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ABSTRACT

Internet Cluster Emergence*

Internet development holds the promise of transmitting economic value across
physical space at zero marginal cost. In such a ‘weightless economy’, what
factors matter for the location of economic activity and thus for economic
development? This Paper sketches a model of spatial dynamics over a three-
dimensional globe, where transportation costs do not matter. The Paper
develops conditions under which clusters of activity emerge.
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NON-TECHNICAL SUMMARY

Why does economic activity locate where it does? Knowing this informs
discussion of national productivity and competitiveness. It aids understanding
the implications of policies that are regionally or nationally based.

Economic geography provides a, now standard, answer: location reflects a
trade-off between costly transportation on the one hand and increasing returns
or some other positive externality on the other. The latter would lead to all
economic activity locating in one place alone, while the former to economic
production diffusing outwards for conveniently transporting output to users
(whether final consumers or other producers). Equilibrium balances the two
tensions and produces non-degenerate landscapes of economic activity.

Internet economic activity poses a challenge to this conventional wisdom in its
promise to dramatically reduce transportation costs. Of course, it is likely that
such a promise changes decisions only marginally in, say, the manufacturing
of construction cranes or heavy machinery, or in the mining of petroleum.
Sectors of the economy most affected would be where output is intangible or
‘weightless’. But examples of those are legion and include some of the fastest-
growing industries in any modern developed economy: financial and
consulting services, software, health consulting, music and entertainment, and
similar others. The puzzle, from the perspective of standard theory, is that
these industries show neither all activity occurring in just a single location nor
the opposite, a completely random scattering over geographical space.
Instead, distinctive of industries like finance or software development is their
clustering into specific locations spaced at almost regular intervals about the
globe. Bangalore has become a powerhouse of software code-cutting. It
generated a high proportion of India’s US $3 billion 1999 software revenue (at
50% growth per year since 1992 and of which 60% have been export
earnings). Even better known are Finland, Singapore, Ireland and Silicon
Valley, USA as centres of advanced information technology development. By
the same token, Tokyo, London and New York constitute prominent clusters of
financial activity.

Of course, any number of ready explanations might account for some of these
observations. Universities and research centres attract other knowledge-
intensive activities to cluster around them. A millennium of history in banking
and stockbroking, and plain old inertia explain the location of some prominent
financial centres. But not all locations of higher learning are also successful
centres of these related activities. Nor do all such clusters locate around
obvious, already extant, centres of research and learning. Indeed, some of
these observations simply beg the deeper question of why knowledge and



intellectual input are geographically localized at all since, a priori, they should
not be.

This Paper takes a different approach to explaining observations on
clustering. It develops a model where transportation costs do not matter and
where the underlying geography is homogenous. Equilibria emerge that,
nonetheless, show distinct clusters in the location of economic activity. Thus,
the distribution of observable outcomes ends up more skewed or unequal than
the distribution of underlying characteristics: an effect related to the
economics of superstars. (Geographers are not unambiguous on what a
cluster is. In the current work, the connection with the economics of superstars
could well be taken to define the spatial clusters of interest.)

In the model, agents optimize dynamically and have rational expectations over
outcomes. Equilibrium is a law of motion in spatial distributions over a 3-
dimensional globe. Clusters appear as waves in time and space. They arise
along convergent transition paths, in the space of distributions, to long-run
steady state. These periodic waveforms result, in the model, from a trade-off
between productivity spillovers across timezones and a transient ‘stickiness’ in
factor input location.



1 Introduction

Why does economic activity locate where it does? Economic geogra-
phy provides a now-standard answer: Location reflects a tradeoff be-
tween costly transportation on the one hand and increasing returns or
some other positive externality on the other. The latter would lead to
all economic activity locating in one place alone, while the former to
economic production diffusing outwards for conveniently transport-
ing output to users (whether final consumers or other producers).
Equilibrium balances the two tensions, and produces nondegenerate
landscapes of economic activity.1

Internet economic activity poses a challenge to this conventional
wisdom in its promise to dramatically reduce transportation costs.
Of course, such a promise likely changes only marginally decisions in,
say, the manufacturing of construction cranes or heavy machinery, or
in the mining of petroleum. Sectors of the economy most affected
would be where output is intangible or “weightless”. But examples
of those are legion, and include some of the fastest-growing industries
in any modern developed economy: financial and consulting services,
software, health consulting, music and entertainment, and similar
others.

The puzzle, from the perspective of standard theory, is that these
industries show neither all activity occurring in just a single location
nor, the opposite, a completely random scattering over geographical
space. Instead, distinctive of industries like finance or software devel-
opment is their clustering into specific locations spaced at almost reg-
ular intervals about the globe. Bangalore has become a powerhouse of
software codecutting. It generated a high proportion of India’s US$3
billion 1999 software revenue (at 50% growth per year since 1992,
and of which 60% have been export earnings). Even better known
are Finland, Singapore, Ireland, and Silicon Valley USA as centers
of advanced information technology development. By the same to-
ken, Tokyo, London, and New York constitute prominent clusters of

1 Examples of such reasoning are in, e.g., Fujita, Krugman and
Mori (1999) and Krugman and Venables (1997).
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financial activity.
Of course, any number of ready explanations might account for

some of these observations. Universities and research centers attract
other knowledge-intensive activities to cluster around them. A mil-
lenium of history in banking and stockbroking, and plain old inertia
explain the location of some prominent financial centers. But not
all locations of higher learning are also successful centers of these
related activities. Nor do all such clusters locate around obvious,
already-extant centers of research and learning. Indeed, some of these
observations simply beg the deeper question of why knowledge and
intellectual input are geographically localized at all since, a priori,
they shouldn’t be (Arrow, 1962). But this, of course, turns out to be
the same question with which we began above.

This paper takes a different approach to explaining observations
on clustering. It develops a model where transportation costs don’t
matter and where the underlying geography is homogenous. Equi-
libria emerge that, nonetheless, show distinct clusters in the location
of economic activity. Thus, the distribution of observable outcomes
ends up more skewed or unequal than the distribution of underly-
ing characteristics—an effect related to the economics of superstars2

(Rosen, 1981).
In the model, agents optimize dynamically and have rational ex-

pectations over outcomes. Equilibrium is a law of motion in spatial
distributions over a 3-dimensional globe. Clusters appear as waves
in time and space. They arise along convergent transition paths—in
the space of distributions—to long-run steady state. These periodic
waveforms result, in the model, from a tradeoff between productivity
spillovers across timezones and a transient “stickiness” in factor input
location.

2 Geographers are not unambiguous on what a cluster is. In the
current work, the connection with the economics of superstars could
well be taken to define the spatial clusters of interest.
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2 Model: Cluster Emergence on the Globe

Consider the physical geography of a 3-dimensional globe, Fig. 1.
When time matters, but not geographical distance, the globe is iso-
morphic to the Equator (provided we ignore the North and South
Poles). View the Equator from the North Pole, and define geogra-
phy G to be the unit circle in the complex plane {z ∈ C : |z| = 1} or,
equivalently, {ω : ω ∈ (−π, π]}, with z(ω) = eiω or ω(z) = i−1 log z
(mod π).

The model has two key features. First, productivity spillovers are
characterized by timeliness or connections across time zones. Thus,
longitudinal distance matters even though physical Euclidean metric
does not. In the model, Helsinki is right next to Athens and only half
the distance apart of London from Paris (whereas on a 3-dimensional
globe, Helsinki/Athens is over 7 times the distance of London/Paris).
Second, economic activity comprises forward-looking producers with
rational expectations. These producers locate their factor inputs op-
timally on geography G by maximizing, over the future infinite hori-
zon, a present discounted value of profit flows. The factor input is
“sticky”, i.e., its uprooting or its implanting uses up resources. But
once uprooted, however far the input is moved entails no further costs:
these are adjustment costs, not iceberg transportation costs.

2.1 Spillovers across the globe

For production at location z, what happens at z′ matters through the
latter’s timeliness relative to events at z. Timeliness is a mapping
T : G × G → [0, 1] such that (i) local production is always the most
timely, i.e., for each z, the maximum value of 1 in T(·, z) is attained
at z, i.e., T(z, z) = 1 ≥ T(z′, z) for all z′ ∈ G; and (ii) timeliness
is invariant under equatorial rotation or is radially homogeneous: it
varies with radial separation, not with where production occurs, i.e.,
for all z, z′ in G, timeliness T(z′, z) depends only on ω(z) − ω(z′)
(mod π).
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From radial homogeneity, for any positive real number r,∫
G
|T(z′, z)|r dz′ =

∫
G
|T(z, z′)|r dz′ =

∫
G
|T(z′, 1)|r dz′.

We can therefore define

‖T‖r def=
(∫

G
|T(z′, 1)|r dz′

)1/r

<∞.

Assumption (i) does not disallow T(z′, z) = 1 at some other z′ 6= z;
it merely requires achieving the maximum at z′ = z.

It is instructive to contrast timeliness with the more conventional
physical distance metric. When spillovers are spatial, physical dis-
tance (or its inverse) provides a ready reckoning of the strength of
spillover effects. Physical distance achieves its minimum at z′ = z; it
is symmetric in all directions, monotone increasing, and radially ho-
mogeneous. Timeliness (i) and (ii), while sharing the minimum and
radial homogeneity properties, impose neither symmetry nor mono-
tonicity in spillovers across G. The analysis to follow gives qualita-
tively the same implications regardless of whether “bumps” or cycli-
calities appear in T. It is useful to allow these, perhaps to accom-
modate the sleep patterns of economic agents across different parts
of the globe. But at the same time, because T could be asymmetric
monotone decreasing, any cyclicalities emerging in equilibrium are
not directly inherited from assumptions on T alone.

2.2 Producers

Denote by ft(z) the quantity of factor input located at z in time t.
(Without ambiguity I will use the same symbol f also to refer to
the factor input itself.) The total amount of factor input is constant
through time, so that:∫

G
f(z) = 1, f(z) ≥ 0. (1)

Equation (1) specifies f to be a spatial (probability) density across
geography G. Maintaining (1), the function f will evolve through
time.
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A single homogeneous good Y is produced worldwide. At location
z, output depends on the factor input not just at z but everywhere
in G:

∀z ∈ G : Y (z) =
[∫
G

[T(z′, z)f(z′)]γ dz′
]1/γ

, γ ∈ (0, 1). (2)

In (2), since f , in general, evolves through time, so does output Y .
Throughout this paper we maintain T time-invariant.

The “spillover” effect of f at a particular location is maximized
there, but f elsewhere contribute as well, with spillover strength
depending on T(z′, z). The (conditional) elasticity of substitution,
(γ − 1)−1, will be required below to be at least 1 in absolute value.
Its critical range, however, depends on other parameters in the model,
so we reserve the possibility of restricting γ further within (0, 1).

Finally, uprooting or planting f is costly, although f ’s movement
across space is not. Represent this by costs of adjustment:

C(ḟt(z)) =
1
2
ζ × ḟt(z)

2
, ζ > 0, (3)

where ḟt(z) denotes the time derivative of ft(z). The larger is ζ, the
less easily does f change at a given point.

The producer at z decides how much f to have there by controlling
ḟ(z). He behaves competitively and earns on each unit of f in place a
return W , equal to the marginal product of f(z) in global production.
To calculate this, first notice that from (2) the marginal product of
f(z) at z′ is:

∂Y (z′)
∂f(z)

= T(z, z′)γ
(
Yt(z′)/ft(z)

)1−γ
.

The return to f at location z is therefore:

Wt(z) =
∫
G

∂Y (z′)
∂f(z)

dz′

=
∫
G

T(z, z′)γ
(
Yt(z′)/ft(z)

)1−γ
dz′. (4)
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From (2), Y at each z is homogeneous degree 1 in f . Thus, compensa-
tion (4) multiplied by f(z) and integrated across G exactly exhausts
total global production.

Equation (4) provides, in a partial equilibrium sense, some in-
tuition for the location decisions below. Holding T(z, z′) and f(z)
constant, the higher is Y (z′), the larger the immediate reward at z.
Since T is maximized when z = z′, this is therefore an incentive for
locating where economic activity is most intense.3 The denomina-
tor, on the other hand, makes it unattractive to be where a lot of f
already is.

Two considerations influence a producer’s dynamic location de-
cision. First is the adjustment cost (3). Second is the comparison
through time of returns locally Wt(z) and returns elsewhere Wt(z′).
A convenient way to model these influences is to define the benchmark
return

W t
def= (2π)−1

∫
z′∈G

Wt(z′) dz′, (5)

i.e., the average return at time t, and then assume that a producer
at t in z solves

∀ t ≥ 0 :

sup
{fs(z):s≥t}

∫
s≥t

e−ρs
[(
Ws(z)−W s

)
fs(z)− C(ḟs(z))

]
ds (6)

subject to (3), (5), and the given initial density ft. In (6), producers
maximize the present discounted value (discounted at rate ρ) of excess
returns less costs of adjustment. They do this by choosing a time path
{fs(z) ≥ 0 : s ≥ t}.

That the benchmark return (5) is an unweighted average across G
is not critical for the results. What matters is that, rather than say

3 If T displayed cycles, perhaps with equal peaks eight timezones
apart, corresponding to patterns of human sleep, then locating that
many timezones apart would be desirable. However, the spatial cycles
below while consistent with this behavior, will not in general arise
because of this kind of effect.
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just the maximum, the entire spatial profile of W enters the bench-
mark return. This together with the radial symmetry throughout the
rest of the model will figure importantly in the equilibrium.

Following the usual “stable roots backwards, unstable roots for-
wards” solution procedure (Sargent, 1987), the optimal decision rule
for producers satisfies

ḟt(z) = ζ−1

∫ ∞
0

e−sρ[Wt+s(z)−W t+s] ds. (7)

The producer at z increases f(z) if current-location returns are, in
a forward-looking present discounted value sense, better than those
elsewhere. This response is stronger, the larger is that location pre-
mium. On the other hand, the higher is the adjustment cost parame-
ter ζ, the smaller in absolute value is ḟt(z) in (7), and thus the more
sluggish the response.

2.3 Equilibrium distribution dynamics

The economy begins at time 0 and proceeds forever. An equilibrium
is a mapping X from [0,∞] to the space of probability densities on
G, such that when ft = X(t), using (2), (4), and (5) in (7) recovers
X. In pictures, an equilibrium describes a spatial density in factor
inputs for each time instant between 0 and infinity. A steady-state
equilibrium is an equilibrium that is constant, i.e., X(t + s) = X(t)
for all s ≥ t.

The uniform density ft(z) = (2π)−1 is always a steady-state equi-
librium: It implies Yt(z) = (2π)−1‖T‖γ and thus Wt(z) = ‖T‖γ inde-
pendent of t and z. Using these in (5) and (7) establishes that the
uniform density is time-invariant under the model.

The general case, however, is considerably more difficult. The
remainder of this paper considers only Markov equilibria. By this,
I mean equilibria X where there exist operators Tt,X(t) indexed by t
and X mapping the space of densities on G to the space of their time
derivatives such that:

Ẋ(t) = Tt,X(t)X(t) (8)

–7–
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and with operator adjoints representable by a stochastic kernel so
that for ft = X(t), we have:4

ḟt(eiω) =
∫ π

−π

[
Mt,ft(e

iω′ , eiω)
]
ft(eiω

′
) dω′ ∀ ω. (9)

Despite its integral form, the process in (8) and (9) need not be
“linear”, as the operator T and thus the stochastic kernel M depend
on both time t and state ft.

By the Markov assumption, the right side of (7) changes from an
integral over time s ≥ t holding z fixed, to one over z′ ∈ G holding t
fixed. That is,

ḟt(z) = ζ−1

∫ ∞
0

e−sρ[Wt+s(z) −W t+s] ds

=
∫
z′∈G

Mt,ft(z
′, z)ft(z′)dz′ (in Markov equilibrium) (10)

=⇒ ḟt = Tt,ftft, (11)

where I have used the same M and T symbols to highlight that equa-
tions (10) and (11) are just the model’s equilibrium counterparts of
(9) and (8), respectively.

Because of radial symmetry throughout the model, the opera-
tor Tt,ft has a Toeplitz property, i.e., if it were a matrix, each row
would be a circular translation of the one before.5 But any Toeplitz
matrix has for its eigenvalues the discrete Fourier transform of its
first row (which changes depending on the matrix) and for its eigen-
vectors the (unchanging) orthonormal set of complex exponentials

4 Such a stochastic kernel construction is given in Quah (1997).
Futia (1982) and Stokey and Lucas (1989) provide rigorous descrip-
tions.

5 Grenander and Szegö (1958) is a key reference for Toeplitz oper-
ators. Sargent (1987) and Titchmarsh (1962) provide useful exposi-
tions of the Fourier tools here. Although different in motivation and
mechanism, Krugman and Venables (1997) and Turing (1952) have
also exploited these same properties of Toeplitz operators.
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(2π)−1/2eiωj , with ω evaluated on the collection of discrete Fourier
frequencies k2π/N , both k and N integer. Thus, when a Toeplitz
operator characterizes a dynamic system, the convergence properties
of that system can be described using discrete Fourier transforms,
and the system’s invariants are linear combinations of complex expo-
nentials, or less obscurely, ordinary sine waves.

Of course, neither (10) nor (11) is discrete. Nevertheless, the
intuition of the previous paragraph carries.

Under the Markov assumption (8), equations (4) and (5) imply
that the expression on the right of (7) depends only the state ft.
Indeed, provided f is a Markov equilibrium, equation (7) gives exactly
the stochastic kernel hypothesized in (9).

That all of f across z′ ∈ G enters in W , and therefore in (7) has
an important implication for the distribution dynamics of the model.
To see this, we need first some technical background. One possible at-
tack on the analysis uses partial-differential equation (PDE) methods:
Equation (9) implies inter-relations across both time and space—it
holds dynamically not just for a single fixed location ω, but simulta-
neously across a continuum of locations. Analytical solutions are gen-
erally unavailable for PDE analyses. The alternative—conceptually
easier and that used here—is to view the infinite system of equations
(9) as just a single ordinary differential equation (ODE), taking not
real values but values in an infinite-dimensional state space of prob-
ability densities.

Linearize (10) about the uniform steady-state f(z) = (2π)−1 to
obtain:

ḟ(z) =
∫
G

[
θM (z, z′)(f(z′)− f(z′))

]
dz′

− λM × (f(z)− f(z)), (12)

with Frechet derivative θM − λMI, the coefficient λM a real number
and θM Toeplitz, i.e.,

θM (eiω
′
, eiω) = θM (ei(ω

′+ω′′), ei(ω+ω′′)) mod 2π
∀M and ω, ω′, ω′′.

–9–
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Consider equation (12). For all θM , the eigenfunctions are the
complete orthonormal set of complex exponentials,{

(2π)−1/2eiωj : ω ∈ (−π, π], j = −∞, . . . ,+∞
}

independent of f , while the spectrum is discrete and comprises the
Fourier transform of any one of the sections θM (z, ·) (varying with f
but independent of z). The proof builds on the calculation:∫ +π

−π
θM (z′, eiω)eiωjdω =

∫ +π

−π
θM(1, e(ω−ω′)i)eiωjdω

= eiω
′j
∫ +π

−π
θM (1, eiω)eiωjdω,

for then eiωj is an eigenfunction, and the corresponding eigenvalue is
the Fourier coefficient

∫ +π
−π θM(1, eiω)eiωjdω (integer j).

To complete the analysis, it is easiest to borrow economists’ in-
tuition from a well-known dynamic analysis.6 Compare (12) with
the Cass-Koopmans growth model. For the latter, we know that in
the standard case one of the eigenvalues of the 2 × 2 transition ma-
trix is stable, the other unstable. Initial conditions—configurations
of consumption and capital—must be chosen to nullify the unstable
eigenvalue for optimality and convergence to steady state. Configu-
rations that do this rely on using the eigenvectors of the transition
matrix.

Apply the same reasoning here. Provided θM ’s spectrum—the
Fourier transforms

∫ +π
−π θM (1, eiω)eiωjdω—minus λM has negative real

part somewhere, the dynamic system (12) has a stable convergent sub-
space in the space of densities on G (see Fig. 2). Initial conditions ft
located within this distinguished subspace, when run following (12),
converge back to steady state f . Moreover, any element in that sub-
space can be represented as a linear combination of the (complex
exponential, sine wave) eigenfunctions. This doesn’t guarantee clus-
ters, however, as even the flat, uniform density can be so written.

6 The development becomes necessarily sketchy here, to conserve
space. Quah (1999) provides complete details.
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The question is whether the eigenfunctions that are activated com-
prise the entire, spanning set of complex exponentials, or are instead
a nontrivial, incomplete subset.

The real-valued coefficient λM can be shown to be positive and
increasing in the adjustment costs coefficient ζ. Thus, if ζ is too large
given the elasticity parameter γ, then the convergent subspace could
comprise all densities on G. Indeed, for ζ sufficiently large, the entire
space of densities might be steady states. If, on the other hand, ζ is
too small, then λM might never be large enough to produce a nonnull
convergent subspace, and equilibrium need not exist.7

The interesting case, when ζ falls in an intermediate range, im-
plies a convergent subspace that is neither null nor the entire space.
But then a convergent initial condition ft is necessarily a nondegener-
ate linear combination of complex exponentials, i.e., displays distinct
periodicities or clustering as in Fig. 3.

2.4 Waves in space and time

It helps to be clear what Fig. 3 says and what it does not say. Each
waveform spatial density, on which clusters appear, is a single point in
the saddlepoint-stable convergent subspace of the space of all densities
on G. Each is, thus, a snapshot at a distinct timepoint in dynamic
equilibrium. Economic intuition for these, therefore, is not the same
as intuition for a static tradeoff between the forces for agglomeration
and those for dispersion. Instead, the intuition is that of saddlepoint
stability, as in the Cass-Koopmans growth model.

Upon a disturbance hitting the system—as in Cass-Koopmans
analysis—the spatial density has to “twist” into a form such that,
given particular initial conditions, waveforms of the kind in Fig. 3
appear. Since the underlying geography is homogeneous, it is the
nature of the disturbance that determines where peaks and troughs
appear. Of course, with no underlying heterogeneity, that will always
be true. The content in the analysis here is that only certain wave-

7 Krugman and Venables (1997) sought dynamics where the sys-
tem diverged rather than, as here, converged back to steady state.
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form spatial densities are consistent with convergence back to the
uniform steady-state equilibrium density. Along the transition path,
moreover, every point, i.e., every snapshot of the spatial distribution,
shows cycles.

These cycles in space arise from the eigenfunctions of the Toeplitz
operator Tt,ft . There might also be cycles in time. Instead of mono-
tone convergence back to steady state, there could be cycling (in the
space of densities) around the uniform density. Whether those arise,
however, depends not on the eigenfunctions but on the spectrum, i.e.,
the eigenvalues of Tt,ft . While both eigenfunctions and spectrum de-
rive, ultimately, from the economic parameters of the model, there
could be cycles in space without corresponding cycles in time. But
cycles in space always occur, along stable convergent paths back to-
wards steady state.

To summarize, the uniform “flat” equilibrium is the steady-state
to which all (stable) cyclical waveform densities converge. If the sys-
tem is continually perturbed by disturbances, then almost all the time
we observe only clusters in economic activity. The clusters will typi-
cally occur on different points in space through time. They will wax
and wane as history unfolds.

3 Conclusion

This paper has developed a model of Internet economic geography,
i.e., where transportation costs and spatial separation don’t matter.

The key insight (or, really hypothesis) that the model exploits is
that even when physical distance is irrelevant, timeliness or timezone
connections might be important. In the model, a tension between
technology spillovers across time and “sticky” factor inputs produces
clustering or periodicities in economic activity across the Equator, but
with location along longitudes left undetermined. The same underly-
ing economic parameters determine waveforms in economic activity
simultaneously across both space and time.

One of the attractions of a model like that here is the seemingly
spontaneous emergence of heterogeneities (or clusters, in this appli-
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cation) when none previously existed in the underlying attributes. In
the global model of this paper, initial uniformity appears as radial
homogeneity across space. But then, as shown in the paper, dynamic
evolution is determined by a Toeplitz operator. Since Toeplitz opera-
tors all have spectra and eigenfunctions that can be related to Fourier
transforms, an explicit dynamic analysis turns out to be tractable.

Indeterminacy along longitudes together with zero transportation
costs distinguish the current analysis from, say, more-conventional
economic geography.8 It is these features that empirical analysis to
distinguish the two strands of work would need to exploit. Part of that
development could, in parallel with the analysis above, exploit tools
of higher-dimensional Fourier analysis to characterize equilibrium dis-
tribution dynamics across the surface of a 3-dimensional globe.

References

Arrow, Kenneth J. (1962) “Economic welfare and the allocation of
resources for inventions,” In The Rate and Direction of Inventive
Activity, ed. Richard R. Nelson (Princeton University Press and
NBER) pp. 609–625

Fujita, Masahisa, Paul Krugman, and Tomoya Mori (1999) “On the
evolution of urban hierarchical systems,” European Economic Re-
view 43(1), 209–251, February

Futia, Carl (1982) “Invariant distributions and the limiting behav-
ior of Markovian economic models,” Econometrica 50(1), 377–408,
January
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North/South

Fig. 1: Collapsing the 3d globe to a minimal isomorphic
image Ignoring degeneracies at the North and South Poles, when
time matters but not geographical distance, the homogeneous globe
is isomorphic with a circle
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Fig. 2: Real part of the spectrum of θM Displaced down-
wards by increasing λM , the positive components that remain acti-
vate the associated complex exponentials in the invariant family of
eigenfunctions. (The spectrum happens to be discrete, but that is
inessential.)
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f

Fig. 3: Cycles in space Local perturbations converge back to
steady state only when they display cyclicalities in space
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