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NON-TECHNICAL SUMMARY

Adverse selection on insurance markets has been the subject of research in
economic theory for a long time. This refers to the notion that the insured have
more information on their risk type than the insurer might have. Take as an
example genetic tests, where so far it is unclear whether insurance companies
are allowed to demand results from previously undertaken tests, or even
undertake tests themselves. If testing and the test results are private
information, consumers are potentially much better informed about their illness
and death risk than the insurer. They might then use this information when
buying insurance.

To evaluate policy proposals for such a market with asymmetric information, a
consistent model is required. However, ever since the work by Rothschild and
Stiglitz (1976), researchers have been aware that the standard way of
modelling such a market leads to non-existence of equilibrium in those cases,
where there are just a few high risks in the market. This situation can be
considered very relevant for the health insurance market. In the simplest set-
up, insurer offer contracts and the potential customers choose the best
contract available. The only possible equilibrium in pure strategies is a
separating one, where the risk types obtain different contracts. Both contracts
are priced fairly given the risk of the type, but the lower risks are underinsured.
However, sometimes a single pooling contract might attract all customers and
destabilise the so-called Rothschild-Stiglitz separating equilibrium.

There are several attempts in the literature on obtaining a well-defined model.
In some models firms are allowed to withdraw contracts after the insured have
made their choice (Wilson (1977), Hellwig (1987)). Another avenue of
research is to let firms decide whether they want to divulge information about
their customers with other firms (Jaynes (1979), Hellwig (1988)). Further
models allow the firms to renegotiate with their customers once the first
contract is signed (Asheim and Nilssen, (1997)). Although in all those models
equilibria in pure strategies exist, it is probably fair to say that an overall
agreed upon model has not been established. So it does not come as a
surprise that most researchers still use the original Rothschild-Stiglitz model
(or the extension by Wilson (1977), Miyazaki (1977), Spence (1978)) to
discuss policy proposals.

In this paper we modify the original set-up by Rothschild and Stiglitz by
introducing capacity constraints. With this rather innocuous modification,
equilibrium in pure strategies can be established. Interestingly, these contracts
are the same as the original ones proposed by Rothschild and Stiglitz: high
risks obtain full insurance at their fair premium, while low risks are
underinsured at their fair premium.



Capacity constraints on the firm’s side can arise for different reasons. We
consider two of these in the paper, both of which are connected to the
insurer’s limited capital:

1. Solvency regulation: for a given size of capital, only a finite number of risks
can be added to the portfolio of the insurer, as otherwise, depending on
how the solvency requirement is specified, the ratio of premium income to
capital, or the ratio of risk exposure to capital, exceeds a given size.

2. Bankruptcy probability: even if no regulation is installed, the increase in
bankruptcy probability due to the acquisition of further contracts will make
each policy less attractive to the potentially insured, thus in effect
restricting the firm into arbitrarily selling many contracts.

If firms cannot arbitrarily serve many customers, the dynamics that led to the
non-existence of the original paper no longer work. If all firms offer the
Rothschild-Stiglitz contracts, and a single firm intends to deviate, it cannot be
sure that it will attract the desired mix of risk types it requires to make the
deviation profitable. Such a firm attracts more customers than it can serve, so
rationing will occur. Parties wishing to take out high risk insurance will gain
much more from the deviating offer than will those taking out low risk
insurance, whereas in previous contracts there was little differentiation
between the two levels. Therefore, even if the deviation is intended to attract
low risk parties, only high-risk parties will arrive at this firm. This in turn makes
deviation unattractive, and thus stabilises the Rothschild-Stiglitz contracts as
equilibrium outcomes.

This model adds confidence to the use of the Rothschild-Stiglitz outcome as a
prediction for markets where asymmetric information is present. This applies
not only to the insurance markets, but also to other economic circumstances,
such as the credit market, where the creditor better knows the profitability of a
project than the bank does.
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1 Introduction

Ever since the seminal work by Rothschild and Stiglitz (1976) on competitive insurance

markets under adverse selection the equilibrium-non-existence problem has been one of

the major puzzles in insurance economics. The origin of this problem lies in the fact

that only zero pro�t making separating contracts can constitute an equilibrium in the

sense of Rothschild and Stiglitz, while in some cases a single pooling contract or a pair

of cross-subsidizing contracts may be preferred by everyone and will therefore upset the

Rothschild-Stiglitz equilibrium contracts.

There are many approaches to this problem in the literature. One way out of it

is to allow �rms to have mixed strategies (Dasgupta and Maskin, 1986), however the

economic interpretation of this modi�cation is not clear. Another possibility is to pro-

pose di�erent equilibrium concepts (Wilson, 1977; Miyazaki, 1977; Spence, 1978; Riley,

1979), which however lack a game-theoretic foundation. There exist a few attempts of

introducing some form of dynamics explicitly in a non-cooperative model (Jaynes, 1978;

Hellwig, 1987, 1988; Asheim and Nilssen, 1997).1 These models have contributed to our

understanding of insurance markets to a large extent, but it is probably fair to say that

an overall agreed upon model has not yet been derived.

In this paper we want to add one aspect to the discussion of the non-existence problem

which so far has not received any attention in the insurance literature, and which lies at

the heart of the non-existence problem: If a deviating �rm o�ers a new set of contracts,

who chooses these contracts? So far it was always assumed that any new contract o�er

can potentially serve the whole market, so the pooling contract which destabilized the

Rothschild-Stiglitz equilibrium is taken by everyone, and the pair of cross-subsidizing

contracts attracts all high and low risks.

1Recently, an explicitly dynamic evolutionary model of the insurance market has been proposed

(Ania et al., 1998). If �rms copy pro�t making contracts and experiment with their own contracts

locally, the unique long run outcome is that all �rms o�er the Rothschild-Stiglitz contracts.
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Here we assume instead that �rms face capacity constraints. In that case it is no

longer guaranteed that a new o�er may attract a fair selection of the market. Indeed,

the distribution of risk types applying for a (deviating) contract at a given �rm is now

determined endogenously. Capacity constraints on the side of the �rms may arise for

di�erent reasons. We consider two, which are both consequences of limited capital avail-

able to any single insurer:

First, solvency regulation: For a given size of capital, only a �nite number of risks can

be added to the portfolio of the insurer, as otherwise, depending on how the solvency

requirement is speci�ed, the ratio of premium income to capital or the ratio of risk

exposure to capital exceeds a given size. Second, bankruptcy probability: Even if no

regulation is installed, the increase in bankruptcy probability due to the acquisition of

further contracts will make each policy less attractive to the potential insured, thus in

e�ect restricting the �rm to sell arbitrary many contracts (see also Rees et al., 1999).2

We consider both forms of capacity constraints in turn.3

Under capacity constraints, our main result is that the Rothschild-Stiglitz (RS) con-

tracts are stable, even if they are not equilibrium contracts of the original game. The

intuition is most easily grasped for the case of �xed insurance capacity. For an illus-

tration, consider pooling contracts which were used to destabilize the RS contracts in

the original paper. If the new contract is supposed to also attract low-risk types and

if the proposer intends to realize a strictly positive pro�t, the coverage of the low-risk

type must increase compared to the RS contract. Observe now that the high-risk type's

incentive compatibility constraint is binding under the RS allocation and that he bene-

2In a recent article, the ECONOMIST (16th January 1999, 'The Insurance Bust') argues that there

is too much capacity, i.e., capital, in the insurance market which lead to falling premiums. The author

recommends insurers to pay back capital to the shareholders.
3Another argument why a �rm might not serve the whole market could be the mere size of the �rm,

the number of employees, the size of the computer system, etc., which makes it di�cult to process more

than a given number of policies.
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�ts strictly more from an increase in the coverage (due to the single-crossing property).

Hence, the high-risk type's utility will increase strictly more under the deviating con-

tract. As a consequence, high risks are prepared to endure a more severe rationing in

case a �rm's capacity constraint becomes binding. This intuitive property can now be

applied to make any deviating o�er, even with a pair of contracts, unpro�table as it

simply will not assure the �rm the desired mix of types.

The rest of this paper is organized as follows. Section 2 introduces the two variants

of the model. The scenario with limited capacity is solved in detail in Section 3. The

argument is extended to the scenario with a possibility of bankruptcy in Section 4.

Other equilibria are discussed in Section 5, before we conclude in Section 6 by relating our

approach to recent technical contributions on contractual markets with adverse selection.

2 The Model

The insurance market is populated by F = f1; :::; Fg risk-neutral �rms, each with a

�xed capacity of kf > 0. In Scenario A the capacity of an individual form kf represents

a physical constraint on the number of contracts which can be obtained from this �rm.

In Scenario B the �rm is physically capable of signing more than kf contracts. However,

if the number of contracts exceeds this threshold, the risk of bankruptcy become non-

negligible. On the demand side there are N = f1; :::; Ng customers. We assume that

kf < N holds for all f 2 F and that
P

f2F 0 kf � N holds for all sets F 0 = F= ffg

with f 2 F . Hence, no single �rm can serve the whole market, while all but one �rm

together are su�cient to serve all customers.4 The customers face a risk of loosing a sum

4This assumption is a simpli�cation of the capacity problem due to limited capital. Given any

amount of capital, kf will in general depend on the form of the contracts o�ered and the types of the

insured buying these contracts. However, we conjecture that making kf an endogenous variable will

not change the result. The important assumption we require is that there are enough �rms to serve

the least-cost separating contracts without incurring capacity constraints, while any single �rm will run
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S. An individual may have either a high risk probability of �H or a low risk probability

�L < �H . The respective risk type of customer n is denoted by tn 2 T = fL;Hg. All

individuals have the same von Neuman-Morgenstern utility function U(w). Below we

will invoke a further assumption on the severeness of the capacity constraint to support

an equilibrium.

The game is modelled as follows:

Stage 0: The risk type of each individual is chosen by nature. Each person has the

chance of H (1 � H) to be a high (low) risk type. This draw is taken independent

across individuals, so that overall the expected number of high risks is HN .

Stage 1: Firm f , f = 1; :::; F , sets a menu of contracts f!f1 ; !
f
2 ; :::; !

f
kg where each

!fl speci�es a premium P f
l and a net indemnity payment Ifl .

Stage 2: Each customer either chooses a �rm f and a contract !fl or decides not to

visit any �rm.

If the number of customers choosing �rm f , which we denote by nf , does not exceed

kf , then each customer obtains his desired contract. The expected utility if the chosen

contract ! speci�es the premium P and the net indemnity I is abbreviated by

UE
t (!) = (1� �t)U(w � P ) + �tU(w � S + I);

where the risk type t is either H or L. If nf is larger than kf , the �rm runs into capacity

constraints. As discussed above, we consider two scenarios:

Scenario A:

Here capacity constraints, which arise e.g. as a consequence of regulation, imply that

�rms are not able to serve more than kf customers. If nf > kf customers queue for

a contract at �rm f , the �rm applies a rationing scheme. We assume that rationing

occurs randomly over all applicants. Hence, each individual is rationed with probability

�f = 1�minf1; kf=nfg. If some customers do not obtain a contract, Stage 3 follows.

into severe capacity problems if it tries to serve a signi�cant fraction of the market.
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Stage 3: The customer can either choose to remain uninsured or he can visit another

�rm f 0 which still has free capacity available and pick a contract !f
0

l from the menu of

contracts of �rm f 0. The search for a new �rm is costly. We measure these costs in

utility units and assume that approaching another �rm results in costs u > 0, which are

independent of the risk type.5 If the customer has chosen a �rm f 0 where again demand

exceeds supply, and he did not obtain a contract, Stage 3 is repeated.

Scenario B:

In this scenario all customers are served. However, due to the limited capital available,

�rms face the risk of going bankrupt. This bankruptcy risk depends on the number

of customers, and is denoted by a function �(�f) which depends positively on �f with

�(0) = 0. For a given risk of bankruptcy � and a contract ! with premium P and net

indemnity I, we abbreviate the expected utility by

UR
t (!; �) = (1� �t)U(w � P ) + �t(1� �)U(w � S + I) + �t�U(w � S � P )

= UE
t (!)� ��t [U(w � S + I)� U(w � S � P )] ;

where the risk type t is either H or L.

3 Rothschild-Stiglitz Contracts as Equilibrium Con-

tracts

In this section we consider in detail Scenario A where �rms have (strictly) limited ca-

pacity. The extension to Scenario B is given in the next section. Our main result is that

we can support Rothschild-Stiglitz contracts under some reasonable assumptions on the

costs u and the structure of the economy.

5Note that we assume that the �rst visit is free. Our results continue to hold if the costs of a �rst visit

do not exceed the di�erence between the utility derived by the low-risk type under his Rothschild-Stiglitz

contract and his utility without insurance.
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Before showing this, let us recall the pair of RS contracts, which are the least-cost

separating contracts. They are uniquely derived by the following conditions.

The RS contract !RSH for the high-risk type speci�es full coverage with IRSH = S � PRS
H ,

while the premium is determined by the zero-pro�t condition for the risk-neutral insurer

as PRS
H = �HS. We denote the realized (expected) utility by URS

H = UE
H (!

RS
H ).

The RS contract !RSL for the low-risk type is chosen to maximize UE
L (!) subject to

the �rms' participation constraint P � I�L=(1� �L) and the high-risk type's incentive

compatibility constraint URS
H � UE

H (!). It can be shown that both constraints become

binding, while the contract provides less than full coverage with IRSL < S � PRS
L . We

denote the utility by URS
L = UE

L (!
RS
L ). Denote U0

t = UE
t (0; 0) for the expected utility

without insurance coverage. It is clear that URS
L exceeds the expected utility from staying

uninsured U0
L.

Throughout this paper we focus on (subgame-perfect) equilibria where �rms play

pure strategies in Stage 1. As the number of �rms is �nite, the market will always clear

after a �nite numbers of repetitions of Stage 3. Hence, once contracts are in place, we

face a �nite (continuation) game, which therefore has always an equilibrium in (possibly

mixed) strategies.

As indicated in the introduction, the novel feature of our approach to the insurance

market is that the distribution of types applying for a possibly deviating o�er will be

determined endogenously. Customers evaluate a new proposal in comparison to what

they can get at other �rms and decide whether it is worthwhile to go for a better contract

even at the risk of being rationed, which is associated with strictly positive costs. More

precisely, we intend to abandon the particular speci�cation in the Rothschild-Stiglitz en-

vironment that a deviator can either serve the whole market or can always assure himself

a fair selection of risks. For our result to hold we require that the capacity problem is

su�ciently severe. This contains three elements:

First, the search costs u should not be negligible. Suppose otherwise: For search costs
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of zero there are no direct costs of being rationed by a �rm which makes a deviating

o�er. Thus again, everyone might try to obtain such a contract which in turn makes the

distribution of risks equal to the distribution in society.

Second, search costs u should not be too high. Otherwise, consumers only have one

possibility to search around. If they do not receive a contract at their �rst �rm, they

prefer to stay uninsured. As high risks su�er more from being uninsured, by o�ering a

contract which is going to be rationed �rms might deter high risks from choosing this

contract.

Third, the capacity of a single �rm must be su�ciently low compared to the economy.

If not, any �rm would by o�ering a deviating contract attract maybe not all of the pop-

ulation, but nearly all. This would make the risk distribution more and more favorable.

We next provide a formalization of these assumptions. (A.1) assures that rationed

players prefer to newly approach an insurer to sign their respective RS contract instead

of staying uninsured.

Assumption (A.1)

URS
t � u > U0

t for t 2 fL;Hg (1)

We next derive a combined requirement which puts a lower boundary on the search

costs u, while assuring that capacity is su�ciently dispersed. Let kM = maxf2F kf

be the maximum capacity of a single �rm. Recall next that at Stage 0 the type of

an individual is determined randomly. Therefore, the true distribution of types in the

population is unknown to all market participants.6 Suppose that individual n expects

that all high-risk individuals choose to visit a particular �rm f with the maximum

capacity kM , while all low-risk individuals pick di�erent �rms. This allows us to calculate

an expected rationing probability for individual n if he chooses �rm f as well. We

denote this probability by �M . 7 Let UP
H be the expected utility of a high risk under

6By the law of large numbers this uncertainty vanishes as the number of individuals increases.
7Formally, suppose that there are NH high risks visiting �rm f in addition to individuum i. This
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a full insurance contract at the fair pooling premium, i.e. the utility from a contract !

satisfying P [H(1� �H) + (1� H)(1� �L)] = I [H�H + (1� H)�L] and I = S � P .

Assumption (A.2).

(1� �M)UP
H + �M

�
URS
H � u

�
< URS

H : (2)

Assumption (A.2) implies that if individuum n is a high risk, he is better o� buying

his RS contract than queueing at a �rm together with all other high risks for the full

insurance contract at the pooling premium, and in case he is unlucky in the draw, buying

the RS contract in the next round. That is the expected rationing at one single �rm is

su�ciently severe if all high risks are expected to turn up.

Note that (A.2) holds for a given level of u if the number of customers N is su�ciently

large and if the capacity is su�ciently dispersed among �rms. To see this, consider a

sequence of economies where the expected fraction of high-risk types 0 < H < 1 is

kept �xed together with the maximum capacity kM of a single insurer. If the size of the

economy N increases, �M will converge to 1, so that (2) is satis�ed for any positive costs

u > 0.

Under (A.1)-(A.2) we can now prove our main result.

Proposition 1. Under Scenario A and if Assumptions (A.1)-(A.2) hold, there exists

an equilibrium where any costumer n 2 N realizes his respective RS contract at stage 2.

Proof:

We claim that one possible equilibrium strategy of �rms is to o�er the two RS con-

tracts each. Given that these contracts are o�ered, the customers face a coordination

problem. We solve the problem by ordering individuals as follows. Customer n turns

to �rm f where the index f satis�es
Pf

f 0=1 kf 0 � n and
Pf�1

f 0=1 kf 0 < n. He demands the

gives rise to the rationing probability �M (NH) = 1�min
�
1; kM=(NH + 1)

	
. The probability that there

are exactly m high risks in the population is equal to Pr(NH = m) =

0
@ N � 1

m

1
A mH (1� H)

N�1�m,

such that �M =
PN�1
m=0

Pr(NH = m)�M (NH).
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Figure 1: Rothschild-Stiglitz contracts.

high- or low-risk contract, depending on his type tn. First note, that given the contract

o�ers, no customer has an incentive to deviate, as all are served with the best possible

contract on o�er and no rationing occurs. Moreover, all �rms make zero pro�t with

these contracts. To support the resulting allocation as an equilibrium, it thus remains

to specify strategies if a single �rm deviates to a di�erent menu of contracts in order to

show that there are no pro�table deviations.8

Recall that in the standard discussion by Rothschild and Stiglitz, a pooling pro�t-

making contract might be just such a pro�table deviation. This is shown in Figure

1.

On the two axes are the premium and the gross indemnity G = I+P . Full insurance

is obtained at the vertical line which is given by G = S. The three straight lines denote

the zero-pro�t lines, if only high risks (the top line), only low risks (the bottom line),

8We do not specify the whole equilibrium strategy of the customers, which depends on his type

realization at Stage 0 and on all possible contract o�ers by the �rms. Instead, we only discuss that part

of the strategies which conditions on the relevant contract o�ers.
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or a mixture of the two risks buy such a contract. Recall that the least-cost separating

contracts are denoted by !RSL and !RSH . As drawn, a pooling contract like ! would be

preferred by everyone and would be strictly pro�table if it can assure a fair selection. It

thus makes the least-cost separating contracts not an equilibrium of the original game.

Coming back to our model, we must at this stage consider any possible deviation by

some �rm �f consisting of a menu f�!
�f
1 ; �!

�f
2 ; :::; �!

�f
kg of contracts. Note that rationing, if

it occurs, is the same for all customers of a single �rm, independent of which contract

they have chosen. Therefore we can, without loss of generality, reduce the menu to

two contracts, one for each type, which are denoted by �!H and �!L.
9 Moreover, these

contracts must be incentive compatible. To support the asserted equilibrium, we must

�nd for any deviating pair (�!H ; �!L) o�ered by a single �rm a continuation equilibrium

which renders this o�er unpro�table.

Recall that an individual customer can only observe the realization of his own type

and that each realization represents an independent random draw. As a consequence,

the length and the constitution of the queue forming at an individual �rm represents a

random variable. This gives rise to an expected rationing probability, which we denote

by �. If there is rationing at �f in Stage 2, we specify that individuals who are not

allocated a contract and who choose to visit another �rm in Stage 3 will again perfectly

resolve the coordination problem in Stage 3 and will thus realize their respective utilities

URS
t � u with one period delay. (Note that there is enough capacity as the remaining

F � 1 �rms o�er the RS menu and as
P

f2F=f �fg kf � N .) The expected utility of a type

t who visits the deviating �rm is therefore equal to

UD
t (�!t; �) = (1� �)UE

t (�!t) + �(URS
t � u): (3)

It is obvious that we can restrict attention to o�ers which are supposed to attract

(some) low-risk types as otherwise there would be no scope to increase pro�ts above

9With a slight abuse of notation this also covers the case where only a single contract is o�ered. In

this case set �!L = �!H .
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zero. This already implies UE
L (�!L) � URS

L . If expected pro�ts are positive, this can only

hold if this o�er involves more coverage �IL > IRSL and also a higher premium �PL > PRS
L

than the RS contract for the low-risk type. We claim that for any menu satisfying these

conditions for the low-risk contract there exists a (continuation) equilibrium where only

high-risk types turn up at the deviator.

First, note that the high risks strictly prefer the contract designed for the low risks

to their RS contract, i.e. UE
H (�!L) > URS

H . To see this, recall that the RS contracts were

chosen such that UE
H (!

RS
L ) = URS

H . As the deviating menu satis�es UE
L (�!L) � URS

L and

�IL > IRSL , the asserted strict inequality is immediate from the single-crossing property,

which was illustrated in Figure 1. As a consequence, it holds that UE
H (�!H) > URS

H , while

UD
H (�!H ; �) is strictly decreasing in the expected rationing probability �.

We show now that we can specify a continuation equilibrium where for a value 0 <

� < 1 all individuals n 2 f1; ::; Ng visit �f in Stage 2 with probability � if and only

if they are of the high-risk type. With probability 1 � � a high-risk type turns to a

�rm where he obtains his RS contract with probability one. Low-risk types choose a

�rm other than �f with probability one in order to buy their RS contract. (As any �rm,

including �f , is dispensable to serve the whole market, customers can indeed perfectly

resolve their coordination problem when choosing a �rm other than �f .) For a given � we

can calculate the expected rationing probability �(�) for an individual who contemplates

choosing �rm �f .10 Note that �(�) is strictly increasing in �.

We show �rst that there exists a unique 0 < � < 1 satisfying

UD
H (�!H ; �(�)) = URS

H : (4)

That is, there exists a probability � smaller than one at which high risks are indeed in-

di�erent between joining the queue and choosing the RS contract. Recall that UD
H (�!H ; �)

is strictly decreasing and continuous in �, while �(�) is strictly increasing and contin-

10Formally, �(�) = 1�
PN�1

m=0

0
@ N � 1

m

1
A (�H )

m(1� �H)
N�1�mmin

�
1; k �f=(m+ 1)

	
.
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uous in �. Moreover, it holds that UD
H (�!H ; �(0)) > URS

H . It remains to prove that

UD
H (�!H ; �(1)) � URS

H . The argument is by contradiction. Suppose there exists a prof-

itable deviation such that UD
H (�!H ; �(1)) � URS

H , i.e., where every high-risk individual

could turn up and (in expectancy) realize not less than by buying instead the RS con-

tract. Note next that �(1) = �M , which was de�ned before invoking (A.2). To ensure that

the deviating �rm �f still realizes nonnegative payo�s if it is visited by all available high-

risk types, UE
H (�!H) must be bounded from above by UP

H , as de�ned before (A.2). With

these preliminary remarks, it follows immediately that the claim UD
H (�!H ; �(1)) � URS

H

contradicts (A.2).

It now remains to show that, given the uniquely chosen 0 < � < 1 satisfying (4), it

does not pay any low-risk type to visit �f . Recall �rst that by (A.1) and our speci�cation

of continuation strategies at Stage 3, an individual implements his RS contract at Stage

3 if he was rationed when visiting �f at Stage 2. It therefore remains to show that

UD
L (�!L; �(�)) � URS

L . This again holds if UE
H (�!H) � URS

H is not below UE
L (�!L) � URS

L ,

which after substitution of UE
H (!

RS
L ) = URS

H and UE
H (�!H) � UE

H (�!L) holds if

UE
L (�!L)� UE

L (!
RS
L ) � UE

H (�!L)� UE
H (!

RS
L ):

But this must be satis�ed even strictly due to the single-crossing property, �IL > IRSL ,

and �PL > PRS
L .11

Q.E.D.

Proposition 1 has a simple intuition which comes out most clearly if we suppose that

a deviating o�er intends to attract a mixed set of types. To realize a pro�t with low-risk

types, the o�er must specify a higher coverage than the RS contract designated for these

types. By the single-crossing property, high-risk types gain more under the new o�er

11Note that UEL (�!L)� UEL (!
RS
L ) � UEH (�!L)� UEH (!

RS
L ) is equivalent to

(�H � �L)[U(w � �PL)� U(w � PRSL )] + (�L � �H )[U(w � S + �IL)� U(w � S + IRSL )] � 0:
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than low-risk types. They are thus prepared to accept a higher (expected) rationing

probability than low-risk types who would not apply for the deviating o�er at this level

of congestion.

4 Insurer Facing Bankruptcy Risk

The argument used for the proof of Proposition 1 carries over to Scenario B. Here rather

than being rejected by an insurer if she reaches the capacity constraint, consumers face

a risk of not being served in case of damage due to the possibility of bankruptcy. For

a full analysis of the game we would have to specify an insurer's payo� function under

the risk of bankruptcy, while it would also be necessary to endogenize the bankruptcy

function �(�). Some of the analytical complications involved with this formulation have

been addressed in Rees et al. (1999). In this section we restrict ourselves to indicate

how the main argument of this paper can be extended if the risk of bankruptcy instead

of the possibility of being rationed is used to endogenize the distribution of types for a

deviating o�er.

Take a particular �rm f o�ering a single deviating contract ! = (P; I). For any

expected bankruptcy probability � with 0 � � < 1 which will occur at this �rm along

the continuation equilibrium, we can write:

UR
t (!; �) = UE

t (~!(�))

where ~!(�) = (P; ~I(�)) is such that

(1� �)U(w � S + I) + �U(w � S � P ) = U(w � S + ~I(�)):

Both types are indi�erent between obtaining contract ! at a �rm which has bankruptcy

probability � or obtaining ~!(�) at a safe insurer. Due to risk aversion it follows that

(1� �)(I) + �(�P ) > ~I(�):

13



Assume that only low risks turn up at the deviating �rm. Then it's expected pro�t per

person will be equal to P � �l(1 � �)(I + P ) which is smaller than P � �l(~I(�) + P ).

The last term is the expected pro�t of an insurer who never goes bankrupt o�ering ~!(�)

to low risks only. As argued in the proof of Proposition 1, we can restrict attention to

contracts ! which satisfy UE
t (!) � URS

t for both types. If at the same time the contract

o�er should assure a positive payo� for the �rm, it follows that P > PRS
l and ~I(�) > IRSl ,

which implies I > IRSl .

Recall next that the risk of bankruptcy was strictly increasing in the number of sold

contracts whenever these exceed the capacity kf . For a given contract ! and a type t

we determine a critical bankruptcy risk �t(!) satisfying

�t(!) =
UE
t (!)� URS

t

�t [U(w � S + I)� U(w � S � P )]
:

Hence, if the bankruptcy risk at f o�ering ! is equal to �t(!), type t is just indi�erent

between implementing ! at this level of bankruptcy risk and implementing his respective

RS contract without any risk of bankruptcy. We show next that �H(!) > �L(!). To

see that this holds, note that the inequality
UE
H
(!)�URS

H

�H
>

UE
L
(!)�URS

L

�L
transforms from

URS
H = UE

H (!
RS
L ) to

U(w � P )� U(w � PRS
L )

�H
>
U(w � P )� U(w � PRS

L )

�L
:

This holds as U(w � P ) � U(w � PRS
L ) < 0 follows from P � PRS

L . Hence, for

any possibly pro�table deviation, high risks are prepared to accept a higher risk of

bankruptcy than low risks. In other words, high risks are more likely than low risks

to visit the deviating �rm even if the (expected) demand already exceeds the capacity

threshold at which there would be no risk of bankruptcy. This property was all that was

used to prove Proposition 1.
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5 Discussion of the Equilibrium

We now return to Scenario A. So far we have constructed a speci�c continuation equilib-

rium for each possible deviation to support the RS allocation as an equilibrium. However,

this does not need to be the only equilibrium outcome of the game.

In the proof of Proposition 1 it was required that customers can perfectly coordi-

nate their choices along the equilibrium path. In contrast, if buyers were to play mixed

strategies, they would su�er from a coordination problem. For a one-shot set-up without

adverse selection Peters (1984) shows that the possibility of coordination failure implied

by mixed strategies (both on and o� the equilibrium path) leads to multiple equilib-

ria where -in his case- sellers can realize strictly positive expected pro�ts even if they

strictly outnumber buyers. In our model, as nature randomly chooses a buyer's type,

coordination failure may occur even if all buyers play pure (type-dependent) strategies.

We can, however, obtain uniqueness of the RS allocation under quite reasonable

restrictions on strategies. Indeed, uniqueness of the RS allocation follows if the following

three requirements are imposed: First, insurers have free capacity in equilibrium. Second,

there is at least one idle �rm, which from a conceptual level is equivalent to assuming

that free entry is possible. Third, no consumer is made worse o� if an additional contract

is o�ered.

To formalize these requirements, let us �rst de�ne by 
 = f!fj ; f 2 f1; :::; Fg; j 2

f1; :::; kgg the set of all contract o�ers by the di�erent �rms. Now we can de�ne the

following property:

De�nition:We call the set of equilibrium strategies consistent, if the following holds:

Consider any two sets of contracts 
1 and 
2, where the allocation given by the contin-

uation equilibrium induced by 
1 is a feasible outcome if the set 
2 is o�ered. Then in

the continuation equilibrium induced by 
2 no one will be made worse o� than in 
1.

Thus consistency implies that if, for example, a �rm which was idle in 
1 with

probability 1, o�ers di�erent contracts leading to 
2, then no buyer should be made
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worse o� by the additional choice they now have.

Proposition 2. In any equilibrium where each �rm f has no more than kf � 1

customers with probability 1, and where at least one �rm stays idle with probability 1,

and where the strategies of the consumers are consistent, customers realize their respective

RS contracts.

Proof: As the proof works quite similar to the original proof in Rothschild and

Stiglitz, and the analysis on Bertrand competition under capacity constraints, we only

show the next claim rigorously and leave the rest of the proof to the reader:

Claim: In equilibrium, no �rm can o�er a contract with which it makes a strictly positive

pro�t.

Proof: Assume otherwise. Then there exist �rms which sell contracts to some risk type

or a distribution of risks with which they make a pro�t. It is easy to see that if the

contract makes a pro�t with the high risks, the idle �rm could by o�ering a slightly

better contract attract some individuals and make a pro�t.12 Therefore assume that

pro�t is made with the low risks. Call one such pro�t making contract !L. Due to the

single crossing property, there exists a contract !0

L in the vicinity of !L which the low

(high) risks do (do not) prefer to !L, and which still makes a pro�t if only low risks buy

this contract. Due to the assumption that there is no rationing in equilibrium even if one

more person queues at any active �rm, the high risks obtain an expected utility which

is larger or equal to that if they were to buy contract !L. If the idle �rm now o�ers

contract !0

L, no high risk type will turn up at this �rm in the continuation equilibrium,

due to the assumption of consistency. However, due to subgame perfection it cannot be

that with probability 1 no low risk will choose this �rm. Therefore by o�ering !0

L the

idle �rm would make a strictly positive expected pro�t, which violates the equilibrium

assumption.

12This part of the proof works even without invoking the consistency and the no-rationing require-

ments.
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Having shown that no contract can make a pro�t, the next steps in the proof work

similar to the analysis of Rothschild and Stiglitz. First, no contract can make a loss

in equilibrium as otherwise the �rm would make a loss overall. Therefore the contract

for each type must lie on the zero pro�t line of this respective type. One can show

that the incentive constraint binds from the high risks to the low risks, therefore the

high risks obtain their full insurance contract, while the low risks obtain the according

incentive compatible contract on their zero pro�t line, which together constitute the RS

contracts.13

Q.E.D.

The requirements leading to the uniqueness asserted in Proposition 2 do not seem to

be too restrictive for the insurance market. However, we would like to stress that other

equilibria are conceivable, in particular some, where rationing occurs.

6 Conclusion

We showed how an existence result in pure strategies can be obtained for an insurance

market if there is limited capacity to write contracts, which moreover is su�ciently dis-

persed among the competing �rms. A family of (least-cost separating) Rothschild-Stiglitz

contracts cannot be destabilized by a supposedly pooling deviation as the congestion re-

sulting from applying high-risk types, who will always have more to gain, will make

low-risk types strictly prefer to take up their prescribed equilibrium contract at one of

the other �rms.

This paper is not the �rst to use rationing and congestion as an equilibrating device in

13The equilibrium strategies we used in Proposition 1 satisfy all requirements of Proposition 2 apart

from the �rst one: All �rms have no more than kf � 1 customers with probability 1. However, it is

easy to generalize our proof to include this property, if we modify the assumption made on the overall

capacity of the market to:
P
f2F 0 kf � N + F holds for all sets F 0 = F= ffg with f 2 F . Thus an

equilibrium exsits which satis�es the conditions of Proposition 2.
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markets with adverse selection. However, the literature has so far restricted attention to

atomistic markets with typically a continuum of buyers and sellers who may trade at most

once. The Walrasian approach of Gale (1992, 1996) takes a one-shot perspective where

individuals who are rationed at a �rst stage will subsequently realize some exogenous

reservation value. Moreover, he does not solve a fully developed game as in our paper

where contracts are o�ered by one side and subsequently accepted by the other side of

the market. Instead, he considers an abstract market for contracts where each separate

contract is traded in a di�erent submarket. To reduce the multiplicity of equilibria he

introduces re�nements which restrict players' beliefs at unpopulated submarkets. As

contracts are o�ered by the uninformed side in our game and as we consider a sequential

time structure, these issues do not arise in our setting.

Congestion has also been applied as an equilibrating device in Inderst (1998) and in

Inderst and M�uller (1999a/b). These papers study a search-market environment where

(expected) delay to trade is used as a separating device in product and labor markets.

In contrast to the present paper, this work uses again an axiomatic equilibrium concept

which was pioneered by Moen (1997) under complete information.

As remarked above, the possibility of coordination failure among customers creates

space for equilibria where other contracts than those speci�ed in the RS allocation will be

implemented. In particular, �rms may be able to realize positive expected payo�s even

though each individual seller is negligible. This issue has been discussed under complete

information in Peters (1984). In Inderst (1999) two ways are discussed how prices will

converge to the unique competitive price in a setting with complete information where

any seller is dispensable. First, increasing the number of buyers (while keeping the

structure of the economy �xed) facilitates coordination as it allows buyers to predict

more accurately the congestion prevailing at an individual seller. Secondly, coordination

failure becomes less serious if the costs of visiting another seller decrease. Further work

is required to see whether these arguments can be exploited to put boundaries on the
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set of equilibrium allocations of the insurance model analyzed in this paper.14
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