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1 Introduction

Although the degree and type of diversification has evolved over time, diversified firms now

account for a large fraction of production and stock market capitalization in most of the

developed countries.1 Yet the research on corporate diversification has been essentially

limited to the uncovering of empirical regularities about the effects of diversification on

performance. As a consequence, standard microeconomic models largely abstract from the

issue altogether and simply assume that firms are homogenous producers specialized in the

production of a single good.

In this paper we propose a dynamic model of optimal firm diversification, with roots

in the work of Penrose (1959) and Panzar and Willig (1979), where firms seek to maximize

shareholder value. In our model, firms diversify for two reasons: (i) to explore new productive

opportunities after growth in current operations slows due to decreasing returns; and (ii)

to take advantage of synergies across different activities by reducing the fixed costs of

production.

The model is well suited to address the main empirical regularities about firm

diversification. First, it predicts that diversification is associated with low productivity in on-

going activities, as documented by Schoar (2001). Even before diversification takes place, a

firm that chooses to diversify is less productive than a firm choosing to remain focused.

Moreover, since diversification is likely triggered by further reductions in productivity,

conglomerates become even less productive after they diversify. Thus, even optimal

diversification is associated with low productivity, both in the cross-section and in the time

series.

Second, decreasing returns on investment mean that large firms are more likely to be

diversified. This leads to a negative correlation between size and the marginal productivity

of capital. Therefore, our model predicts that differences across focused and diversifying

firms are, to some extent, related to differences in size, as observed by Santalo (2001).

Finally, despite the fact that diversification maximizes value in our model, we are able

to generate the well-documented “diversification discount”: a conglomerate is likely to have

1This is true both in the US (Montgomery (1994), Villalonga (2001)), Japan (Goto (1981)) and the U.K.
(Goudie and Meeks (1982)), for instance.
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a lower value of Tobin’s Q than comparable stand-alone firms.2 This is largely due to the

selection pattern implied by the optimal diversification decision. A firm that chooses to

diversify is not very productive in the first place, while a firm that is productive in its

current activities has no interest in dividing resources. This self-selection explanation for

the observed discount is consistent with recent work by Chevalier (1999), Villalonga (2001)

and Graham, Lemmon and Wolf (2002) that show that the “diversification discount” can

actually disappear after controlling for the ex-ante differences across firms.

By emphasizing the role of technologies and costs, our approach to firm diversification

also provides a view of conglomerates that contrasts with much of existing literature. Much

of the early work on firm diversification has often been interpreted as supporting the view

that conglomerates are inefficient, and findings such as the “diversification discount” have

generally been explained by appealing to the agency and behavioral problems associated with

the existence of conglomerates.3 However, while focusing on the effects of diversification, this

literature has generally ignored the causes of the diversification decision itself. As a result,

this approach raises the more fundamental economic question of why do diversified firms exist

at all, if diversification is ex-ante inefficient? By contrast, in our model, although diversified

firms are also less efficient ex-post, this result is an endogenous outcome of an optimal

diversification strategy and not a direct consequence of an ex-ante inefficiency associated

with conglomerates.

A few other authors have also pursued a value maximizing approach to corporate

diversification. Maksimovic and Phillips (2002) build a static model of optimal allocation

of resources within conglomerates and show that such allocation depends on the relative

productivities in different segments. Matsusaka (2001) models diversification as an

intermediate, and less productive, stage in a search process over industries that best match

the firm’s organizational capabilities. When the perfect match is found, a firm specializes.

Finally, Bernardo and Chowdhry (2002) justify the existence of diversification discount by

assuming that specialized firms have growth options that potentially allow them to diversify

2See Wernefelt and Montgomery (1988), Lang and Stulz (1994), Berger and Ofek (1995), Campa and
Kedia (1999), Rajan, Servaes, and Zingales (2000), Graham, Lemmon, and Wolf (2001), and Lamont and
Polk (2001, 2002) among others.

3See Jensen (1986), Amihud and Levy (1981), Jensen and Murphy (1990), Shleifer and Vishny (1989),
and Stulz (1990), Denis, Denis and Sarin (1997), and Scharfestein and Stein (2000) among others.
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in the future, while conglomerates no longer have these growth options.

While our dynamic environment incorporates a few features from each of these models,

our analysis differs in two crucial ways. First, while all of them are designed to address a

single specific issue, we are able to provide a unified and consistent explanation for much of

the empirical evidence on firm diversification. Our environment is specifically built to deal

with the broad array of available evidence by endogenously linking productivity, size, and

valuations to diversification strategies. Second, we are able to generate a “diversification

discount” endogenously and not by assuming that diversification is ex-ante less valuable.

In our model this result stems from endogenous firm selection, an explanation that seems

consistent with the recent empirical evidence.

The rest of this paper is organized as follows. Section 2 describes our economic

environment and discusses our main assumptions. Section 3 characterizes the optimal

strategy of the firm and, in particular, its diversification decision. Section 4 establishes

our main empirical implications and Section 5 provides some final remarks.

2 Model

This section describes the optimal behavior of a single firm that is faced with the decision to

be diversified or not. To understand its behavior we consider a stylized environment where

production of a single good can take place in two separate industries or sectors. Although the

model can easily be extended to a larger number of industries, most of its current simplicity

would be lost. Moreover, as Lang and Stulz (1994) note, the loss in value associated with

diversification is caused by firms going from one to two segments, while the losses due to

increasing the number of segments beyond that are insignificant.

2.1 Firm Behavior

Consider the problem of a firm that can choose to operate in two separate sectors, s = 1, 2.

With a few restrictions, to be detailed below, the firm may engage in production in either

segment of the economy at any point in time. Depending on each industry’s anticipated

profitability, the firm may be active in sector 1, 2 or both. We will say that the firm is

diversified if it operates in both sectors simultaneously, and specialized if it is focused on one
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sector alone.

Production in either sector requires two inputs: capital, ks, and labor, ls, and is subject

to a sector-specific technology shock, zs. Labor is hired at the (constant) wage rate W > 0.

The space of inputs is a subset of the space of (non-negative) real numbers, K×L ⊆ R2
+. The

stochastic process for the shock has a bounded support Z = [z, z]× [z, z], −∞ < z < z < ∞.

Moreover define =z and =k as the minimal sigma-fields generated by Z and K, respectively.

Production in each sector, s, is carried out by according to the production function

F : K × L → R+

ys
t = zs

t F (ks
t , l

s
t ). (1)

Assumptions 1 and 2 summarize our restrictions regarding the nature of the production

function and the stochastic process for productivity.

Assumption 1 The production function F (•): (i) is continuously differentiable; (ii) is

strictly increasing; (iii) is strictly concave; (iv) satisfies the standard Inada conditions; and

(v) exhibits decreasing returns to scale in k and l.

Assumption 2 The technology levels zt = (z1
t , z

2
t ) follow a joint Markov transition function

Q(zt+1, zt) : Z×=z → [0, 1]× [0, 1] that: (i) is stationary, (ii) is monotone and (iii) satisfies

the Feller property. Let G(z) denote the invariant distribution of z.

While most of these assumptions are only imposed for technical reasons, two of them

play an important role on the optimal diversification strategy of the firm.

First, decreasing returns to scale and bounded productivity (from the stationarity of

Q(·)) imply that profit opportunities in each sector are also bounded. Hence, returns to

capital accumulation for a focused firm will fall as the firm grows until there is no further

incentive for expansion within the current sector. This creates something like a “free cash

flow” effect, where available funds are better used by exploring investment opportunities in

new segments. This mechanism provides a powerful motivation for firm diversification in

our model and is precisely the one explored empirically by Maksimovic and Phillips (2002)

and Cocco and Mahrt-Smith (2001).
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Second, as long as shocks to the technology levels z1
t and z2

t are not perfectly correlated,

firm diversification will also reduce the variance of cash-flows, providing the firm with another

incentive for diversification.

Finally, we assume that production in either sector requires payment of a fixed cost of

production, f ≥ 0. This cost must be paid each period the firm operates in the industry.

Diversified firms operate in both sectors but they save a fraction, 0 ≤ λ/2 ≤ 1, of the costs of

operating both technologies. This dilution of the fixed costs due to the presence of synergies

and the elimination of corporate redundancies is often cited as one of the major benefits of

corporate diversification. These economies of scale provide a final incentive for diversification

in our model. We make one final assumption regarding the magnitude of these fixed costs.4

Assumption 3 The fixed costs of production, f, are not too large, i.e. ∃k ∈ R+ : f ≤

zF (k, l).

Given the above assumptions, current profits for the firm when it specializes in sector s

are given by the expression:

π(st, kt, zt) = max
lst
{zs

t F (kt, l
s
t )−Wlst − f} , (2)

where W denotes the (constant) wage in terms of final goods and we use ks
t = kt. If the firm

chooses to become a conglomerate, operating in both sectors simultaneously, current profits

are:

π(3, kt, zt) = max
{l1t ,l2t ,θt}

{
z1

t F (k1
t , l

1
t ) + z2

t F (k2
t , l

2
t )−W (l1t + l2t )− (2− λ)f

}
, (3)

s.t. 0 ≤ θt ≤ 1

where we define the capital allocations as k1
t = θtkt and k2

t = (1− θt)kt, and the final term

in (3) recognizes the cost savings associated with firm diversification and is discussed above.

The existence of the profit function, π(s, k, z), is guaranteed by Assumption 1. Moreover,

it also follows immediately that π(s, k, z) is: (i) bounded, continuously differentiable, strictly

4Fixed costs also guarantee a minimum scale of production, thus forcing a firm to stay focused, unless
outside opportunities appear attractive enough. As we show below, given decreasing returns to scale and
without fixed costs a firm will always be diversified.
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increasing, and strictly concave in k ∈ K, (ii) bounded, continuous and strictly increasing

in z ∈ Z.

The dynamic nature of the model is captured by two endogenous transitions, regarding

capital accumulation and the optimal sectoral choices of the firm. The timing of the decisions

is illustrated in Figure 1 and is as follows. At the beginning of every period t the firm chooses:

(i) whether to operate one or both production units; (ii) the optimal allocation of inputs

across its different activities; and (iii) how much to invest for the future.

Figure 1: Timing of Events

t t+1
-

6

Firm arrives with
(st−1, kt, zt−1)

?

zt is revealed

6

Firm chooses
st and kt+1

Sectoral choices are constrained so that firms cannot simply “jump” across sectors, a

pattern not observed in the data. To accomplish this we assume that if the firm was

previously focused in sector s, it can only choose between remaining focused in the same

sector, or diversify and operate both production units. Diversified firms, on the other hand,

can choose to remain diversified, or specialize in either sector 1 or 2. We will also refrain

from modelling entry and exit decisions. Entry/exit will only complicate the model without

providing any new significant insight, beyond what our current setup can do, on the problem

at hand.

Finally, the evolution of the capital stock of the firm is described by the law-of-motion

kt+1 = (1− δ)kt + it, (4)

where it denotes gross investment spending, and δ is the rate depreciation of capital.
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2.2 Discussion

Our environment incorporates three of the most popular reasons for diversification to be

optimal strategy: the existence of synergies, the availability of “free” cash flows and pooling

of risk. Synergies are created by elimination of redundancies across business lines, such

as overhead. In our model, we capture this feature by introducing the savings parameter

λ. “Free” cash flows result from a firm’s excess capacity in valuable resources, that can be

transferred to other activities. As we have seen, decreasing returns to scale provide us with a

convenient way of formalizing this concept. As the firm grows in size, marginal productivities

fall and additional resources can be better allocated to new activities. This feature of our

environment is also consistent with the empirical observation that large firms are much more

likely to become diversified than smaller ones. Finally, as long as the two shocks z1
t and z2

t

are not identical firm diversification will also reduces cash flow risk.

Clearly, in the absence of trading frictions, risk pooling is not valued by investors, since

they can hedge this risk on their own. Synergies and decreasing returns, however, generate

value to shareholders. In both cases, production is more efficient and resources are saved

when operations are combined in a conglomerate.

Finally, as in Bernardo and Chowdhry (2002), our model also incorporates an option

to diversify in the valuation of a focused firm. In their work this is the key assumption to

generate the diversification discount. Here, however, diversification is not irreversible and the

diversified firm has the option to refocus in the future. Interestingly, this option is actually

more valuable since we assume that its segment choices are unconstrained.

To summarize we have introduced a fairly comprehensive model of dynamic firm behavior,

which incorporates several plausible benefits to corporate diversification while abstracting

from any of its potential drawbacks, such as those induced by agency problems. Nevertheless,

as we shall see, it is quite possible to find evidence of a diversification discount in this

environment.5

5explored in the literature such as greater debt capacity (Lewellen (1971)), monopoly power (Tirole
(1995)), and the existence of internal capital markets (Alchian (1969) and Williamson (1975)).

7



2.3 Optimality

As Figure 1 shows, the firm’s decisions at any period t are conditional on the current values

of the exogenous vector of productivity shocks zt, and on its beginning of period size, kt.

Moreover, its sectoral choices depend on its previous activities, st−1. To save on notation, we

will use s = 3 to denote a diversified firm and define the set S = {1, 2, 3}. Accordingly, let

the vector (s, k, z) ∈ S ×K ×Z denote the current state for a firm that was active in sector

s during last period, has k units of physical capital installed and faces a vector of technology

shocks z. As we have seen, this completely characterizes the information available to the firm

at the beginning on the period, before any decisions are made.

Given the recursive structure of the environment it is convenient to formulate the firm’s

problem using dynamic programming. Assuming that the firm maximizes the present

discounted value of future cash flows, its optimal market value, v(s, k, z), solves the following

Bellman equation:

v(s, k, z) = max
{k′,s′}

{
π(s′, k, z) + (1− δ)k − k′ + β

∫
v(s′, k′, z′)Q(dz′, z)

}
(5)

s′ ∈
{
{s, 3}, s = 1, 2

S, s = 3

where 0 < β < 1 is the discount factor for the owner of the firm.6

There are two components to the right hand side of the (5). The first term describes the

current period payoffs, equal to profits, defined by (2) and (3), minus investment spending,

described in (4). Note that current period profits depend on the current sectoral choice of

the firm, s′ = st+1. The last term captures the (discounted) expected continuation value

to the firm, which depends on the current decisions about capital accumulation, k′, sectoral

choice, s′, as well as the future productivity shocks z′. Finally, as discussed above, the

current sectoral choice of a previously focused firm, is constrained by a “no-switching” rule:

no firm can jump directly across sectors.

Proposition 1 establishes the existence of a unique function v(s, k, z), that satisfies (5),

while Proposition 2 lists some of its basic properties.

6To save notation we will use the convention that k′, z′, and s′ denote the value of the state variables at
the beggining of the next period.
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Proposition 1 There exists a unique function v(s, k, z) that solves the dynamic program

(5).

Proof. See Appendix A.

Proposition 2 The value function v(s, k, z), defined in (5) is: (i) continuous; and (ii)

increasing in both k and z.

Proof. See Appendix A.

Note that the value function is always increasing in the vector of shocks z = (z1, z2). In

other words, the value of the firm increases in each shock, regardless of whether the firm was

operating in that sector or not.

3 Optimal Corporate Strategy

In this section we use our model to explicitly characterize the optimal corporate strategies of

the firm. In our model, these strategies are summarized by a set of functions k′ = k(s, k, z),

and s′ = s(s, k, z), that characterize both the optimal size of the firm and the segments in

which it operates. We start by formally defining these optimal decisions and then proceed

to examine their basic properties.

3.1 Firm Decisions

Since S is a set of discrete numbers, the optimal industrial decision, s′ = s(s, k, z), can be

computed as follows. First, define the function

p(s′, k, z) ≡ max
k′

{
π(s′, k, z) + (1− δ)k − k′ + β

∫
v(s′, k′, z′)Q(dz′, z)

}
. (6)

as the value of the firm, conditional on having taken the sectoral decision s′ in the current

period.

The exact condition for optimal diversification depends on the number of activities of

the firm at the beginning of the period, s, since focused firms are not allowed to simply

switch industries. Hence for a firm previously specialized in sector s ∈ {1, 2}, diversification

is optimal if

p(3, k, z) ≥ p(s′, k, z) |s′=s= p(s, k, z) (7)
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while a previously diversified firm (s = 3) will remain diversified only if

p(3, k, z) ≥ max {p(1, k, z), p(2, k, z)} (8)

Hence, the optimal choice of segments can be summarized as:

s(s, k, z) =


1, if

{
p(1, k, z) > p(3, k, z) and s = 1
p(1, k, z) > max{p(2, k, z), p(3, k, z)} and s = 3

2, if

{
p(2, k, z) > p(3, k, z) and s = 2
p(2, k, z) > max{p(1, k, z), p(3, k, z)} and s = 3

3, else

, (9)

The optimal capital accumulation decision can be characterized in the same way. First,

define the optimal choice of capital conditional on the contemporaneous choice of segment

s′, as7

k∗(s′, z) ≡ arg max
k′

{
β

∫
v(s′, k′, z′)Q(dz′, z)− k′

}
. (10)

The optimal capital accumulation is then defined as:

k(s, k, z) ≡ k∗(s(s, k, z), z) (11)

Finally, it is worth noting that the value of the firm satisfies

v(s, k, z) = p(s(s, k, z), k, z) =

{
max {p(s, k, z), p(3, k, z)} , s ∈ {1, 2}
max {p(1, k, z), p(2, k, z), p(3, k, z)} , s = 3

. (12)

which implies that

v(3, k, z) = max {max {p(1, k, z), p(3, k, z)} , max {p(2, k, z), p(3, k, z)}}

= max {v(1, k, z), v(2, k, z)} . (13)

It follows that the value of a previously diversified firm is always at least as large as that of

a previously focused firm.

3.2 Optimal Diversification

Definitions

With these definitions at hand we can now examine the properties of the optimal

diversification strategies (7) and (8) in detail. Combining equations (6) and (7) we can

7Note that, conditional on the number of segments that the firm chooses to operate this period, s′, optimal
investment is independent of current size, k. Intuitively, without adjustment costs, capital always adjusts
immediately to its optimal level.
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decompose the diversification decision for a previously specialized firm, as follows:

p(3, k, z) ≥ p(s, k, z) ⇔ Π(s, k, z) + Ψ(s, z) ≥ (1− λ)f, s ∈ {1, 2} (14)

where

Π(s, k, z) ≡ π(3, k, z)− π(s, k, z) + (1− λ)f, (15)

and

Ψ(s, z) = Ψ(s′, z) |s′=s≡ max
k′

{
β

∫
v(3, k′, z′)Q(dz′, z)− k′

}
− (16)

−max
k′

{
β

∫
v(s, k′, z′)Q(dz′, z)− k′

}
.

Equation (14) decomposes the optimal diversification decision into two parts: a “profit”

component, Π(s, k, z), that results from comparing current period payoffs of the alternative

strategies, and an “option” component, Ψ(s, z), associated with the continuation payoffs.

Similarly, the optimal diversification decision for the previously diversified firm can be

written as

p(3, k, z) ≥ max {p(1, k, z), p(2, k, z)} ⇔ min
s∈{1,2}

{Π(s, k, z) + Ψ(s, z)} ≥ (1− λ)f. (17)

Lemma 3 summarizes the basic properties of the profit effect. Since the diversified firm

can always replicate a focused firm by allocating all capital to the relevant industry, its

profits (absent the fixed costs) can never be smaller. In addition, by operating in two

separate industries, a diversified firm will also have a higher return on capital. Finally, the

profits for a focused firm are more vulnerable to shocks to its current line of business.

Lemma 3 Let Π(s, k, z) be defined by (15). Then Π(s, k, z) is (i) non-negative; (ii) weakly

increasing in k; and (iii) decreasing in zs and increasing in zs̃, s 6= s̃.

Proof. See Appendix A

Lemma 4 contains the main properties of the “option” effect. Intuitively, given the

unrestricted options of diversified firms, this effect cannot be negative. In addition, and just

as with profits, the continuation value of a specialized firm is closely tied to its on-going

activities and thus is more sensitive to their fluctuations.
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Lemma 4 Let Ψ(s, z) be defined by (16). Then Ψ(s, z) is: (i) non-negative; and (ii)

decreasing in zs and increasing in zs̃, s 6= s̃.

Proof. See Appendix A

Diversification Threshold

Having established these basic results we can now examine the main properties of the optimal

diversification decision of the firm. We first show that this decision can be summarized by

something like an “indifference curve”, or, alternatively, a “diversification threshold”, in the

space of state variables.

Proposition 5 The optimal diversification decision can be characterized by the unique

threshold value:

k̂(s, z) = arg min
k
{s(s, k, z) = 3} , ∀(s, z) ∈ S × Z (18)

Proof. Consider the case of a previously specialized firm. The optimal diversification

threshold satisfies

Π(s, k̂(s, z), z) + Ψ(s, z) = (1− λ)f, ∀(s, z) ∈ S × Z (19)

Lemmas 3 and 4 imply that the left hand side is both non-negative and strictly increasing in

k. Hence, if diversification is optimal for k = k̂(s, z), it must also be optimal for k > k̂(s, z).

If the left hand side exceeds (1− λ)f then diversification is always optimal and k̂(s, z) = 0.

Now consider a previously diversified firm. Here the threshold is determined by

min
s∈{1,2}

{
Π(s, k̂(s, z), z) + Ψ(s, z)

}
= (1− λ)f, ∀z ∈ Z (20)

Again the left hand side is both non-negative and strictly increasing in k, since Π(s, k, z) +

Ψ(s, z) has these properties as well, and the result follows as above.

Figure 2 illustrates the determination of this optimal diversification threshold, k̂(s, z),

for a firm with a productivity vector z, which was previously engaged in segment s.
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Figure 2: Computing the Diversification Threshold

-

kk̂focus diversify

6

Value

0

Π(s′, k, z)

(1− λ)f −Ψ(s′, z)

The intuition for the result in Proposition 5 is fairly simple but quite important.

Diversification results from comparing current profits against expected continuations. As

we have already seen, fixed costs aside, current profits must be larger for a diversified firm

since it can allocate capital to take better advantage of production opportunities in two

sectors. The same is true of the continuation value, Ψ(s, z). Since a diversified firm has the

option to retrench into any sector, Ψ(s, z) can never be negative.

This implies that there is only one reason for the firm to remain focused: the higher

fixed costs associated with operating two separate technologies. As long as (1− λ)f is high

enough small firms will find it unprofitable to split their capital, since they cannot cover

these additional production costs. This result seems to agree with the empirical findings

that large firms are more likely to be diversified.

Corollaries 6 and 7 establish two properties of the optimal industrial strategy s(s, k, z).

Corollary 6 shows why the role of fixed costs is crucial in our analysis. Without them, profits

are always positive in both sectors and the firm would have no incentive to focus, given the

assumption of decreasing returns to scale. Corollary 7 shows that if synergies are sufficiently

large there is never an incentive for the firm to be focused.

Corollary 6 In the absence of fixed costs (f = 0), diversification is the optimal corporate

strategy.

13



Proof. In the absence of fixed costs inequality (14) is always satisfied.

Corollary 7 Suppose f > 0. Diversification is the optimal corporate strategy if λ ≥ 1, i.e.

synergies are sufficiently large.

Proof. Inequality (14) is always satisfied if λ ≥ 1.

Corollary 8, uses the complete symmetry between sectors in our economy, to establish a

useful property of the diversification threshold, k̂(s, z).

Corollary 8 Assume z1 = z2. Then k̂(1, z) = k̂(2, z).

Proof. This follows immediately from the symmetry of the problem.

Finally, we also show that the optimal threshold for a previously diversified firm, k̂(3, z),

is completely characterized by the threshold rules for previously focused firms k̂(1, z) and

k̂(2, z).

Proposition 9 The optimal threshold for a previously diversified firm, k̂(3, z) satisfies

k̂(3, z) = max
s∈{1,2}

k̂(s, z), ∀z ∈ Z

Proof. Consider the case where

Π(1, k̂(3, z), z) + Ψ(1, z) < Π(2, k̂(3, z), z) + Ψ(2, z)

then (20) implies that

Π(2, k̂(1, z), z) + Ψ(2, z) > Π(1, k̂(1, z), z) + Ψ(1, z) = (1− λ)f

and k̂(3, z) = k̂(1, z). But from (18) we know that

Π(2, k̂(2, z), z) + Ψ(2, z) = (1− λ)f

since Π(2, k, z) is increasing in k, it follows that

k̂(3, z) = k̂(1, z) > k̂(2, z)

The other case follows immediately.
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4 Empirical Implications

Despite its simplicity and generality, our model provides a useful framework to analyze a

number of empirical issues regarding the impact of diversification on firm performance. In

this section we address two such issues: the effects of diversification on productivity, and,

the “diversification discount”.

4.1 Diversification and Productivity

The implications of diversification for productivity have been empirically examined by

Lichtenberg (1992), and recently by Maksimovic and Phillips (2001, 2002) and Schoar

(2001). All of these authors use the Longitudinal Research Database provided by the

Bureau of Census. While Lichtenberg’s (1992) results are fairly ambiguous, both Schoar

and Maksimovic and Phillips (2001, 2002) find that acquired assets experience increase in

productivity after the ownership change. While we cannot explicitly deal with this evidence

in the context of our model note that this is clearly supportive of our optimal view of

diversification. More importantly however, Schoar (2001) also finds strong evidence that

diversifying firms experience a noticeable drop in productivity in incumbent plants, i.e.

those operated prior to the expansion. This effect actually dominates the gains in the new

plants and results in a net drop in firm productivity following diversification. This finding

is usually presented both as evidence, and as an explanation, for the traditional view that

diversification destroys value. In this section we show that this result is actually quite

consistent with our view of diversification as a value maximizing strategy.

To accomplish this, we first establish a few additional properties of the diversification

threshold k̂(s, z). These are summarized in Proposition 10 below.

Proposition 10 Let z = (zs, zs̃) and {s, s̃} = 1, 2. The diversification threshold, k̂(s, z), is:

(i) increasing in zs and, (ii) decreasing in zs̃.

Proof. Let z = (zs, zs̃) and ẑ = (zs + ∆zs, zs̃), with ∆zs > 0. It follows from equation

(19) that

Π(s, k̂(s, ẑ), ẑ) + Ψ(s, ẑ) = (1− λ)f.
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Lemmas 3 and 4 imply that both Π(·) and Ψ(·) are decreasing in zs. Since Π(·) is increasing

in k (also Lemma 3), it follows that k̂(s, ẑ) > k̂(s, z).

Analogously, let ẑ = (zs, zs̃+∆zs̃), with ∆zs̃ > 0. Since both Π(·) and Ψ(·) are increasing

in zs̃ (Lemmas 3 and 4), it follows that k̂(s, ẑ) < k̂(s, z).

Corollary 11 Let z = (zs, zs̃). The diversification threshold k̂(3, z) is: (i) increasing in zs

and decreasing in zs̃, for zs > zs̃; and, (ii) decreasing in zs and increasing in zs̃, for zs < zs̃.

Proof. Suppose zs > zs̃. It follows from Corollary 8 and Proposition 10 that

k̂(3, z) = k̂(s, z) > k̂(s̃, z). (21)

It follows from Proposition 5 that k̂(3, z) is increasing in zs and decreasing in zs̃. Now suppose

zs < zs̃, then

k̂(3, z) = k̂(s̃, z) > k̂(s, z).

and it follows that k̂(3, z) is decreasing in zs and increasing in zs̃.

Remark 12 For a fixed zs̃, the diversification threshold k̂(3, z) reaches a minimum at

zs = zs̃.

The results of Proposition 10 are illustrated in Figure 3. It plots the diversification

threshold for a firm previously specialized in sector 1, k̂(1, z).

Figure 3: The Diversification Threshold
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z1

focus

diversify

6k

0
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Remember that a firm entering the current period as focused in sector 1 has only

two choices: it can either remain in sector 1, or diversify and operate in both sectors

simultaneously. As we have seen above, the firm’s decision will depend on size, k, and

the value of productivity in both sectors, z1 and z2. The positive slope of k̂(1, z), implies

that, given their size, firms are more likely to remain focused when productivity is high in the

incumbent sector, z1, while diversification becomes optimal when this productivity becomes

too low.

This result has two very powerful implications for the empirical literature on the relation

between diversification and productivity. First, from a dynamic, or time series, standpoint,

diversification in our model is associated with lower productivity in incumbent operations, as

documented by Schoar (2001). Since, controlling for size, diversification occurs only when z1

falls below the threshold (given by the inverse of k̂(1, z)), ex-post total factor productivity

must be lower for diversifying firms. Second, from a static, or cross-sectional, viewpoint,

since firms closer to the threshold are more likely to diversify, it follows that, controlling for

size, their productivity must be lower than that of those focused firms less likely to diversify.

Hence, ex-ante productivity for diversifying firms is also below that of firms that choose to

remain focused firms.

Productivity and Size

Although we have focused on the role of productivity shocks holding size fixed, it is clear

that the optimal diversification decision also depends on the size of on-going operations. The

positive slope of k̂(1, z), implies that, for a given productivity vector, z, “small” firms are

much less likely to diversify than “large” firms. In this sense our model can produce a “size”

effect, documented by, among others, Santalo (2001). Given our assumption of decreasing

marginal returns, size is negatively related to the marginal productivity of capital. Hence,

the “size” effect will reinforce our findings that both ex-ante and ex-post productivity are

lower for diversifying firms. Note, however, that these results also imply that the “size”

effect does not account for all of the effects of diversification on productivity.
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4.2 The Diversification Discount

A significant number of studies find that conglomerates have a lower value for Tobin’s Q

and trade at a discount relative to a replicating portfolio of stand-alone firms.8 While this

puzzling result is usually attributed to the fact that conglomerates are inefficient and value

destroying, we show in this section that it can be rationalized in our model of optimal

diversification as well.

Conditional Discount

Let θ∗ be the optimal share of capital allocated to sector 1 by the conglomerate. We can

then construct a replicating portfolio by splitting this firm into two stand-alone units of size

θ∗k and (1− θ∗) k. The “diversification discount” can then be stated as:

D(z) = p (1, θ∗k, z) + p (2, (1− θ∗) k, z)− p (3, k, z) > 0 (22)

In other words, the market value of the replicating portfolio exceeds that of the conglomerate,

after conditioning for firm characteristics, in this case size and productivity. We can use the

definition of Tobin’s average q, for a firm that follow strategy s′ = s (s, k, z),

q (s′, k, z) ≡ p (s′, k, z)

k
, ∀s′ ∈ S,∀(k, z) ∈ K × Z (23)

and rearrange (22) to obtain an alternative formulation of the diversification discount:

D(z) = (θ∗q (1, θ∗k, z) + (1− θ∗) q (2, (1− θ∗) k, z))− q (3, k, z) > 0

Hence the diversification discount can also be stated as the difference between the weighted

average of q′s for the stand alone divisions and the value of Tobin’s q for the conglomerate

(See Lang and Stulz (1994)).

While this puzzling result is usually attributed to the fact that conglomerates are

inefficient and value destroying, we show below that it can be rationalized in our model

of optimal diversification as well. To prove this result we need to make use of the following

lemma.

8See Wernefelt and Montgomery (1988) and Lang and Stulz (1994) for example.
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Lemma 13 Define the function:

C(z) = max
k′

{∫
v(1, k′, z′)Q(dz′, z)− k′

}
+ max

k′

{∫
v(2, k′, z′)Q(dz′, z)− k′

}
(24)

−max
k′

{∫
v(3, k′, z′)Q(dz′, z)− k′

}
, ∀s′ ∈ S,∀(k, z) ∈ K × Z

Then C(z) ≥ 0, ∀z ∈ Z.

Proof. See Appendix A.

Proposition 14 shows that a diversification discount (conditional on both size and

productivity) exists if the synergies from diversification are not too large.

Proposition 14 Diversification leads to a discount if

λf ≤ C(z)

Proof. Note that (3) implies that

π(3, k, z) = π(1, θ∗k, z) + π(2, (1− θ∗)k, z) + λf

Using in valuation equation (6), it follows that the discount (22) can be written as:

D(z) = p(1, θ∗k, z) + p(2, (1− θ∗)k, z)− p(3, k, z) = C(z)− λf ≥ 0

The intuition for this striking result is quite simple. The basic benefit of diversification is

the creation of synergies that lower the fixed costs of production by λf . Diversification has

an important cost, however, when compared with a portfolio of specialized firms: while the

continuation value for a diversified firm is at least as high as that of the largest specialized

firm (equation (13)) it is simply smaller than the sum of the individual continuation values

for both stand-alone firms.9

Empirically, the fact that the discount depends on the extent of the synergies appears

quite plausible. Synergies are likely high when firms diversify into related industries, and

there is an ample empirical support for the view that related diversification leads to better

performance and a lower (or non-existent) diversification discount (for example Chevalier

(2000)).

9Alternatively, the diversified firm has less “flexibility” in its future decisions (Lemma 13), than a
comparable portfolio of firms.
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The Unconditional Discount

With a few exceptions, however, most measures of the diversification discount focus on the

following cross-sectional regression:

qi = α0 − α1di + α2 log(ki), (25)

where qi is the value of Tobin’s q, and di is a diversification dummy that takes the value of

1 if firm i is diversified and 0 otherwise. The coefficient α1 > 0 gives then an estimate of the

discount associated with diversification. Formally, this is equivalent to simply looking at the

sample averages of Tobin’s q across focused and diversified firms.

As Villalonga (2001) argues, this is only an unconditional measure of the diversification

discount, that, therefore, it fails to control effectively for differences in the ex-ante

propensities to diversify across firms. Since we explicitly account for the diversification

decision of the firm, our model seems naturally suited to address these selection issues.

In our context, as we have already seen, a firm is more likely to diversify when productivity

in on-going activities is quite low. Since the value function v(.) is increasing in z (Proposition

2), it follows that p(·), and hence q, is also increasing in productivity. Hence, diversifying

firms are also likely have relatively lower (unconditional) valuations, purely due to this

selection bias.

Unfortunately, it is not possible to analytically establish the conditions guaranteeing

that α1 > 0, and we will need to use a simple numerical example to illustrate this result.

Assume that technology is Cobb-Douglas, so that the profit function (2) has the following

representation:

π(s, k, z) = Aezs

kγ − f, 0 < γ < 1, s = 1, 2.

where the stochastic process for the productivity shocks is described by[
log z1

t+1

log z2
t+1

]
=

[
ρ 0
0 ρ

] [
log z1

t

log z2
t

]
+

[
ε1

t+1

ε2
t+1

]
,

and ε1
t and ε2

t are jointly normal random variables[
ε1

t

ε2
t

]
∼ N

[[
0
0

]
,

[
σ2 0
0 σ2

]]
.
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Table 1 summarizes our choice of the key parameter values.10

TABLE 1

Parameter Values
γ f σ ρ λ

0.9 0.1 0.025 0.95 0.5

With the help of these parameter choices, it is straightforward to (numerically) compute

the value function v(s, k, z), optimal corporate strategies, s′ = s (s, k, z) , and, the implied

values of Tobin’s q.

With these values at hand we can compute the implied value of the discount α1 in

our model. Table 2 shows that we can generate sizable discounts for several alternative

combinations of the most important parameters.

TABLE 2

Diversification Discount
Benchmark 0.227

λ = 0.4 0.183
f = 0.125 0.117

While the exact size of the discount naturally varies with the exact experiment, it is easy

to see that it is a relatively natural outcome of our model.

To summarize we find that our model can rationalize the documented, unconditional,

diversification discount. To a large extent this is a consequence of a the selection biases

introduced by failing to control for systematic productivity differences across firms. In

addition, it is also possible to obtain a diversification discount, even if one conditions on

all firm characteristics. This happens however only if the synergies associated with the

diversification are not too large.

5 Conclusions

In this paper we show that a general dynamic model of optimal behavior of a firm that

maximizes shareholder value is actually consistent with the main empirical findings about

10The remaining parametesr, β and δ, are not essential to our results. Nevertheless we use fairly standard
values with β = 1/1.065 and δ = 0.1. Finally we set A so that the average size of the firm equals 1.
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firm diversification and performance. Here, diversification is a natural result of firm growth

and it stems from dynamic firm strategies that maximize value. Diversification allows a firm

to explore new productive opportunities, while taking advantage of economies of scale and

reducing the volatility of its cash flows.

The dynamic structure of our model allows us to examine several aspects of the

relationship between firm diversification and performance in a very general setting. In

particular, we need not place any significant restrictions on the nature of functional forms

or parameter values in our model, beyond those already discussed. The very forces leading

to optimal diversification, are sufficient to generate a wealth of realistic features, regarding

firm diversification, size, productivity and valuations.

We obtain several important results. First, we can show that firms currently expanding

are not only less productive than other (non-expanding) focused firms, but they also

experience productivity losses after the expansion, as documented by Schoar (2001). Second,

as Santalo (2001), we find that size differences can account for part of the differences both

in productivity and valuation across focused and diversifying firms. However, we also show

that this size “effect”, can not account for all of these differences. Finally, and perhaps more

surprisingly, we show that despite all the obvious advantages to firm diversification and the

fact that firm diversification does not destroy value in our model, it is still possible to obtain

a diversification discount.
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A Proofs

Proof of Proposition 1. Define the operator

(Tv)(s, k, z) = max
{k′,s′}

{
π(s′, k, z) + (1− δ)k − k′ + β

∫
v(s′, k′, z′)Q(dz′, z)

}
, (A1)

s′ ∈
{
{s, 3}, s = 1, 2

S, s = 3
.

Let C(S ×K × Z) be the space of all bounded and continuous functions in S ×K × Z.

The proof is in two steps:

1. T : C(S ×K × Z) −→ C(S ×K × Z) (Lemma 1);

2. T is a contraction in C(S ×K × Z) (Lemma 2).

The Contraction Mapping Theorem then guarantees that there is a unique fixed point

that satisfies (A1).

Lemma 1 T : C(S ×K × Z) −→ C(S ×K × Z) .

Proof. Suppose v(s′, k′, z′) ∈ C(S ×K × Z). Since Q(dz′|z) has the Feller property it

follows from Lemma 9.5 in Stokey and Lucas (89) that∫
v(s′, k′, z′)Q(dz′, z) ∈ C(S ×K × Z).

Since π(s′, k, z) is also bounded and continuous, the result follows immediately.

Lemma 2 T is a contraction in C(S ×K × Z).

Proof. The proof uses Blackwell’s sufficient conditions for a contraction.

(a)Monotonicity.

Consider v1(s, k, z), v2(s, k, z) ∈ C(S × K × Z), such that v1(s, k, z) ≥ v2(s, k, z). It

follows that ∫
v1(s

′, k′, z′)Q(dz′, z) ≥
∫

v2(s
′, k′, z′)Q(dz′, z),

and hence

(Tv1)(s, k, z) ≥ (Tv2)(s, k, z).
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(b) Discounting

Let a ∈ R and v(s, k, z) ∈ C(S ×K × Z). It follows that

(Tv + a)(s, k, z) = v(s, k, z) + βa = (Tv)(s, k, z) + βa.

Proof of Proposition 2

• v(·, k, ·) is strictly increasing in k ∈ K.

Follows from Theorem 9.7 in Stokey and Lucas (1989).

• v(·, z) is strictly increasing in z ∈ Z.

Follows from Theorem 9.11 in Stokey and Lucas (1989).

Proof of Lemma 3 (i) Π(s, k, z) ≥ 0.

By definition

π(3, k, z) = π(1, θ∗k, z) + π(2, (1− θ∗)k, z) + λf

where θ∗ = θ(k, z), is the optimal share of capital allocated to sector 1. Clearly then

π(3, k, z) ≡
{

π(1, k, z)− (1− λ)f,
π(2, k, z)− (1− λ)f,

θ∗ = 1
θ∗ = 0

since θ∗ is chosen optimally it follows that

Π(s, k, z) = π(3, k, z)− π(s, k, z) ≥ 0

(ii) Monotonicity in k

Taking derivatives of π(3, k, z) with respect to k we obtain

∂π(3, k, z)

∂k
=

∂π(1, θ∗k, z)

∂(θk)

(
k
∂θ∗

∂k
+ θ∗

)
+

∂π(2, (1− θ∗)k, z)

∂(θk)

(
−k

∂θ∗

∂k
+ (1− θ∗)

)
Noting that the optimal choice of θ∗ implies

∂π(1, θ∗k, z)

∂(θk)
=

∂π(2, (1− θ∗)k, z)

∂(θk)
,
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we immediately obtain

∂π(3, k, z)

∂k
=

∂π(s′, θ∗k, z)

∂(θk)
≥ ∂π(s, k, z)

∂k
, s = 1, 2.

Where the inequality follows from the fact that the profit function is strictly concave and

θ ≤ 1. Since
∂Π(s, k, z)

∂k
=

∂π(3, k, z)

∂k
− ∂π(s, k, z)

∂k
≥ 0, s = 1, 2

(iii) Monotonicity in z.

Taking derivatives of π(3, k, z) with respect to zs and simplifying as in (ii) we obtain

∂π(3, k, z)

∂zs
=

∂π(s, θ∗k, z)

∂zs
+

∂π(s̃, (1− θ∗)k, z)

∂zs
=

∂π(s, θ∗k, z)

∂zs

since production in sector s̃ does not depend on the shock to sector i. Now, using the

envelope theorem and the profits definitions (3) and (2) yields

∂π(3, k, z)

∂zs
= F (θ∗ks, ·) ≤ F (ks, ·) =

∂π(s, k, z)

∂zs
.

and hence that
∂Π(s, k, z)

∂zs
≤ 0, s = 1, 2.

Monotonicity in zs̃ follows immediately from the fact that π(s, k, z) depends only on zs.

Proof of Lemma 4 (i) Ψ(s, z) ≥ 0.

First note that

v(3, k′, z′) = max {p(1, k′, z′), p(2, k′, z′), p(3, k′, z′)}

≥ max {p(s′′, k′, z′), p(3, k′, z′)} = v(s′, k′, z′),

∀(k′, z′) ∈ K × Z,∀s′′ ∈ {1, 2},

From monotonicity of Q(·) it follows that∫
max {p(1, k′, z′), p(2, k′, z′), p(3, k′, z′)}Q(dz′, z)

≥
∫

max {p(s′′, k′, z′), p(3, k′, z′)}Q(dz′, z),
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Hence for any value of z ∈ Z and any value of k′ ∈ K

β

∫
v(3, k′, z′)Q(dz′, z)− k′ ≥ β

∫
v(s′, k′, z′)Q(dz′, z)− k′.

Since this holds for every value of k′ it follows that it holds at the maximum and Ψ(s, z) ≥ 0.

(ii) Ψ(s, z) is decreasing in zs and increasing in zs̃, s 6= s̃.

Suppose zs >> zs̃. Then

p(s, k, z) >> p(s̃, k, z),

and consequently

v(3, k, z) ≈ max {p(s, k, z), p(3, k, z)} .

Given the monotonicity of Q(·) it follows that:∫
v(3, k′, z′)Q(dz′, z) ≈

∫
max {p(s, k′, z′), p(3, k′, z′)}Q(dz′, z) =

∫
v(s, k′, z′)Q(dz′, z),

and, therefore, Ψ(s, z) = 0.

Now suppose that the opposite is true, i.e. zs << zs̃. In that case

v(3, k, z) ≈ max {p(s̃, k, z), p(3, k, z)}

and∫
v(3, k′, z′)Q(dz′, z) ≈

∫
max {p(s̃, k′, z′), p(3, k′, z′)}Q(dz′, z) >

∫
v(s, k′, z′)Q(dz′, z).

which implies that Ψ(s, z) > 0. It follows from continuity of both v(·) and Q(·) that Ψ(s, z)

must fall with zs.

An identical argument can be constructed to establish that Ψ(s, z) increases with zs̃.

Proof of Lemma 13 Note that given Assumption 3, p(s′′, ·) ≥ 0. Hence

max
k′

{∫
p(s′′, ·)Q(dz′, z)− k′

}
≥ 0. Depending on the sectoral choice of the firm next period,

there are three possible outcomes for the maximizations:

(a) p(3, ·) ≥ max {p(2, ·), p(1, ·)}, and

max
k′

{∫
p(3, ·)Q(dz′, z)− k′

}
≤ max

k′

{∫
p(3, ·)Q(dz′, z)− k′

}
+ max

k′

{∫
p(3, ·)Q(dz′, z)− k′

}
;
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(b) p(3, ·) ≤ p(2, ·) ∧ p(3, ·) ≤ p(1, ·), then

max
k′

{∫
max {p(2, ·), p(1, ·)}Q(dz′, z)− k′

}
≤ max

k′

{∫
p(1, ·)Q(dz′, z)− k′

}
+ max

k′

{∫
p(2, ·)Q(dz′, z)− k′

}
;

(c) p(s′′1, ·) ≥ p(3, ·) ≥ p(s′′2, ·), s′′1, s
′′
2 ∈ {1, 2}, and

max
k′

{∫
p(s′′1, ·)Q(dz′, z)− k′

}
≤ max

k′

{∫
p(s′′1, ·)Q(dz′, z)− k′

}
+ max

k′

{∫
p(3, ·)Q(dz′, z)− k′

}
;

Hence, our result holds in all cases.
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