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ABSTRACT

Equilibrium Cross-Section of Returns*

We explicitly link expected stock returns to firm characteristics such as firm
size and book-to-market ratio in a dynamic general equilibrium production
economy. Despite the fact that stock returns in the model are characterized by
an intertemporal CAPM with the market portfolio as the only factor, size and
book-to-market play separate roles in describing the cross-section of returns.
These firm characteristics appear to predict stock returns because they are
correlated with the true conditional market ß of returns. These cross-sectional
relations can subsist after one controls for a typical empirical estimate of
market ß This lends support to the view that the documented ability of size
and book-to-market to explain the cross-section of stock returns is not
necessarily inconsistent with a single-factor conditional CAPM model.
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1 Introduction

The cross-sectional properties of stock returns have attracted considerable attention in recent

empirical literature in �nancial economics. One of the best known studies, by Fama and

French (1992), uncovers the relations between factors such as book-to-market ratio and �rm

size and stock returns, which appear to be inconsistent with the standard Capital Asset

Pricing Model (CAPM). Despite their empirical success, these simple statistical relations

have proved very hard to rationalize and their precise economic source remains a subject

of debate.1 The challenge posed by the Fama and French (1992) �ndings to traditional

structural models has created a signi�cant hurdle to the understanding of more complex,

dynamic properties of the cross-section of stock returns.

In this work we construct a stochastic dynamic general equilibrium one-factor

model in which �rms di�er in characteristics such as size, book value, investment and

productivity among others, thus establishing an explicit economic relation between �rm level

characteristics and stock returns. We show that the simple structure of our model provides

a parsimonious description of the �rm level returns and makes it a natural benchmark for

interpreting many empirical regularities.

Our �ndings can be summarized as follows. First, we show that our one-factor equilibrium

model can still capture the ability of book-to-market and �rm value to describe the cross-

section of stock returns. These relations can subsist after one controls for typical empirical

estimates of conditional market �: This lends support to the view that the documented

ability of size and book-to-market to explain the cross-section of stock returns is not

1Cochrane (1999), Campbell (2000) and Campbell, Lo and MacKinlay (1997) review the related literature.

Various competing interpretations of observed empirical regularities include, among others, Berk (1995),

Berk, Green and Naik (1999), Fama and French (1993, 1995, 1996), Jagannathan and Wang (1996), Kothari,

Shanken, and Sloan (1995), Lakonishok, Shleifer, and Vishny (1994), Lettau and Ludvigson (1999), Liew

and Vassalou (2000), Lo and MacKinlay (1988) and MacKinlay (1995).
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necessarily inconsistent with a single-factor conditional CAPM model and provides a possible

rationalization for the Fama and French (1992) �ndings. Second, we also establish a number

of additional properties of the cross-section of stock returns with important implications

for optimal dynamic portfolio choice. In particular, we �nd that cross-sectional dispersion

in individual stock returns is related to the aggregate stock market volatility and business

cycle conditions. In addition, we show that the size and book-to-market return premia are

inherently conditional in their nature and likely counter-cyclical.

Our theoretical approach builds on the work of Berk, Green, and Naik (1999). These

authors construct a two-factor partial equilibrium model based on ideas of time-varying

risks to explain cross-sectional variations of stock returns associated with book-to-market

and market value. They show that their calibrated model is able to capture several of the

Fama and French (1992) �ndings. Our work di�ers along several important dimensions.

First, ours is a single-factor model in which the conditional CAPM holds. We can then

identify separate roles of size and book-to-market without appealing to multiple sources

of risk. Second, the simple structure of our model allows us to illustrate the role of �

mismeasurement in generating the cross-sectional relations between the Fama and French's

factors and stock returns. Finally, the general equilibrium nature of our model allows us to

present a self-consistent account of the business cycle properties of �rm level returns.

Our work is also related to a variety of recent papers that explore the asset pricing

implications of production and investment in an equilibrium setting. Examples of this line

of research include Bossaerts and Green (1989), Cochrane (1991 and 1996), Jermann (1998),

Kogan (2000a and 2000b), and Naik (1994). To the best of our knowledge, however, ours

is the �rst work aiming directly at explaining the cross-sectional variations of stock returns

from a structural general equilibrium perspective.
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The rest of the paper is organized as follows. Section 2 describes the model economy and

its competitive equilibrium and derives an explicit analytical relation between the systematic

risk of stock returns and �rm characteristics. Sections 3 and 4 examine the quantitative

implications of our model. Section 5 concludes.

2 The Model

In this section we develop a general equilibrium model with heterogeneous �rms to

characterize individual returns and link them to underlying �rm characteristics. There are

two types of agents: �rms and households. We keep the household sector very standard,

summarized by a single representative household which makes the optimal consumption and

portfolio allocation decisions. The heart of the model is the production sector, where a

continuum �rms are engaged in production of the consumption good. Each �rm operates a

number of individual projects of di�erent characteristics. This �rm level uncertainty is crucial

to obtain a non-degenerate equilibrium cross-sectional distribution of �rms, a necessary

condition for our analysis in sections 3 and 4. Subsection 2.1 details the structure of the

economy, while subsection 2.2 describes the equilibrium aggregate asset prices and establishes

the link between systematic risk of stock returns and �rm characteristics.

2.1 The Economy and the Competitive Equilibrium

Technology

Production of the consumption good (numeraire) in this economy takes place in basic

productive units, which we label projects. Projects have three individual features: scale,

productivity, and cost. They expire at a randomly chosen time, de�ned by a project-speci�c

Poisson process with common arrival rate �.
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Let It denote the set of all projects existing at time t and let i be the index of an individual

project and s denote the time of creation, or vintage. We make two simplifying assumptions

with respect to the scale of the project, ksit. First, the scale of a project is determined when

the project is created and it remains �xed throughout the life of the project. Second, all

projects of the same vintage have identical scale. Given these assumptions, and when there

is no possibility of confusion, we will use only ki = ksit to denote the scale of project i created

at time s(i) � t.

Project's productivity is driven by an exogenous stochastic process Xit, resulting in a 
ow

of output at rate Xitki. Speci�cally, we de�ne Xit = exp(xt) �it; where xt is a systematic,

economy-wide productivity measure common for all projects, while �it is the idiosyncratic,

project-speci�c component. Furthermore, we assume that xt follows a linear mean-reverting

process

dxt = ��x (xt � x) dt+ �xdBxt (1)

and �it is driven by a square-root process

d�it = �(1� �it) dt+ ��
p
�itdBit (2)

where Bxt and Bit are standard Brownian motions.2 Naturally we will assume that the

idiosyncratic productivity shocks of all projects are independent of the economy-wide

productivity shock, i.e., dBxt dBit = 0 for all i. We will place one further restriction on the

2The process in (1) is chosen to possess a stationary long-run distribution with constant instantaneous

volatility, so that aggregate stock returns are not heteroscedastic by assumption. The idiosyncratic

component in (2) follows a di�erent type of process. It also has a stationary distribution, but it is

heteroscedastic. Since our focus in this paper is on the systematic component of stock returns, such

heteroscedasticity is not problematic. The advantage of (2) is that the conditional expectation of �it is

an exponential function of time and a linear function of the initial value �i0, which facilitates computation of

individual stock prices. An additional advantage of this process is that its unconditional mean is independent

of � and ��, which simpli�es the calibration.
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correlation structure of the shocks below. Initial productivity of new projects is unobserved

and drawn from the long-run distribution implied by (2).

While speci�c nature of processes (1) and (2) is convenient but not essential to our

purposes, the assumption of mean-reversion in productivity shocks is very important. This

assumption, however, is supported by both aggregate and cross-sectional evidence. At the

aggregate level, mean-reversion implies that the growth rate of output is not exploding,

which is consistent with standard �ndings in the economic growth literature (e.g., Kaldor

(1963)). At the �rm level, this assumption is required to obtain a stationary equilibrium

distribution of �rms. This is consistent with the cross-sectional evidence on �rm birth and

growth, suggesting that growth rates decline with age and size (e.g., Hall (1987) and Evans

(1987)).

Finally, projects of the same vintage di�er in their unit cost, measured in terms of

consumption goods as eit: Speci�cally, a potential new project i can be adopted at time s

with investment cost of eiski, where ki is the scale of all new projects at time s:

Together, our assumptions about productivity and cost imply that all new projects are ex-

ante identical in terms of expected future output, di�ering only in their cost. As we will see

below, these assumptions guarantee that individual investment decisions can be aggregated

into a stochastic growth model with adjustment costs. In addition to its computational

appeal, this feature is useful in providing a realistic setting for aggregate asset pricing (e.g.,

Jermann (1998)).

Firms

Firms in our economy are in�nitely lived. We assume that the set of �rms F is exogenously

�xed and let f be the index of an individual �rm. Each �rm owns a �nite number of

individual projects. While we do not explicitly model entry and exit of �rms, a �rm can
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have zero projects, thus e�ectively exiting the market, and a new entrant can be viewed as

a �rm that begins operating its �rst project.

We make a further assumption that the idiosyncratic productivity shocks �it are �rm-

speci�c. Formally, let Ift denote the set of projects owned by �rm f at time t and let

f(i) denote the index of the �rm owning project i. If (ongoing) projects i and j belong to

the same �rm, then dBit and dBjt are perfectly correlated, otherwise they are independent.

Mathematically,

dBit dBjt =

(
dt; j 2 If(i);t
0; j =2 If(i);t

(3)

Firms are �nanced entirely by equity and outstanding equity of each �rm is normalized

to one share. We denote individual �rm's stock price by Vft. Stocks represent claims on the

dividends, paid by �rms to shareholders, and equal to the �rm's output net of investment

costs.3 We specify the shareholders' problem below.

While they do not control the scale or productivity of their projects, �rms do make

investment decisions by selecting which new projects to operate. Speci�cally, �rms are

presented with potential new projects over time. If a �rm decides to invest in a new project, it

must incur the required investment cost, which in turn entitles it to the permanent ownership

of the project. These investment decisions are irreversible and investment cost cannot be

recovered at a later date.4 If the �rm decides not to invest in a project, the project disappears

from the economy.

The arrival rate of new projects is independent of the individual �rm's past investment

decisions. Speci�cally, all �rms have an equal probability of receiving a new project in every

3Instead of assuming that investment is �nanced by retaining earnings, one can make an equivalent

assumption that investment is �nanced by new equity issues. The exact form of �nancing has no e�ect on

the �rm market value.
4Otherwise the assumption that initial productivity is unobserved would not matter.
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period. This assumption guarantees that large �rms do not adopt more projects than small

�rms, which is again consistent with the evidence on �rm size and growth.5 Moreover, it

also implies that the decision to accept or reject a project has no e�ect on the individual

�rm's future investment opportunities.

Hence, current investment decisions do not depend on the nature of a speci�c �rm |

they are determined exclusively by the cost of new projects relative to the present value of

projects' cash 
ows. Given these assumptions, the optimal investment decision of a �rm

faced with project i at time s is to invest if

V a
it = Et

�Z
1

0

e��sMt;t+s

�
e��skiXt+s

�
ds

�
� eitki (4)

where V a
it is the net present value of the future stream of cash 
ows associated with the project

and Mt;t+s is the equilibrium stochastic discount factor between periods t and t+ s, equal to

the inter-temporal marginal rate of substitution of the representative household.6 Note also

that we have used the fact that the idiosyncratic productivity component �it is independent of

all other processes in the economy and that, for any new project, �it is drawn from the steady

state distribution of process (2). Hence, Et [Xt+s �it+s] = Et [�it+s]Et [Xt+s] = Et [Xt+s] :

5All that is required is that project arrival is less than proportional to �rm size. This is the simplest way

of meeting this requirement and it seems the natural one to start with. Results for alternative assumptions

are substantially similar and are available upon request.
6Our treatment of the �rm's problem can be related to the Arbitrage Pricing Theory of Ross (1976).

Even though cash 
ows of individual projects and �rms are not spanned by a small number of traded assets,

their idiosyncratic components are perfectly diversi�able. Therefore, the only stochastic components of cash


ows and returns that are priced by the market are those associated with market-wide risk factors, which

are common to all �rms. In our model, xt is the only systematic risk factor, which in equilibrium is spanned

by the market portfolio. Thus, the associated risk premium is uniquely determined by absence of arbitrage.

Alternatively, in the framework of a representative household, consumption-based asset pricing model, the

aggregate consumption process can be used as a single systematic risk factor which is su�cient for pricing

all risky assets (e.g., Breeden (1979)).
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Proposition 1 (Optimal �rm investment) A new project i is adopted if and only if

eit � et = e(xt)

where e(x) is an (endogenously determined) function of the state variable.

Proof Given the stochastic process for aggregate productivity shocks (1), it follows that the

present value of project's cash 
ows per unit production scale equals

V a
it

ki
= Et

�Z
1

0

e��sMt;t+s

�
e��sXt+s

�
ds

�

which in turn depends only on the current state of the economy xt. Equation (4) implies

then that a new project is adopted if and only if

eit � V a
it (xt)=ki = et = e(xt)

Proposition 1 establishes a simple, but crucial, property that optimal investment decisions

by �rms at any time t are independent of the �rms' identity and only rely on the unit cost of

new projects. This then allows for the simple aggregation results below. Note that this result

hinges on the convenient assumption that projects are ex-ante identical in their productivity.

The value of the �rm can then be viewed as a sum of two components, the present value of

output from existing projects and the present value of dividends (output net of investment)

from future projects. Using the terminology from Berk et al. (1999), the former component

represents the value of assets-in-place, V a
ft, while the second can be interpreted as the value

of growth options, V o
ft. We can then compute the value of a �rm's stock as a sum of these
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two components

Vft = V a
ft + V o

ft (5)

where the value of assets in place can be constructed as

V a
ft =

Z
Ift

V a
it di (6)

Finally, it is useful for future use to de�ne the book value of a �rm as the sum of book

values of the �rm's (active) individual projects and the book value of a project is de�ned as

the associated investment cost eisk
s
it.

Heterogeneity and Aggregation

To facilitate aggregation, we assume that there exists a large number (a continuum) of

�rms in the economy. In our informal construction we appeal to the law of large numbers,

which simpli�es the analysis and clari�es economic intuition, albeit at a cost of some

mathematical rigor.7 Thus, one might view the results based on the law of large numbers as

an approximation to an economy with a very large number of �rms.

Let
R
It
� di and R

F
� df denote aggregation operators over projects and �rms respectively.

The aggregate scale of production in the economy, Kt, is

Kt �
Z
It

ki di =

Z t

�1

ksi

�Z
It

�
fi: s(i)2[� ;�+d�)g di

�
ds

where �f�g denotes the indicator function and
R
It
�fi: s(i)2[� ;�+d� )g di is the number (measure)

of projects created during [� ; � +d�) that remain in existence at time t. Similarly, aggregate

7Feldman and Gilles (1985) formalize the law of large numbers in economies with countably in�nite

numbers of agents by aggregating with respect to a �nitely-additive measure over the set of agents. Judd

(1985) demonstrates that a measure and the corresponding law of large numbers can be meaningfully

introduced for economies with a continuum of agents.
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output Yt is given by

Yt =

Z
It

Xitki di =

Z t

�1

ksi

�Z
It

Xit �fi: s(i)2[� ;�+d�)gdi

�
ds

= exp (xt)

Z t

�1

ksi

�Z
It

�fi: s(i)2[� ;�+d�)g�it di

�
ds

= exp(xt)

Z t

�1

ksi

�Z
It

�fi: s(i)2[� ;�+d�)g di

�
ds = exp(xt)Kt (7)

where the fourth equality follows from the law of large numbers, since by (2) random variables

�its are identically distributed with unit mean and are independent across a continuum of

�rms, with each �rm owning a �nite number of projects. Equation (7) is consistent with our

interpretation of xt as the aggregate productivity shock.

New potential projects are continuously arriving in the economy. To ensure balanced

growth, we assume that the arrival rate of new projects is proportional to the total scale

of existing projects in the economy Kt and independent of project unit cost: Formally, the

arrival rate (measured by production scale) of new projects with cost less than et equals

ZKtet: Alternatively, ZKtetdt is the total scale of projects with the cost parameter less than

et arriving between t and t + dt. The parameter Z governs the quality of the investment

opportunity set. Given our de�nition of the arrival rate, the total scale of projects in the

economy evolves according to

dKt = ��Ktdt+ ZKt etdt (8)

where � is the rate at which existing projects expire. The aggregate investment spending,

It, is then given by

It = I (et) �
Z et

0

eitZKtdeit =
1

2
ZKte

2
t (9)
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Aggregate dividends are de�ned as the aggregate output net of aggregate investment, or

Dt = Yt � It (10)

In addition, we de�ne the value of the aggregate stock market Vt, which is the market value

of a claim on aggregate dividends, as

Vt =

Z
F

Vft df (11)

Finally, given (10) and (11) we can de�ne the process for cumulative aggregate stock returns

as

dRt

Rt

=
dVt +Dtdt

Vt
(12)

Households

There is a single consumption good in the economy, which is produced by the �rms. The

economy is populated by identical competitive households, who derive utility from the

consumption 
ow Ct. The entire population can then be modeled as a single representative

household. We assume that this household has standard time-separable isoelastic preferences:

E0

�
1

1� 


Z
1

0

e��tCt
1�
dt

�
(13)

Households do not work and derive income from accumulated wealth only.8 We letWt denote

the individual wealth at time t. Financial markets in our model consist of risky stocks and

an instantaneously riskless bond in zero net supply that earns a rate of interest rt. Financial

markets are perfect: there are no frictions and no constraints on short sales or borrowing.

The representative household then maximizes her expected utility of consumption (13),

8Since labor is not productive, this assumption is innocuous.
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subject to the constraints

dWt = �Ct dt+Wbtrt dt+Wst

dRt

Rt

(14)

Wt = Wbt +Wst (15)

Wt � 0 (16)

where Wbt and Wst is the amount of wealth invested in the bond and stocks, respectively.9

The returns processes on bonds, rt, and stocks, Rt, are taken as exogenous by households

and will be determined in equilibrium. The nonnegative-wealth constraint (16) is used to

rule out arbitrage opportunities, as shown in Dybvig and Huang (1989).10

The Competitive Equilibrium

With the description of the economic environment complete we are now in a position to state

the de�nition of the competitive equilibrium.

De�nition 1 (Competitive equilibrium) A competitive equilibrium is summarized by

stochastic processes for optimal household decisions C?
t ; W

?
bt, W

?
st, and �rm investment policy

e?t , such that

(a) Optimization

9We are assuming that households invest directly in the aggregate stock market portfolio. Combined with

the assumption that �rms' value is computed using the economy-wide stochastic discount factor to discount

their dividends, this formulation is not restrictive and allowing households to invest in individual securities

would lead to identical implications for equilibrium prices and policies.
10To make sure that the wealth process is well de�ned by (14), we assume that both the consumption policy

and the portfolio policy are progressively measurable processes, satisfying standard integrability conditions:Z �n

0

Ct +

����Wbtrt +Wst

Et [dRt]

Rt dt

���� dt <1Z �n

0

�
Wst

dRt

Rt

;Wst

dRt

Rt

�
<1

for a sequence of stopping times �n % 1, where h�; �it denotes the quadratic variation process.
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(i) Given security returns, households maximize their expected utility (13), subject to

constraints (14{16);

(ii) Given the stochastic discount factor

Mt;t+s = e��s
�
C?
t

C?
t+s

�


�rms maximize their market value (5).

(b) Equilibrium

(i) Goods market clears:

C?
t = Dt = Yt � It (17)

(ii) Stock market clears:

W ?
st = Vt =

Z
F

Vft df (18)

(iii) Bond market clears:

W ?
bt = 0 (19)

The following proposition establishes that the optimal policies e?t and C?
t can be

characterized as the solution to a system of one di�erential equation and one algebraic

equation.

Proposition 2 (Equilibrium allocations) The competitive equilibrium allocations of

consumption C?
t and investment e?t can be computed by solving the equations

e?(x) = [c? (x)]


p(x) (20)
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and

c? (x) = exp (x)� 1

2
Z [e?(x)]

2
(21)

where function p(x) satis�es

exp(x)

[c? (x)]

 = [�+ (1� 
)� + 
Ze?(x) ] p(x) + �x (x� x) p0(x)� 1

2
�2
xp

00

(x) (22)

and

e?t = e? (xt)

C?
t � c? (xt)Kt

Proof See Appendix A.1.

2.2 Asset Prices

With the optimal allocations computed we can now easily characterize the asset prices in

the economy, including the risk-free interest rate and both the aggregate and �rm-level stock

prices.

Aggregate Prices

The following proposition summarizes the results for the equilibrium values of the risk-free

rate and the aggregate stock market value.

Proposition 3 (Equilibrium asset prices) The instantenous risk-free interest rate is

determined by:

rt = �Et[dMt;t+dt � 1]

dt
= �+ 
 [Ze? (xt)� �] + 


[A(c?(xt)]

c? (xt)
� 1

2

(
 + 1)�2

x

�
c? (xt)

0

c? (xt)

�2
(23)
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where A(c(x)) satis�es

A(c(x)) = ��x (x� x) c0 (x) +
1

2
�2
xc
00 (x)

The aggregate stock market value, Vt, can then be computed as

Vt = Et

�Z
1

0

e��s
�
C?
t

C?
t+s

�


C?
t+s ds

�
= (c?t )



 (xt)Kt (24)

where function  (x) satis�es the di�erential equation

� (x) = [c?(x)]
1�


+ (1� 
) [Ze?(x)� �] (x)� �x(x� x) 0 (x) +
1

2
�2
x 

00 (x)

Proof See Appendix A.3.

While the exact conditions are somewhat technical, the intuition behind them is quite

simple. As we would expect, the instantenous risk-free interest rate is completely determined

by the equilibrium consumption process of the representative household, and its implied

properties for the stochastic discount factor. Also, the aggregate stock market value

represents a claim on the the future stream of aggregate dividends paid out by �rms. In

equilibrium, however, these must equal the consumption of the representative household.

In addition to the de�nition above, value of the stock market can also be viewed as a sum

of two components, the present value of output from existing projects and the present value

of dividends (output net of investment) from all future projects. The value of assets-in-place

is given by

V a
t = Et

�Z
1

0

e��s
�
C?
t

C?
t+s

�
 �Z
It

Xit+se
��ski di

�
ds

�
(25)
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Using arguments similar to (7), we can restate this as

V a
t = KtEt

�Z
1

0

e�(�+�)s

�
C?
t

C?
t+s

�


exp (xt+s) ds

�
= Kt (c

?
t )



p (xt) (26)

where p (xt) is de�ned by (22) above. By de�nition then, the value of aggregate growth

options can be constructed as

V o
t = Vt � V a

t (27)

Firm-Level Stock Prices

Valuation of individual stocks is straightforward once the aggregate market value is

computed. First, note that as we have seen above, the value of a �rm's stock is the sum of

assets-in-place and growth options, where the value of assets-in-place is the sum of present

values of output from all projects currently owned by the �rm. The value of an individual

project i is given by the following Proposition.

Proposition 4 (Project valuation) The present value of output of a project i is given by

V a
it = Et

�Z
1

0

e��s
�
C?
t

C?
t+s

�
 �
e��skiXit+s

�
ds

�
=

ki

Kt

heV a
t (�it � 1) + V a

t

i
(28)

where eV a
t is de�ned as

eV a
t � KtEt

�Z
1

0

e�(�+�+�)s

�
C?
t

C?
t+s

�


exp (xt+s) ds

�

Proof See Appendix A.4.

Given the result in Proposition 4, the value of assets in place for the �rm, V a
ft, can be

constructed as

V a
ft =

Z
Ift

ki

Kt

heV a
t (�it � 1) + V a

t

i
di (29)
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Now since future projects are distributed randomly across the �rms with equal probabilities,

all �rms will derive the same value from growth options. Clearly then this implies that the

value of growth options of each �rm, V o
ft, equals

V o
ft =

1R
F
1 df

V o
t (30)

We can then join these two components to obtain the total value of the �rm, Vft, as

Vft =

Z
Ift

ki

Kt

heV a
t (�it � 1) + V a

t

i
di+

1R
F
1 df

V o
t (31)

By relating individual �rm value to market aggregates, the decomposition (31) is

extremely useful as it implies that the instantaneous market betas of individual stock returns

can also be expressed as a weighted average of market �s of three economy-wide variables,

V a
t ,
eV a
t , and V

o
t . Proposition 5 formally establishes this property.

Proposition 5 (Market betas of individual stocks) Firm market �s are described by

�ft =
e�at + V o

ft

Vft

�
�ot � e�at� + Kft

Vft

�
Kt

V a
t

��1 �
�at � e�at� (32)

where

Kft =

Z
Ift

ki di

and

�at =
@ log (V a

t ) =@x

@ log (Vt) =@x
; e�at = @ log

�eV a
t

�
=@x

@ log (Vt) =@x
; �ot =

@ log (V o
t ) =@x

@ log (Vt) =@x
(33)
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Proof Since the market beta of a portfolio of assets is a value-weighted average of betas of

its individual components, the expression for the value of the �rm (31) implies that

�ft =

�
1� V o

ft

Vft

�
�aft +

V o
ft

Vft
�ot

=

�
1� V o

ft

Vft

��
(1� �ft)e�at + �ft�

a
t

�
+
V o
ft

Vft
�ot

where

�ft =
Kft

V a
ft

�
Kt

V a
t

��1

Simple manipulation then yields (32).

Stock Returns and Firm Characteristics

Proposition 5 is extremely important. It shows that the weights on the \aggregate" betas,

�at ,
e�at , and �ot , depend on economy-wide variables like Kt=V

a
t , and V

o
t ; but also, and more

importantly on �rm-speci�c characteristics such as the size, or value, of the �rm, Vft, and

the ratio of the �rm's production scale to its market value, Kft=Vft.

The second term in (32) creates a relation between size and �; as the weight on the beta

of growth options, �ot , depends on the value of the �rm's growth options relative to its total

market value. Firms with small production scale derive most of their value from growth

options and their betas are close to �ot . Since all �rms in our economy have identical growth

options, the cross-sectional dispersion of betas due to the loading on �ot is captured entirely

by the size variable Vft. Large �rms, on the other hand, derive a larger proportion of their

value from assets in place, therefore their betas are close to a weighted average of �at and
e�at .

The last term in (32) also shows that part of the cross-sectional dispersion of market
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betas is explained by the �rm-speci�c ratio of the scale of production to the market value,

Kft=Vft, captured empirically to certain extent by the �rm's book-to-market ratio.11 To

see the intuition behind this result consider two �rms, A and B, with the same market

value. Assume that �rm A has larger scale of production but lower productivity than B.

As a result, the two stocks would di�er in their systematic risk due to the di�erences in the

distribution of cash 
ows from the �rms' existing projects. By assumption, such a di�erence

is not re
ected in the �rms' market value, but it would be captured by the ratio Kft=Vft.

Thus, while �rm size captures the component of �rm's systematic risk attributable to its

growth options, the book-to-market ratio serves as a proxy for risk of existing projects.

Note that in this model the cross-sectional distribution of expected returns is determined

entirely by the distribution of market �s, since returns on the aggregate stock market are

perfectly correlated with the consumption process of the representative household (and hence

the stochastic discount factor, e.g., Breeden (1979)). Thus, if conditional market �s were

measured with perfect precision, no other variable would contain additional information

about the cross-section of returns.

However, equation (32) implies that if for any reason market �s were mismeasured (e.g.

because the market portfolio is not correctly speci�ed), then �rm-speci�c variables like �rm

size and book-to-market ratios could appear to predict the cross-sectional distribution of

expected stock returns simply because they are related to true conditional �s. In section 4

we generate an example within our arti�cial economy of how mismeasurement of �s can lead

to a signi�cant role of �rm characteristics as predictors of returns.

11The ratio Kft=Vft can also be approximated by other accounting variables, e.g., by the earnings-to-price

ratio.
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3 Aggregate Stock Returns

In this section we evaluate our model's ability to reproduce key qualitative and quantitative

features of empirical data. While it is not the objective of this paper, it seems natural

to ensure that the model is reasonably consistent with the well documented aggregate

�ndings before examining its cross-sectional implications. Thus, our methodology follows

the approach of Kydland and Prescott (1982) and Long and Plosser (1983). First, we

calibrate the model parameters using the unconditional moments of aggregate stock returns

and the moments of the aggregate consumption process. We then provide evidence on other

aggregate-level properties of the model regarding the predictability of aggregate stock returns

by the book-to-market ratio documented by Ponti� and Schall (1998).

3.1 Calibration

We �rst calibrate the aggregate-level preference and technology parameters. The values of


, �, �, x, and Z are chosen to match approximately the unconditional moments of the key

aggregate variables. Table 1 reports the parameter values used in simulation and Table 2

compares the moments of some key aggregate variables in the model with corresponding

empirical estimates. For completeness, we report two sets of moments from the model:

population moments and sample moments. Population moments are estimated by simulating

a 300; 000-month time series; the sample moments are computed based on 200 simulations,

each containing 70 years worth of monthly data.12 In addition to point estimates and

standard errors, we also report 95% con�dence intervals based on empirical distribution

functions from 200 simulations. Population moments are close to their empirical counterparts

and almost all the moments of historical series are within the 95% con�dence intervals in

12The 70-year sample length is comparable to that of CRSP, which is the historical data set used in

generating the two (Data) columns in Table 2.
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the (Sample) columns.

Our model is able to capture the historical level of the equity premium, while maintaining

plausible values for the �rst two moments of the risk-free rate. These results are due to the

combination of su�ciently high risk aversion (
 = 15) of the representative household and

a small amount of predictability in the consumption process (e.g., Kandel and Stambaugh

(1991)).13 Based on these results, we conclude that our model provides a satisfactory �t of

the aggregate data.

To further illustrate the properties of our model, we plot some key economic variables

against the state variable x in Figure 1. Panel A shows that the optimal investment policy,

e?, increases with x. In equilibrium, e? equals the present value of cash 
ows from a new

project of unit size, V a=K, which is increasing in productivity parameter x. Similarly, the

market value per unit scale of a typical project, V=K, is increasing in x, as shown in Panel

B. According to Panel C, the value of assets-in-place as a fraction of the total stock market

value decreases slightly with x. Most of the time, assets-in-place account for 75{80% of the

stock market value in the model. Finally, Panel D compares the instantaneous stock market

betas, �a and �o. The beta of growth options is higher than that of assets in place.

3.2 Quantitative Results

We now examine some additional quantitative implications of the model for the relationship

between aggregate returns and other aggregate variables. Table 3 Panel A reports the

means, standard deviations, and 1- to 5-year autocorrelations of the dividend yield and

book-to-market ratio. We estimate these statistics by repeatedly simulating 70 years of

monthly data,.a sample size similar to that used in Ponti� and Schall (1998). The Data

13Note that we are not arguing that this is the precise mechanism behind the observed equity premium

and other aggregate-level properties of asset prices. The only objective of this analysis is to verify that our

cross-sectional results are not undermined by unreasonable aggregate-level properties of the model.
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rows report the mean and standard deviation of the book-to-market ratio to be 0.668 and

0.23 respectively, the values taken from Ponti� and Schall, Table 1 Panel A. Our model

produces similar values of 0.584 and 0.19. The autocorrelations of the book-to-market ratio

are decreasing with the horizon, matching the pattern observed in the data. However, the

ratio is more persistent in the model compared to the data, as indicated by higher magnitude

of autocorrelations. The model also reproduces the decreasing pattern of autocorrelations

of the dividend yield data. While the standard deviation of dividend yield is close to the

empirical value, the average level exceeds the number reported by Ponti� and Schall (1998).

Panel B in Table 3 examines the performance of the book-to-market ratio as a predictor of

stock market returns. The slope in the regression of monthly value-weighted market returns

on one-period lagged book-to-market ratios based on the model is 1.75%. The empirical

value of 3.02% is within the 95% con�dence interval around the simulation-based estimate.

The adjusted R2s are also comparable. The same analysis at annual frequency produces

similar results.

It is also important to note that, in the model, instantaneous stock market returns

are perfectly correlated with consumption growth and the stochastic discount factor. As a

result, asset returns are characterized by a single-factor intertemporal CAPM. To determine

how closely monthly stock returns satisfy the ICAPM with the market portfolio being the

only factor, we regress market returns on the contemporaneous realization of the stochastic

discount factor, given by (Ct+4t=Ct)
�
e��4t. As expected, the regression shows that 96%

of the variation in market return can be explained by variation in the stochastic discount

factor. The unconditional correlation between the stochastic discount factor and the market

return is �0:98 and the conditional correlation between the two is, e�ectively, �1. Thus,

even at the monthly frequency, a single-factor ICAPM is, theoretically, highly accurate.
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In this respect our environment di�ers crucially from Berk, Green, and Naik (1999). By

construction then, stock returns in their model cannot be described using market returns as

a single risk factor, allowing variables other than market �s to play an independent role in

predicting stock returns.

4 The Cross-Section of Stock Returns

This section establishes our key quantitative results. After outlining our numerical procedure,

subsection 4.3 documents the ability of the model to replicate the empirical �ndings about

the relation between �rm characteristics and stock returns. It also establishes that these

�ndings disappear after one controls for the theoretically correct measure of systematic risk.

Subsection 4.4 describes the conditional, or cyclical, properties of �rm level returns.

4.1 Calibration

To examine the cross sectional implications of the model we must choose the parameters of

the stochastic process for �rm-speci�c productivity shocks, � and ��. We restrict these values

by two considerations. First, we want to be able to generate empirically plausible levels of

volatility of individual stock returns, which directly a�ects statistical inference about the

relations between returns and �rm characteristics. Second, we also want the cross-sectional

correlation between �rm characteristics, i.e., the logarithms of �rm value and book-to-market

ratio, to match the empirically observed values. The value, and particularly the sign of this

correlation, are critical in determining the univariate relations between �rm characteristics

and returns implied by the multivariate relation (32), due to the well-known omitted variable

bias.

We can accomplish these goals by setting value of �=0:51 and ��=2:10. These values
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imply an average annualized volatility of individual stock returns of approximately 25%

and a correlation between size and book-to-market variables of about �0:26, the number

reported by Fama and French (1992). Panel D of Figure 1 shows the behavior of e�a implied

by our choice of �. In particular, e�a is lower than the market beta of assets-in-place and is

increasing in the state variable x.

According to equation (32), there exists a cross-sectional relation between the market �s

of stock returns and �rm characteristics. The sign of this relation depends on the aggregate-

level variables �ot�e�at and �at�e�at in (32). Under the calibrated parameter values, the long-run

average values of �ot�e�at and �at�e�at are 0:67 and 0:21 respectively.

These numbers suggest then a negative relation between market �s and �rm size and a

positive one between �s and book-to-market. Since size and book-to-market are negatively

correlated in our model, coe�cients in univariate regressions of returns on these variables

should have the same sign as partial regression coe�cients in a joint regression, i.e., returns

should be negatively related to size and positively related to book-to-market. To further

evaluate the quantitative signi�cance of these e�ects, we repeatedly simulate a panel data

set of stock returns based on our model and apply commonly used empirical procedures on

the simulated panel.

We follow the empirical procedures used by Fama and French (1992). First, we present

some descriptive statistics of the simulated panel in Tables 4 and 5, providing an informal

summary of the relations between returns, size, and book-to-market. Our main results are

presented in Tables 7, 8, and 9, where we detail the cross-sectional relations between stock

returns and �rm characteristics.
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4.2 Simulation and Estimation

In our simulations, the arti�cial panel consists of 360 months of observations for 2,000 �rms.

This panel size is comparable to that in Fama and French (1992), who used an average of

2,267 �rms for 318 months. We also adhere to Fama and French's timing convention in that

we match the accounting variables at the end of the calendar year t�1 with returns from

July of year t to June of year t+1. Moreover, we use the value of the �rm's equity at the

end of calendar year t�1 to compute its book-to-market ratios for year t�1, and we use

its market capitalization for June of year t as a measure of its size.14 Further details of our

simulation procedure are summarized in Appendix B.

Some of our tests use estimates of market �s of stock returns, which are obtained using

the empirical procedure of Fama and French (1992).15 Their procedure consists of two steps.

First, pre-ranking �s for each �rm at each time period are estimated based on previous 60

monthly returns. Second, for each month stocks are sorted into ten portfolios by market

value. Within each size portfolio, stocks are sorted again into ten more portfolios by their

pre-ranking �s. The post-ranking �s of each of these 100 portfolios are then calculated using

the full sample. All portfolios are formed using equal weights and all �s are calculated by

summing the slopes of a regression of portfolio returns on market returns in the current and

prior months. In each month, we then allocate the portfolio �s to each of the stocks within

the portfolio. To highlight the fact that these post-ranking �s are estimated, we will refer

to them as Fama and French-�s.

Following Fama and French (1992), we form portfolios at the end of June each year and

the equal-weighted returns are calculated for the next 12 months. In each of these sorts,

14In this aspect our simulation procedure di�ers from that of Berk et al. (1999), since they use a

straightforward and intuitive timing convention (one-period-lag values of explanatory variables), which does

not however agree with the de�nitions in Fama and French (1992).
15For details of the beta estimation procedure, we refer readers to Fama and French (1992).
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we form 12 portfolios. The middle 8 portfolios correspond to the middle 8 deciles of the

corresponding characteristics, with 4 extreme portfolios (1A, 1B, 10A, and 10B) splitting

the bottom and top deciles in half. We repeat the entire simulation 100 times and average

the results of the sorting procedure across the simulations. In tables 4, 5 and 6, Panel A is

taken from Fama and French (1992) and Panel B is computed based on the simulated panels.

4.3 Size and Book-to-Market E�ects

Tables 4 and 5 report post-ranking average returns for portfolios formed by a one-dimensional

sort of stocks on �rm size and book-to-market. When portfolios are formed on �rm value

(Table 4), the simulated panel exhibits a negative relation between size and average returns,

similar to the one observed empirically.16 Table 5 presents average returns for portfolios

formed based on ranked values of book-to-market ratios. Similar to the historical data, our

simulated panels on average also show a positive relation between book-to-market ratios and

average returns. Thus, one-dimensional sorting procedures indicate cross-sectional relations

between Fama and French factors and returns that are similar to those in the historical data.

Table 7 shows a summary of our results from the Fama-MacBeth (1973) regressions of

stock returns on size, book-to-market, and conditional market �s.17 For comparison, we also

report empirical �ndings of Fama and French (1992) and simulation results of Berk et al.

(1999) in columns 2 and 3 of the same table.

Our �rst univariate regression shows that the logarithm of �rm market value appears to

contain useful information about the cross-section of stock returns in our model. The relation

16The level of average returns is higher in Panel A than in Panel B. This di�erence is due to the fact that

we are modeling real returns in our model, while FF report the properties of nominal historical returns.
17For each simulation, we compute the slope coe�cients as the time series average coe�cients over the 360-

month cross-sectional regressions, and the t-statistics are these averages divided by the standard deviations

across the 360 months, which provide standard Fama-MacBeth (1973) tests for statistical signi�cance of

regression coe�cients. We then average the results across 100 simulations. The market �s are exact

conditional �s computed based on our theoretical model.
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between returns and the size variable is signi�cantly negative. The average slope coe�cient

as well as the corresponding t-statistic implied by the model are close to their empirical values

reported by Fama and French (1992). Panel A of Figure 2 shows the histogram of realized

t-statistics across simulations. The empirical value is well within the body of realizations

produced by the model. Our second univariate regression con�rms the importance of book-

to-market ratio in explaining the cross-sectional properties stock returns. While our slope

coe�cient is smaller than the one obtained by Fama and French (1992), our estimate is also

positive on average. Panel B of Figure 2 shows that the coe�cient of book-to-market is often

signi�cant at traditional levels, however, the model is not able to produce the t-statistics as

high as that reported by Fama and French (1992).

Next, we regress returns on size and book-to-market jointly. On average our coe�cients

have the same signs as in Fama and French (1992) and Berk et al. (1999) as returns exhibit

negative dependence on size and positive dependence on book-to-market. While our average

size slope and the corresponding t-statistic are close to the empirical values, the average

slope on book-to-market is smaller than in Fama and French (1992). Panel C of Figure 2

illustrates the range of t-statistics in a joint regression of returns on size and book-to-market

that could be obtained if the historical data were generated by our model. We present the

results in the form of a scatter plot, where each point corresponds to a realization of two

t-statistics obtained in a single simulation. The empirically observed t-statistic on the size

variable is comparable to typical realizations produced by the model. However, the t-statistic

on book-to-market is usually somewhat lower than in Fama and French (1992).

The �rst three regressions in Table 7 conform to the intuition derived from our theoretical

relation (32) that size and book-to-market are related to systematic risks of stock returns

and therefore have explanatory power in the cross-section. However, within our theoretical
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framework, �rm characteristics add no explanatory power to the conditional market �s of

stock returns.18 To illustrate this point, we regress returns on size while controlling for

market �. The fourth row of Table 7 shows that the average coe�cient on size and the

corresponding t-statistic are close to zero.

Fama and French (1992) �nd that the estimated market �s show no explanatory power

when used individually or jointly with Fama and French factors. This could be because

in practice returns on the market portfolio are not perfectly correlated with the stochastic

discount factor and additional risk factors are necessary to describe expected returns. Such

mechanism lies beyond the scope of our single-factor model. To reconcile our results

with poor empirical performance of Fama and French-�s one must take into account the

fact that so far we have been using the exact conditional �s, which are not observable

in practice. Instead, �s must be estimated, which leaves room for measurement error.

Potential sources of errors are, among others, the fact that the market-proxy used in

estimation is not the mean-variance e�cient portfolio (Roll (1977)) or the econometric

methods employed in estimation do not adequately capture the conditional nature of the

pricing model (e.g., Ferson, Kandel and Stambaugh (1987), Jaganathan and Wang (1996),

Campbell and Cochrane (2000), and Lettau and Ludvigson (2000)). Our arti�cial economy

provides an example of how signi�cance of �rm characteristics as predictors of returns can

persist due to � mismeasurement.

In our simulations we use the true market portfolio. However, in the model conditional

market �s are time-varying, which can potentially lead to measurement problems. To

illustrate the impact of � mismeasurement, we apply Fama and French (1992) estimation

18Theoretically, market �s are su�cient statistics for instantaneous expected returns in our model. As

shown in section 3, even at monthly frequency, the market portfolio is almost perfectly correlated with the

stochastic discount factor.
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procedure to our simulated data. First, we form 100 portfolios by sorting on size and then on

pre-ranking �s. Table 6 provides evidence on the relation between �s and average returns.

After stocks have been sorted by size, the second-pass � sort produces little variation in

average returns. Table 8 shows results of the joint regression of returns on �rm value and

Fama and French-�. On average, the size variable remains negative and signi�cant, while

the average t-statistic on Fama and French-� is close to zero. The scatter plot in Panel D

of Figure 2 shows that the t-statistic on Fama and French-� is usually less than 1.96, while

the coe�cient on size would often appear signi�cant. In a univariate regression, the slope

coe�cient and the t-statistic on Fama and French-� reported in Table 8 are relatively low

compared to those on the exact conditional �, as reported in Table 7.

Table 9 presents a measure of estimation noise in Fama and French-�, the average

correlation matrix of the true conditional �s, Fama and French-�s, size, and book-to-market.

For every simulation, we calculate the correlations between true �, Fama and French-�, book-

to-market, and size every month and then report the averages of the correlation coe�cients

and their corresponding standard deviations across simulations. Table 9 shows that size is

highly negatively correlated with the exact conditional �. The correlation between Fama and

French-� and the true � is lower. Not surprisingly, size serves as a more accurate measure

of systematic risk than Fama and French-� and hence outperforms it in a cross-sectional

regression. Moreover, imperfect correlation between the true � and Fama and French-� in

our model lowers the coe�cient and the t-statistic in the univariate regression of returns on

Fama and French-�s due to the errors-in-variables bias. This illustrates how mismeasurement

of � can have an e�ect on all of the cross-sectional results, bringing out �rm characteristics

such as size and book-to-market as predictors of expected returns.
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Sensitivity Analysis

Finally, it is interesting to take some measure of the sensitivity of our �ndings to choices

of the key parameters, � and ��; governing the cross-sectional properties of stock returns.

Tables 10 and 11 report the results of these experiments.

We consider two alternative combinations of parameters. First, we look at the e�ects

of increasing the cross-sectional dispersion of stock returns to 30%, which corresponds to

a value for �� of 2:82: The results are reported in the columns labeled \High Variance" of

Tables 10 and 11. Next, we study the e�ects of changing the persistence of the idiosyncratic

productivity shocks by raising the value of � to 0:4, while keeping the cross sectional variance

of returns at 25%. The \Low Persistence" columns show the results of these simulations.

Comparison between columns 2 and 3 in Table 10 and 11 shows that the inference from

the benchmark model carries, without any signi�cant change, both to the High Variance

and the Low Persistence variants of the model, as both the signs and signi�cance of all

the coe�cients are preserved. Our main results appear to be quite robust with respect to

perturbations of main parameter values.19

4.4 Business Cycle Properties

The theoretical characterization of stock prices and systematic risk, as given by (31) and

(32), highlights the fact that the properties of the cross-section of stock prices and stock

returns depend on the current state of the economy. This dependence is captured by the

19As the most drastic robustness check, we have also considered an alternative notion of equilibrium.

Instead of computing the competitive equilibrium in our economy, we look for the Pareto-optimal allocation of

resources and compute all prices based on the resulting consumption process of the representative household.

The e�cient allocation cannot be supported directly by the competitive equilibrium, but it can be sustained

by an appropriately designed system of taxes and subsidies. We then reproduce all our tables under the new

de�nition of equilibrium. All of our conclusions remain unchanged. The cross-sectional relations between

systematic risk and size and book-to-market, as well as the analysis of noise in empirical � estimates are

very similar to those under the original model. We interpret this exercise as an indication of the robustness

of the economic mechanism behind our results.
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economy-wide variables V a
t ,
eV a
t , and V o

t and their market �s. Thus, our model also gives

rise to a number of predictions about the variation of the cross-section of stock prices and

returns over the business cycle. These properties of the cross-section of stock returns may

have important implications for optimal dynamic portfolio choice.

Firm Characteristics

To help understand the relation between the cross-section of �rm characteristics and the

business cycle, we �rst characterize the cross-sectional dispersion of �rm market values.

To this end, let var (h) denote the variance of the cross-sectional distribution of a �rm-

speci�c variable h. According to our characterization of �rm market value (31), it follows

immediately that
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�
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t
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(34)

The right-hand side of (34) captures the cross-sectional dispersion of relative �rm size.

This dispersion can be attributed to: (i) the cross-sectional variation of project-speci�c

productivity shocks �it; (ii) the cross-sectional di�erences in project-speci�c and �rm-speci�c

production scale, and (iii) economy-wide variables V a
t =Vt and

eV a
t =Vt.

The �rst two components are likely to have only minor impact on cross-sectional

dispersion. The �rst, var (�it), should be independent of time in a stationary equilibrium,

given (2). The contribution of the second source of heterogeneity, captured by

var

�R
Ift
ki =Ktdi

�
and var (ki =Kt), is clearly path-dependent in theory, since the scale of

new projects depends on the current aggregate scale of production Kt. Intuitively however

this dependence is fairly low when the average life-time of individual projects is much longer

than the average length of a typical business cycle.20

20Note that the average project life is about 1=� = 25 years, given our calibration.
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It falls then on the aggregate components, characterized by V a (xt) =V (xt) and

eV a (xt) =V (xt) ; to determine the cross-sectional variance in market value. Given the

properties of our environment, it is easy to see that this implies that the cross-sectional

dispersion of �rm size is counter-cyclical, that is, it expands in recessions and it becomes

compressed in expansions. We can see this by looking at Panel D of Figure 1. Since the

market �s of V a
t and eV a

t are less than one, the ratios V a
t =Vt and

eV a
t =Vt should be negatively

related to the state variable xt. Figure 3 con�rms this �nding.

To quantify this relation, we simulate our arti�cial economy over a 200-year period and

compute the cross-sectional standard deviation of the logarithm of �rm values and book-to-

market ratios on a monthly basis. Since the state variable xt is not observable empirically,

we choose to capture the current state of the economy by the price-to-dividend ratio of the

aggregate stock market.21

Figure 3 presents scatter-plots of the cross-sectional dispersion of �rm characteristics

against the logarithm of the aggregate price-dividend ratio. In both cases the relation

is clearly negative. Note that cross-sectional dispersion is not a simple function of the

state variable. This is partially due to the fact that we are using a �nite number of �rms

and projects in our simulation, therefore our theoretical relations hold only approximately.

Moreover, as suggested by the above theoretical argument, such relations are inherently

history-dependent.

Stock Returns

Next we study how the cross-sectional distribution of actual stock returns depends on the

state of the aggregate economy. First, we analyze the degree of dispersion of returns,

RDt =
p
var (Rft), where Rft denotes monthly returns on individual stocks. We construct

21In the model, the unconditional correlation between xt and log (Vt=Dt) is approximately 99.3%
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a scatter-plot of RDt versus contemporaneous values of the logarithm of the aggregate price-

dividend ratio.

According to Figure 5, our model predicts a negative contemporaneous relation between

return dispersion and the price-dividend ratio. This can be attributed to the counter-cyclical

nature of both aggregate return volatility, as shown in Panel A of Figure 4, and of the

dispersion in conditional market �; as shown in Panel B.

Since investment in our model is endogenously pro-cyclical, an increase in aggregate

productivity shock leads to an increase in the scale of production as well as an increase in

stock prices. On the other hand, since investment is irreversible, the scale of production

cannot be easily reduced during periods of low aggregate productivity, increasing volatility

of stock prices.22

The counter-cyclical dispersion of conditional �s follows from the characterization of the

systematic risk of stock returns (32) and the pattern observed in Figure 1, Panel D. During

business cycle peaks, the dispersion of aggregate �s, i.e., �at ,
e�at , and �ot , is relatively low,

contributing to lower dispersion of �rm-level market �s. This e�ect is then reinforced by the

counter-cyclical behavior of dispersion of �rm characteristics.

An interesting empirical �nding by Stivers (2000) is the ability of return dispersion to

forecast future aggregate return volatility, even after controlling for the lagged values of

market returns. We conduct a similar experiment within our model, by simulating 1000

years of monthly stock returns and regressing absolute values of aggregate market returns

on lagged values of return dispersion and market returns. As in Stivers (2000), we allow for

di�erent slope coe�cients depending on the sign of lagged market returns. As shown in Table

12, both lagged market returns and return dispersion predict future conditional volatility of

22Qualitatively, the impact of the irreversibility on conditional volatility of stock returns in our model is

similar to that in Kogan (2000a, 2000b).
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returns. Return dispersion retains signi�cant explanatory power even after controlling for

market returns in the regression. This is due to the fact that lagged market returns provide

only a noisy proxy for the current state of the economy, and return dispersion contains

independent information such as the current dispersion of market �s.

Conditional Size and Book-to-Market E�ects

The fact that dispersion of returns on individual stocks in our model changes counter-

cyclically suggests that the size and book-to-market e�ects analyzed in subsection 4.3 are

also conditional in nature.

To capture this cyclical behavior of cross-sectional patterns in returns and its implications

for dynamic portfolio allocation, we analyze the conditional performance of alternative size-

and value-based strategies. Speci�cally, we simulate 1,000 years of monthly individual stock

returns and then form zero-investment portfolios by taking a long position in bottom-size-

decile stocks and a short position in top-size-decile stocks, as sorted by size, with monthly

rebalancing. We also construct alternative portfolios by doing the opposite for book-to-

market deciles. We then regress portfolio returns on the logarithm of the aggregate price-

dividend ratio.

Our model predicts an average annualized value (book-to-market) premium of 1.45% and

an average annualized size premium of 1.93%. Moreover, both strategies exhibit signi�cant

counter-cyclical patterns in their expected returns. In particular, we �nd that a 10% decline

in the price-dividend ratio below its long-run mean implies approximately a 16.8% and

15.7% increase in expected returns on the size and book-to-market strategies, respectively,

measured as a fraction of their long-run average returns.

34



5 Conclusion

This paper analyzes a general equilibrium production economy with heterogeneous �rms. In

the model, the cross-section of stock returns is explicitly related to �rm characteristics such

as size and book-to-market. Firms di�er in the share of their total market value derived

from their assets, as opposed to future growth opportunities, which is captured by their

characteristics. Since these two components of �rm value have di�erent market risk, �rm

characteristics are closely related to market �.

To the best of our knowledge, our paper is the �rst to explain the cross-section of stock

returns from a general equilibrium perspective. Our model demonstrates that size and book-

to-market can explain the cross-section of stock returns because they are correlated with the

true conditional �. We also provide an example of how empirically estimated � can perform

poorly relative to �rm characteristics due to measurement errors.
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A Proofs and Technical Results

A.1 Proof of Proposition 2

The equilibrium conditions imply that the optimal �rm investment policy e?(x) satis�es the

condition

V a
it = Et

�Z
1

0

e��s
�
C?
t

C?
t+s

�
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e��skiXt+s

�
ds

�
= e?(x)ki (A1)

where we impose that optimal consumption decisions are used in determining the stochastic discount

factor in equilibrium. In words, optimality of �rms' investment decisions requires that the most

expensive project undertaken has a present value of cash 
ows equal to its cost.

Using the fact that ki is independent of t and equation(8), we obtain that:

e?(x)ki = (C?
t )


 kiEt

"Z
1

0

e�(�+�)s Xt+s�
C?
t+s

�
 ds
#
=

= (C?
t )


 kiEt

"Z
1

0

e�(�+�)s Xt+s�
c?t+s

�

K



t+s

ds

#
=

= (C?
t )


 kiEt

"Z
1

0

e�(�+�)s Xt+s�
c?t+s

�

K



t exp

�R s

0
�
� + 
Ze?� d�

� ds# =

= (c?t )

 kip (xt)

or, as in equation (20)

e?(x) = (c?t )

 p (xt)

where the Feynman-Kac theorem implies then that p(x) satis�es the di�erential equation:23

[�+ (1� 
)� + 
Ze? (x)] p (x)�A[p (x)]�
exp(x)

[c?(x)]

= 0

and A[p (x)] is the in�nitesimal generator of the di�usion process xt:

A[p (x)] � ��x(x� x)p (x) +
1

2
�2xp

00 (x)

In addition, optimal consumption and investment policies are also related by the resource

constraint (17). Using equations (7) and (9) this can be easily transformed into equation (21)

c? (x) =
Yt

Kt

�

It

Kt

= exp (x)�
1

2
Z [e?(x)]2

thus completing the proof of the Proposition.

23See, for example, Du�e (1996) Appendix E.
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A.2 Computation of Equilibrium

We solve for the equilibrium iteratively. First, we use equation (21) to eliminate c(x) in (22). We

then approximate the resulting di�erential equation for p(x) with a system of linear equations upon

discretizing the state space of x:

[�+ (1� 
)� + 
Zei] pi = b
A(p)i +

exp(xi)h
exp (xi)�

1
2
Z (ei)

2
i


where b
A(p) is the �nite-di�erence approximation to the in�nitesimal generator A(p). We then solve

this system together with (20). We do this by using the following iterative procedure:
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where the step-size 4t(n) is adjusted to ensure convergence.

A.3 Proof of Proposition 3

Let mt = (C?
t )
�
 . Then Mt;t+s = e��smt+s=mt and by Ito's Lemma,
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Second, the value of the aggregate stock market, Vt, can be computed as
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A.4 Proof of Proposition 4

The present value of output from a speci�c project i, denoted V a
it , is given by
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where the last equality follows from mutual independence of Xt and �it. The square-root process

(2) has the property
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B Computation

B.1 Discretization and Simulation

We use a �nite number of �rms in the numerical implementation: While the number of �rms is

�xed, the total number of projects in the economy is time-varying and stationary. The dynamics

of kti , the scale of new projects at time t, is as follows: kti =
Kt

'
where the constant ' is de�ned

by ' = �N?

ZE[et]
;24 where N?is the long run number of projects in the economy and f(x) is the

unconditional (steady-state) density of xt.

In the simulation, time increment is discrete. The unit cost of a new project are spaced out

evenly over the interval [0; et]. The investment of individual �rm at time t is computed as the

total amount the �rm spends on its new projects at time t. The dividend paid out by a given �rm

during period t is de�ned as the di�erence between the cash 
ows generated by the �rm's existing

projects and its investment. Finally, the individual �rm's book value is measured as the cumulative

investment cost of the �rm's projects that remain active at time t.

In our simulation, we �rst generate 200 years worth of monthly data, to allow the economy to

reach steady state. After that, we repeatedly simulate a 420-month panel data set consisting of the

cross-sectional variables (360 months of data constitute the main panel and 60 extra months are

used for pre-ranking � estimation).

B.2 Quality of the Aggregation

We appeal to the law of large number in our theoretical analysis of the economy. Discretization of

the economy introduces approximation error, the magnitude of which we evaluate by comparing the

aggregate series to their exact analytical counterparts. We simulate the corresponding quantities

for 10,080 �rms over 420 months and record the aggregation results, the corresponding theoretical

values, and the di�erence between the two. In all cases, the di�erence between these variables

and their analytical counterparts is very close to zero.25 We thus conclude that the quality of

aggregation in our simulation is su�ciently high.

24On average, projects expire at the total rate �N?. The arrival rate of new projects is Zet'. To
ensure stationarity of the total number of projects in the economy, we thus set ZE [et]' = �N?:

25Complete results are available upon request.
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Table 1 : Parameter Values Used in Simulation

The table lists the values of all model parameters used in simulation: the risk aversion coe�cient (
), the time

preference parameter (�), the rate of project expiration (�), the long run mean of the aggregate productivity

variable (X), the quality of investment opportunities (Z), the volatility (�x) and the rate of mean-reversion

(�x) of the productivity variable, the rate of mean-reversion (�) and the volatility (��) of the idiosyncratic

productivity component.

Parameters 
 � � �x Z �x �x � ��

Values 15 0.01 0.04 log(0:01) 0.50 0.08 0.275 0.51 2.10

Table 2 : Moments of Key Aggregate Variables

This table reports unconditional means and standard deviations of consumption growth (Ct+1=Ct� 1),

real interest rate (rt), equity premium (logRt� log rt), and the mean of the Sharpe ratio (E(logRt�

log rt)=�(logRt� log rt)). The numbers reported in columns denoted (Data) are from Campbell, Lo, and

MacKinlay (1997). The numbers reported in columns denoted (Population) are population moments. These

statistics are computed based on 300,000 months of simulated data. The two columns denoted (Sample)

report the �nite-sample properties of the corresponding statistics. We simulate 70-year long monthly data

sets, which is comparable to the sample length typically used in empirical research. Simulation is repeated

200 times and the relevant statistics are computed for every simulation. Then we report the averages across

the 200 replications. The numbers in parenthesis are standard deviations across these 200 simulations and the

two numbers in brackets are 2.5% and 97.5% percentiles of the resulting empirical distribution, respectively.

All numbers except those in the last three rows are in percentages.

Data Data Population Population Sample Sample

Mean Std Mean Std Mean Std

Ct+1=Ct � 1 1.72 3.28 0.85 3.22 0.84 3.06

(0.28) (0.26)

[0.22 1.33] [2.56 3.50]

rt 1.80 3.00 1.30 4.33 1.34 3.98

(1.30) (0.85)

[-0.63 4.23] [2.55 5.73]

logRt � log rt 6.00 18.0 6.00 14.34 5.89 15.28

(1.32) (1.73)

[2.97 8.13] [11.80 18.58]

Sharpe Ratio 0.33 0.42 0.39

(0.11)

[0.17 0.62]
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Table 3 : Book-To-Market As a Predictor of Market Returns

This table examines our model's ability to match the empirical regularities documented by Ponti� and Schall

(1998). Panel A reports means, standard deviations, and autocorrelations of dividend yield (DIV) and book-

to-market ratio (B/M), both from historical data and from simulation output. The numbers in columns

denoted (Data) are from last two rows in Table 1 Panel A of PS. Panel B reports the properties of the

regression of value-weighted market returns, both at monthly and annual frequency, on one-period lagged

book-to-market. The columns denoted (Data) are from Table 2 of PS. In both Panels, the columns denoted

(Model) report the statistics from 200 simulations, each of which has the same length as that of the data set

used in PS. The numbers in parenthesis are standard deviations across 200 simulations and the two numbers

in brackets are 2.5th and 97.5th percentiles, respectively. All numbers, except autocorrelations and adjusted

R
2s, are in percentages.

Panel A: Means, Standard Deviations, and Autocorrelations

Source mean std 1 year 2 yrs 3 yrs 4 yrs 5 yrs

DIV Data 4.267 1.37 0.60 0.36 0.26 0.23 0.25

Model 6.407 0.97 0.69 0.46 0.31 0.19 0.11

(0.321) (0.22) (0.08) (0.14) (0.17) (0.18) (0.18)

[5.789 7.084] [0.61 1.45] [0.51 0.82] [0.17 0.70] [-0.05 0.61] [-0.16 0.51] [-0.22 0.45]

B/M Data 0.668 0.23 0.68 0.43 0.23 0.08 0.00

Model 0.584 0.19 0.88 0.80 0.73 0.68 0.64

(0.052) (0.04) (0.03) (0.07) (0.09) (0.12) (0.13)

[0.495 0.707] [0.12 0.28] [0.81 0.93] [0.63 0.89] [0.48 0.86] [0.38 0.84] [0.31 0.83]

Panel B: Regressions on Book-To-Market

Data Data Model Model

slope adj.-R2 slope adj.-R2

monthly 3.02 0.01 1.75 0.00

(0.79) (0.00)

[0.68 3.65] [0.00 0.01]

annual 42.18 0.16 19.88 0.04

(10.46) (0.04)

[6.57 46.09] [0.00 0.14]
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Table 4 : Properties of Portfolios Formed on Size

At the end of June of each year t; 12 portfolios are formed on the basis of ranked values of size. Portfolios

2-9 cover corresponding deciles of the ranking variables. The bottom and top 2 portfolios (1A, 1B, 10A, and

10B) split the bottom and top deciles in half. The breakpoints for the size portfolios are based on ranked

values of size. Panel A is from Fama and French (1992) Table II, Panel A. Panel B is constructed from the

simulated panel. The average returns are the time-series averages of the monthly equal-weighted portfolio

returns, in percent. log(Vf ) and log
�
Bf

Vf

�
are the time-series averages of the monthly average values of these

variables in each portfolio. � is the time-series average of the monthly portfolio post-ranking �s.

Panel A: Historical Data

1A 1B 2 3 4 5 6 7 8 9 10A 10B

Return 1.64 1.16 1.29 1.24 1.25 1.29 1.17 1.07 1.10 0.95 0.88 0.90

� 1.44 1.44 1.39 1.34 1.33 1.24 1.22 1.16 1.08 1.02 0.95 0.90

log(Vf ) 1.98 3.18 3.63 4.10 4.50 4.89 5.30 5.73 6.24 6.82 7.39 8.44

log (Bf=Vf ) -0.01 -0.21 -0.23 -0.26 -0.32 -0.36 -0.36 -0.44 -0.40 -0.42 -0.51 -0.65

Panel B: Simulated Panel

1A 1B 2 3 4 5 6 7 8 9 10A 10B

Return 0.74 0.72 0.72 0.71 0.71 0.70 0.69 0.68 0.67 0.65 0.62 0.57

� 1.05 1.05 1.03 1.02 1.02 1.01 1.00 0.99 0.97 0.95 0.89 0.89

log(Vf ) 4.23 4.40 4.48 4.53 4.56 4.60 4.64 4.68 4.73 4.82 4.95 5.21

log (Bf=Vf ) -0.92 -0.86 -0.84 -0.84 -0.84 -0.85 -0.86 -0.89 -0.96 -1.08 -1.24 -1.50

Table 5 : Properties of Portfolios Formed on Book-to-Market

At the end of June of each year t; 12 portfolios are formed on the basis of ranked values of book-to-market,

measured by log
�
Bf

Vf

�
. The pre-ranking �'s use 5 years of monthly returns ending in June of t: Portfolios

2-9 cover deciles of the ranking variables. The bottom and top 2 portfolios (1A, 1B, 10A, and 10B) split the

bottom and top deciles in half. The breakpoints for the book-to-market portfolios are based on ranked values

of book-to-market equity. Panel A is from Fama and French (1992) Table IV, Panel A. Panel B is from the

simulated panel. The average returns are the time-series averages of the monthly equal-weighted portfolio

returns, in percent. log(Vf ) and log
�
Bf

Vf

�
are the time-series averages of the monthly average values of these

variables in each portfolio. � is the time-series average of the monthly portfolio post-ranking �s.

Panel A: Historical Data

1A 1B 2 3 4 5 6 7 8 9 10A 10B

Return 0.30 0.67 0.87 0.97 1.04 1.17 1.30 1.44 1.50 1.59 1.92 1.83

� 1.36 1.34 1.32 1.30 1.28 1.27 1.27 1.27 1.27 1.29 1.33 1.35

log(Vf ) 4.53 4.67 4.69 4.56 4.47 4.38 4.23 4.06 3.85 3.51 3.06 2.65

log (Bf=Vf ) -2.22 -1.51 -1.09 -0.75 -0.51 -0.32 -0.14 0.03 0.21 0.42 0.66 1.02

Panel B: Simulated Panel

1A 1B 2 3 4 5 6 7 8 9 10A 10B

Return 0.61 0.67 0.69 0.71 0.71 0.71 0.71 0.72 0.72 0.71 0.72 0.72

� 0.95 0.98 1.01 1.02 1.02 1.03 1.03 1.03 1.02 1.02 1.02 1.02

log(Vf ) 4.92 4.66 4.53 4.47 4.45 4.45 4.46 4.47 4.48 4.49 4.51 4.52

log (Bf=Vf ) -1.54 -1.28 -1.15 -1.04 -0.97 -0.92 -0.87 -0.82 -0.77 -0.72 -0.66 -0.58
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Table 6 : Average Returns For Portfolios Formed on Size (Down) and then � (Across)

Panel A is identical to FF (1992) Table I Panel A, in which the authors report average returns for 100

size-� portfolios using all NYSE, AMEX, and NASDAQ stocks from July 1963 to December 1990 that meet

certain CRSP-COMPUSTAT data requirements. Panel B is produced using our simulated panel data set.

The portfolio-sorting procedure is identical to that used in FF (1992). In particular, portfolios are formed

yearly. The breakpoints for the size deciles are determined in June of year t using all the stocks in the panel.

All the stocks are then allocated to the 10 size portfolios using the breakpoints. Each size decile is further

subdivided into 10 � portfolios using pre-ranking �s of individual stocks, estimated with 5 years of monthly

returns ending in June of year t. The equal-weighted monthly returns on the resulting 100 portfolios are

then calculated for July of year t to June of year t+1. The pre-ranking �s are the sum of the slopes from a

regression of monthly returns on the current and prior month's market returns. The average return is the

time-series average of the monthly equal-weighted portfolio returns, in percent. The (ALL) column shows

statistics for equal-weighted size-decile (ME) portfolios and the (ALL) row shows statistics for equal-weighted

portfolios of the stocks in each � group.

Panel A: Average Monthly Returns (in Percent) from FF (1992)

All Low-� �-2 �-3 �-4 �-5 �-6 �-7 �-8 �-9 High-�

All 1.25 1.34 1.29 1.36 1.31 1.33 1.28 1.24 1.21 1.25 1.14

Small-ME 1.52 1.71 1.57 1.79 1.61 1.50 1.50 1.37 1.63 1.50 1.42

ME-2 1.29 1.25 1.42 1.36 1.39 1.65 1.61 1.37 1.31 1.34 1.11

ME-3 1.24 1.12 1.31 1.17 1.70 1.29 1.10 1.31 1.36 1.26 0.76

ME-4 1.25 1.27 1.13 1.54 1.06 1.34 1.06 1.41 1.17 1.35 0.98

ME-5 1.29 1.34 1.42 1.39 1.48 1.42 1.18 1.13 1.27 1.18 1.08

ME-6 1.17 1.08 1.53 1.27 1.15 1.20 1.21 1.18 1.04 1.07 1.02

ME-7 1.07 0.95 1.21 1.26 1.09 1.18 1.11 1.24 0.62 1.32 0.76

ME-8 1.10 1.09 1.05 1.37 1.20 1.27 0.98 1.18 1.02 1.01 0.94

ME-9 0.95 0.98 0.88 1.02 1.14 1.07 1.23 0.94 0.82 0.88 0.59

Large-ME 0.89 1.01 0.93 1.10 0.94 0.94 0.89 1.03 0.71 0.74 0.56

Panel B: Average Monthly Returns (in Percent) from Simulated Panel

All Low-� �-2 �-3 �-4 �-5 �-6 �-7 �-8 �-9 High-�

All 0.69 0.68 0.69 0.69 0.69 0.69 0.69 0.69 0.68 0.68 0.69

Small-ME 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.74 0.73 0.74

ME-2 0.72 0.72 0.73 0.72 0.72 0.70 0.73 0.72 0.72 0.72 0.71

ME-3 0.71 0.70 0.72 0.71 0.72 0.72 0.70 0.72 0.71 0.70 0.71

ME-4 0.71 0.70 0.71 0.70 0.71 0.69 0.71 0.72 0.71 0.72 0.70

ME-5 0.70 0.71 0.69 0.71 0.70 0.71 0.71 0.70 0.70 0.71 0.71

ME-6 0.70 0.69 0.68 0.70 0.71 0.70 0.70 0.71 0.71 0.68 0.67

ME-7 0.69 0.68 0.68 0.69 0.68 0.69 0.70 0.67 0.67 0.70 0.68

ME-8 0.67 0.64 0.68 0.68 0.66 0.69 0.70 0.68 0.66 0.66 0.68

ME-9 0.65 0.65 0.67 0.65 0.64 0.64 0.68 0.64 0.62 0.62 0.67

Large-ME 0.59 0.56 0.59 0.59 0.61 0.61 0.58 0.62 0.58 0.60 0.59
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Table 7 : Exact Regressions

This table lists summary statistics for the coe�cients and the t-statistics of Fama-MacBeth regressions using

exact conditional � on the simulated panel sets. The dependent variable is the realized stock return and

independent variables are market �, the logarithm of the market value (log(Vt)); and the logarithm of the

book-to-market ratio (log(Bt=Vt)). The column denoted (FF) gives the empirical results obtained by Fama

and French (1992), Table III, using the historical returns of 2,267 �rms over 318 months. The column

denoted (BGN) gives the results obtained by Berk et al. (1999). The column denoted (Model) reports the

results from our model. The coe�cients in the columns are in percentage terms. The numbers in parenthesis

are their corresponding t-statistics. Both coe�cients and t-statistics are averaged across 100 simulations.

FF BGN Model

log(Vt) -0.15 -0.035 -0.139

(-2.58) (-0.956) (-2.588)

log[Bt=Vt] 0.50 � 0.079

(5.71) � (1.845)

log(Vt) -0.11 -0.093 -0.127

(-1.99) (-2.237) (-2.476)

log[Bt=Vt] 0.35 0.393 0.043

(4.44) (2.641) (1.119)

� -0.37 0.642 1.076

(-1.21) (2.273) (2.602)

log(Vt) -0.17 0.053 0.038

(-3.41) (1.001) (0.601)

� � � 0.916

� � (2.992)

log[Bt=Vt] � � 0.010

� � (0.257)

� 0.15 0.377 0.932

(0.46) (1.542) (3.052)
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Table 8 : Fama-French Regressions

This table lists summary statistics for the coe�cients and the t-statistics of Fama-MacBeth regressions using

exact conditional � on the simulated panel sets. The dependent variable is the realized stock return and

independent variables are market �, the logarithm of the market value (log(Vt)); and the logarithm of the

book-to-market ratio (log(Bt=Vt)). The column denoted (FF) gives the empirical results obtained by Fama

and French (1992), Table III, using the historical returns of 2,267 �rms over 318 months. The column

denoted (BGN) gives the results obtained by Berk et al. (1999). The column denoted (Model) reports the

results from our model. The coe�cients in the columns are in percentage terms. The numbers in parenthesis

are their corresponding t-statistics. Both coe�cients and t-statistics are averaged across 100 simulations.

FF BGN Model

log(Vt) -0.15 -0.035 -0.139

(-2.58) (-0.956) (-2.588)

log[Bt=Vt] 0.50 � 0.079

(5.71) � (1.845)

log(Vt) -0.11 -0.093 -0.127

(-1.99) (-2.237) (-2.476)

log[Bt=Vt] 0.35 0.393 0.043

(4.44) (2.641) (1.119)

� -0.37 0.642 0.100

(-1.21) (2.273) (0.318)

log(Vt) -0.17 0.053 -0.126

(-3.41) (1.001) (-2.091)

� 0.15 0.377 0.572

(0.46) (1.542) (2.081)

Table 9 : Cross-Sectional Correlations

We calculate the cross-sectional correlations of exact conditional �, FF-�, book-to-market, and size for every

simulated panel every month and then report the average correlations across 100 simulations. The numbers

in parentheses are cross-simulation standard deviations.

True � FF-� log[Bt=Vt] log(Vt)

True � 1 0.597 0.322 -0.764

(0.031) (0.023) (0.012)

FF-� 1 0.269 -0.761

(0.035) (0.041)

log[Bt=Vt] 1 -0.268

(0.019)

log(Vt) 1

50



Table 10 : Exact Regressions | Sensitivity Analysis

This table lists summary statistics for the coe�cients and the t-statistics of Fama-MacBeth regressions using

exact conditional �. The dependent variable is the realized stock return. Independent variables are market

�, size measured as the log market value (log(Vt)); and the log of book-to-market ratio (log(Bt=Vt)): The

column denoted (FF) gives the empirical results obtained by Fama and French (1992), Table III, using the

actual returns of 2,267 �rms over 318 months. The column denoted (Benchmark) reports the regression

results for the benchmark model, the same as the last column in Table 8. The column denoted (High

Variance) reports the results from the model with perfect correlated shocks within each �rm but with the

calibrated parameter values �=0:51 and ��=2:82 such that �f =30%, which is higher than the benchmark

case when �f =25%. The column denoted (Low Persistence) reports the results from the model with perfect

correlated shocks within each �rm but with the calibrated parameter values �=0:40 and that �f remains

at the benchmark level of 25%. However, the persistence level is now lower. The regression coe�cients are

in percentage terms. The numbers in parenthesis are t-statistics.

FF Benchmark High Variance Low Persistence

log(Vt) -0.15 -0.138 -0.134 -0.133

(-2.58) (-2.583) (-2.246) (-2.669)

log[Bt=Vt] 0.50 0.079 0.084 0.085

(5.71) (1.866) (1.667) (2.205)

log(Vt) -0.11 -0.126 -0.120 -0.120

(-1.99) (-2.474) (-2.115) (-2.502)

log[Bt=Vt] 0.35 0.043 0.040 0.043

(4.44) (1.157) (0.887) (1.286)

� -0.37 1.026 1.000 0.938

(-1.21) (2.477) (2.032) (2.561)

log(Vt) -0.17 0.029 0.027 0.024

(-3.41) (0.449) (0.344) (0.402)

� � 0.892 0.891 0.831

� (2.933) (2.604) (2.992)

log[Bt=Vt] � 0.013 0.010 0.010

� (0.355) (0.204) (0.313)

� 0.15 0.913 0.914 0.846

(0.46) (3.007) (2.682) (3.086)
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Table 11 : Fama-French Regressions | Sensitivity Analysis

This table lists summary statistics for the coe�cients and the t-statistics of Fama-MacBeth regressions using

Estimated Portfolio �. The dependent variable is the realized stock return. Independent variables are market

beta �, size measured as the log market value (log(Vt)); and the log of book-to-market ratio (log(Bt=Vt)):

The column denoted (FF) gives the empirical results obtained by Fama and French (1992), Table III, using

the actual returns of 2,267 �rms over 318 months. The column denoted (Benchmark) reports the regression

results for the benchmark model, the same as the last column in Table 8. The column denoted (High

Variance) reports the results from the model with perfect correlated shocks within each �rm but with the

calibrated parameter values �=0:51 and ��=2:82 such that �f =30%, which is higher than the benchmark

case when �f =25%. The column denoted (Low Persistence) reports the results from the model with perfect

correlated shocks within each �rm but with the calibrated parameter values �=0:40 and that �f remains

at the benchmark level of 25%. However, the persistence level is now lower. The regression coe�cients are

in percentage terms. The numbers in parenthesis are t-statistics.

FF Benchmark High Variance Low Persistence

log(Vt) -0.15 -0.138 -0.134 -0.133

(-2.58) (-2.583) (-2.246) (-2.669)

log[Bt=Vt] 0.50 0.079 0.084 0.085

(5.71) (1.866) (1.667) (2.205)

log(Vt) -0.11 -0.126 -0.120 -0.120

(-1.99) (-2.474) (-2.115) (-2.502)

log[Bt=Vt] 0.35 0.043 0.040 0.043

(4.44) (1.157) (0.887) (1.286)

� -0.37 0.087 0.018 0.080

(-1.21) (0.273) (0.030) (0.269)

log(Vt) -0.17 -0.126 -0.131 -0.123

(-3.41) (-2.112) (-1.955) (-2.203)

� 0.15 0.557 0.488 0.556

(0.46) (2.031) (1.625) (2.162)
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Table 12 : Cross-Sectional Return Dispersion As a Predictor of Market Volatility

This table illustrates the intertemporal relation between market volatility and the lagged cross-sectional

return dispersion (RD). The volatility is measured by the absolute value of the market excess return.

Variations of the following model are estimated:

jR
e
t j = a+ b1RDt�1 + b21fRe

t�1
<0gRDt�1 + c1jR

e
t�1j+ c21fRe

t�1
<0gjR

e
t�1j+ �t

where jRe
t j ia the absolute value of the market excess return, RDt is the cross-sectional standard deviation

of the individual stock returns, 1fRe

t�1
<0g is a dummy variable that equals one when the market excess

return is negative and zero otherwise, and �t is the residual. All t-statistics are adjusted with respect to

heteroskedasticity and autocorrelation using Newey-West procedure. For the F -test on joint restrictions,

the p-values are in parentheses. Panel A is from Stivers (2000) who uses 400 �rm returns from July 1962 to

December 1995. Panel B is generated as the average coe�cients and statistics across repetitive simulations.

Panel A: Results from Stivers (2000)

Coe�cients b1 b2 c1 c2 Joint b1 = b2 = 0 Joint c1 = c2 = 0 R
2(%)

Restricted b1 = b2 = 0 -0.11 0.314 12.53 5.91

(-2.06) (4.37) (0.00)

Restricted c1 = c2 = 0 0.255 0.229 20.32 9.24

(3.04) (4.41) (0.00)

Full Model 0.365 0.111 -0.157 0.221 10.08 2.69 10.45

(3.61) (1.40) (-2.94) (1.84) (0.000) (0.069)

Panel B: Simulation Results

Coe�cients b1 b2 c1 c2 Joint b1 = b2 = 0 Joint c1 = c2 = 0 R
2(%)

Restricted b1 = b2 = 0 0.010 0.051 1.221 0.76

(0.151) (0.705) (0.404)

Restricted c1 = c2 = 0 0.969 0.069 5.820 3.01

(2.774) (1.564) (0.065)

Full Model 1.198 -0.008 -0.083 0.172 6.206 2.038 4.10

(3.09) (-0.138) (-1.203) (1.487) (0.038) (0.282)
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Figure 1 : Some Key Variables in Competitive Equilibrium

This Figure plots some key aggregate variables as functions of the common productivity shock log(X), the

sole exogenous state variable at the aggregate level. Panel A shows �e? or equivalently V a
=K in (26). Panel

B shows the ratio of total market value to aggregate capital stock, V=K, and Panel C shows the ratio of

aggregate value of assets-in-place to total market value, V a
=V . Panel D shows three aggragate level �s, �a

(solid line), e�a (dashed-dotted line), and �
o (dashed line), de�ned in (33).
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Figure 2 : Size and Book-to-Market in Cross-sectional Regressions

This Figure illustrates the size and book-to-market e�ects in the cross-sectional regressions of stock returns.

Panel A shows the histogram of t-statistic of univariate regressions of returns on size and Panel B shows the

histogram of t-statistic of univariate regressions of returns on book-to-market across 100 simulations. Panel

C reports the scatter plot of t-statistics on size and book-to-market and Panel D reports the scatter plot of

t-statistics on size and FF-� in a joint regression of returns.
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Figure 3 : Business Cycle Properties: I

This Figure illustrates the business cycle properties of some aggregate and cross-sectional variables. Panel

A shows V a
=V (the solid line) and ~V a

=V (the dashed line) as functions of x. Panel B shows the relation

between log price-dividend ratio, log(V=D), and x. Panel C reports the size (log(Vf )) dispersion as a function

of log(V=D) and Panel D shows the dispersion of book-to-market (log(Bf=Vf )) as a function of log(V=D).

Panel A: V a
=V and ~V a

=V Panel B: log(V=D)

−5 −4.8 −4.6 −4.4 −4.2
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

log(X)
−5 −4.8 −4.6 −4.4 −4.2

2.2

2.4

2.6

2.8

3

3.2

log(X)

Panel C: Size Dispersion Panel D: Book-to-Market Dispersion

2.2 2.4 2.6 2.8 3 3.2
0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

log(V/D)
2.2 2.4 2.6 2.8 3 3.2

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

log(V/D)

56



Figure 4 : Business Cycle Properties: II

This Figure illustrates the business cycle properties of some aggregate and cross-sectional variables. Panel

A shows the relations between market volatility and log(V=D) and Panel B shows the relation between beta

(�f ) dispersion as a function of log(V=D).

Panel A: Market Volatility Panel B: Beta Dispersion

2.2 2.4 2.6 2.8 3 3.2
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

log(V/D)
2.2 2.4 2.6 2.8 3 3.2

0.03

0.04

0.05

0.06

0.07

0.08

log(V/D)

Figure 5 : Return Dispersion over Business Cycle

This Figure illustrates the business cycle variation of return dispersion by plotting it against log(V=D).
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