No. 2324
INFLATION TARGETS AND DEBT
ACCUMULATION IN A MONETARY UNION
Roel Beetsma and A Lans Bovenberg
INTERNATIONAL MACROECONOMICS

Centre for Economic Policy Researck

INFLATION TARGETS AND DEBT ACCUMULATION IN A MONETARY UNION

Roel Beetsma, Universiteit van Amsterdam and CEPR A Lans Bovenberg, CentER, Tilburg University and CEPR

Discussion Paper No. 2324
December 1999

Centre for Economic Policy Research 90-98 Goswell Rd, London EC1V 7RR
Tel: (44 20) 7878 2900, Fax: (44 20) 78782999
Email: cepr@cepr.org, Website: http://www.cepr.org

This Discussion Paper is issued under the auspices of the Centre's research programme in International Macroeconomics. Any opinions expressed here are those of the author(s) and not those of the Centre for Economic Policy Research. Research disseminated by CEPR may include views on policy, but the Centre itself takes no institutional policy positions.

The Centre for Economic Policy Research was established in 1983 as a private educational charity, to promote independent analysis and public discussion of open economies and the relations among them. It is pluralist and non-partisan, bringing economic research to bear on the analysis of medium- and long-run policy questions. Institutional (core) finance for the Centre has been provided through major grants from the Economic and Social Research Council, under which an ESRC Resource Centre operates within CEPR; the Esmée Fairbairn Charitable Trust; and the Bank of England. These organizations do not give prior review to the Centre's publications, nor do they necessarily endorse the views expressed therein.

These Discussion Papers often represent preliminary or incomplete work, circulated to encourage discussion and comment. Citation and use of such a paper should take account of its provisional character.

Copyright: Roel Beetsma and A Lans Bovenberg

ABSTRACT
 Inflation Targets and Debt Accumulation in a Monetary Union*

This Paper explores the interaction between centralized monetary policy and decentralized fiscal policy in a monetary union. Discretionary monetary policy suffers from a failure to commit. Moreover, decentralized fiscal policy-makers impose externalities on each other through the influence of their debt policies on the common monetary policy. These imperfections can be alleviated by adopting state-contingent inflation targets (to combat the monetary policy commitment problem) and shock-contingent debt targets (to internalize the externalities due to decentralized fiscal policy).

JEL Classification: E52, E58, E61, E62
Keywords: discretionary monetary policy, decentralized fiscal policy, monetary union, inflation targets, debt targets

Roel Beetsma
Department of Economics
Universiteit van Amsterdam
roetersstraat 11
1018 WB Amsterdam
THE NETHERLANDS
Tel: (31 20) 5255280
Fax: (31 20) 5254254
Email: beetsma@fee.uva.nl
A Lans Bovenberg
Tilburg University
Economics Department,
Room B-422
PO Box 90153
5000 LE Tilburg
THE NETHERLANDS
Tel: (31 13) 4662912
Fax: (31 13) 4663042
Email: a.l.bovenberg@kub.nl

[^0]Submitted 8 November 1999

NON-TECHNICAL SUMMARY

In the European Monetary Union (EMU) monetary policy is decided at the central level by the European Central Bank (ECB), while fiscal policy is decentralized and conducted at the national level. This Paper explores the interaction between a centralized monetary policy and decentralized fiscal policies in a monetary union. If the union central bank were completely independent, one would expect little interaction between fiscal and monetary policy-making. Irrespective of the fiscal policies pursued by the national authorities, a completely independent central bank would only be concerned with price stability. However, we are sceptical that this will be the case in reality. Even though the Maastricht Treaty endows the ECB with a high degree of independence, it is hard to imagine the ECB standing by completely unmoved, no matter what happens on the fiscal front. The analysis in this Paper therefore takes the perspective that the common, union central bank can indeed be influenced by the national fiscal policies.

We allow for the possibility that the common central bank pursues a strategy of state-contingent inflation targeting. Although the ECB has announced a two-tier monetary policy strategy based on a reference value for money growth and an indicator that is composed of a large number of other measures (such as output gaps, inflation expectations, etc.), it may well shift over time to implicit inflation targeting (i.e. inflation targeting in practice, although not in name). A number of economists have argued that this is what the Bundesbank has actually done in the past. Indeed, the limited amount of evidence so far suggests that the reference value for M3 money growth, 4.5% on a yearly basis, has been taken less seriously than one might have expected in advance. During the first ten months of EMU existence, broad money growth has rather substantially exceeded its reference value, without the ECB responding by raising the nominal interest rate (in April 1999 the ECB even lowered the interest rate). Apparently, given the situation on the labour markets and the low inflation rate in the Euro area, the ECB saw no reason to restrict monetary policy to the extent needed to keep money growth close to its reference value. Of course, in assessing the performance of the ECB, one needs to take into account that the common monetary policy has been in place for a short period only and that the ECB may still be in search of the appropriate reference value for money growth.

This Paper builds on our earlier work in Beetsma and Bovenberg (1999). There we show that monetary unification raises debt accumulation, because in a monetary union countries only partly internalize the effects of their debt policies on future monetary policy. We showed that, in the absence of shocks, making the central bank sufficiently conservative (by imposing on the central
bank a loss function that attaches a sufficiently high weight to price stability) can lead the economy to become second best. We also demonstrate that this result no longer holds in the presence of common shocks, as economies are then confronted with a trade-off between credibility and flexibility.

While Beetsma and Bovenberg (1999) emphasizes the effects of a lack of commitment in monetary policy, this Paper introduces another complication in the form of strategic interactions between decentralized fiscal policy-makers who hold different views on the preferred stance of the common monetary policy. These different views originate in differences among the economies in the monetary union. In particular, we allow for systematic differences in labour and product market distortions, public spending requirements and initial public debt levels. The incorporation of such systematic differences seems particularly realistic in the context of EMU, because the Euro area features large cross-country differences in public debt levels, unemployment and price levels for similar services or goods. Differences in unemployment and price levels may be attributable to different degrees of distortions in the relevant markets. We allow not only for systematic differences among countries but also for idiosyncratic stochastic shocks hitting the economies.

The combination of cross-country differences and the decentralization of fiscal policy produces conflicts between the countries about the future stance of the common monetary policy. As a direct consequence, countries employ their debt policy strategically to induce the union's central bank to move the common monetary policy into the direction they prefer. In particular, countries that suffer from severe distortions in labor and product markets, feature large public spending requirements or high initial debt levels, or are hit by bad idiosyncratic shocks accumulate additional public debt so as to encourage the central bank to make monetary policy more expansionary. This strategic behaviour imposes negative externalities on other countries, thereby producing welfare losses.

We explore how the distortions in the model (i.e. the failure to commit monetary policy and strategic debt policy) may be alleviated through appropriate institutional adjustments. In the special case of identical countries, imposing a state-contingent inflation target on the common central bank leads the economies to become second best. In particular, the inflation target needs to be made contingent on the average union debt level. More debt accumulation leads to higher expected future inflation and therefore requires a tightening of the inflation target. With fiscal policy decentralized to heterogeneous countries, however, the optimal state-contingent inflation target needs to be complemented by country-specific debt targets to establish the second best. In this way, inflation targets address the lack of commitment in monetary policy, while debt targets eliminate the strategic interaction among
heterogeneous governments with different views about the common monetary policy.

We emphasize that the debt targets that are part of the optimal institutional set-up should be country-specific, unlike the restrictions that the Maastricht Treaty and the Stability and Growth Pact impose on the EMU participants. In particular, our debt targets are differentiated according to the differences in initial debt and countries' specific time profiles in product and labour market distortions. In addition, the debt targets have be adjusted for unexpected asymmetric shocks.

The analysis assumes that the inflation and debt targets are credible. Inflation targets may be enforced by giving the central banker financial incentives to meet the target or by making reappointment of the central banker dependent upon achievement of the target. Also, reputational considerations may induce the central banker to stick to the inflation target.

Debt targets may be enforced through peer pressure and fines (such as conforming to the Stability and Growth Pact), although many people are sceptical whether this will work in practice. Further research should therefore pay attention to the question of whether and how debt targets (or other budgetary restrictions) can be enforced. Such an analysis would model the incentives of individual governments to enforce the compliance of other countries to the targets. It would also require a dynamic framework that takes into account reputational considerations. Indeed, the incentives to enforce adherence to the targets are likely to depend on how a failure to enforce the targets affects the future behaviour of governments.

1. Introduction

Although the M aatricht Treaty has laid the institutional foundations for E uropean M onetary Union (EMU), how these institutions can best be operated in practice remains to be seen in the coming years. For example, the E uropean Central Bank (ECB) has announced a two-tier monetary policy strategy based on a reference value for money growth and an indicator that is based on a number of other measures, such as output gaps, in \ddagger ation expectations, etcetera (see European Central Bank, 1999). Over time the ECB may well shift to implicit targeting of in \ddagger ation. Indeed, a number of economists has argued (e.g, see Svensson, 1998) that also the Bundesbank has pursued such a strategy. Furthermore, how the Excessive De..cit Procedure and the Stability and Growth Pact (see B eetsma and Uhlig, 1999) will work in practice is not yet clear.

This paper deals with the interaction between in \ddagger ation targets and constraints on decentralized ..scal policy in a monetary union. To do so, we extend our earlier work on the interaction between a common monetary policy and decentralized ..scal policies in a monetary union. In particular, in Beetsma and Bovenberg (1999) we showed that monetary uni..cation raises debt accumulation, because in a monetary union countries only partly internalize the eaects of their debt policies on future monetary policy. This additional debt accumulation is actually welfare enhancing (if the governments share societal preferences). We showed that, in the absence of shocks, making the central bank suф ciently conservative (in the sense of Rogow, 1985, that is by imposing on the central bank a loss function that attaches a su申 ciently high weight to price stability) can lead the economy to the second-best equilibrium. However, this is no longer the case in the presence of common shocks, as the economies are confronted with a trade ox between credibility and \ddagger exibility.

While Beetsma and Bovenberg (1999) emphasized the exects of lack of commitment in monetary policy, this paper introduces another complication in the form of strategic interactions between decentralized ..scal policymakers who have dixerent views on the stance of the common monetary policy. ${ }^{1}$ These dixerent views originate in dixerences among the economies in the monetary union. In particular, we allow for systematic dixerences in labour and product market distortions, public spending requirements and initial public debt levels. We also allow for idiosyncratic stochastic shocks hitting the countries. In combination with the decentralization of ..scal policy these dixerences lead to con $\ddagger i c t s$ about the preferred future stance of the common monetary policy. In particular, countries that sumer from severe distortions in labor and commodity markets, feature

[^1]higher public spending or initial debt levels or are hit by worse shocks prefer a laxer future stance of monetary policy. These con \ddagger icts about monetary policy induce individual governments to employ their debt policy strategically, so as to induce the union's central bank to move monetary policy into the direction they prefer. This strategic behavior imposes negative externalities on other countries, thereby producing welfare losses.

In contrast to Beetsma and Bovenberg (1999), we do not address the distortions in the model by making the common central bank sut ciently conservative. Instead, we focus on state-contingent in \ddagger ation targets which, in contrast to a conservative central bank, can lead the economy to the second-best equilibrium if countries are identical. Hence, as stressed by Svensson (1997) in a model without ..scal policy and debt accumulation, in \ddagger ation targets eliminate the standard credibility- \ddagger exibility trade-ow. If ..scal policy is decentralized to heterogeneous countries, however, the optimal state-contingent in \ddagger ation targets need to be complemented by (country-speci..c) debt targets to establish the second best. In this way, in \ddagger ation targets address the lack of commitment in monetary policy, while debt targets eliminate strategic interaction among heterogeneous governments with dixerent views about the common monetary policy stance.

The remainder of this paper is structured as follows. Section 2 presents the model. Section 3 discusses the second-best equilibrium in which not only monetary but also ..scal policy is centralized and in which monetary policy is conducted under commitment. This is the second-best optimum that can be attained under monetary uni..cation, assuming that the supranational authorities attach an equal weight to the preferences of each of the participating countries. Section 4 derives the equilibrium for the case of a common, discretionary monetary policy with decentralized ..scal policies. Section 5 explores institutional arrangements (i.e. in \ddagger ation targets and public debt targets) that may alleviate the welfare losses arising from the lack of monetary policy commitment and the wasteful strategic interaction among the decentralized governments. Finally, Section 6 concludes the main body of this paper. The derivations are contained in the appendix.

2. The model

A monetary union, which is small relative to the rest of the world, is formed by n countries. ${ }^{2}$ A common central bank (CCB) sets monetary policy for the entire union, while ..scal policy is determined at a decentralized, national level by the n governments. There are two periods.

[^2]W orkers are represented by trade unions who aim for some target real wage rate (e.g. see A lesina and Tabellini, 1987, and J ensen, 1994). They set nominal wages so as to minimize the expected squared deviation of the realized real wage rate from this target. M onetary policy (i.e., the in \ddagger ation rate) is selected after nominal wages have been ..xed. In each country, ..rms face a standard production function with decreasing returns to scale in labour. Output in period t is taxed at a rate $i_{i t}$. Therefore, output in country i in periods 1 and 2 , respectively, is given by ${ }^{3}$

$$
\begin{align*}
& x_{i 1}=0\left(1 / 4 i i_{1}^{1 / Q} i \quad i_{i 1}\right) i^{1} i^{2}{ }_{i} ; \tag{2.1}\\
& x_{i 2}=0\left(1 / 4 i{ }^{1 / 2 / 2} i i_{i 2}\right) ; \tag{2.2}
\end{align*}
$$

where ${ }^{1}$ represents a common union-wide shock, while ${ }^{2}$ i stands for an idiosyncratic shock that solely hits country i. $1 / \not / \notin$ denotes the in \ddagger ation rate for period t expected at the start of period t (that is, before period t shocks have materialized, but after period $\mathrm{t} \boldsymbol{i} 1 ; \mathrm{t}$; $2 ;:$ shocks have hit). We assume that $E\left[{ }^{2}{ }_{\mathrm{i}}\right]=0 ; 8 \mathrm{i}$; $E\left[{ }^{1}\right]=0 ; E\left[{ }^{2}{ }^{2}{ }_{j}\right]=0 ; 8 j G i ;$ and that ${ }^{2}{ }^{1} \frac{1}{n}^{P}{ }_{i=1}^{n}{ }^{2}{ }_{i}=0 .{ }^{4}$ The variances of ${ }^{1}$ and ${ }^{2}$ i are given by $3 / 4$ and $3 / 4$, respectively. We abstract from shocks in the second period, because they would not axect debt accumulation.

Each country features a social welfare function which is shared by the government of that country. Hence, governments are benevolent. In particular, the loss function of government i is de..ned over inłation, output and public spending:

$$
\begin{equation*}
V_{S ; i}=\frac{1}{2}_{t=1}^{X^{2}}-t_{i} 1{ }_{®_{2 / 4} / 2 / t}+\left(x_{i t} i x_{i t}\right)^{2}+®_{\mathrm{g}}\left(g_{i t} i \quad g_{t t}\right)^{2^{i}} ; 0<^{-} \quad 1 ; ®_{\Omega / ;} ®_{\mathrm{g}}>0: \tag{2.3}
\end{equation*}
$$

Welfare losses increase in the deviations of in \ddagger ation, (log) output and government spending (g_{it} is government spending as a share of output in the absence of distortions) from their targets (or ..rst-best levels or "bliss points"). For convenience, the target level for in \ddagger ation corresponds to price stability. The target level for output is denoted by $x_{1 t}>0$. T wo distortions reduce output below this optimal level. First, the output tax iit drives a wedge between the social and private bene.ts of additional output. Second, market power enables unions to drive the real wage above its level in the absence of distortions. Hence, even in the absence of taxes, output is below the ..rst-best output level $x_{1 t}>0$. The ..rst-best

[^3]level of government spending, $g_{1 t}$, can be interpreted as the optimal share of nondistortionary output to be spent on public goods if (non-distortionary) lump-sum taxes would be available (see Debelle and Fischer, 1994). The target levels for output and government spending can dixer across countries. Parameters $®_{1 / 4}$ and $®_{\mathrm{g}}$ correspond to the weights of the price stability and government spending objectives, respectively, relative to the weight of the output objective. Finally, ${ }^{-}$ denotes society's subjective discount factor.

Government i's budget constraint can be approximated by (e.g., see A ppendix A in Beetsma and Bovenberg, 1999):

$$
\begin{equation*}
g_{i t}+\left(1+{ }^{1} / \mathrm{d}_{\mathrm{i} ; \mathrm{t}_{\mathrm{i}} 1}=\dot{c i t}+\hat{A}^{1 / 4}+\mathrm{d}_{\mathrm{it}} ;\right. \tag{2.4}
\end{equation*}
$$

where $\mathrm{d}_{\mathrm{i}, \mathrm{t}_{\mathrm{i}} 1}$ represents the amount of public debt carried over from the previous period into period t , while d_{it} stands for the amount of debt outstanding at the end of period t. All public debt is real, matures after one period, and is sold on the world capital market against a real rate of interest of $1 / 2$ This interest rate is exogenous because the countries making up the monetary union are small relative to the rest of the world. ${ }^{5}$ iit and \hat{A} (a constant) stand for, respectively, distortionary tax revenue and real holdings of base money as shares of non-distortionary output. All countries share equally in the seigniorage revenues of the CCB, so that the seigniorage revenues accruing to country i amount to $\hat{A}^{1} / 4$.

We combine (2.4) with the expression for output, (2.1) or (2.2), to eliminate ¿it. The resulting equation can be rewritten to yield the government ..nancing requirement of period t :

$$
\begin{align*}
G F R_{i t} & =K_{i t}+\left(1+{ }_{1 / 2} d_{i, t i} 1 i d_{i t}+t_{t}\left(1+2_{i}\right) \xlongequal{0}\right. \\
& =\left[\left(x_{i t} i x_{i t}\right)=0\right]+\hat{A}^{1 / 4}+\left(g_{t} i g_{i t}\right)+(1 / 4 i 1 / e) ; \tag{2.5}
\end{align*}
$$

where \ddagger_{t} is an indicator function, such that $\pm_{1}=1$ and $\pm_{2}=0$, and where

$$
K_{i t} g_{i t}+x_{i t}=0 .
$$

The government ..nancing requirement, GF R_{it}, consists of three components. The ..rst component, $K_{i t}$, amounts to the government spending target, $\boldsymbol{g}_{i t}$, and an output subsidy aimed at oxsetting the implicit output tax due to labor- or productmarket distortions, $x_{11}=$. T he second component involves net debt-servicing costs,

[^4]$\left(1+{ }^{1 / 2} d_{i ; t_{i}} 1 i d_{i t}\right.$. The ..nal component (in period 1 only) is the stochastic shock (scaled by $\underline{0}$), $\left({ }^{1}+{ }^{2}\right)=$. The last right-hand side of (2.5) represents the sources of ..nance: the shortfall (scaled by $\varrho^{\text {) }}$) of output from its target (henceforth referred to as the output gap), (x_{it} i x_{it}) $\xlongequal{0}$, seigniorage revenues, $\hat{A}^{11 / 4}$, the shortfall of government spending from its target (henceforth referred to as the spending gap), $g_{\mathrm{it}} \mathrm{i} \mathrm{g}_{\mathrm{it}}$, and the in \ddagger ation surprise, $1 / 4$ i $1 / 4$.

All public debt is paid ow at the end of the second period $\left(d_{i 2}=0 ; i=\right.$ $1 ;::$; n). Under this assumption, while taking the discounted (to period one) sums of the left- and right-hand sides of (2.5) ($t=1 ; 2$), we obtain the intertemporal government ..nancing requirement:

$$
\begin{align*}
& \text { I GF } R_{i}=F_{i}+\left({ }^{1}+{ }_{i}{ }_{i}\right)=0 \\
& =X_{t=1}^{X^{2}}\left(1+1_{1} 1^{i\left(t_{i} 1\right)}\left[\left(x_{1 t} i \quad x_{i t}\right)=0+\hat{A}^{1 / 4}+\left(\begin{array}{ll}
g_{t t} i & g_{i t}
\end{array}\right)+\left(\begin{array}{ll}
1 / 4 & 1 / 4
\end{array}\right)\right] ;\right. \tag{2.6}
\end{align*}
$$

where $F_{i}^{\prime} \quad K_{i 1}+\left(1+{ }^{1} \neq d_{i 0}+K_{i 2}=\left(1+{ }^{1} \mathcal{A}\right.\right.$ stands for the deterministic component of the intertemporal government ..nancing requirement.

M onetary policy is delegated to a common central banker (CCB), who has direct control over the union’s in \ddagger ation rate. One could assume that the CCB has certain intrinsic preferences regarding the policy outcomes. Alternatively, and this is the interpretation we prefer, one could assume that the CCB is assigned a loss function by means of an appropriate contractual agreement. M ore speci..cally, this agreement shapes the CCB's incentives in such a way (by appropriately specifying its salary and other bene..ts - for example, possible reappointment - conditional on its performance) that it chooses to maximize the following loss function:

$$
\begin{equation*}
\left.V_{C C B}=\frac{1}{2}_{t=1}^{x^{2}-t_{i} 1} \circledR_{1 / 4}\left(1 / 4 i^{1 / 4}\right)^{2}+\frac{1}{n}_{i=1}^{x n}\left(x_{i t} i \quad x_{i t}\right)^{2}+®_{g}\left(g_{i t} i \quad g_{t t}\right)^{2^{i}}\right) ; \tag{2.7}
\end{equation*}
$$

where $1 / 4$ is the in \ddagger ation target in period t , which may be dixerent from the socially-optimal in \ddagger ation rate, which was set at zero.

If $1 / 4 / 4 /{ }^{2}=0$, the CCB's objective function corresponds to an equallyweighted average of the individual societies' objective functions. We assume that $1 / \frac{1}{2}$ is a linear function of $d_{i 1} ; i=1 ;:: ; n$. This linearity assumption suq ces for our purposes: we will see later on that the optimal second-period in¥ation target is indeed a linear function of $d_{i 1} ; i=1 ;:: ; n$. The optimal ..rst-period in \ddagger ation target will be a function of $d_{i 0}$, which is exogenous.

3. The second-best equilibrium

As a benchmark for the remainder of the analysis, we discuss the equilibrium resulting from centralized ..scal and monetary policies under commitment. M onetary policy is set by the CCB. Fiscal policy is conducted by a centralized ..scal authority, which minimizes:

$$
\begin{equation*}
V_{U}{ }^{\prime}{ }_{\frac{1}{n}}{ }_{i=1}^{n} V_{S ; i} ; \tag{3.1}
\end{equation*}
$$

where the $\mathrm{V}_{\mathrm{s} ; \mathrm{i}}$ are given by (2.3), $\mathrm{i}=1 ;$::; n . Equation (3.1) assumes that countries have equal bargaining power as regards to the ..scal policy decisions taken at the union level. Government spending is residually determined, so that the CCB, when it selects monetary policy, internalizes the government budget constraints. The resulting equilibrium is Pareto optimal. In the sequel, we refer to this equilibrium as the second-best equilibrium. In the absence of ..rst-best policies (such as the use of lump-sum taxation and the elimination of product- and labormarket distortions), it is the equilibrium with the smallest possible welfare loss (3.1), given monetary uni..cation. The derivation of the second-best equilibrium is contained in Appendix A.

3.1. In \ddagger ation, the output gap and the public spending gap

Table 1 contains the outcomes for in \ddagger ation, the output gap, ${ }^{6} x_{i t}$ i $x_{i t}$, and the spending gap, $g_{t \mathrm{t}} \mathrm{i} \mathrm{g}_{\mathrm{it}}$. We write each of these outcomes as the sum of two deterministic and two stochastic components. $\mathrm{F}_{\mathrm{i}}^{-4}$ is the deviation of country i 's deterministic component of its intertemporal government ..nancing ${ }_{P}$ requirement from the cross-country average, de. ned by F. Formally, F, $\frac{1}{n}{ }^{p}{ }_{j=1} F_{j}$ and $\mathrm{F}_{\mathrm{i}}^{4}{ }^{\prime} \mathrm{F}_{\mathrm{i}} \mathrm{F}$. The factor between square brackets in each of the entries of Table 1 makes clear how, within a given period, the government ..nancing requirement is distributed over the ..nancing sources (seigniorage, the output gap, the spending gap and an in \ddagger ation surprise). Indeed, for each period these factors add up to unity, both across the deterministic and across the stochastic components. For example, for the ..rst period one has:

[^5]\[

$$
\begin{align*}
& =K_{i 1}+\left(1+{ }^{1 / 2} d_{i 0} i d_{i 1}^{S}+\left(1+{ }^{2}\right)=0\right. \text {; } \tag{3.2}
\end{align*}
$$
\]

where $d_{i 1}^{S}$ is the second-best debt level. The last equality can be checked by substituting (3.4)-(3.7) into (3.3) (all given below) and substituting the resulting expression into the last line of (3.2). For each of the outcomes, the terms that follow the factor in square brackets regulate the inter temporal allocation of the intertemporal government ..nancing requirement.

The coed cients of the common stochastic shock $\underset{\underline{o}}{1}$ (in the fourth column of Table 1, ${ }^{\circ}{ }_{2}$) dixer in two ways from the coed cients of the common deterministic component of the intertemporal government ..nancing requirement $F \sim$ (in the second column of Table $1,{ }^{\circ}{ }_{0}$). The ..rst dixerence is with respect to the ..rstperiod, intratemporal, allocation of the government ..nancing requirement over the ..nancing sources. The deterministic components of the government ..nancing requirement are anticipated and thus correctly incorporated in expected in $\ddagger a-$ tion. The common shock, in contrast, is unanticipated and, hence, not taken into account when in \ddagger ation expectations are formed. The predetermination of the in\ddagger ation expectation is exploited by the central policymakers so as to ..nance part of this common shock through an in \ddagger ation surprise. Indeed, whereas the coed cient of $1 / 4 \mathrm{i}$ $1 / 4$ is zero in the second column in Table 1, this coed cient is positive in the fourth column, indicating that part of the common shock is ..nanced through an in \ddagger ation surprise in the ..rst period. W ith surprise in \ddagger ation absorbing part of the common shock, the output gap and the spending gap have to absorb a smaller share of this shock.

In the second period, the allocation over the ..nancing sources for the stochastic component $\frac{1}{\circ}$ is the same as for the deterministic component $F \sim$. The reason is that the ..rst-period shock $\underset{\underline{o}}{\underline{o}}$ has materialized before second-period in \ddagger ation expectations are formed. The exect of $\frac{1}{\underline{o}}$ on the second-period outcomes will thus be perfectly anticipated. Indeed, the share of $\frac{1}{\underline{o}}$ that is transmitted into the second period through debt policy becomes part of the deterministic component of the second-period government ..nancing requirement (when viewed from the start of the second period).

The second way in which the coed cient of the stochastic shock $\frac{1}{0}$ dixers from the coed cient of F, involves the inter temporal allocation of the government ..nancing requirement. In particular, the share of $\frac{1}{\underline{o}}$ absorbed in the ..rst period (relative to the second period) is larger than that of $F^{\sim}\left({ }^{-x}\left(P^{x}=P\right) C_{1}>{ }^{-x} c_{0}\right.$ and $c_{1}<c_{0}$, where c_{0} and c_{1} are de..ned in Table 1). The reason is again that ..rst-
period in \ddagger ation expectations are predetermined when the stochastic shock hits. This enables the policymakers to absorb a relatively large share of the stochastic shock in the ..rst period through an in \ddagger ation surprise.

The responses of the output and government spending gaps to F_{i}^{4} and $\frac{z_{i}}{\underline{o}}$ dixer from the responses to F^{\sim} and $\stackrel{1}{\bar{o}}$. Since in \ddagger ation is attuned to cross-country averages, it cannot respond to country-speci..c circumstances as captured by $\mathrm{F}_{\mathrm{i}}^{4}$ and $\frac{z_{a}^{2}}{\frac{z_{2}}{a}}$. Accordingly, taxes (the output gap) and the government spending gap have to fully absorb these country-speci..c components of the government ..nancing requirements.

3.2. Public debt policy

The solution for debt accumulation in the second-best equilibrium can be written as:
where

$$
\begin{align*}
& d_{1}^{\text {des }}=\frac{h K_{1}+\left(1+{ }^{1} / d_{1}^{1} d_{0} K_{2}^{i}+\left(1 i^{-x}\right) K_{2}\right.}{1+^{-x}\left(1+\frac{1}{i}\right.} \text {; } \tag{3.4}
\end{align*}
$$

$$
\begin{align*}
& =0 ; \mathrm{n}=1 \text {; } \tag{3.5}\\
& \mathrm{d}_{1}^{d ; S}={ }^{n} \frac{1}{1+{ }^{-x}\left(1+{ }^{1} A\left(P^{x}=P\right)\right.}{ }^{\#}{ }_{1}{ }_{\underline{o}} \text {; } \tag{3.6}\\
& d_{i 1}^{+S}=\frac{1}{1+{ }^{-x}\left(1+{ }^{1} A\right.}{ }^{2} \frac{2_{i}}{\underline{o}} ; n>1 \text {; } \tag{3.7}\\
& =0 ; n=1 \text {; }
\end{align*}
$$

where the superscript "S" stands for "second-best equilibrium", the superscript "e" denotes the expectation of a variable, an upperbar above a variable indicates its cross-country average (except for variables carrying a tilde, like K_{1}, where the cross-country average is indicated by dropping the country-index), a superscript " $\$$ " denotes an idiosyncratic deviation of a deterministic variable from its cross-country average (for example, $\mathrm{K}_{\mathrm{i}}^{\mathrm{d}}{ }^{\prime} \mathrm{K}_{\mathrm{i} 1} \mathrm{i} \mathrm{K}_{1}$), a superscript "d" denotes
the response to a common shock, a superscript " \pm " indicates the response to an idiosyncratic shock, and where

$$
\begin{align*}
& -x,-(1+1 / 2 \text {; } \tag{3.8}\\
& \mathrm{P}, \quad \hat{A}^{2}=®_{1 / 4}+1=0^{2}+1=®_{\mathrm{g}} \text {; } \\
& P^{\wedge},(\hat{A}+1)^{2}=\AA_{/ 4}+1={ }^{2}+1=\Omega_{g}:
\end{align*}
$$

Hence, optimal debt accumulation (3.3) is the sum of two deterministic components and two stochastic components. The component $d_{1}^{\text {des }}$ s optimally distributes over time the absorption of the cross-country averages of the deterministic components of the government ..nancing requirements. Therefore, it is common across countries. The country-speci..c components $d_{i 1}^{q} ; e ; s$ intertemporally distribute the idiosyncratic deterministic components of the government ..nancing requirements. The common (across countries) component did $d_{1}^{\text {s }}$ represents the optimal debt response to the common shock ${ }^{1}$, while $\mathrm{d}_{\mathrm{i} 1}^{ \pm \mathrm{S}}$ stands for the optimal debt response to the country-speci..c shock, ${ }_{i}$.

The debt response to the common shock is less active than the response to the idiosyncratic shock (since $P^{n}=P>1$). The common in \ddagger ation rate can exploit the predetermination of in \ddagger ation expectations only in responding to the common shock, because the common in \ddagger ation rate can not be attuned to idiosyncratic shocks. Hence, the share of the common shock that can be absorbed in the ..rst period can be larger than the corresponding share of the idiosyncratic shock. Public debt thus needs to respond less vigorously to the common shock.

4. Discretionary monetary policy with decentralized ..scal policy

This section introduces two distortions compared with the second-best equilibrium explored in the previous section. First, the CCB is no longer able to commit to monetary policy announcements. Second, ..scal policy is decentralized to individual governments, which may result in wasteful strategic interaction among heterogeneous governments.

From now on, the timing of events in each period is as follows. At the start of the period, the institutional parameters are set. That is, an in¥ation target is imposed on the CCB for the coming period and, if applicable, the debt targets on the individual governments are set. The in \ddagger ation target may be conditioned on the state of the world. In particular, the in \ddagger ation target may depend on the average debt level in the union. ${ }^{7}$ Furthermore, the debt target, which represents

[^6]the amount of public debt that a government has to carry over into the next period, may be shock-contingent. ${ }^{8}$ After the institutional parameters have been set, in \ddagger ation expectations are determined (through the nominal wage-setting process). Third, the shock(s) materialize. Fourth, taking in \ddagger ation expectations as given, the CCB selects the common in \ddagger ation rate and the ..scal authorities simultaneously select taxes and, in the absence of a debt target, public debt. E ach of the players takes the other players' policies at this stage as given. Finally, public spending levels are residually determined. As a result, the CCB internalizes the exect of its policies on the government budget constraints.

This section explores the outcomes under pure discretion, i.e. in the absence of both in \ddagger ation targets (i.e., $1 / 81$ derivation of the equilibrium is contained in Appendix B. The suboptimality of the resulting equilibrium compared to the second best motivates the exploration of in \ddagger ation and debt targets in Section 5.

4.1. In \ddagger ation, the output gap and the public spending gap

Table 2 contains the solutions for the in \ddagger ation rate, the output gap and the spending gap. The main dixerence compared to the outcomes under the second-best equilibrium (see Table 1) is that, for a given amount of debt $d_{i 1}$ to be carried over into the second period, expected ..rst-period in \ddagger ation (and, hence, seigniorage if $\hat{A}>0$) will be higher (compare the term between the square parentheses in the second column and the second row of Table 2 with the corresponding term in Table 1 and observe that $\left[\hat{A}(\hat{A}+1)=\Omega_{/ / 2}\right]=S>\left(\hat{A}^{2}=®_{/ / 2}\right)=P$, where $\left.S^{\prime} \hat{A}(\hat{A}+1)=®_{1 / 4}+1=0^{2}+1=®_{\mathrm{g}}\right)$. The source of the higher expected in \ddagger ation rate under pure discretion is the inability to commit to a stringent monetary policy, which yields the familiar in \ddagger ation bias (Barro and Gordon, 1983). The outcomes for in¥ation, the output gap and the spending gap deviate from the outcomes under the second-best equilibrium also because debt accumulation under pure discretion dixers from debt accumulation under the second best. These dixerences are discussed below.

4.2. Public debt policy

Government i's debt can, analogous to (3.3), be written as:

$$
\begin{equation*}
\mathrm{d}_{\mathrm{i} 1}^{\mathrm{D}}=\mathrm{d}_{1}^{\mathrm{e} \cdot \mathrm{D}}+\mathrm{d}_{i 1}^{\ddagger ; e^{4} ; \mathrm{D}}+\mathrm{d}_{1}^{\mathrm{d} ; \mathrm{D}}+\mathrm{d}_{i 1}^{\ddagger \mathrm{D}} ; \tag{4.1}
\end{equation*}
$$

be determined according to a state-contingent rule selected at the beginning of the ..rst period. These two alternative interpretations yield equivalent results.
${ }^{8}$ Debt at the end of the second period is restricted to be zero. Hence, the second period features a debt target of zero.
where the superscript " D " is used to indicate the solution of the purely discretionary equilibrium with decentralized ..scal policies and where

$$
\begin{align*}
& =0 \text {; if } \mathrm{n}=1 \text {; } \tag{4.3}
\end{align*}
$$

$$
\begin{align*}
& =0 \text {; if } n=1 \text {; } \tag{4.5}
\end{align*}
$$

and where

$$
\begin{align*}
& S^{\prime} \hat{A}(\hat{A}+1)=®_{1 / 4}+1=\bigcap^{2}+1=\circledR_{g} \text {; } \tag{4.6}\\
& S^{\wedge} \quad \hat{A}(\hat{A}+1)=®_{1 / 4}+(\hat{A}+1)=\left(n ®_{1 / d}\right)+1={ }^{2}+1=®_{g} ; \\
& Q \quad[(n ; 1)=n]\left[\hat{A}(\hat{A}+1)=®_{1 / 4}\right]+1 \varrho^{2}+1=®_{g}:
\end{align*}
$$

4.2.1. Response to the common deterministic components of the government ..nancing requirements
Positive analysis:
This subsection explores the solution for expected average debt d_{1}^{d} D in (4.2). Whereas current in \ddagger ation expectations are predetermined at the moment that debt is selected, future in \ddagger ation expectations still need to be determined. A re duction in debt reduces the future government ..nancing requirement and, thus, the tax rate in the future. This, in turn, weakens the CCB's incentive to raise future in \ddagger ation in order to protect employment. Hence, by restraining debt accumulation, governments help to reduce future in \ddagger ation expectations, which are endogenous from a ..rst-period perspective. The reduction in future in \ddagger ation expectations implies a lower in \ddagger ation bias in the future. In other words, asset accumulation is an indirect way to enhance the commitment of a central bank to low future in \ddagger ation.

Expected average debt $d_{1}^{\text {e }}$ increases in the size of the union (because @d ${ }_{1}^{d D}=$ $@\left[^{-x}\left(S^{\square}=S\right)\right]<0$ and because $S^{\mathbb{a}}=S$ is decreasing in n - see Beetsma and Bovenberg, 1999): in a larger union, each individual government perceives a smaller exect of a unilateral reduction in public debt on the common future in \ddagger ation rate. Hence, the incentive to restrain debt becomes weaker. ${ }^{9}$ Indeed, in a monetary union, the credibility of the common monetary policy has the features of a public good.

Normative analysis:
Expected average debt accumulation is suboptimally low (because $S^{x}=S>1$, ${ }^{-x}\left(S^{\approx}=S\right)>^{-x}$ and, hence, $d_{1}^{d e \cdot D}<d_{1}^{d e S}$ - see also B eetsma and Bovenberg, 1999). The source of this underaccumulation of debt is the lack of commitment in monetary policy, which gives rise to an in \ddagger ation bias. In order to strengthen the credibility of future monetary policy and thus reduce the in \ddagger ation bias, governments try to exploit the predetermined nature of ..rst-period in \ddagger ation expectations by absorbing a relatively large part of the intertemporal government ..nancing requirement in the ..rst period. In equilibrium, these attempts to exploit the ..xed nature of in \ddagger ation expectations are inexective, however, because the private sector anticipates the incentive facing the governments to exploit ..rst-period in \ddagger ation expectations and thus sets ..rst-period wages (in \ddagger ation expectations) higher than under commitment. Hence, the ..rst-period equilibrium in \ddagger ation rate, output gap and spending gap will be higher than under commitment. If the union becomes arbitrarily large (i.e. $n!1$), individual governments are no longer able to axect the credibility of the common future monetary policy. This source of underaccumulation of debt thus disappears. Hence, as $n!1$, ded ${ }_{1}^{\text {ep }}=d_{1}^{d e s}$.

4.2.2. Response to country-speci..c deterministic components of the government ..nancing requirements

Positive analysis:

This subsection investigates the response of public debt to the deviations of the deterministic components of the government ..nancing requirements from the corresponding cross-country averages, $\mathrm{d}_{\mathrm{i}}^{\mathrm{f}}$;e . In equilibrium, these country-speci..c deviations of the ..nancing requirements are fully absorbed by ..rst- and secondperiod deviations of output and public spending from their targets. The reason is that monetary policy and, hence, in \ddagger ation is attuned to the average conditions

[^7]in the union and thus does not respond to the country-speci..c components of the government ..nancing requirements.

Inspection of (4.3) and the de. nition of Q reveals that, if $\hat{A}>0$, an increase in n weakens the (positive) response of debt to the ..rst-period component $K_{i 1}^{\&}+\left(1+{ }^{1} 12 d_{i 0}^{d}>0\right.$, while it strengthens the negative response to $K_{i 2}^{d}>0$ (i.e., the response becomes more negative). To explain the intuition behind these effects, we ..rst consider the case with $K_{i 1}^{d}+\left(1+{ }^{1} / d_{i 0}^{\&}>0\right.$ and $K_{i 2}^{\&}=0$. In that case, expected debt accumulation in country i exceeds average expected debt accumulation in the union, i.e. $d_{i 1}^{\ddagger} ; ; \mathrm{D}>0$. Hence, government i has a relatively large need for seigniorage revenues in the second period so that its preferred secondperiod in \ddagger ation rate is relatively high (if $\hat{A}>0$). This discrepancy between government i's preferred second-period in \ddagger ation rate and the preferred second-period in \ddagger ation rate of the average union member, as well as the fact that government i in the ..rst period acts as a Stackelberg leader against the CCB in the second period, induces government i to strategically further raise its debt. ${ }^{10}$ The resulting higher second-period tax rate forces the CCB to raise the second-period in \ddagger ation rate (of course, in equilibrium, the in \ddagger ation rate is unamected by country-speci..c factors, but this is neglected by the individual, optimizing government). However, in a larger union the exect of such an increase in debt on the common inłation rate will be diluted and, hence, the incentive to use debt strategically is weaker.

Now, suppose that $K_{i 2}^{d}>0$ and $K_{i 1}^{d}+\left(1+{ }^{1} / 2 d_{i 0}^{\dagger}=0\right.$. Debt accumulation by country i will be below average, while the need for seigniorage revenues in the second period will be relatively large. Hence, government i's preferred secondperiod in \ddagger ation rate will be relatively high (if $\hat{A}>0$). Therefore, it raises debt strategically (compared with the case in which seigniorage is absent) to force the CCB to bring the future in \ddagger ation rate more in line with its own preferred future in \ddagger ation rate. A gain, in a larger union the exect of unilateral changes in debt accumulation on the common in \ddagger ation rate is weaker and, hence, the incentive to raise debt strategically is weaker. Hence, in a larger union, $d_{i 1}^{\ddagger} ; e ; D$ will be lower, ceteris paribus. ${ }^{11}$

Normative analysis:

[^8]Countries with relatively severe product and labor market distortions, or high initial debt levels (i.e., countries with $\mathrm{F}_{i}^{\text {T }}>0$), feature a relatively high countryspeci..c expected debt component. In fact, these countries over accumulate debt (at least as far as the debt component $d_{i 1}^{\ddagger} ; ;{ }^{\mathrm{D}}$ is concerned, $\mathrm{d}_{\mathrm{i1}}^{\ddagger} ; ; \mathrm{D}>\mathrm{d}_{\mathrm{i1}}^{\ddagger ;} ;{ }^{;} \mathrm{S}$). ${ }^{12}$ The opposite holds true for countries with a relatively low intertemporal government ..nancing requirement (i.e. $\mathrm{Fi}_{\mathrm{i}}^{4}<0$). Governments featuring a high intertemporal government ..nancing requirement (i.e. $\mathrm{F}_{i}^{\mathbf{d}}>0$) overaccumulate debt in order to encourage the CCB to raise in \ddagger ation in the second period, thereby bringing second-period in \ddagger ation more in line with these governments’ preferred in \ddagger ation rate. These governments fail to internalize the negative externalities of this be havior on the governments with relatively small distortions or low initial debt. Similarly, governments with low intertemporal government ..nancing requirements (i.e. $F_{i}^{\ddagger}<0$) do not internalize the negative externalities on other governments associated with the underaccumulation of debt. Hence, although in equilibrium average expected debt and in \ddagger ation are unaxected, this failure to internalize the negative externalities of suboptimal debt accumulation leads to wasteful strate gic behavior by causing the country-speci..c deterministic components of public debt to deviate from their values in the second-best equilibrium. A larger union weakens the incentive for strategic behavior:
which is negative (positive) if $\mathrm{F}_{\mathrm{i}}^{\mathrm{q}}>(<) 0$. Furthermore, as $\mathrm{n}!1$, $\mathrm{d}_{i 1}^{\ddagger} ; \mathrm{e} ; \mathrm{D}$ converges to $d_{i 1}^{q} ; e ; s$. As n rises, the dixerence between $d_{i 1}^{q} ; ; \mathrm{D}$ and $\mathrm{d}_{\mathrm{i} 1}^{\ddagger} ; ; \mathrm{S}$ thus becomes smaller so that the welfare loss that originates in strategic behavior declines.

4.2.3. Response to the common shock.

Positive analysis:

This subsection turns to the response of debt policy to the common shock ${ }^{1}$. As is the case for the second-best equilibrium, the share of the common stochastic shock ${ }^{1}$ that is absorbed in the ..rst period is larger than the share of the common deterministic component of the intertemporal government ..nancing requirement $F \sim$ that is absorbed in the ..rst period (see Table 2 and note that $P^{x}>S$).

M onetary uni..cation (i.e., an increase from $n=1$ to $n>1$) intensi..es the response of public debt to unanticipated supply shocks (see (4.4) and note that

[^9]${ }^{-x}\left(S^{x}=S\right)$ is declining in $\left.n\right)$. Hence, in a monetary union, governments engage in more active debt stabilization policies to union-wide shocks than under national policy making.

The reason for more active debt stabilization is as follows. Fiscal authorities choose to absorb a relatively large part of an adverse ..rst-period supply shock immediately in order to exploit the predetermination of ..rst-period inłation expectations. A s a result, second-period in \ddagger ation expectations will to a lesser extent be axected by the common shock and, hence, in \ddagger ation variability will be smaller in the second period. In a monetary union, however, this exect is smaller than under national monetary policymaking because each individual union member perceives a relatively small exect of its actions on the future variability of the union-wide in \ddagger ation rate. A monetary union thus yields more variability of public debt and future in \ddagger ation. A ccordingly, even if shocks are shared by the countries, monetary uni..cation results in more active debt stabilization.

Normative analysis:
Is the additional variability of debt produced by monetary uni..cation excessive? B eetsma and Bovenberg (1999) show that, given that the CCB is not able to commit, the socially-optimal response of debt to common shocks amounts to:

$$
\begin{equation*}
\mathrm{d}_{1}^{d ; o p t}=\frac{1}{1+^{-x}\left(1+{ }^{1} A\left(P^{x}=S\right)^{2}\right.}{ }^{\#_{1}}{ }_{\underline{o}}^{\underline{o}} ; \tag{4.8}
\end{equation*}
$$

This response is actually attained with national monetary policymaking (i.e., $n=1$). As explained above, monetary uni..cation ($n>1$) leads to a more active response of debt to common shocks (i.e. for ${ }^{1}>0, d_{1}^{d} ; D>d_{1}^{d ; o p t}$). The larger re sponse of debt to uniform shocks is welfare reducing. Intuitively, reducing future in \ddagger ation variability is a public good in a monetary union. Hence, individual countries freeride on each other when taking measures to reduce in \ddagger ation variability.

The coed cient of $\frac{1}{\underline{o}}$ in (4.8) is smaller than the corresponding coed cient in (3.6) in the second-best equilibrium (since $S^{2}<P{ }^{x} P$). Hence, the response of debt to common shocks, as prescribed by (4.8), is too "conservative" when compared to the second best (i.e. for a bad shock (${ }^{1}>0$), $\mathrm{d}_{1}^{\mathrm{d}} \mathrm{d}$ opt $<\mathrm{d}_{1}^{\mathrm{d}}$; $)$. By absorbing more of ${ }^{1}$ in the ..rst period, this shock has less of an exect on future in \ddagger ation expectations and, hence, the future in \ddagger ation bias due to a lack of commitment in monetary policy.

Debt policy given by $d_{1}^{d ; o p t}$ thus deviates from $d_{1}^{d ; s}$ as a result of the tradeox between future monetary policy credibility and a suboptimal distribution of welfare losses over time. This trade-ox is a variant of the well-known "credibility\ddagger exibility" trade-ow. In this particular case, \ddagger exibility refers to activeness of the response of debt, rather than in \ddagger ation, to shocks; to enhance the credibility of
future monetary policy, the government reduces its \ddagger exibility in employing public debt to absorb shocks.

4.2.4. Response to the idiosyncratic shock.

Positive analysis:
Like the country-speci..c deterministic components of the intertemporal government ..nancing requirement (see Subsection 4.2.2), the idiosyncratic shock ${ }^{2}{ }_{i}$ is exclusively dealt with at the national level through ..scal policy. A bad idiosyncratic shock (i.e., ${ }_{i}>0$) raises the idiosyncratic debt component, $d_{i 1}^{\# D} .{ }^{13}$ Inspection of (4.5) and the de..nition of Q makes clear that, if $\hat{A}>0$, an increase in n weakens the response of $d_{i 1}^{ \pm D}$ to ${ }^{2}$ (i.e., the coed cient of ${ }^{2}=0$ in (4.5) becomes smaller). In other words, and in contrast to the response of debt to a common shock, debt responds less actively to idiosyncratic shocks as the union becomes larger. Hence, contrary to common wisdom, in a larger union a country will use less debt stabilization in response to country-speci..c shocks.

The explanation is the same as the earlier explanation for the dependency of $\mathrm{d}_{i 1}^{\ddagger} ; ; \mathrm{e} \mathrm{D}$ on the number of union participants. If country i is hit by a bad shock ${ }^{2}{ }_{i}>0$, it issues more debt than the average government in the union. Hence, if $\hat{A}>0$, government i has a relatively large need for seigniorage revenues in the second period and, hence, its preferred in \ddagger ation rate in that period is relatively high. Government i thus strategically raises debt further to bring future in \ddagger ation more in line with its preferred in \ddagger ation rate. In a larger union, the perceived in \ddagger uence of government i's policies on the common monetary policy is reduced and, hence, the incentive to use debt strategically is weakened. If $\hat{A}=0$, all governments share the same preferences concerning the common second-period in \ddagger ation rate. ${ }^{14}$ Hence, governments have no reason to use debt strategically. Indeed, in that case, $\mathrm{d}_{\mathrm{i} 1}^{+\mathrm{D}}$ does not depend on the number of countries.

[^10]Normative analysis:
A comparison of $\mathrm{d}_{\mathrm{i} 1}^{ \pm \mathrm{D}}$ and $\mathrm{d}_{\mathrm{i} 1}^{ \pm \mathrm{S}}$ reveals that the response of debt to idiosyncratic shocks is more vigorous than under the second-best equilibrium. A larger union renders the debt response less active. The associated reduction in wasteful strategic interaction boosts welfare. If the union becomes in..nitely large (i.e., $\mathrm{n}!1), \mathrm{d}_{\mathrm{i}}^{ \pm \mathrm{D}}$ converges to $\mathrm{d}_{\mathrm{i}}^{ \pm \mathrm{S}}$ and the response of debt to idiosyncratic shocks becomes optimal. In that case, all wasteful strategic interactions are eliminated.

4.2.5. Summary of the exects of a larger union

If the number of countries goes to in..nity and all strategic interactions among the governments disappear, the debt components $d_{1}^{e ; D}, d_{i 1}^{\ddagger} ; e ; \mathrm{D}$ and $d_{i 1}^{\neq D}$ all converge to the same response coed cients $1=\left(1+^{-x}\left(1+{ }^{1} / 2\right)\right.$. This response is in fact optimal (compare (4.2) with (3.4), (4.3) with (3.5) and (4.5) with (3.7) for n ! 1). The response $d_{1}^{1 d D}$ to the common shock, in contrast, is optimal and equal to (4.8) if $n=1$. It becomes excessive if $n>1$, and the more so the larger the union becomes. Hence, only the response of debt to the common shock will be suboptimal for $n!1$. A ctually, the welfare loss associated with this response is largest in an in..nitely large union. E ven though for $n!1$ the debt response to idiosyncratic shocks is more active than the response to common shocks, the former is optimal, while the latter is excessive.

5. Optimal institutional arrangements

This section investigates institutional adjustments that can help the monetary union to reach better equilibria. In particular, we allow for in \ddagger ation targets. The second-period in \ddagger ation target may depend on ..rst-period debt levels and, thereby, indirectly, on ..rst-period shocks. In addition, we allow for debt targets. These debt targets should be hit exactly. Hence, they act as debt ceilings when they prevent overaccumulation of debt, while they act as debt $\ddagger 00$ s when they prevent underaccumulation of debt. The debt targets may depend on the shocks, i.e. one can write $d_{i 1}^{\top}=d_{i 1}^{\top}\left({ }^{1} ;{ }_{i}\right)$, where the superscript "T" stands for "target". In \ddagger ation targets can be viewed as a contractual way to deal with the commitment problem in monetary policy. In the same way, debt targets are a contractual way to address externalities.

In \ddagger ation targets can be enforced by giving the central banker ..nancial incentives to meet the target or by making reappointment of the central banker dependent upon meeting the target. ${ }^{15}$ Reputational considerations may also help to

[^11]enforce in \ddagger ation targets. The announcement of an in \ddagger ation target provides market participants with a benchmark against which the central banker can be held accountable. Failure to meet the target indicates a lack of willingness or ability on the side of the central banker to stick to the announcements. This information will be taken into account when future in \ddagger ation expectations are formed.

Debt targets may be enforced through peer pressure (the loss of political prestige if the target is missed) and ..nes. Indeed, under the so-called Stability and Growth Pact (SGP), EMU participants who persistently violate the ceilings on public de..cits will be ..ned (for more details on the SGP, see Artis and W inkler, 1998, and Eichengreen and W yplosz, 1998). ${ }^{16}$ In the sequel, we assume that both the in \ddagger ation and the debt targets can be enforced.

This section explores how institutional rearrangements (in \ddagger ation targets and debt targets) can induce optimal responses of debt to the various components of the intertemporal government ..nancing requirement. In particular, it will investigate whether these arrangements ensure that debt accumulation mimics debt accumulation in the second-best equilibrium.
5.1. Identical economies ($K_{i 1}=K_{1}, K_{i 2}=K_{2}, d_{i 0}=d_{0}$ and ${ }^{2}{ }_{i}=0,8 i$)

This subsection assumes that the union participants are completely identical. Hence, the deterministic components of the government ..nancing requirements are equal across the countries ($K_{i 1}=K_{1}, K_{i 2}=K_{2}$ and $d_{i 0}=d_{0}$, 8 i), while idiosyncratic shocks are absent $\left(2_{i}=0,8 i\right)$. As a result, all governments adopt identical policies. The solution for $\mathrm{d}_{\mathrm{i} 1}$ consists only of the response to the deterministic components of the average intertemporal government ..nancing requirement and the response to the common shock. Potential strategic interactions arising from a disagreement about the common monetary policy are absent. Hence, optimal institutional design needs to address only the lack of commitment of monetary policy. A ppendix C proves the following proposition:
Proposition 1. Suppose that $K_{i 1}=K_{1}, K_{i 2}=K_{2}, d_{i 0}=d_{0}$ and ${ }^{2}=0,8 i$. In that case, the following combination of state-contingent in \ddagger ation targets

$$
\begin{align*}
& 1 / \frac{8}{2}(h)=i^{\frac{h^{1=\Omega / 4}}{} i^{i}} K_{2}+\left(1+1 / h^{i}{ }^{i}\right. \text {; } \tag{5.1}
\end{align*}
$$

with h equal to the cross-country average realized debt level ${ }_{d}{ }_{1}$, ensures that the decentralized, discretionary equilibrium coincides with the second-best equilibrium.

[^12]Proposition 1 reveals that, in contrast to making the central banker conservative à la R ogox (1985) - see B eetsma and B ovenberg (1999) -, the state-contingent in \ddagger ation target succeeds in establishing the second best (see also Svensson, 1997, and Beetsma and J ensen, 1999). A conservative central bank addresses the commitment problem (the in \ddagger ation bias), but at the same time distorts the stabilization of shocks. A state-contingent in \ddagger ation target, in contrast, addresses the in \ddagger ation bias without distorting stabilization. Thus, the contractual solution to the commitment problem (à la Svensson, 1997) dominates the solution of delegation (à la Rogow, 1985). The contract, however, needs to be quite rich. In particular, the in \ddagger ation target needs to be statecontingent, because the size of the (second-period) in \ddagger ation bias depends on the amounts of debt issued by the union participants. A state-independent in \ddagger ation target would not be able to establish the second best.

By addressing the commitment problem through a state-contingent in \ddagger ation target, one also eliminates the intertemporal distortions that originate in the lack of monetary policy credibility. In particular, by setting the second-period in \ddagger ation target at the proposed level (5.2), the second-period in \ddagger ation bias is eliminated. A ccordingly, without a second-period in \ddagger ation bias, governments in the ..rst period no longer perceive the need to underaccumulate (for the purpose of enhancing the credibility of monetary policy in the second period) debt in response to the deterministic components of the government ..nancing requirement. The absence of the second-period in \ddagger ation bias also takes away the need to absorb an excessively large share of the common shock in the ..rst period and thus ensures an optimal debt response to ${ }^{1}$. Finally, by setting the ..rst-period in \ddagger ation target conform (5.1), the ..rst-period inłation bias is eliminated.

5.2. Dixerences among countries

This subsection allows for cross-country dixerences both in the deterministic components of the government ..nancing requirements (i.e., $\mathrm{K}_{\mathrm{i} 1} ; \mathrm{K}_{\mathrm{i} 2}$ and $\mathrm{d}_{\mathrm{i} 0}$) and in the stochastic shocks (i.e., the ${ }^{2}$'s are no longer assumed to be zero). As explained in Section 4, such dixerences among countries produce con \ddagger icts about the preferred future stance of the common monetary policy. The con \ddagger icts result in wasteful strategic interactions between decentralized ..scal policymakers. Debt targets eliminate these con $\ddagger i c t s$ of interest and the associated costly strategic interactions.

The following proposition is proven in Appendix D :

Proposition 2. With deterministic dixerences in the government ..nancing re quirements and with idiosyncratic shocks, the combination of in \ddagger ation and debt targets that minimizes V_{U} is obtained by setting the ..rst- and second-period in\ddagger ation targets at, respectively, (5.1) and (5.2), with h equal to the cross-country average realized debt level d_{1}, and the (speci..c) debt target $d_{i 1}^{\top}$ on country i ($i=1 ;:: ; n$) at $d_{i 1}^{\top}=d_{1}^{d e s}+d_{i 1}^{\ddagger} ; e ; S+d_{1}^{d ; S}+d_{i 1}^{+S}$. The resulting equilibrium coincides with the second-best equilibrium.

By imposing debt targets attuned to each country's speci..c situation, the union can thus eliminate the externalities associated with the strategic behavior of the individual governments. Hence, with the proposed in \ddagger ation and debt targets in place, the responses of public debt (and the other policy instruments) mimic their counterparts under the second-best equilibrium. In particular, compared with the purely discretionary equilibrium, debt targets restrict debt to be less active in response to the country-speci..c components of the government ..nancing requirements (F_{i}^{4} and $\left.\frac{2_{i}}{\underline{2}}\right)$. They thus operate as a ceiling on the associated debt responses if $F_{i}^{-4}>0$ or $\frac{z_{i}}{\underline{D}}>0$, and as a $\ddagger 00$ if $F_{i}^{-4}<0$ or $\frac{z_{i}}{\underline{o}}<0$. Only if $\hat{A}=0$ or n! 1, are debt targets redundant and are optimal in \ddagger ation targets su¢ cient for the discretionary equilibrium to coincide with the second-best equilibrium. In that case, no debt targets are needed, because the exect of a unilateral change in debt on seigniorage revenues becomes negligible and any strategic exects disappear.

6. Conclusion

This paper investigated the interaction between ..scal policy and monetary policy in a monetary union. Our analysis has allowed for two imperfections. One is the lack of monetary policy commitment. The other involves spillovers among decentralized ..scal policymakers. We explored how in¥ation targets and debt targets can alleviate the welfare losses arising from these imperfections.

W ith identical economies, imposing the optimal state-contingent in \ddagger ation target on the common central bank is suф cient to establish the second-best equilibrium. If countries are heterogeneous, however, the in \ddagger ation target needs to be complemented by debt targets. These debt targets eliminate the strategic, welfare-reducing interactions among governments arising from dixerences among the union participants on the preferred stance of monetary policy. The in¥ation and debt targets can be viewed as a contractual solution to the lack of commitment in monetary policy and the spillovers among the decentralized ..scal policymakers.

The analysis can be extended into a variety of directions. One extension would be to allow for a longer modelling horizon and to explore the optimal, dynamic paths for the in \ddagger ation and debt targets. In particular, it would be interesting to
explore whether debt targets converge over time for countries with dixerent initial debt levels. A nother extension is to investigate whether and how the debt targets can be enforced. Indeed, the enforcement of the Stability and Growth Pact is subject to some doubt. Such an analysis would require a dynamic framework that accounts for reputational considerations. The countries with the smallest productand labor-market distortions and the countries with the lowest initial debt level can be expected to most favor strict enforcement of the targets. In a multiperiod context, these countries will take into account the exects on the future behavior of governments (in terms of debt policies) of a failure to enforce the targets.

R eferences

[1] Alesina, A. and G. Tabellini, 1987, Rules and Discretion with NonCoordinated Monetary and Fiscal Policies, E conomic Inquiry 25, 619-630.
[2] A rtis, M. and B. W inkler, 1998, The Stability Pact: Safeguarding the Credibility of the European Central Bank, National Institute Economic Review 163, 87-98.
[3] Barro, R.J. and D.B. Gordon, 1983, Rules, Discretion and Reputation in a M odel of Monetary Policy, Journal of M onetary Economics 12, 101-121.
[4] Beetsma, R. and A. L. Bovenberg, 1999, Does M onetary Uni..cation Lead to Excessive Debt Accumulation?, J ournal of Public Economics 74, 299-325.
[5] Beetsma, R. and H. Jensen, 1999, Optimal In \ddagger ation Targets, 'Conservative’ Central Banks, and Linear In \ddagger ation Contracts: Comment, American Economic Review 89, 342-347.
[6] Beetsma, R. and H. Uhlig, 1999, An A nalysis of the Stability and Growth Pact, E conomic J ournal, forthcoming.
[7] Cukierman, A. and F. Lippi, 1999, Labour M arkets and M onetary Union: A Strategic A nalysis, M imeo, Tel A viv university/ Bank of Italy.
[8] Debelle, G. and S. Fischer, 1994, How Independent should a Central Bank Be?, CEPR Publication, No. 392, Stanford University.
[9] Eichengreen, B. and C. W yplosz, 1998, The Stability Pact: M ore than a M inor Nuisance?, Economic Policy, A pril, 65-113.
[10] European Central Bank, 1999, A nnual Report 1998, Frankfurt.
[11] J ensen, H., 1994, Loss of M onetary Discretion in a Simple Dynamic Policy Game, J ournal of Economic Dynamics and Control 18, 763-779.
[12] R ogow, K., 1985, The Optimal Degree of Commitment to an Intermediate M onetary Target, Quarterly J ournal of E conomics 99, 1169-1189.
[13] Svensson, L.E.O., 1997, Optimal In \ddagger ation Targets, ‘Conservative’ Central Banks, and Linear In \ddagger ation Contracts: Comment, American Economic Review 87, 98-114.
[14] Svensson, L.E.O., 1998, M onetary or In \ddagger ation Targeting for the ECB?, presented at the Conference on Implementation of Price Stability, Center for Financial Studies, Frankfurt, September 10-11.
[15] Walsh, C., 1995, Is New Zealand's Reserve Bank Act of 1989 an Optimal Central Bank Contract?, J ournal of M oney, Credit, and Banking 27, 1179-91 (b).

Appendix

Notation:

We will use the following conventions: superscript e denotes the subjective expectation of a variable. When no confusion is possible, it is also used to denote the mathematical (model-induced) expectation. The deviation of some variable $y_{i t}$ from its expected value is denoted by superscript " d ": $\mathrm{y}_{\mathrm{it}}^{\mathrm{d}}=\mathrm{p}_{\mathrm{it}} \mathrm{i} \mathrm{y}_{\mathrm{it}}^{\mathrm{e}}$. An upperbar denotes the cross-country average of a variable: $y_{t}=\frac{1}{n}{ }_{i=1}^{n} y_{i t}$. The exception is a variable with a tilde, whose cross-country average is denoted by the omission of the country index: $y_{t}=\frac{1}{n} p_{i=1}^{n} y_{t}$. Note that $y_{t}^{e}=\frac{1}{n} p_{i=1}^{n} y_{i t}^{e}$ and that $y_{t}^{d}=\psi_{t} i y_{t}^{e}$. Superscript " $\$$ " denotes the deviation of a variable from its crosscountry average: $y_{i t}^{c}=y_{i t} i y_{t}$. Note that $y_{i t}^{d}$ ie $=y_{i t}^{e}$ i y_{t}^{e}. Finally, superscript " $\pm^{\prime \prime}$ is used to denote the deviation of a country-speci... variable from the sum of its expected value and the cross-country average dixerence between this variable and its expected value: $y_{i t}^{ \pm}=y_{i t i} \quad y_{i t}^{e}+y_{t}^{d}=y_{i t} i y_{t}^{e} i y_{i t}^{d i e} ; y_{t}^{d}$. Hence, using our notation, we can decompose a variable $y_{i t}$ into $y_{i t}=y_{t}^{e}+y_{i t}^{d i e e}+y_{t}^{d}+y_{i t}^{t}$, i.e. the sum of the cross-country average expectation, the dixerence between the expectation of $y_{i t}$ and the average expectation, the cross-country average prediction error, and the dixerence between y_{it} and its expectation plus the cross-country average prediction error.

A ssumption:

P As in the main text, the sum of the idiosyncratic shocks is assumed to be zero: ${ }_{i=1}^{2}{ }_{i}=0$.

1. Derivation of the second-best equilibrium

Both monetary and ..scal policymaking are centralized. M oreover, monetary policy is conducted under commitment. The supranational centralized ..scal authority (CFA) minimizes an equally-weighted average of the participating countries' social objectives. In solving for the equilibrium, we work backwards, starting with the second period.

1.1. Period 2

F irst, we solve for the second-period outcomes, given the ..rst-period debt choices. The CCB's Lagrangian is:

$$
2 \$_{2}^{\text {CCB }}=@_{4}^{1} / 2 / 2+
$$

$$
\begin{aligned}
& 2 \mu_{2} f E[1 / 4] \text { i } 1 / 2 \mathrm{e} g ;
\end{aligned}
$$

where μ_{2} is the Lagrange multiplier associated with the rational expectations constraint in period 2. The CCB's ..rst-order conditions with respect to $1 / 4$ and $1 / 2$ can be written as:

We combine these two equations to:

$$
\begin{aligned}
& =0 ;
\end{aligned}
$$

The loss function to be minimized by the CFA in the second period is:

The ..rst-order conditions with respect to the iiz can be written as:

Imposing rationality of expectations (and noting that, in equilibrium, realizations coincide with expectations), we can write (1.1) and (1.2) as:

$$
\begin{align*}
& ®_{1 / 4}^{1 / \mathscr{L}}=\hat{A} ®_{\mathrm{g}}\left(g_{2} \mathrm{i} \mathrm{~g}_{2}\right) ; \tag{1.3}
\end{align*}
$$

Using the second-period government budget constraints, one can rewrite (1.3) as:

Take cross-country averages of (1.4) and combine this with (1.5) to eliminate $\xi_{2}+\frac{x_{2}}{\underline{2}}$. The resulting equation can be rewritten to yield the solution for in $\ddagger a-$ tion, given average union debt, ${ }_{\mathrm{d}}^{1}$:

$$
\begin{equation*}
1 / 2=\frac{h_{\hat{A}=\Omega / 4}}{P} K_{2} K_{2}+\left(1+{ }^{1} /\right)_{d}^{i}{ }^{i} ; \tag{1.6}
\end{equation*}
$$

where

$$
\begin{equation*}
P^{\prime} \hat{A}^{2}=\AA_{1 / 4}+1=\varrho^{2}+1=®_{g} ; \tag{1.7}
\end{equation*}
$$

as de..ned in the main text. Combine this with (1.4) to eliminate $1 / \pm$ and rewrite the resulting equation to yield the solution for $\dot{\nu}_{i 2}+\frac{x_{12}}{\underline{o}}$:

Combining this with (2.2) and using that $1 / \pm=1 / 2$, we obtain:

Take expecations of (1.2), use that in period 2 realizations match expectations and combine the result with (1.8) to obtain the solution for $g_{12} \mathrm{i} \quad \mathrm{g}_{\mathrm{i} 2}$:

The second-period loss of both the CCB and the CFA is given by:
L_{2}

$$
\begin{aligned}
& \frac{1}{2} \frac{h_{\hat{A}^{2}=B_{4}}^{i}}{P^{2}} K_{2}+\left(1+1 / 2 d_{1}^{d_{1}}{ }^{i}+\right.
\end{aligned}
$$

1.2. Period 1

We now move back to solve for the ..rst-period outcomes. The Lagrangian of the CCB in period 1 is:

$$
\begin{aligned}
& +2^{-} L_{2}+2 \mu_{1} f E[1 / 4] i \quad 1 / 4 g ;
\end{aligned}
$$

where μ_{1} is the Lagrange multiplier associated with the rational expectations (of in \ddagger ation) constraint in period 1 . Note that L_{2} is not axected by $1 / 4$. Therefore, the CCB's ..rst-order conditions with respect to $1 / 4$ and $1 / 4$ can be written as:
which can be combined to give:

$$
\begin{align*}
& =0 \text { : } \tag{1.11}
\end{align*}
$$

The loss function to be minimized by the CFA in the ..rst period is:

The ..rst-order conditions with respect to $i_{i 1}$ and $d_{i 1}(i=1 ;:: ; n)$ can be written as:

$$
\begin{align*}
& \frac{1}{n} ®_{\mathrm{g}}\left(\mathrm{~g}_{11} \mathrm{i} \mathrm{~g}_{\mathrm{i} 1}\right)={ }^{-}\left(@_{2}=@_{\mathrm{i} 1}\right) ; 8 \mathrm{i} \text {; } \tag{1.13}
\end{align*}
$$

where

$$
\begin{aligned}
& @_{2}=@_{i 1}=\frac{h_{\hat{A}^{2}=\mathbb{Q}_{4}}{ }^{i} h^{\mathrm{R}^{2}}}{} K_{2}+\left(1+{ }^{1} \neq d_{1}{ }^{i} \frac{1}{n}\left(1+{ }_{i}^{1} A+\right.\right.
\end{aligned}
$$

Finally, we can rewrite the ..rst-period government budget constraint as:

$$
\begin{equation*}
K_{i 1}+\left(1+{ }^{1} 1 / d_{i 0}=\left(i_{i 1}+X_{i 1}=0\right)+\hat{A}_{1 / 41}+\left(g_{11} i g_{i 1}\right)+d_{i 1} ; 8 i:\right. \tag{1.14}
\end{equation*}
$$

The system of ..rst-order conditions to be solved is thus given by (1.11), (1.12), (1.13) and (1.14). Take some country-speci..c policy variable $y_{i 1}\left(y_{i 1}=1 / 41 ; \dot{L}_{i 1} ; g_{i 1}\right.$ or $d_{i 1}$). We will solve for $y_{i 1}$ by solving for each of the components of the decomposition of $y_{i 1}$ into $y_{i 1}=y_{1}^{e}+y_{i 1}^{q} ; e+y_{1}^{d}+y_{i 1}^{D}$, where y_{1}^{e} will be the response to the cross-country average of the deterministic components of the government ..nancing requirements, $y_{i 1}^{\mathrm{q}}$;e will be the response to the country-speci..c deterministic components of the government ..nancing requirements, y_{1}^{d} will be response to the common shock and $y_{i 1}^{D}$ will be the response to the idiosyncratic shock. We thus compute the solutions to these variables in four steps.

1.2.1. Steps 1 and 2

Take expectations across (1.11), (1.12), (1.13) and (1.14) to yield:

$$
\begin{gather*}
®_{1 / 4}^{1 / 2}=\hat{A} ®_{\mathrm{g}}\left(g_{1} \mathrm{i} g_{1}^{e}\right) ; \tag{1.15}\\
\underline{o}^{2}\left(\dot{i}_{i 1}^{\mathrm{e}}+x_{11}=\right)=®_{\mathrm{g}}\left(g_{11} i g_{i 1}^{\mathrm{e}}\right) ; 8 \mathrm{i} ; \tag{1.16}
\end{gather*}
$$

$$
\begin{align*}
& \frac{1}{n} ®_{\mathrm{g}}\left(g_{11} i g_{i 1}^{e}\right)={ }^{-}\left(@_{2}==_{d_{11}}\right)^{e} ; 8 i ; \tag{1.17}\\
& K_{i 1}+\left(1+{ }^{1} A d_{i 0}=\left(\sum_{i 1}^{e}+x_{11}=0\right)+\hat{A}_{1 / 4}^{e}+\left(g_{11} i g_{i 1}^{e}\right)+d_{i 1}^{e} ; 8 i:\right. \tag{1.18}
\end{align*}
$$

Step 1: Computation of expectations of cross-country averages. Take crosscountry averages across (1.15)-(1.18) to yield:

$$
\begin{align*}
& ®_{1 / 4}^{1 / 4}=\hat{A} ®_{\mathrm{g}}\left(g_{1} \mathrm{i} \mathrm{~g}_{1}^{\mathrm{e}}\right) ; \tag{1.19}\\
& \underline{o}^{2}\left(\xi_{1}^{e}+x_{1}=0\right)=\circledR_{g}\left(g_{1} i g_{1}^{e}\right) ; \tag{1.20}
\end{align*}
$$

Using (1.19), (1.20) and (1.22), one can solve for the expected cross-country averages of the outcomes, given ${ }_{1}^{d}$:

$$
\begin{align*}
& 1 / 4=\frac{h_{\hat{A}=B_{1} / 4}^{i}}{P} K_{1}+\left(1+{ }^{1} \neq d_{0}^{1} i_{d} d_{1}^{i} ;\right. \tag{1.23}
\end{align*}
$$

Combining this last equation with (1.21) to eliminate $\boldsymbol{g}_{\boldsymbol{H}} \mathbf{i}$ g $_{1}^{e}$, we can solve for the equilibrium value of de as:
where

$$
\begin{equation*}
{ }^{-x}=-\left(1+\frac{1}{1}\right) ; \tag{1.25}
\end{equation*}
$$

and where (here and in the sequel) a superscript " S " stands for "second best".
Substitute (1.24) back into the expressions for $1 / e_{1}, \ell_{1}^{e}+x_{1}=0$ and $g_{1} ; \dot{g}_{1}^{e}$ to give:

$$
\begin{align*}
& g_{1} \text { i } g_{1}^{e}={\frac{h\left(B_{9}\right.}{P} h^{h^{-x}(1+1 / 1}}_{1+^{-8}\left(1+^{1 / 2}\right.}^{i} F \text {; } \tag{1.27}
\end{align*}
$$

where the last expression follows upon combining (1.27) and (2.1).
Step 2: Computation of country-speci..c expected deviations from cross-country expected averages. Subtract (1.19)-(1.22) from (1.15)-(1.18) to give the system:

$$
\begin{align*}
& \underline{o}^{3} \dot{L}_{i 1}^{\ddagger ; e}+x_{i 1}^{\dagger}={ }^{\prime}=®_{g}^{3} g_{i 1}^{\dagger} i g_{i 1}^{\ddagger} ; e^{\prime} ; 8 i ; \tag{1.30}
\end{align*}
$$

where we note that the ..rst equation has dropped out. Hence, from this system we obtain:

If we combine the last equation with (1.31), we can solve for $d_{i 1}^{\ddagger} ; e$ as:

1.2.2. Steps 3 and 4

Subtract the system (1.15)-(1.18) from the system (1.11), (1.12), (1.13) and (1.14). This yields:

$$
\begin{align*}
& 0=\dot{L}_{i 1}^{d}+\hat{A}_{1 / 4}^{1 / i} i_{i 1}^{d}+d_{i 1}^{d} ; 8 i: \tag{1.37}
\end{align*}
$$

Step 3: Responses to common shocks. Take cross-country averages across (1.34)-(1.37) to give:

$$
\begin{align*}
& i ®_{g} g_{1}^{d}=-x\left(1+{ }^{1} /{ }^{h} \frac{1}{p}{ }^{i}{ }_{1}^{d}\right. \text {; } \tag{1.40}\\
& 0=\mathcal{Z}_{1}^{d}+\hat{A}_{1 / 2}^{d} \mathrm{i} \quad g_{1}^{d}+d_{1}^{d} ;
\end{align*}
$$

The solution for $1 / \frac{1}{1}, \frac{\xi_{1}}{2}, g_{1}^{d}$ and x_{1}^{d}, given d_{1}, is:
where

$$
\begin{equation*}
P^{ম}=(\hat{A}+1)^{2}=®_{1 / 4}+1 \Omega^{2}+1=®_{g} ; \tag{1.42}
\end{equation*}
$$

as de..ned in the main text. Combine the expression for g_{1}^{d} with (1.41) to give the solution of d_{1}^{d} as:

Step 4: Computation of responses to idiosyncratic shocks. Substract the system (1.38)-(1.41) from (1.34)-(1.37) to give:

$$
\begin{equation*}
\underline{o} 2^{3} i_{i 1}^{ \pm}+\frac{z_{\dot{D}}^{\prime}}{\underline{Q}}+®_{g} g_{i 1}^{ \pm}=0 ; \tag{1.44}
\end{equation*}
$$

$$
\begin{align*}
& \text { i } \circledR_{g} g_{i 1}^{ \pm}={ }^{-x}\left(1+{ }^{1} \not A^{h} \frac{1}{1=\Omega^{2}+1=®_{g}} d_{i 1}^{ \pm}\right. \text {; } \tag{1.45}\\
& 0=i_{i 1}^{ \pm} i \quad g_{i 1}^{ \pm}+d_{i 1}^{ \pm} ; \tag{1.46}
\end{align*}
$$

Using (1.44) and (1.46) we can solve $i_{i 1}^{ \pm}+\frac{z_{\underline{i}}}{\circ}$ and $g_{i 1}^{ \pm}$for given $d_{i 1}^{ \pm}$:

$$
\begin{aligned}
& i_{i 1}^{ \pm}+\frac{z_{i}}{\underline{o}}=h_{\frac{1 \Omega^{2}}{1==^{2}+1=\Omega_{g}}}{ }^{3} \frac{2_{i}}{\underline{o}} i^{i} d_{i 1}^{\prime}
\end{aligned},
$$

Combine this with (1.45) to yield:

$$
\begin{equation*}
d_{i 1}^{+S}={\frac{1}{1+{ }^{-x}(1+1 / 1}}_{\#_{2_{i}}}^{\underline{o}} \text { : } \tag{1.47}
\end{equation*}
$$

2. Derivation of the decentralized equilibrium

We now solve the model for the case of a centralized, discretionary monetary policy and a decentralized ..scal policy. We allow for the possibility of a constant (possibly zero) in \ddagger ation target or a state-contingent in \ddagger ation target which is a linear function of the individual countries' debt choices. The case of pure discretion is obtained when the in \ddagger ation target is restricted to zero in both periods. The model is solved through backwards induction.

2.1. Period 2

We compute the second-period policy outcomes, conditional on ..rst-period debt choices. Substitute (2.2) and

$$
g_{\mathrm{i} 2}=\mathrm{i} \quad\left(1+{ }^{1} \neq \mathrm{d}_{\mathrm{i} 1}+\mathrm{L}_{\mathrm{i} 2}+\hat{A}^{1 / 4} ;\right.
$$

into (2.3). Hence, in period 2 the CCB minimizes over $1 / \mathbb{Q}$:
where $1 / 4$ is a constant (possibly zero) or a linear function of the individual countries' debt choices. The C CB 's ..rst-order condition is:

The ..scal authority of country i minimizes over ¿iz:

The ..rst-order condition is:

Furthermore, we can write the second-period government budget constraint as:

$$
\begin{equation*}
K_{i 2}+\left(1+{ }^{1 / A} d_{i 1}=\left(i_{i 2}+K_{12}=0\right)+\hat{A}_{1 / 4}^{1 / 4}+\left(g_{12} i g_{i 2}\right):\right. \tag{2.3}
\end{equation*}
$$

Take (2.1), (2.2) and (2.3) together and impose that $1 / 4=1 / 4$. The system to be solved is then given by:

$$
\begin{align*}
& ®_{1 / 4}\left(1 / \pm i^{1 / \frac{2}{2}}\right)=\underline{o}^{2}\left(\xi_{2}+x_{2}=0\right)+\hat{A} ®_{g}\left(g_{2} i^{\prime} g_{2}\right) ; \tag{2.4}\\
& \underline{o}^{2}\left(\dot{i}_{i 2}+x_{12}=0\right)=®_{\mathrm{g}}\left(g_{12} \mathrm{i} g_{\mathrm{i} 2}\right) ; \tag{2.5}\\
& K_{i 2}+\left(1+{ }^{1 / 2} d_{i 1}=\left(i_{i 2}+K_{i 2}=0\right)+\hat{A}_{1 / 2}+\left(g_{12} i g_{i 2}\right):\right. \tag{2.6}
\end{align*}
$$

Take the cross-country average of (2.5) and combine the resulting equation with (2.4) to eliminate ($\left.g_{2} \mathrm{i} \quad g_{2}\right)$ from (2.4). We have, after rewriting the result:

$$
\begin{equation*}
1 / 4=1 / 4 /{ }_{2}+\frac{h_{(\hat{A}+1)^{0} 2^{2}} i^{i}}{}\left(\xi_{2}+X_{2}=0\right): \tag{2.7}
\end{equation*}
$$

Take the cross-country average of (2.6) and combine this with (2.7) to eliminate $1 / \pm$ from (2.6). Combine the result with the cross-country average of (2.5) to eliminate $g_{2} i \quad g_{2}$. We end up with:
where

$$
\begin{equation*}
S=\hat{A}(\hat{A}+1)=®_{1 / 4}+1=0^{2}+1=\AA_{\mathrm{g} S} ; \tag{2.9}
\end{equation*}
$$

as in the main text. Combine (2.8) with (2.7) to give:

Furthermore, we can combine (2.5) and (2.6) to yield

$$
K_{i 2}+\left(1+{ }^{1} \nmid d_{i 1}={ }^{3} 1+\frac{\varrho^{\prime}}{Q_{9}}\left(\sum_{i 2}+K_{12}=0\right)+\hat{A}^{1} / \mathbb{Q}:\right.
$$

Combine this with (2.10) to eliminate $1 / \pm$. Rewrite the result to yield:

Combine this with (2.5) to ..nd that:

Finally,

Using (2.10), (2.12) and (2.13), the C CB 's and government i's second-period losses are, respectively:

2.2. Period 1

The CCB minimizes over $1 / 4$:

Hence, the ..rst-order condition is:

The government of country i minimizes over $i_{i 1}$ and $d_{i 1}$:

The ..rst-order conditions are:

$$
\begin{align*}
& \bigotimes_{\mathrm{g}}\left(\mathrm{~g}_{11} ; \mathrm{g}_{\mathrm{i} 1}\right)={ }^{-} @_{i 2}^{G}=@_{i 1} \text {; } \tag{2.16}
\end{align*}
$$

where

$$
\begin{aligned}
& \frac{1}{1 / 20^{2}+1=®_{g}} \text { @ }
\end{aligned}
$$

Finally, we can rewrite the ..rst-period government budget constraint as:

$$
\begin{equation*}
K_{i 1}+\left(1+1 / 2 d_{i 0}=\left(\dot{L i}_{i 1}+X_{i 1}=0\right)+\hat{A}_{1 / 4}+\left(g_{11} i g_{i 1}\right)+d_{i 1}:\right. \tag{2.18}
\end{equation*}
$$

The system of ..rst-order conditions to be solved is thus given by (2.15), (2.16), (2.17) and (2.18). Take some country-speci..c policy variable $y_{i 1}\left(y_{i 1}=1 / 41 ; \sum_{i 1} ; g_{i 1}\right.$ or $d_{i 1}$). We will solve for $y_{i 1}$ by solving for each of the components of the decomposition of $y_{i 1}$ into $y_{i 1}=y_{1}^{e}+y_{i 1}^{d i e}+y_{1}^{d}+y_{i 1}^{ \pm}$, where y_{1}^{e} will be the response to the cross-country average of the deterministic components of the government ..nancing requirements, $y_{i 1}^{\mathrm{q}}$;e will be the response to the country-speci..c deterministic components of the government ..nancing requirements, y_{1}^{d} will be response to the common shock and $y_{i 1}^{ \pm}$will be the response to the idiosyncratic shock. Note that $1 / 41{ }^{4}=1 / 41$

2.2.1. Steps 1 and 2

Take expectations across (2.15), (2.16), (2.17) and (2.18) to yield:

$$
\begin{align*}
& \underline{o}^{2}\left(\sum_{i 1}^{\mathrm{e}}+\mathrm{K}_{11}=\mathrm{O}\right)=\circledR_{\mathrm{g}}\left(g_{11} i g_{i 1}^{\mathrm{e}}\right) ; \tag{2.20}
\end{align*}
$$

$$
\begin{aligned}
& \frac{1}{1=0^{2}+1=\Omega_{g}} \propto
\end{aligned}
$$

$$
\begin{align*}
& K_{i 1}+\left(1+{ }^{1} / 2 d_{i 0}=\left(i_{i 1}^{e}+X_{i 1}=0\right)+\hat{A}_{1 / 2}^{1 / 2}+\left(g_{11} i g_{i 1}^{e}\right)+d_{i 1}^{e}:\right. \tag{2.22}
\end{align*}
$$

Here, $1 /{ }_{2}^{\infty}{ }_{2} \mathrm{e}$ is the expectation about the second-period in \ddagger ation target, formed before ..rst-period shocks have occurred. Furthermore, we have used that $\frac{\mathrm{a} / 4}{\varrho d_{1}}$ is constant (possibly zero), because $1 / \frac{1}{2}$ is a constant or a linear function of the individual countries' debt choices.

Step 1: Computation of expectations of cross-country averages. Take crosscountry averages across (2.19)-(2.22) to yield the following system (again making use of the constancy of $\frac{\left(@_{1 / 2}\right.}{@_{i 1}}$):

$$
\begin{align*}
& \underline{o}^{2}\left(\xi_{1}^{\mathrm{e}}+x_{1}=\mathrm{o}\right)=\mathbb{R}_{\mathrm{g}}\left(g_{1} \mathrm{i} \mathrm{~g}_{1}^{\mathrm{e}}\right) ; \tag{2.24}
\end{align*}
$$

$$
\begin{aligned}
& -\frac{1}{1 / h^{1=2}+1=\Omega_{g}} \text { a }
\end{aligned}
$$

Combine (2.23) and (2.24) to eliminate $®_{\mathrm{g}}\left(g_{1} \mathrm{i} g_{1}^{\mathrm{e}}\right)$ and obtain:

Combine this equation and (2.24) with (2.26) to eliminate both g_{1} i g_{1}^{e} and $1 / 4$, to obtain after rewriting:

Hence,

Hence, combining this last equation with (2.25) to eliminate $g_{1} ; g_{1}^{e}$ and rewriting yields:
where

$$
\begin{equation*}
S^{ম}=\hat{A}(\hat{A}+1)=\mathbb{R}_{1 / 4}+(\hat{A}+1)=\left(n \mathbb{R}_{1 / \lambda}\right)+1 \varrho^{2}+1=\mathbb{R}_{g} ; \tag{2.31}
\end{equation*}
$$

as de..ned in the main text. Hence,

One obtains $d_{1}^{\text {deD }}$ by imposing a zero in \ddagger ation target in both periods. Hence, the

Step 2: Computation of country-speci..c expected deviations from cross-country expected averages. Subtract (2.24)-(2.26) from (2.20)-(2.22). This gives the following system:

$$
\begin{equation*}
\underline{o} 2^{3} i_{i 1}^{\mathrm{t}} ; \mathrm{e}+x_{i 1}^{\mathrm{t}} \varrho^{\prime}=\mathbb{R}_{9}^{3} g_{11}^{\mathrm{t}} \mathrm{i} \mathrm{~g}_{i 1}^{\mathrm{d}} ; \mathrm{e}^{\prime} ; \tag{2.33}
\end{equation*}
$$

Equations (2.33) and (2.35) can be combined to yield outcomes conditional on $\mathrm{d}_{\mathrm{i} 1}^{\mathrm{q}} ;$;

Combining the latter equation with (2.34) gives:

2.2.2. Steps 3 and 4

Subtract equations (2.19)-(2.22) from equations (2.15)-(2.18), respectively, to give the following system in terms of deviations of realizations of variables from their expectations:

$$
\begin{equation*}
0=\dot{L}_{i 1}^{d}+\hat{A}_{1 / 4}^{d} \mathrm{i} \quad g_{i 1}^{d}+d_{i 1}^{d} ; \tag{2.42}
\end{equation*}
$$

Step 3: Responses to common shocks. In step 3 we solve for $1 / q_{1}, \eta_{1}^{d}=\xi_{1}$ i $\frac{k_{1}^{e}}{i}$, $g_{1}^{d}=g_{1} i g_{1}^{e}$ and $d_{1}^{d}=d_{1}^{{ }^{d}} i{ }_{d}^{d e}$, which are the policy responses to the common shock ${ }^{1}$. We take the cross-country averages of the system we just obtained and use the assumption that the cross-country average of the ${ }^{2}{ }_{i}$'s equals zero. This yields:

$$
\begin{align*}
& 0={ }_{2}^{\frac{d}{d}}+\hat{A} 1 / \frac{d}{d} i \quad g_{1}^{d}+d_{1}^{d} \text {. } \tag{2.46}
\end{align*}
$$

One can solve (2.43), (2.44) and (2.46) to obtain the solutions for the variables for given ${ }_{d}^{d}$:

$$
\begin{align*}
& x_{1}^{d}=i \frac{\mathbb{B}_{4}}{(A+1)^{-0}} 1 / \frac{1}{1} ; \mathrm{g}_{1}^{d}=i \frac{®_{/ 4}}{(A+1) \mathbb{Q}_{g}} 1 / \frac{d}{1}: \tag{2.47}
\end{align*}
$$

Finally, we can solve for d_{1}^{d} by combining (2.45) and (2.47). We can solve for $d_{1}^{\text {d }}$;D

Step 4: Computation of responses to idiosyncratic shocks. These responses are de. ned as $i_{i 1}^{ \pm}{ }^{\prime} i_{i 1}^{d} \mathrm{i} \sum_{i}^{d} g_{i 1}^{ \pm}{ }^{\prime} g_{i 1}^{d} \mathrm{i} \mathrm{g}_{1}^{d}$ and $d_{i 1}^{ \pm}{ }^{\prime} \mathrm{d}_{11}^{d} \mathrm{i} \mathrm{d}_{1}^{d}$. The relevant system that needs to be solved is obtained by subtracting (2.43)-(2.46) from (2.39)-(2.42), respectively. This yields (note that the ..rst equation drops out):

$$
\begin{align*}
& 0=i_{i 1}^{ \pm} i \quad g_{i 1}^{ \pm}+d_{i 1}^{ \pm}: \tag{2.50}
\end{align*}
$$

where

$$
\begin{equation*}
Q=[(n ; 1)=n]\left[\hat{A}(\hat{A}+1)=Q_{1} / d+1=\varrho^{2}+1=R_{g} ;\right. \tag{2.51}
\end{equation*}
$$

as de..ned in the main text. Combine (2.48) and (2.50) to eliminate $\dot{\iota}_{i 1}^{ \pm}$and solve for $g_{i 1}^{ \pm}$to yield:

By substituting the right-hand side of (2.52) into (2.49), we can solve for $\mathrm{d}_{\mathrm{i} 1}^{ \pm}$. In addition, if we set $1 / \frac{1}{4}=0$ (hence, $\frac{\left(d_{i 1} / 2\right.}{@}=0$), we obtain the solution for $d_{i 1}^{ \pm D}$.

3. Proof of Proposition 1

Let $K_{i 1}=K_{1}, K_{i 2}=K_{2}, d_{i 0}=d_{0}$ and ${ }_{i}=0,8 i$. Hence, $d_{i 1}=d_{1}$. We pursue the following strategy in proving Proposition 1. First, we derive the value $1 /{ }^{1}\left(\mathrm{~d}_{1}\right)$ for
 period policy outcomes under the second best, for given $\mathrm{d}_{1} .{ }^{17}$ Then, we derive the value $1 / 4 /\left(d_{1}^{e}\right)$ for $1 / 41$ that replicates the ..rst-period policy outcomes under the

 solve for d_{1}^{d}. The resulting solutions for ${ }_{d}^{e}$ and d_{1}^{d} turn out to coincide with the corresponding outcomes in the second-best equilibrium.

For given d_{1}, the optimal in \ddagger ation $f_{a_{n g e t}}{ }_{h}^{1 / 2}\left(d_{1}\right)$ is the one that yields the second-best outcome for $1 / 42$, i.e. $1 / 42=\frac{\hat{A}=Q_{/ 4}}{P} K_{2}+\left(1+^{1 / 2} d_{1}\right.$. Hence, we solve for $1 / 2\left(d_{1}\right)$ from the following equation:
which is obtained by equating the right-hand side of the ..rst equation in (1.6) with the right-hand side in (2.10). The solution is:

$$
\begin{equation*}
1 / \frac{1}{4}\left(d_{1}\right)=i \frac{h_{1=B_{/ 4}}^{i}}{p} K_{2}+\left(1+{ }^{1} \not d_{1}^{i}:\right. \tag{3.1}
\end{equation*}
$$

[^13]It is easy to check that for this value of the inłation target, the other second-period variables attain their second-best values, given ${ }_{d}$. Further, note that,

$$
\begin{equation*}
\frac{@ / 4}{@ @_{i 1}}=\mathrm{i} \frac{1}{\mathrm{n}} \frac{\mathrm{~h}_{1=@ / 4}}{\mathrm{i}}\left(1+{ }^{1} \mathrm{~A}:\right. \tag{3.2}
\end{equation*}
$$

h For ${ }_{h}$ given d_{1}^{2}, the optimal in \ddagger ation target $1 / \frac{1}{1}\left(d_{1}^{\frac{1}{e}}\right)$ is the one that yields $1 / \frac{1}{1}=$

which is derived upon equating the right-hand sides of (1.23) and (2.28). The solution is:

It is easy to check that for this value of the in¥ation target, the other ..rst-period variables attain their second-best equilibrium values, given ${ }_{d}^{\text {de }}$.

Having noticed that for these in \ddagger ation targets the intratemporal allocation of the government ..nancing requirements is optimal (i.e. according to the secondbest equilibrium), for given debt policy, we now need to check that for these in \ddagger ation targets debt policy coincides with debt policy in the second-best equilibrium. To this end, substitute ${ }^{1 / 2 / 4}$, given by (3.3), $\frac{@\left(4 d_{1}\right.}{\varrho}$, given by (3.2), and
into (2.30). It is easy to see that the ..nal two terms in (2.30) cancel out against each other. It is then straightforward to solve the resulting equation to yield $\mathrm{d}_{1}^{\mathrm{d}}=\mathrm{d}_{1}^{\mathrm{d}} \mathrm{S}$.

As the ..nal step, substitute
(obtained by substracting the expectation of (3.1) from (3.1)) into (2.45). Let's work out the various terms after this substitution. For the left-hand side we have:

$$
\mathrm{i} \mathbb{R}_{g} g_{1}^{d}=\frac{1}{p^{\sharp}}{ }^{3} \frac{1}{\bar{o}} \mathrm{i} \quad \mathrm{~d}_{1}^{d}:
$$

For the right-hand side we have:
where

$$
R^{\prime}\left[\left(\begin{array}{ll}
n & 1 \tag{3.4}
\end{array}\right)=n\right]^{h} \hat{A}^{2}=R_{/ 4}+1 \Omega^{2}+1=\Omega_{g}:
$$

Hence, we obtain the following equation to be solved for d_{1}^{d} :

The right-hand side of this equation can be written as ${ }^{-x}\left(1+{ }^{1} / d_{1}^{1} d_{1} P\right.$. Using this, we can solve the equation to give $d_{1}^{d}=d_{1}^{d ; s}$. This completes the proof.

4. Proof of Proposition 2

First, we derive the equilibrium when a debt target $d_{i 1}^{T}$ is imposed on country i, $\mathrm{i}=1 ;:: ; \mathrm{n}$. This debt target is the exact amount of debt that country i has to carry over into the second period. A fter having derived the equilibrium, we prove Proposition 2.
4.1. Derivation of the equilibrium with debt targets $d_{i 1}^{\top}, i=1 ;::, n$.

In deriving the equilibrium, we closely follow the derivations of the decentralized equilibrium in Appendix B.

4.1.1. Period 2

We replace $d_{i 1}$ with $d_{i 1}^{T}$ in the derivation of the second-period outcomes in Appendix B and, consistent with the notation we used so far, we use d_{1}^{\top} to denote the cross-country average of the individual countries' debt targets. The second-period policy outcomes can then be written as:
analogous to (2.10), (2.12) and (2.13), respectively.

4.1.2. Period 1

Because ..rst-period debt is no longer a choice variable, the relevant ..rst-order conditions for government i are:

$$
\begin{align*}
& K_{i 1}+\left(1+{ }^{1} / 2 d_{i 0}=\left(\sum_{i 1}+X_{i 1}=0\right)+\hat{A}^{1 / 41}+\left(g_{11} i g_{i 1}\right)+d_{i 1}^{\top} ;\right. \tag{4.6}
\end{align*}
$$

analogous to (2.15), (2.16) and (2.18), respectively.
We solve now for the ..rst-period outcomes. As before, we solve for these in four steps. Take expectations across the ..rst-order conditions (4.4), (4.5) and (4.6), to yield:

$$
\begin{align*}
& \underline{o}^{2}\left(\dot{L}_{i 1}^{\mathrm{e}}+x_{11}=0\right)=®_{\mathrm{g}}\left(g_{11} \mathrm{i} g_{\mathrm{i} 1}^{\mathrm{e}}\right) ; \tag{4.8}\\
& K_{i 1}+\left(1+{ }^{1} / 1 d_{i 0}=\left(i_{i 1}^{e}+K_{i 1}=0\right)+\hat{A}_{1 / 4}^{1 / Q}+\left(g_{11} i g_{i 1}^{e}\right)+d_{i 1}^{\top ; e}:\right. \tag{4.9}
\end{align*}
$$

Step 1: Solution in terms of cross-country averages. Take cross-country averages across the previous three equations. This yields:

$$
\begin{align*}
& \underline{o}^{2}\left(\xi_{1}^{\mathrm{e}}+x_{1}=0\right)=R_{g}\left(g_{1} i g_{1}^{e}\right) ; \tag{4.11}
\end{align*}
$$

Following the steps in Appendix B, we solve for the outcomes as a function of $\mathrm{d}_{1}^{\top} ;{ }^{\top}$:

Step 2: Country-speci..c expected deviations from cross-country expected averages. Subtract (4.11) and (4.12) from (4.8) and (4.9), respectively, which gives the following pair of equations:

$$
\begin{aligned}
& \underline{0} 2^{3} i_{i 1}^{\mathrm{q} ; \mathrm{e}}+\mathrm{x}_{\mathrm{i}}^{\mathrm{q}}{ }^{\circ}{ }^{\prime}=\mathbb{R}_{\mathrm{g}}{ }^{3} \mathrm{~g}_{\mathrm{i}}^{\mathrm{d}} \mathrm{i} \mathrm{~g}_{\mathrm{i}}^{\mathrm{q}} ; \mathrm{e}^{\prime} ;
\end{aligned}
$$

These are solved to give the outcomes conditional on $d_{i 1}^{\top ;} ;$; ;

Step 3: Responses to common shocks. Subtract (4.7)-(4.9) from (4.4)-(4.6), respectively, to give the system:

$$
\begin{align*}
& 0=i_{i 1}^{d}+\hat{A} / \frac{d}{4} i \quad g_{i 1}^{d}+d_{i 1}^{T ; d}: \tag{4.18}
\end{align*}
$$

Next, take cross-country averages of this system, to yield:

$$
\begin{gather*}
i \underline{o 2^{3}} 1 / \frac{d}{d} i \sum_{1}^{d} i \frac{1}{\underline{o}}+\mathbb{R}_{g} g_{1}^{d}=0 ; \tag{4.20}\\
0=\sum_{1}^{d}+\hat{A}_{1 / 4}^{d} i \quad g_{1}^{d}+d_{1}^{\top \top} ; d: \tag{4.21}
\end{gather*}
$$

The solution of this system is:

Step 4: Computation of responses to idiosyncratic shocks. The relevant system to be solved is obtained by subtracting (4.20) and (4.21) from (4.17) and (4.18), respectively, to give:

$$
\begin{aligned}
& 0=i_{i 1}^{ \pm} i \quad g_{i 1}^{ \pm}+d_{i 1}^{\top} ; \pm .
\end{aligned}
$$

The solution of this system is:

4.2. Proof of Proposition 2

We show that by setting the individual countries' debt targets at $d_{i 1}^{\top}=d_{1}^{\text {es }} s+$ $d_{i 1}^{\ddagger} ; e ; S+d_{1}^{d ; S}+d_{i 1}^{+S}(i=1 ;:: n)$, and the in \ddagger ation targets at
as proposed in Proposition 2, the second-best equilibrium is attained. Hence, this combination of in \ddagger ation and debt targets mimimizes V_{U}.

Substitute expression (4.26) into (4.1) in order to eliminate ${ }^{1 / 2}$. The resulting expression can be simpli..ed to:

$$
1 / \mathbb{L}=\frac{h_{\hat{A}=\mathbb{B}_{1 / 4}}}{P} K_{2}+\left(1+{ }^{1} A d_{1}^{1 \top^{\top}}:\right.
$$

Because we set $d_{1}^{T}=d_{1}^{\text {bes }}+{ }_{d}^{\text {dd; }}$: in Proposition 2, we substitute the solutions for $\mathrm{d}_{1}^{\text {de: }}$ and ${ }_{d}^{1 d i s}$ obtained in Section 3 into this expression for $1 / \pm$, to yield:
which is the expression for $1 / \notin$ given in Table 1.
We can proceed in a similar fashion to show that under the proposed combination of targets $g_{i 2} i \quad g_{i 2}, x_{i 2} i x_{i 2}, 1 / 4, g_{i 1} i \quad g_{i 1}$ and $x_{i 1} i x_{i 1}$ all coincide with their second-best counterparts. This completes the proof.

Table 1. Second-best policy out comes

variable	h ${ }^{\circ}{ }_{Q}$	1	h i2	3
$\hat{A}^{1 / 4}$		h 0		h $0_{\text {i }}$
	$h^{\frac{1 \Omega^{2}}{P}} i^{-x} c_{0}$	$h^{\frac{10^{2}}{1=9^{2}+1=\mathbb{B}_{g}} i^{-x} c_{0}}$	$h^{\frac{1 \Omega^{2}}{P^{X}}} i^{-x}{ }_{3} \frac{P^{X}}{P}, C_{1}$	$h^{\frac{1 \Omega^{2}}{1==^{2}+1=\Omega_{9}}{ }^{-x}{ }^{-x} C_{0} .}$
G11 i gin^{1}	$\frac{1=\mathbb{B}_{0}}{P}{ }^{-x} C_{0}$	$\frac{1=Q_{g}}{1=D^{2}+1=\mathbb{B}_{g}}{ }^{-x} C_{0}$	$\begin{array}{llll} \frac{1=B_{g}}{P^{Z}} & -a & \frac{P^{B}}{B} & C_{1} \\ \hline \end{array}$	$\frac{1=\mathbb{Q}_{9}}{1=\Omega^{2}+1=\mathbb{B}_{9}}{ }^{-x} C_{0}$
1/4 i 1/ 1 星	h 0	0		0
$\hat{A}^{1 / 2}$	$\frac{\hat{\mathrm{A}}^{2}=\Omega_{/ 4}}{\mathrm{~h}^{\mathrm{P} /:}} \mathrm{C}_{0}$	h 0 -	$\frac{\hat{A}^{2}=\Omega_{1 / 4}}{\mathrm{P}} \mathrm{P}^{\text {P }} \mathrm{C}_{1}$	h 0 i
$\frac{\mathrm{k}_{12 \mathrm{i}}^{1} \mathrm{x}_{\mathrm{i} 2}}{\underline{\underline{1}}}$	$h^{\frac{1 O^{2}}{P}}, C_{0}$	$h^{\frac{1=\Omega^{2}}{1==^{2}+1=R_{y}}} ; C_{0}$	$h^{\frac{1-\rho^{2}}{P}} ; C_{1}$	$h^{\frac{1 \Omega^{2}}{1==^{2}+1=\Omega_{y}} ;} C_{0}$
912i $\mathrm{giz}^{\text {l }}$	$\frac{1=®_{g}}{P} C_{0}$	$\frac{1=\Omega_{9}}{1=\Omega^{2}+1=\mathbb{R}_{9}} C_{0}$	$\frac{1=\mathrm{B}_{\mathrm{g}}}{P} \mathrm{C}_{1}$	$\frac{1=\Omega_{9}}{1=\Omega^{2}+1=\Omega_{9}} C_{0}$
$1 / 4 \mathrm{i}^{1 / 2}$	0	0	0	0

Note: for each variable $z_{i t}$ the outcome can bepwritten in n_{i} the format

$$
\begin{aligned}
& C_{1} \quad \frac{1+1 / 2}{1+{ }^{-8}\left(1+1^{1} /\left(P^{x}=P\right)\right.}, P^{\prime} \quad \hat{A}^{2}=R_{1 / 4}+1 \rho^{2}+1=R_{g} \text { and } \\
& P^{\alpha^{\prime}}(\hat{A}+1)^{2}=R_{1}+1 \varrho^{2}+1=R_{g} .
\end{aligned}
$$

Table 2. Purely discret ionary pol icy out comes

variable	$\mathrm{h} \quad 103$	1	$\mathrm{h} \quad \mathrm{i}^{\circ} 23$	3
$\hat{A}^{1 / 4}$		$\mathrm{h} \quad \mathrm{i}^{0}$		$\mathrm{h} \quad \mathrm{i}^{0}$
$\frac{x_{1+1} x_{i 1}}{\underline{o}}$	$h^{\frac{1 \Theta^{2}}{S}} i^{-x}{ }_{3} \frac{\mathrm{~S}^{\mathrm{I}}}{\mathrm{~S}}, C_{0}^{D}$	$h^{\frac{1=\Theta^{2}}{1==^{2}+1=\mathbb{Q}_{\mathrm{g}}}{ }^{-\mathrm{a}}}{ }_{3} \frac{\mathrm{Q}}{\mathrm{~S}}, C_{1}^{D}$	$h^{\frac{1 \Omega^{2}}{P^{x}}} i^{-x}{ }_{3} \frac{P^{n} S^{x}}{S^{2}}, C_{2}^{D}$	$h^{\frac{1=\Omega^{2}}{1==^{2}+1=\Omega_{i}}{ }^{-\infty}}{ }_{3} \frac{Q}{S}, C_{1}^{D}$
G1i gin_{1}		$\frac{1=\mathbb{R}_{9}}{1=\Omega^{2}+1=\mathbb{R}_{g}}-\frac{Q}{S} \quad C_{1}^{D}$		$\frac{1=R_{g}}{1=\Omega^{2}+1=B_{g}}-\frac{Q}{S} \quad C_{1}^{D}$
$\underline{1 / 4} \mathrm{i}^{1 / 4}$	h 0	0		0
$\hat{A}^{1 / 2}$	$\frac{\hat{A}(\hat{A}+1)=\Omega_{/ /}}{\mathrm{h}} \mathrm{C}_{0}^{D}$	h 0	$\frac{\hat{A}(\hat{A}+1)=\Omega_{1 /}}{\mathrm{h}} C_{2}^{D}$	h 0
$\frac{x_{12 i} x_{i 2}}{\underline{o}}$	$h^{\frac{1 \Omega^{2}}{S}} C_{0}^{D}$	$h^{\frac{1=\Omega^{2}}{1==^{2}+1=\mathbb{Q}_{\mathrm{g}}} \mathrm{C}_{1}} C_{1}^{D}$	$h^{\frac{1 \Omega^{2}}{S}} \cdot C_{2}^{D}$	$h^{\frac{1=\Omega^{2}}{1==^{2}+1=B_{9}} i_{1}^{D}} C^{D}$
$\mathrm{Gl}_{2} \mathrm{i} 912$	$\frac{1=\mathrm{B}_{\mathrm{g}}}{\mathrm{S}} \mathrm{C}_{0}^{\mathrm{D}}$	$\frac{1=Q_{9} S}{1=O^{2}+1=Q_{9}} C_{1}^{D}$	$\frac{1=B_{9}}{S} \quad C_{2}^{D}$	$\frac{1=\mathbb{B}_{9}}{1=\Omega^{2}+1=B_{9}} C_{1}^{D}$
$1 / 4 i^{1 / 2}$	0	0	0	0

Note: for each variable $z_{i t}$ the out comedcan be written in the format

 $P^{\prime \prime}(\hat{A}+1)^{2}=\AA_{/ 4}+1=\rho^{2}+1=R_{0}, Q^{\prime}\left[\left(\begin{array}{ll}n & 1\end{array}\right)=n\right]\left[\hat{A}(\hat{A}+1)=R_{/ 4}\right]+1=\Omega^{2}+1=R_{g}$,
$S^{\prime} \hat{A}(\hat{A}+1)=R_{1}+1 \varrho^{2}+1=R_{0}$ and
$S^{a^{\prime}} \hat{A}(\hat{A}+1)=R_{/ 4}+(\hat{A}+1)=(n ® / 4)+1 \varrho^{2}+1=R_{g}$.

[^0]: * We thank David Vestin and the participants of the EPRU (University of Copenhagen) Workshop 'Structural Change and European Economic Integration' for helpful comments on an earlier version of this Paper. The usual disclaimer applies.

[^1]: ${ }^{1}$ Our earlier model incorporated another potential distortion: the possibility that governments discount the future at a higher rate than their societies do. We ignore this distortion throughout the current paper.

[^2]: ${ }^{2} \mathrm{M}$ onetary uni..cation is taken as given. Hence, we do not explore the incentives of countries to join a monetary union.

[^3]: ${ }^{3}$ Details on the derivations of these output equations can be found in B eetsma and Bovenberg (1999).
 ${ }^{4}$ W ithout this assumption, the mean ${ }^{2}$ of the ${ }^{2}$ s would play the same role as ${ }^{1}$ does. In the outcomes given below, ${ }^{1}$ would then be replaced by ${ }^{n^{1} 1}+^{ }$. For convenience, we assume that $\mathrm{z}=0$.

[^4]: ${ }^{5}$ In the following, we will occasionally explore what happens when the number of union participants becomes in..nitely large (i.e. n! 1) in order to strengthen the intuition behind our results. In these exercises the real interest rate remains beyond the control of union-level policymakers.

[^5]: ${ }^{6}$ T hroughout, we present the outcome for the output gap instead of the outcome for the tax rate. The reason is that, in contrast to the latter, the former directly enters the welfare loss functions.

[^6]: ${ }^{7}$ The optimal inłation target can either be optimally reset at the start of each period, or

[^7]: ${ }^{9} \mathrm{An}$ analogous mechanism features in Cukierman and Lippi (1999), who explore how the (nominal) wage demands of trade unions change as a result of a switch from national monetary policymaking to a monetary union. In a monetary union, trade unions internalize the in \ddagger ationary consequences of higher wage demands to a lesser extent. Hence, the incentive to restrain wages is weakened.

[^8]: ${ }^{10}$ First-period debt and ..rst-period in \ddagger ation are simultaneously chosen, while the monetary and ..scal policymakers take each other's decisions as given. Therefore, when selecting debt, governments ignore the exect of ..rst-period debt on ..rst-period seigniorage.
 ${ }^{11}$ If $=0$, preferences concerning the second-period in \ddagger ation rate are the same across governments and, hence, governments will not strategically use debt. Indeed, if $=0, d_{i 1}^{d t} e^{i}$ is unamected by n . W ithin the context of our simple model, therefore, the presence of seigniorage revenues is crucial for countries to engage in strategic debt accumulation. However, governments may dixer in their preferences about future monetary policy for other reasons as well (for example, a dixerent timing of business cycles). In that case, governments may also strategically use debt policy to axect the future stance of monetary policy.

[^9]: ${ }^{12}$ Since ${ }^{-x}(\mathrm{Q}=\mathrm{S}) \ll^{-x}$ and $\left.\varliminf_{i 1}^{\ddagger ;} ; \mathrm{e}^{-\infty}(\mathrm{Q}=\mathrm{S})\right]<(>) 0$ if $\mathrm{F}_{\mathrm{i}}^{\text {d }}>(<) 0$ (see also (4.7), below), $\mathrm{d}_{i 1}^{\ddagger} ; \mathrm{e} ; \mathrm{D}>(<) \mathrm{d}_{\mathrm{i}}^{\ddagger} ; \mathrm{e} ; \mathrm{S}$ if $\mathrm{F}_{\mathrm{i}}^{\ddagger}>(<) 0$.

[^10]: ${ }^{13} \mathrm{~d}_{\mathrm{i} 1}^{+\mathrm{D}}$ is zero in the case of national monetary policymaking (i.e., $\mathrm{n}=1$). In that case, ${ }^{2}{ }_{i}=0$ (as we have assumed that the cross-country average of the idiosyncratic shocks is zero). This constraint has explicitly been used in the derivation of the equilibrium. If we had assumed that $z_{i} \in 0$, then $\stackrel{1}{\sigma}$ in (4.4) would have been replaced with $\frac{1+{ }^{2}}{\underline{o}}$, but $d_{i 1}^{ \pm D}$ would have remained at zero.
 ${ }^{14}$ Although country i may have been hit by a relatively bad shock $z_{i}>0$, suggesting a larger need for in \ddagger ation as a stabilizating tool, its preferred second-period in \ddagger ation rate does not dixer from the other governments’ preferred in \ddagger ation rate. The reason is that second-period in \ddagger ation expectations adjust for the part of the shock that is transmitted into the second period. Hence, in the second period in¥ation no longer has a role in stabilizing the exects of ${ }_{i}$ on the economy.

[^11]: ${ }^{15}$ T his is the case for New Zealand - see Walsh (1995) for a detailed account of this arrangement.

[^12]: ${ }^{16}$ Under exceptional circumstances (in particular, a large fall in GDP) the sanctions envisaged by the Pact may be waived. This aspect of the Pact to some extent resembles the contingent nature of the debt targets explored in this section.

[^13]: ${ }^{17}$ These are the outcomes that would have been obtained from the computations in Appendix B had we constrained debt accumulation in country ito d_{1}.

