is acceptable to

the investor may not be feasible. We accordingly turn to debt contracts that may be

risky. The following lemma, a generalization of Lemma 2, shows that debt provides the

greatest incentives of all contracts in C.

Lemma 4. For any (r, e) ∈ C×E such that r is not debt, a unique debt contract δ ∈ C
exists for which V (r, e) = V (δ, e). Furthermore,

(i) Ve(r, e) > Ve(δ, e), and

(ii) (e− e0) [V (r, e0)− V (δ, e0)] < 0 for all e0 6= e.

We now prove the first main result of this section: any equilibrium of a general

contract is weakly Pareto dominated by an equilibrium of a debt contract. Again con-

sidering the investor-option incentive-compatible revelation mechanism r∗(·) and its
equilibrium effort e∗, the desired debt contract is defined by

V (δ, e∗) = V (r∗(e∗), e∗). (11)

If this δ is adopted and effort e is taken, the equilibrium post-renegotation payoffs are

V δ(e) = V (δ, e) and Uδ(e) = H(V (δ, e), e). (12)

It follows from (10)− (12) that when δ is adopted, e∗ yields the same payoffs as it does
when r∗(·) is adopted:

V δ(e∗) = V ∗(e∗) and Uδ(e∗) = U∗(e∗). (13)

The entrepreneur therefore weakly prefers any equilibrium of δ to the given one of r∗(·),
since any equilibrium effort of δ maximizes Uδ(·). The investor has the same preference,
provided that the equilibrium effort of δ, say eδ, is not less than e∗. This is because

V δ(eδ) = V (δ, eδ) ≥ V (δ, e∗) = V ∗(e∗),

where the inequality follows from the monotonicity of δ, MLRP, and eδ ≥ e∗. The proof
is once complete once eδ ≥ e∗ is proved; this is done in Appendix A using Lemma 4.
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Theorem 2. Assume entrepreneur-offer renegotiation. Then, given any equilibrium

of any general contract, a debt contract exists that has an equilibrium with a weakly

greater effort, and which both parties weakly prefer.

Remark. Recall that when renegotiation is impossible, Innes (1990) showed that debt

contracts are optimal simple contracts if both parties are risk neutral, given MLRP and

the contract restrictions LE and MI. We can now see that his result extends to a risk

averse investor (as well as to general contracts). Theorem 2 establishes that debt is

optimal when renegotiation is possible, and Proposition 2 shows that debt will not be

renegotiated if the entrepreneur is risk neutral and the investor is risk averse. Thus, in

this case, a debt contract is optimal even when renegotiation is impossible.

Since it proves only the weak Pareto dominance of debt, Theorem 2 leaves open

the possibility that a contract totally unlike debt has an equilibrium with a Pareto

optimal outcome. The following theorem shows this is not true. Its result is that in

an equilibrium of an optimal contract, if the entrepreneur chooses an effort that is

almost as large as the equilibrium effort, then the ensuing equilibrium messages result

in the prescription of a simple contract which is approximately debt. The theorem

implies, for example, that any optimal investor-option contract takes the form of a

generalized convertible debt contract. If the contract specifies only a finite number of

simple contracts, in equilibrium it must prescribe a debt contract following the choice

of any effort in some interval that has the equilibrium effort as its upper endpoint. If

the contract is simple, it must be debt.

Theorem 3. Assume entrepreneur-offer renegotiation. Suppose an equilibrium (e∗,m∗(·))
of a general contract f is not Pareto dominated by an equilibrium of a debt contract,

and e∗ ∈ int(E). Then the left hand limit,

r̃∗ = lim
e→e∗− f(m

∗(e)),

exists in ∆C, and it puts all probability either on a debt contract δ, or on a set of

riskless debt contracts.

23



6. Investor-Offer Renegotiation

In this section the investor has the renegotiation bargaining power. We show that in

this case, debt still provides the greatest incentives, but it may induce too much effort

if the entrepreneur is risk averse. The reason for this is that now the risk characteristics

of the initial contract matter, since it determines the entrepreneur’s payoff because he

does not gain from the renegotiation. Debt is very risky for him, as it gives him no

return at all if the realized output is low. Debt can thus induce him to work too hard

to lower the probability of this event. Our final result is that under standard but strong

curvature assumptions, either debt is optimal, or a non-debt simple contract is optimal

and actually achieves an efficient allocation, i.e., the inability to contract on effort does

not restrict efficiency.

We now simplify the analysis in two ways. First, the following separability assump-

tion ensures that the entrepreneur’s attitude towards risk does not depend on his effort:

(SEP) real-valued functions a(·) > 0 and c(·) on E, and ū(·)
on R, exist such that u(w, e) = a(e)ū(w)− c(e).

Second, we consider only deterministic contracts, those that assign to each pair of

messages a simple contract rather than a random simple contract.18

It is now convenient to describe the Pareto frontier for a given effort e by the inverse

function J(·, e) ≡ H−1(·, e). It is well-defined, since H(·, e) is continuous and decreasing,
and it has the same properties as H. The Pareto frontier given e is the graph of J(·, e),
and (r∗, e∗) is an efficient allocation if and only if e∗ maximizes J(U(r∗, e∗), ·).

Given a deterministic contract f : ME ×MI → C, suppose messages m are sent.

The contract prescribes the simple contract r = f(m). Because the investor has all the

bargaining power, the entrepreneur’s equilibrium post-renegotiation payoff is as though

18Random contracts when the investor has the bargaining power are problematic. They cannot be

eliminated by appeal to the entrepreneur’s certainty equivalent contract, as we did in Lemma 3 with

respect to the investor, because it can violate MI. See Lemma 6 in Matthews (2001).
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renegotiation does not occur. Thus, given effort e, the post-renegotiation payoffs are

Û(r, e) = U(r, e) and V̂ (r, e) = J(U(r, e), e).

The following analog of Lemma 4 will imply that no contract provides greater in-

centives than debt. (The implication is immediate for simple contracts, f(·) ≡ r ∈ C.)

Lemma 5. For any (r, e) ∈ C×E such that r is not debt, a unique debt contract δ ∈ C
exists for which U(δ, e) = U(r, e). If SEP holds, then

(i) Ue(δ, e) > Ue(r, e), and

(ii) (e− e0) [U(δ, e0)− U(r, e0)] < 0 for all e0 6= e.

Proposition 4. Assume investor-offer renegotiation and SEP. Then, given any equilib-

rium of any deterministic general contract, a debt contract exists that has an equilibrium

with a weakly greater effort, and it gives the same payoff to the entrepreneur.

The debt contract in Proposition 4 is Pareto superior to the general contract if and

only if it is preferred by the investor. Let e∗ and ê ≥ e∗ be, respectively, the equilibrium
efforts of the general contract and the debt contract. Each equilibrium gives the same

payoff to the entrepreneur, say U∗. The switch to the debt contract therefore increases

the investor’s payoff by J(U∗, ê)− J(U∗, e∗). As we show with an example below, this
gain need not be positive. It can be negative if the debt contract provides incentives

that are too strong, so that ê exceeds the efficient effort that maximizes J(U∗, ·).
Surprisingly, however, debt can cause the entrepreneur to exert too much effort only

if he is risk averse. Recall that if he is risk neutral, then by Proposition 1, debt is an

efficient risk-sharing contract given any effort. A debt contract is then not renegotiated,

and so it will determine the investor’s as well as the entrepreneur’s post-renegotiation

payoff. The investor’s payoff from a debt contract increases with effort, since debt

satisfies MI. This implies that she too is better off, in the setting of Proposition 4, when

the debt contract is adopted instead of the original contract, and the entrepreneur

increases his effort.
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Theorem 4. Assume investor-offer renegotiation, and that the entrepreneur is risk

neutral. Then, given any equilibrium of any deterministic general contract, a debt

contract exists that has an equilibrium which both parties weakly prefer.

If the entrepreneur is risk averse, two standard (albeit strong) curvature assumptions

imply that either an efficient allocation is attainable, or debt is optimal. The first

assumption is that the so-called “first-order approach” is valid:

(FOA) For any r ∈ C, the effort maximizing U(r, ·) is unique.

Various properties of the primitives imply FOA (Rogerson, 1985; Jewitt, 1988). The

second assumption requires J(Û , ·) to be pseudoconcave (“single peaked”):

(SP) For any feasible U∗, maximizer e∗∗ of J(U∗, ·), and
e ∈ E, (e− e∗∗)J2(U∗, e) ≤ 0.

In addition, the theorem below applies only to equilibria that give the entrepreneur a

payoff U∗ that satisfies:

(WA) U∗ ≤ u(π1 − r, e).

Recalling that a wage contract rw is in C if and only if w ∈ [0,π1− r], we see that WA
must hold if a feasible wage contract exists that gives the entrepreneur the payoff U∗

when he chooses the minimal effort e. The lower is the liability bound r, the larger is

the interval of payoffs satisfying WA. It holds for all equilibrium payoffs U∗ if r = −∞,
so that the investor has no liability bound.

Our final theorem shows that under these assumptions, any optimal contract is

either payoff equivalent to a debt contract, or it achieves an efficient allocation, i.e., the

inability to contract on effort does not restrict efficiency. Furthermore, in the latter case

efficiency can also be achieved by a simple contract.

Theorem 5. Assume investor-offer renegotiation, SEP, FOA, SP. and r = −∞. Sup-
pose an equilibrium of a deterministic general contract is not Pareto dominated by an

equilibrium of any other deterministic contract, and it gives the entrepreneur a pay-

off U∗ satisfying WA. Then, either (i) this equilibrium achieves an efficient allocation,
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which is also attained by a simple contract, or (ii) a debt contract exists that gives rise

to the same payoffs.

The following example illustrates some of the results of this section. In particular,

it shows that debt can elicit too much effort when the entrepreneur is risk averse, and

that in this case a non-debt simple contract achieves an efficient allocation.

Example. The investor is risk neutral, with a liability bound r so low that it never

binds for the contracts we consider. The entrepreneur’s utility function is u(w, e) =

ū(w)− .5e2, where
ū (w) = min(w, 11w − 1).

The entrepreneur is thus risk averse, but risk neutral with respect to any gamble

for which all the payments to him are on one side of .1. The possible outputs are

(π1,π2,π3) = (0, .5, 1). The interval of possible efforts is [0, 1]. The probability that πi

occurs given effort e is

gi(e) =


.5− .5e for i = 1

.5 for i = 2

.5e for i = 3.

Given a simple contract r, let ui = ū(πi− ri). The entrepreneur’s expected payoff given
r and an effort e can be written as

U(r, e) = .5
£
(u3 − u1)e− e2 + u1 + u2

¤
. (14)

Consider the allocations (r, e) that, for some Ū , satisfy three conditions: (i) U(r, e) =

Ū ; (ii) each payment πi− ri to the entrepreneur exceeds .1, so that he is effectively risk
neutral; and (iii) e = .5, the effort that maximizes expected output net of effort cost:

P
gi(e)πi − .5e2 = .5

¡
e− e2 + .5¢ .

Such allocations exist for any Ū ≥ −.025, and they are the first-best efficient allocations
that give the entrepreneur payoff Ū . The obvious efficient allocation of this type is
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(rw, .5), where rw is the wage contract with wage w = .Ū + .125. (Note that w ≥ .1,
since Ū ≥ −.025.)

In our second-best world, when the investor has all the renegotiation bargaining

power, U(r, e) is the entrepreneur’s post-renegotiation utility if r is adopted and he

takes effort e. His optimal effort is thus e = .5(u3 − u1), provided this effort is in [0, 1].
Consider a debt contract δ for which the face value is D ∈ [0, .28516]. For this

contract, (u1, u2, u3) = (−1, .5 − D, 1 − D). The entrepreneur’s best effort is eδ =
.5(2−D). His equilibrium utility satisfies U(δ, eδ) ≥ −.025, as is easily shown.19 But we
have just seen that any first-best allocation that gives the entrepreneur a utility in this

range must have effort equal to .5. Since eδ > .5, these debt contracts provide incentives

that are too strong.

We pause here to discuss this excessive effort result. The entrepreneur exerts too

much effort because, if the debt claim is not renegotiated, it threatens to leave the

entrepreneur with no monetary return. The debt thus imposes a severe risk on the

entrepreneur, since his marginal utility of income is high for w < .1. He therefore

chooses a socially excessive effort in order to reduce the probability that his income will

be so low. Of course, his actual income will never be so low because the debt claim will

be renegotiated. But the entrepreneur obtains no gain from the renegotiation because

the investor has all the bargaining power, and so the entrepreneur still cares about the

riskiness of the debt.

We now show that each of these contracts δ is Pareto dominated by a non-debt

contract, and the latter actually achieves the first best. Simplify by setting Uδ =

U(δ, eδ), and recall that Uδ ≥ −.025. The desired contract r is defined implicitly by

ui =


Uδ − .375 for i = 1

Uδ + .125 for i = 2

Uδ + .625 for i = 3.

(15)

The r so defined satisfies the LE and MI constraints, and is not debt.20 Given this r,

19U(δ, eδ) = (.5)
£−.5−D + (.25)(2−D)2¤ decreases in D, and is equal to −.025 at D = 0.28516.

20From the previous footnote, we see that Uδ ∈ [−.025, .25] for D ∈ [0, .28516]. This and (15) imply
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the entrepreneur chooses e = .5(u3 − u1) = .5 and obtains utility U(r, .5) = Uδ. The

renegotiation of r when e = .5 yields a first-best allocation that gives the entrepreneur

utility Uδ, and is therefore strictly preferred by the investor to the allocation obtained

when δ is renegotiated and the effort is eδ > .5.

7. Conclusions

We have analyzed a dynamic entrepreneurial incentive problem with: (i) observable but

nonverifiable effort; (ii) renegotiation after effort has been chosen but before output

is realized; and (iii) two contractual constraints: limited entrepreneurial liability, and

monotonicity of the investor’s return with the firm’s performance. We have shown in

this setting the optimality of debt-cum-renegotiation or equivalently, convertible debt.

The optimality of these contracts stems from their leading to maximum effort by the

entrepreneur, as in Innes’ (1990) problem. Debt was optimal in his no-renegotiation

setup only because both parties were risk neutral. Renegotiation allows here the parties

to separate the issue of effort provision from that of optimal insurance. Our results

are therefore similar to those of Matthews (2001), who considers privately observed

entrepreneurial effort.

These results provide a simple theory of the dynamics of capital structure: debt is

signed as an initial effort-maximizing contract in order to generate maximum effort from

the entrepreneur. Once effort has been chosen, the parties move to optimal insurance.

The investor takes on more risk, that is, she transforms her claim into something closer

to equity. As is well known, standard equity is the optimal risk-sharing contract if both

parties have CARA preferences. In this case the model delivers a very simple prediction:

the firm starts as an all-debt firm, and then becomes an all-equity firm by, for example,

going public.

The results of Section 6 qualify the conclusion that debt is optimal. Specifically,

when the investor has bargaining power in renegotiation, and the entrepreneur is risk

averse, debt may sometimes induce excessive effort because it threatens the entrepreneur

that r1 = −
¡
Uδ + .625

¢
< 0 and r2 = r3 = .375− Uδ ∈ [.125, .4]. So r satisfies LE and MI, is not debt.
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with very harsh consequences when output is low. In this case an efficient allocation

can be achieved by a simple contract that is not debt, so that the non-contractibility

of effort does not lower welfare. It therefore remains true, under the assumptions of

Theorem 5, that debt is optimal whenever the non-contractibility of effort matters.

We end on a more technical note. Our result that debt is optimal in the set of

message-contingent contracts relies on a restriction to pure strategy equilibria, and on

the non-involvement of third parties. In Appendix B we show that debt may not be

optimal without these restrictions. However, the contracts that are then optimal do

not seem very realistic. We welcome further theoretical research that would help us

understand why such contracts do not emerge in the real world.
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A. Appendix A: Proofs Missing from the Text

Proof of Lemma 1. Fix e ∈ E and V̂ ∈ [v(r), V (π, e)]. Then some convex combination
of (r, . . . , r) and π, say r, satisfies V̂ (r, e) = V̂ . Since C is convex and contains π and

r, r ∈ C. So the constraint set of (1) is nonempty. As it is also compact, and the
objective is continuous, the program has a solution. As stated in the text, its solution

is unique; denote it as r∗. We thus see that H(·, e) is well-defined on [v(r), V (π, e)]. It
is continuous on this interval by the maximum theorem. It is concave on this interval

by a direct argument using Jensen’s inequality, the concavity of U(·, e) and V (·, e), and
the convexity of C.

Now let V̂ ∈ (v(r), V (π, e)) . Then some convex combination of (r, . . . , r) and π,

say r, satisfies V̂ (r, e) > V̂ . So Slater’s condition holds. Thus, λ∗ ≥ 0 exists such that
(r∗,λ∗) is a saddle point in C ×R+ of the Lagrangian

L(r,λ, e, V̂ ) ≡ U(r, e) + λ
h
V (r, e)− V̂

i
.

We claim (r∗,λ∗) is the only saddle point of L(·, ·, e, V̂ ). Since r∗ is the unique solution of
(1), any other saddle point takes the form (r∗,λ), with λ 6= λ∗. The following argument

shows that λ∗ is determined by r∗, and so (r∗,λ∗) is unique.

Note first that λ∗ > 0. If λ∗ = 0, the saddle point property would imply that r∗

maximizes U(·, e) = L(·, 0, e, V̂ ) on C. But then r∗ = r, contrary to V̂ > v(r).
Instead of maximizing L(·,λ∗, e, V̂ ) on C, consider the relaxed problem obtained by

deleting MI. A solution r to this relaxed program satisfies the Kuhn-Tucker condition

−u1(πi − ri, e) + λ∗v0(ri) = (βi − αi) /gi(e) (A1)

for each i = 1, . . . , n, where αi ≥ 0 and βi ≥ 0 are the multipliers for (LI) ri ≥ r and
(LE) ri ≤ πi, respectively. If ri > ri+1 for some i < n, then ri > r and ri+1 < πi, and

in turn αi = 0 and βi+1 = 0 by complementary slackness. Hence, (A1) would imply

βi/gi(e) = −u1(πi − ri, e) + λ∗v0(ri)

< −u1(πi+1 − ri+1, e) + λ∗v0(ri+1) = −αi+1/gi+1(e),
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where the inequality follows from u11 ≤ 0 and v00 ≤ 0, with one strict, λ∗ > 0, ri > ri+1,
and πi − ri < πi+1 − ri+1. But this is contrary to αi+1 ≥ 0 and βi ≥ 0. We conclude
that any solution of the relaxed problem satisfies the neglected constraint MI. Hence,

the solution of the relaxed problem is the unique solution r∗ of the unrelaxed problem.

So r∗ satisfies (A1). Now, suppose there is no i ≤ n such that r < r∗i < πi. Then by

MI and V̂ ∈ (v(r), V (π, e)) , 1 ≤ k < n exists such that r∗k = r and r∗k+1 = πk+1. Hence,

βk = 0 and αk+1 = 0, and (A1) implies

−αk/gk(e) = −u1(πk − r, e) + λ∗v0(r)

> −u1(0, e) + λ∗v0(πk+1) = βk+1/gk+1(e).

This is contrary to αk ≥ 0 and βk+1 ≥ 0. We conclude that r < r∗i < πi for some i ≤ n.
For this i we have αi = βi = 0, and (A1) implies

λ∗ =
u1(πi − r∗i , e)
v0(r∗i ).

(A2)

This proves that (r∗,λ∗) is the unique saddle point of L(·, ·, e, V̂ ).
This uniqueness implies that a general envelope theorem, Corollary 5 of Milgrom and

Segal (2002), now applies. The derivative H1(V̂ , e) therefore exists, with H1(V̂ , e) =

−λ∗ < 0. If also e ∈ int(E), then H2(V̂ , e) exists and is given by

H2(V̂ , e) = Le(r∗,λ∗, e, V̂ ) = Ue(r∗, e) + λ∗Ve(r, e).

Now, since the solution r∗ of (1) is unique, the maximum theorem implies that it is a

continuous function of (V̂ , e). In turn, (A2) implies that λ∗ is a continuous function of

(V̂ , e). Thus, both H1 and H2 are continuous at any interior point, i.e., at any (V̂ , e)

satisfying e ∈ int(E) and V̂ ∈ (v(r), V (π, e)). So H is differentiable at such points.

Proof of Proposition 1. Fix e ∈ E, and for simplicity write gi = gi(e). Since the

entrepreneur is risk neutral, we can denote the derivative u1(w, e) as a constant z > 0,

independent of w. The efficient contracts within those that satisfy LE are the solutions,
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as the reservation payoff u0 varies, of the following program:

max
r

P
giv(ri) such that

(IR)
P
giu(πi − ri, e) ≥ u0, and

(LE) πi − ri ≥ 0 for i = 1, . . . , n.

If u0 ≤ u(0, e), the solution is r = π, which is a debt contract with a face value

greater than πn. So assume u0 > u(0, e). Then any solution satisfies ri < πi for some

i, and IR must bind. The program is concave and has a constraint set with nonempty

interior. Thus, r is a solution if and only if it satisfies the constraints, IR with equality,

and nonnegative multipliers λ,α1, . . . ,αn, exist such that the following hold for each

i = 1, . . . , n :

v0(ri)− λz = αi/gi,

αi (πi − ri) = 0.

Hence, if ri < πi, then ri = v0−1(λz). If ri = πi and i > 1, then ri−1 ≤ πi−1 < ri, and

so v00 < 0 implies

αi−1/gi−1 = v0(ri−1)− λz

> v0(ri)− λz = αi/gi.

Therefore αi−1 > 0, and so ri−1 = πi−1. We have shown that a solution satisfies, for

some k ≤ n,

ri =

 πi for i < k

D for i ≥ k,
(A3)

where D = v0−1(λz). For any i,

v0(ri)− v0(D) = v0(ri)− λz = αi/gi ≥ 0.

Hence, D ≥ ri for all i. This shows that (A3) is indeed a debt contract with face value
D.We conclude that every efficient contract within the set of simple contracts satisfying

LE is a debt contract. The converse can be shown by reversing the argument, using the

fact that the Kuhn-Tucker conditions are sufficient as well as necessary for a solution
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to a concave problem. Hence, every debt contract is efficient within the set of contracts

satisfying LE.

We use an important technical result to prove Lemma 2. Following Karamardian and

Schaible (1990), define a vector x ∈ Rn to be quasi-monotone if and only if k ∈ {1, . . . , n}
exists such that xi ≤ 0 for i < k and xi ≥ 0 for i > k. Equivalently, x is quasi-monotone
if and only if xi > 0 implies xj ≥ 0 for all j > i. The crucial property of a quasi-monotone
vector is that by MLRP, its expectation is a quasi-monotone function of effort:21

Lemma A1. For any (x, e) ∈ Rn × E, if x 6= 0 is quasi-monotone and P gi(e)xi = 0,

then (i)
P
g0i(e)xi > 0, and (ii) (e− ê)

P
gi(ê)xi < 0 for all ê 6= e.

Proof. Routine calculus proves (ii), if (i) holds for all e such that
P
gi(e)xi = 0. To

prove (i), note thatP
g0i(e)xi =

Pµ
g0i(e)
gi(e)

¶
gi(e)xi

>
P
i<k

µ
g0k(e)
gk(e)

¶
gi(e)xi +

P
i≥k

µ
g0k(e)
gk(e)

¶
gi(e)xi

=

µ
g0k(e)
gk(e)

¶P
gi(e)xi = 0.

The inequality follows from MLRP; it is strict because x 6= 0 implies k < n, and xi > 0
for some i > k.

Proof of Lemma 2. Let x = r − δ. It is easily verified that since δ is debt and

r satisfies LE and MI, x is quasi-monotone. By assumption, x 6= 0 and
P
gi(e)xi =

w∗(δ, e)−w∗(r, e) = 0. Thus, (i) and (ii) following directly from the corresponding parts
of Lemma A1.

Proof of Theorem 1. Let f be a contract with an equilibrium (e∗,m∗(·)). Simplify
notation by denoting m∗E(e

∗) as m∗E . For all e ∈ E, define

V I(e) ≡ sup
mI∈MI

V̂ (f(m∗E ,mI), e). (A4)

21Versions of this lemma are proved by, e.g., Innes (1990), Matthews (2001), and most generally Athey

(1998, Theorem 3).
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Let {mkI (e)}∞k=1 be a sequence in MI such that V̂ (r̃k(e), e) → V I(e) as k → ∞, where
r̃k(e) = f(m∗E ,m

k
I (e)). Since∆C is compact, there is a subsequence, which for simplicity

we take to be {r̃k(e)} itself, that converges to some r̃(e) ∈ ∆C. The continuity of V̂ (·, e)
implies

V I(e) = V̂ (r̃(e), e). (A5)

For any e0 6= e, (A4) implies

V I(e) ≥ V̂ (f(m∗E,mkI (e0)), e) = V̂ (r̃k(e0), e).

Taking limits, r̃k(e0)→ r̃(e0) and the continuity of V̂ (·, e) imply

V I(e) ≥ V̂ (r̃(e0), e). (A6)

By (A5) and (A6), r̃(·) : E → ∆C is an incentive compatible revelation mechanism for

the investor. Thus, f I(·) ≡ r̃(·) defines an investor-option contract with message set E,
and an equilibrium of it following any e ∈ E is given by the identity function, ι(e) ≡ e.
We now show that (e∗, ι(·)) is an equilibrium of fI .

Given fI and e ∈ E, the equilibrium ι(e) gives the investor payoff V I(e), and it

gives the entrepreneur payoff UI(e) ≡ H(V I(e), e). From (A4),

V I(e) ≡ sup
mI

V̂ (f(m∗E ,mI), e)

≥ sup
mI

inf
mE

V̂ (f(mE,mI), e) = V
∗(e),

using (6). Hence, (4) and the presumption that each H(·, e) is a decreasing function
imply that UI(e) ≤ U∗(e) for all e ∈ E, with equality at e = e∗ because V I(e∗) =

V ∗(e∗). Thus, e∗ maximizes UI(·) because it maximizes U∗(·). This proves that (e∗, ι(·))
is an equilibrium of fI . The equality of the equilibrium payoffs, (V I(e∗), UI(e∗)) =

(V ∗(e∗), U∗(e∗)), is obvious.

The following lemma is used to prove Lemmas 4 and 5.

Lemma A2. For any (r, e) ∈ C × E, unique debt contracts δ, δ̂ ∈ C exist such that

V (δ, e) = V (r, e) and U(δ̂, e) = U(r, e).
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Proof. The first claim is that the following equation in D has a unique solution:22

P
gi(e)v(min(πi, D)) =

P
gi(e)v(ri). (A7)

The RHS of this equation is not less than v(r) by LI, and not more than
P
gi(e)v(πi)

by LE. Since r < πn, the interval [r,πn] is not empty. Viewed as a function of D on this

interval, the LHS of (A7) is continuous and strictly increasing, and it takes on all values

in [v(r),
P
gi(e)v(πi)]. So (A7) has a unique solution D in [r,πn]. The debt contract δ

with face value D is the desired debt contract. As it obviously satisfies MI, LE, and LI,

δ ∈ C.
The second claim is that the following equation in D̂ has a unique solution:

P
gi(e)u(πi −min(πi, D̂), e) =

P
gi(e)u(πi − ri, e).

The RHS of this equation is not more than
P
gi(e)u(πi − r, e) by LI, and not less than

u(0, e) by LE. On [r,πn], the LHS is continuous and strictly decreasing in D̂, and it

takes on all values in [
P
gi(e)u(πi − r, e), u(0, e)]. So again a unique D̂ ∈ [r,πn] exists

that yields the desired debt contract δ̂ ∈ C.

Proof of Lemma 4. Lemma A2 shows the existence of the debt contract δ satisfying

V (r, e) = V (δ, e). Define x ∈ Rn by xi ≡ v(ri) − v(δi). Then,
P
gi(e)xi = 0, and

x 6= 0 since r is not debt. Because LE implies v(ri) ≤ v(δi) for low i, and MI implies
v(ri) ≥ v(δi) for high i, x is quasi-monotone. Lemma A1 now implies the rest of the
proposition, since V (r, e0)− V (δ, e0) =P gi(e

0)xi.

Proof of Theorem 2. Continuing from the text, now let eδ be the largest equilibrium

effort of δ, i.e., the largest maximizer of Uδ(·).23 In the text we proved that Uδ(eδ) ≥
U∗(e∗), and that the theorem is proved once we show that eδ ≥ e∗. Consider any e < e∗.
22The one exception is when (A7) is solved by D = πn, for then it is solved by all D > πn as well.

But these all yield the same debt contract, δi = πi for all i.

23This eδ exists: since U δ(·) is continuous on the compact set E = [e, ē], its set of maximizers is

nonempty and compact.
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Let δ0 be the debt contract determined by

V (r∗(e), e) = V (δ0, e). (A8)

Then

V (δ0, e∗) ≤ V (r∗(e), e∗) ≤ V (r∗(e∗), e∗) = V (δ, e∗),

where the first inequality follows from Lemma 4 (ii) and e < e∗; the second from the

incentive compatibility of r∗(·) for the investor; and and the third is (11). The face
value of δ0 is thus no more than that of δ. Hence, V (δ0, ·) ≤ V (δ, ·). This and (A8) imply
V (r∗(e), e) ≤ V (δ, e). Therefore, since V ∗(e) = V (r∗(e), e), we have proved that

V ∗(e) ≤ V (δ, e) for all e < e∗. (A9)

Now, if eδ < e∗, then

U∗(e∗) ≥ U∗(eδ) = H(V ∗(eδ), eδ) ≥ H(V (δ, eδ), eδ) = Uδ(eδ),

where the second inequality comes from (A9) and H1 < 0. But then Uδ(e∗) = Uδ(eδ),

contrary to eδ being the largest maximizer of Uδ(·). This proves that eδ ≥ e∗.

The following lemma is used to prove Theorem 3. The background assumptions

are those of the general model in Section 4; in particular, the lemma does not assume

entrepreneur-offer renegotiation.

Lemma A3. Given a contract f and any e ∈ E, let m∗(e) be an equilibrium of the

message game following e. Denote the corresponding equilibrium payoff of the investor

as V ∗(e). Then, for any sequence {ek} converging to some e∗, and any limit point r̃ of
the sequence {r̃k} = {f(m∗(ek))}, we have V̂ (r̃, e∗) = V ∗(e∗).

Proof. To simplify notation, let m∗ = m∗(e∗) and r̃∗ = f(m∗). Message m∗I(e
k) is a

best reply to m∗E in the message game following e
k. Hence,

V̂ (r̃k, ek) ≥ V̂ (r̄k, ek),
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where r̄k = f(m∗E(e
k),m∗I). Similarly, m

∗
E is a best reply to m

∗
I in the game following

e∗. Since the entrepreneur wishes to minimize V̂ , this implies

V̂ (r̃∗, e∗) ≤ V̂ (r̄k, e∗).

Reversing the “k” and “∗” in this argument yields two more inequalities:

V̂ (r̃∗, e∗) ≥ V̂ (r̂k, e∗) and V̂ (r̃k, ek) ≤ V̂ (r̂k, ek),

where r̂k = f(m∗E,m
∗
I(e

k)). Combine these four inequalities to obtain

V̂ (r̄k, ek)− V̂ (r̄k, e∗) ≤ V̂ (r̃k, ek)− V̂ (r̃∗, e∗) ≤ V̂ (r̂k, ek)− V̂ (r̂k, e∗). (A10)

Since C is compact, there exists a subsequence {r̃kj} that converges to r̃, and for which
{r̄kj} and {r̂kj} both converge. Taking limits in (A10) along this subsequence, and
using the continuity of V̂ (·, ·), we conclude that V̂ (r̃, e∗) = V̂ (r̃∗, e∗) = V ∗(e∗).

Proof of Theorem 3. Consider the certainty equivalent contract f̄ that has the

same equilibrium (e∗,m∗(·)) and corresponding payoffs as f. We need only show that
lime→e∗− f̄(m∗(e)) exists, and that it is a debt contract δ. This is because the certainty

equivalent of any r̃ ∈ ∆C is debt if and only if either the support of r̃ is that debt

contract alone (when the face value of δ exceeds π1), or the support of r̃ contains only

riskless debt contracts. To simplify notation, we henceforth assume f = f̄ , i.e., f

specifies only non-random simple contracts.

To simplify notation more, let m∗ = m∗(e∗) and r∗ = f(m∗). The equilibrium

payoffs are V ∗(e∗) = V (r∗, e∗) and U∗(e∗) = H(V ∗(e∗), e∗). Let δ be the debt contract

determined by (11). Given δ the entrepreneur’s post-renegotiation payoff following any

e ∈ E is Uδ(e) = H(V (δ, e), e). Hence, using (11),

Uδ(e∗) = H(V ∗(e∗), e∗) = U∗(e∗). (A11)

Let eδ be the maximizer of Uδ(e) = H(V (δ, e), e) for which Theorem 2 implies V (δ, eδ) ≥
V ∗(e∗) and Uδ(eδ) ≥ U∗(e∗). By assumption, neither of these inequalities is strict, and
so

Uδ(eδ) = U∗(e∗). (A12)
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Since e∗ ∈ int(E), the derivative Uδ0(e∗) exists and is given by

Uδ0(e∗) = H1(V (δ, e∗), e∗)Ve(δ, e∗) +H2(V (δ, e∗), e∗). (A13)

Now, let {ek} be a sequence converging from below to e∗, and set rk = f(m∗(ek)).

Let r be a limit point of {rk}. We shall show that r = δ. Since C is compact, this will

imply rk → δ, proving the theorem.

Note first that Lemma A3 implies V (r, e∗) = V (r∗, e∗). Thus, (11) implies V (δ, e∗) =

V (r, e∗). From (A13), therefore, we have

Uδ0(e∗) = H1(V (r, e∗), e∗)Ve(δ, e∗) +H2(V (r, e∗), e∗). (A14)

Now, observe that since e∗ maximizes U∗(·),

0 ≤ UI(e∗)− UI(ek) = H(V (r∗, e∗), e∗)−H(V (rk, ek), ek). (A15)

We also have

V (r∗, e∗) = V (f(m∗), e∗) ≥ V (f(m∗E ,m∗I(ek)), e∗)
≥ V (f(m∗E,m∗I(ek)), ek)
≥ V (f(m∗E(ek),m∗I(ek)), ek) = V (rk, ek),

where the first inequality comes from m∗I being a best reply to m
∗
E following e

∗; the

second inequality comes from MLRP, e∗ > ek, and the simple contract f(m∗E ,m
∗
I(e

k))

satisfying MI; and the third inequality comes from m∗E(e
k) being a best reply to m∗I(e

k)

following ek, and the fact that this best reply minimizes V (f(·,m∗I(ek)), ek). Thus, from
(A15) and H1 < 0 we obtain

0 ≤ H(V (rk, e∗), e∗)−H(V (rk, ek), ek).

Since H and V (rk, ·) are differentiable, the mean value theorem applied twice yields

0 ≤
n
H1(V (r

k, ēk), ēk)Ve(r
k, êk) +H2(V (r

k, ēk), ēk)
o
(e∗ − ek), (A16)

where both ēk and êk are in (ek, e∗). Since H1, H2, and V are continuous functions,

dividing (A16) by e∗ − ek > 0, and taking the limit along the subsequence for which
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rk → r, yields

0 ≤ H1(V (r, e∗), e∗)Ve(r, e∗) +H2(V (r, e∗), e∗). (A17)

Assume now that r 6= δ. Then, since V (δ, e∗) = V (r, e∗), Lemma 4 (i) implies

Ve(r, e
∗) > Ve(δ, e∗). This, H1 < 0, and (A17) imply

0 < H1(V (r, e
∗), e∗)Ve(δ, e∗) +H2(V (r, e∗), e∗) = Uδ0(e∗),

using (A13) for the equality. But Uδ0(e∗) > 0, contradicts (A11) and (A12). So r = δ,

and the proof is finished.

Proof of Lemma 5. Lemma A2 shows the existence of the debt contract δ satisfying

U(r, e) = U(δ, e). Now assume SEP, and define x ∈ Rn by xi ≡ ū(πi − δi)− ū(πi − ri).
Then P

gi(e)xi = a(e)
−1 [U(δ, e)− U(r, e)] = 0. (A18)

Since r is not debt, x 6= 0. Suppose xi > 0. Then δi < ri. Since δi = min(πi, D) and

ri ≤ πi, we have δi = D < πi. Hence, δi+1 = D < ri ≤ ri+1, using MI for the last
equality. This implies xi+1 > 0. Continuing in this fashion proves that xj > 0 for all

j > i, and so x is quasi-monotone. Now Lemma A1 (i) and SEP imply

Ue(δ, e)− Ue(r, e) = a0(e)
P
gi(e)xi + a(e)

P
g0i(e)xi > 0,

using (A18) and a(e) > 0. This proves (i). For e0 6= e, Lemma A1 (ii) implies (e −
e0)
P
gi(e

0)xi < 0, and so

(e− e0) £U(r, e0)− U(δ, e0)¤ = −a(e0)(e− e0)P gi(e
0)xi > 0.

This proves (ii).

Proof of Proposition 4. By the argument of Theorem 1 and the revelation principle,

we can restrict attention to deterministic revelation mechanisms for the investor that

are incentive compatible. Let r∗ : E → C be such a mechanism. Its truthful equilibrium

gives the entrepreneur a post-renegotiation payoff of U(r∗(e), e). Let e∗ maximize this.
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The entrepreneur’s equilibrium payoff is then U∗ ≡ U(r∗(e∗), e∗). By Lemma 5, a debt
contract δ∗ = δ(D∗) exists such that

U(δ∗, e∗) = U∗. (A19)

By the maximum theorem, the function defined by Ū(D) ≡ maxe∈E U(δ(D), e) is con-
tinuous. By (A19), Ū(D∗) ≥ U∗. Since r∗(e∗) satisfies LE,

Ū(πn) = u(0, e) ≤ U(r∗(e∗), e) ≤ U∗.

Hence, D̂ ∈ [D∗,πn] exists such that Ū(D̂) = U∗. The desired debt contract is δ̂ ≡ δ(D̂).

Letting ê be the largest maximizer of U(δ̂, ·), we have

U(δ̂, ê) = U∗. (A20)

The entrepreneur’s equilibrium payoff is thus the same from δ̂ as from r∗(·). We now
need only to prove that ê ≥ e∗.

Assume otherwise, so ê < e∗. For any e, let γ(e) ≡ U(δ̂, e)− U(r∗(ê), e). Note that

γ(ê) = U(δ̂, ê)− U(r∗(ê), ê)
= U∗ − U(r∗(ê), ê)
= U(r∗(e∗), e∗)− U(r∗(ê), ê) ≥ 0,

using (A20) and the fact that e∗ maximizes U(r∗(·), ·). Furthermore,

γ(e∗) = U(δ̂, e∗)− U(r∗(ê), e∗)
< U∗ − U(r∗(ê), e∗)
≤ U∗ − U(r∗(e∗), e∗) = 0.

(The first inequality is due to ê < e∗ being the largest maximizer of U(δ̂, ·). The second
is due to r∗(·) being incentive compatible for the investor and the renegotiation game
being strictly competitive, so that U(r∗(·), e∗) is minimized by e∗.) Hence, since γ(·) is
continuous, e ∈ [ê, e∗) exists such that γ(e) = 0 and γ(e0) < 0 for all e0 ∈ (e, e∗]. But by
Lemma 5, this is impossible.
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Proof of Theorem 4. This proof builds on that of Proposition 4, which applies

because SEP holds when the entrepreneur is risk neutral.24. By Proposition 1, any debt

contract is a first-best risk-sharing contract (in C) for any effort. Thus, for any debt

contract δ and effort e,

J(U(δ, e), e) = V (δ, e). (A21)

Therefore, in the notation of the proof of Proposition 4, the switch from r∗(·) to the debt
contract δ̂, given that the equilibria with the efforts e∗ and ê are played (respectively),

causes the investor’s payoff to increase by

J(U∗, ê)− J(U∗, e∗) = J(U(δ̂, ê), ê)− J(U(δ∗, e∗), e∗)
= V (δ̂, ê)− V (δ∗, e∗)
≥ V (δ̂, e∗)− V (δ∗, e∗) ≥ 0,

where the first equality comes from (A20) and (A19); the comes from (A21); the first

inequality holds because ê ≥ e∗, MLRP, and the fact that δ̂ satisfies MI; and the final
inequality holds because the face values satisfy D̂ ≥ D∗. The investor thus agrees with
the entrepreneur that the equilibrium of δ̂ in which effort ê is taken is at least weakly

preferred to the equilibrium of r∗(·) in which e∗ is taken.

Proof of Theorem 5. Let e∗ be the effort taken in the general contract’s equilibrium.

Let δ̂ = δ(D̂) be the debt contract of Proposition 4, so that it has an equilibrium in

which the effort is some ê ≥ e∗, and the entrepreneur’s payoff is U(δ̂, ê) = U∗. The

investor’s payoffs in the two equilibria are J(U∗, e∗) and J(U∗, ê). Since the equilibrium

of the debt does not Pareto dominate the initial equilibrium, J(U∗, e∗) ≥ J(U∗, ê). If
this is an equality, case (ii) holds. So assume J(U∗, e∗) > J(U∗, ê). Then e∗ < ê. These

two inequalities, together with SP, imply e∗∗ < ê. We now show that (i) holds.

Let e∗∗ ∈ E be a maximizer of J(U∗, ·). We present a simple contract r∗ ∈ C that

has an equilibrium in which the entrepreneur chooses e∗∗, and U(r∗, e∗∗) = U∗. This

24 Integrating u11(w, e) ≡ 0 twice shows that the entrepreneur is risk neutral if and only if functions
c(·) and a(·) > 0 exist such that u(w, e) = a(e)w − c(e).
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equilibrium achieves an efficient allocation that gives the entrepreneur payoff U∗, since

the renegotiation provides first-best risk-sharing given e∗∗, and the entrepreneur does

not gain from the renegotiation. Since the equilibrium of the general contract that has

effort e∗ is not Pareto dominated by an equilibrium of r∗, and the entrepreneur has

the same payoff in both equilibria, so must the investor. Thus, the equilibrium of the

general contract also achieves an efficient allocation.

It remains to prove this r∗ exists. First, note that a wage w ∈ [0,πn − D̂] is defined
by u(w, e) = U∗.25 Since U∗ satisfies WA, w ≤ π1 − r, and so rw ∈ C. Now define, for
any b ∈ B ≡ [0, w] and t ∈ T ≡ [0,πn − D̂ −w], a simple contract r(b, t) by

ri(b, t) ≡


πi − b for πi ≤ b+ D̂
D̂ for b+ D̂ < πi ≤ πn − t

πi + D̂ + t− πn for πn − t < πi.

Then r(0, 0) = δ̂ and r(w,πn − D̂ − w) = rw. In general r(b, t) ∈ C : it satisfies MI by
construction , LE because b ≥ 0, and LI because b ≤ w ≤ π1 − r. Figure 6 shows the
entrepreneur’s income as a function of output under the contracts δ̂, r(b, t), and rw.

For each (b, t) ∈ B × T, let

e(b, t) ≡ argmax
e∈E

U(r(b, t), e).

As E is compact, the maximum theorem and FOA imply that e(·, ·) is a well-defined
continuous function on B × T , as is the maximized utility,

Ū(b, t) ≡ U(r(b, t), e(b, t)).

Now, as is easy to show,26 for each t ∈ (0,πn − D̂ − w] there exists a unique b(t) ∈ B
such that Ū(b(t), t) = U∗. Since Ū(·, ·) is continuous, b(·) is continuous on (0,πn − D̂−
25As 0 ≤ πi − δ̂i for each i, we have u(0, e) ≤ U(δ̂, e) ≤ U(δ̂, ê) = U∗. Since πn − D̂ ≥ πi − δ̂i,

u(πn− D̂, e) ≥ u(πn− D̂, ê) ≥ U(δ̂, ê) = U∗. So a unique w ∈ [0,πn− D̂] satisfying u(w, e) = U∗ exists.
26For example, consider the case D̂ ≥ π1. Then r1(·, t) strictly decreases on B, and ri(·, t) is non-

increasing on B for each i > 1. It follows that Ū(·, t) strictly increases on B. Since Ū(·, t) is also
continuous, and ri(0, t) ≥ δ̂i implies Ū(0, t) ≤ U(δ̂, e(0, t)) ≤ U(δ̂, ê) = U∗, and ri(w, t) ≤ rwi implies

Ū(w, t) ≥ U(r(w, t), e) ≥ U(rw, e) = U∗, for each t ∈ T there exists one and only one b ∈ B such that

Ū(b, t) = U∗. The argument is similar for the case D̂ < π1, although then b(t) is unique only for t > 0.
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w]. Define b(0) so that b(·) is continuous on T. Then Ū(b(t), t) = U∗ for all t ∈ T.
Furthermore, e(b(t), t) is continuous on T. Because r(b(0), 0) = δ̂, we have e(b(0), 0) =

ê > e∗∗. Because r(b(πn−D̂−w),πn−D̂−w) = rw,we have e(b(πn−D̂−w),πn−D̂−w) =
e ≤ e∗∗. Thus, t∗ ∈ T exists such that e(b(t∗), t∗) = e∗∗. The desired simple contract is
r∗ ≡ r(b(t∗), t∗).

B. Appendix B: Third Parties and Mixed Strategies

Our results in the text apply to situations in which there are no active third parties, and

the players do not play mixed message strategy equilibria. In this appendix we give two

examples in which non-debt contracts perform better than debt when either restriction

is relaxed, even when the entrepreneur has the renegotiation bargaining power.

The Value of Third Parties

As is common in contract theory, introducing a risk neutral third party can be beneficial

— provided she is not susceptible to collusion. The third party does not even need to be

able to observe the effort. Consider the following example.

The investor is risk neutral. Let (rw
∗
, e∗) be an efficient allocation, where rw∗ is the

wage contract that pays the entrepreneur a wage w∗. Let R = {sE , sT} be an investor-
option contract according to which the investor, after the effort has been chosen, selects

either scheme sE or scheme sT to determine the incomes of the three parties as a function

of output. According to scheme sE , the entrepreneur is paid the fixed wage w∗ for any

output, and the third party is paid nothing. The resulting incomes when output πi is

realized are then w∗, πi − w∗, and 0 for the entrepreneur, investor, and third party,
respectively. According to scheme sT , the entrepreneur is paid nothing and the third

party is paid an amount rTi if output πi is realized. So s
T yields, when πi is realized,

incomes of 0, πi−rTi , and rTi for the entrepreneur, investor, and third party, respectively.
The payment rTi is, for each i ≤ n, given by

rTi = a+ bπi, (B1)
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where a and b are chosen so that 0 < b < 1, and

a+ b
P
gi(e

∗)πi = w∗. (B2)

Note that under these schemes, each party’s income is nondecreasing in output, and

satisfies the entrepreneur’s liability constraint LE. Furthermore, LI is satisfied if r ≤
(1− b)π1− a. Any liability constraint for the third party is satisfied if her liability limit
is less than a+ bπ1.

Because of MLRP, we see that the expected payment to the third party under sT ,X
gi(e)r

T
i = a+ b

X
gi(e)πi,

increases with the entrepreneur’s effort e. It exceeds the wage w∗ the investor must

pay the entrepreneur under sE if and only if e > e∗. The investor, since she wishes to

minimize the expected payment she must make, will select the scheme sT that pays

the entrepreneur nothing if she observes that he chose an effort less than e∗. She will

select the scheme sE that pays him w∗ if he chooses any e > e∗. Consequently, so long

as u(w∗, e∗) is not less than the entrepreneur’s minimal possible utility of u(0, e), this

investor-option contract has an equilibrium in which the entrepreneur takes effort e∗ and

the investor selects scheme sE. This equilibrium achieves the efficient allocation (w∗, e∗).

The contract is also renegotiation proof: regardless of which effort the entrepreneur

chooses or scheme the investor selects, there is no scheme that will make all three

parties better off.

Let us not overemphasize this example. It is well known that adding a third party can

improve on renegotiation-proof schemes between two parties, since making a third party

a contingent claimant can eliminate ex-post inefficiencies. However, if the entrepreneur

and the investor have an informational advantage over the third party about the effort,

they may be able to collude so as to mis-report the effort — in this case we are back

in the two-party case. The three-person contract also breaks down if the entrepreneur

and third party can collude, whereby the entrepreneur shirks in return for an under-

the-table compensation from the third party. Moreover, third parties may have costs

of their own. such as the cost of acquiring information about the environment, etc. In
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any case, the problem of third parties is not specific to this paper, but applies to the

contract literature generally.

The Value of Mixed Message Strategies

Mixed strategy equilibria of two-sided message game contracts may also perform better

than debt. This is because at least one party is risk averse, and so the Pareto frontier

defined by H(·, e) is strictly concave. Hence, even though the message game is strictly
competitive because all its payoff pairs are on this frontier, it is not constant-sum.

A mixed strategy equilibrium of the message game generates a convex combination

of frontier payoff pairs that lies below the frontier. This allows the mechanism to

punish both players if one of them misreports the effort. A central difficulty in two-

person implementation theory is thereby avoided, namely, how to punish one player for

deviating without rewarding the other player so much that he will want to deviate.

One might think that if the players foresaw that they would be playing a mixed

strategy equilibrium of the upcoming message game, they would want to renegotiate to

a contract with a Pareto superior equilibrium beforehand. But this is not necessarily

the case. The message game in the example below has, for any effort, a mixed strategy

equilibrium that achieves an efficient contract for that effort, and so it will not be

renegotiated at the interim stage.

Nonetheless, for two reasons we think mixed strategy equilibria are problematic.

First, their implementation requires the contract-enforcing entity to take an unusually

active role. Because there are situations in which the players will have “ex post regret”

after their mixed message strategies are realized, the messages they send will need to be

certified to prevent them from claiming that they had actually sent different messages.

(In the example below, ex post regret occurs with positive probability when the effort

reports differ.) Such certification is not a typical court function. Second, the investor

may need to make large payments to the entrepreneur, thereby violating her liability

limit r unless it is very small.

The example is for the following case of our general model. The bargaining power in
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the renegotiation stage is shared in any way. The investor is risk neutral. Her liability

limit is so small it will not bind (e.g., r = −∞.) The entrepreneur’s utility function is
u(w)− c(e), where u0 > 0, u00 < 0, and

u0(w)→ 0 as w→∞. (B3)

Two necessary conditions for (r∗, e∗) to be an equilibrium allocation is for r∗ to be

a wage contract, and for it to give the entrepreneur a payoff no less than if he were

paid nothing and chose the minimal effort, u(0)− c(e). We show that these conditions
together are also sufficient. Any wage contract itself implements the minimal effort,

and so we restrict attention to non-minimal efforts. Accordingly, let e∗ ∈ (0, ē] and
w∗ ∈ (0,∞) be an effort and wage that satisfy

u(w∗)− c(e∗) > u(0)− c(e). (B4)

We construct a two-sided message game contract that achieves (w∗, e∗) via a mixed

strategy equilibrium.

The message of player i = E, I in this contract is a two-tuple, (ei, xi) ∈ E × [0, 1] ≡
Mi. The player’s effort report is ei. If the effort reports agree, say eE = eI = e, the

contract requires the investor to pay the entrepreneur the wage

wa(e) ≡
 w∗ if e = e∗

w if e 6= e∗,
(B5)

where w ∈ (0, w∗) and
u(w∗)− c(e∗) ≥ u(w)− c(e). (B6)

(By (B4), this w exists.) The numbers xE and xI form a “jointly controlled lottery”

(Aumann et al., 1968) that comes into play if the reported efforts are not the same.

Let y ≡ xE + xI − [|xE + xI |] be the fractional part of xE + xI . Then, if eE 6= eI , the
investor pays the wage

wd(xE , xI) ≡
 0 if y ≤ p
ŵ if y > p,

(B7)

where ŵ and p ∈ (0, 1) are numbers to be determined.
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This defines a deterministic contract, f : ME × MI → C. It prescribes a wage

contract for any message pair. Thus, since here a wage contract shares risk efficiently

for any effort, renegotiation will not occur after the messages are sent, on or off the

equilibrium path, regardless of how the bargaining power in the renegotiation stage is

shared. The prescribed wage contract determines both parties’ payoffs.

We now find numbers ŵ and p such that an equilibrium of the message game played

after the choice of any effort e is for each player to report truthfully ei = e, and to

choose xi randomly from a uniform distribution on [0, 1]. By (B5) and (B6), it will then

follow that e∗ is an equilibrium effort, and the equilibrium contract is the wage contract

with wage w∗.

First, we verify that the strategies of choosing xE and xI from uniform distributions

are mutual best replies. Note that when xj is uniformly distributed, y will also be

uniformly distributed regardless of how xi is chosen. Thus, neither player can affect the

distribution of y so long as the other player chooses xj uniformly. The strategies that

choose xE and xI uniformly are therefore mutual best replies.

Remark. Since the players report the true effort, their randomizations do not come into

play on the equilibrium path. Their equilibrium payoffs are deterministic, given by the

efficient wage contract rwa(e). Thus, as we claimed above, renegotiation will not occur

at the interim stage before messages are sent, regardless of which effort was chosen.

It remains to find (ŵ, p) such that each player will report any effort truthfully, given

the equilibrium strategy of the other player. The investor is willing to report any effort

truthfully if

(1− p)ŵ ≥ w∗. (B8)

Similarly, the entrepreneur is willing to report any effort truthfully if

u(w) ≥ pu(0) + (1− p)u(ŵ). (B9)

We thus need only to find some (ŵ, p) satisfying (B8) and (B9). For any ŵ, let (B8)

determine p by setting

p = 1− w
∗

ŵ
.

48



It remains to show the existence of ŵ > w∗ (so that 0 < p < 1) such that

u(w) ≥
µ
1− w

∗

ŵ

¶
u(0) +

µ
w∗

ŵ

¶
u(ŵ). (B10)

As ŵ→∞, the right side of this inequality converges to

u(0) +w∗ lim
ŵ→∞

u(ŵ)

ŵ
= u(0),

since u(ŵ)/ŵ → 0 (obviously if u(·) is bounded above, and otherwise by (B3) and
L’Hôpital’s rule). Thus, since w > 0, (B10) holds for any sufficiently large ŵ > w∗.
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Figure 1: The outcome of contract r is (e∗, w∗).
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Figure 2: Contracts that are not riskless debt induce too little effort, when the entre-

preneur has the bargaining power during renegotiation.

54



w

e

w*(δ,e)

w*(r,e)
w*

e*

w*(δV,e)

u(w,e)  = const.

Figure 3: Proof of Proposition 2.
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Figure 4: The outcome of the simple contract ra is the low-effort â. But the outcome of

the investor-option contract R = {ra, rb} is the high-effort a.
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Figure 5: Adopting and renegotiating the debt contract δ is equivalent to adopting the

convertible debt contract R∗.
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Figure 6: The entrepreneur’s income as a function of output πi, from the contracts δ̂,

rw, and r(b, t) used to prove Theorem 5.
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