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ABSTRACT

Imperfect Market-Monitoring and SOES Trading*

We develop a model of price formation in a dealership market where
monitoring of the information flow requires costly effort. The result is imperfect
monitoring, which creates profit opportunities for speculators, who do not act
as dealers but simply monitor the information flow and quote updates in order
to pick off ‘stale quotes’. Externalities associated with monitoring can help to
sustain non-competitive spreads. We show that protecting dealers against the
execution of stale quotes can result in larger spreads and be detrimental to
price discovery due to externalities in monitoring. A reduction in the minimum
quoted depth will reduce the spread and speculators’ trading frequency. Our
analysis is relevant for the Small Order Execution System (SOES) debate
given that the behaviour of speculators in our model is very similar to the
alleged behaviour of the real world SOES ‘bandits’.
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NON-TECHNICAL SUMMARY

Nasdaq’s Small Order Execution System (SOES) allows brokerage firms to
automatically execute small orders at the best quotes posted by Nasdaq
dealers. Participation in SOES is mandatory for all dealers, who must post firm
quotes valid up to a maximum quantity, fixed by Nasdaq. Although it was
intended for small retail customers, SOES mainly attracted professional day-
traders (labelled SOES ‘bandits’ by market-makers). SOES day-traders
quickly place orders when they observe a shift in the value of the asset, either
because they become aware of new public information before the dealers or
because some dealers are slow to update their quotes. In either case, they
increase the adverse selection risk faced by dealers. The role of the SOES
and its alleged impact on Nasdaq trading costs, liquidity and volatility has
been the subject of a long and heated policy debate. In particular Nasdaq
dealers argued that SOES day-traders were the cause of the large spreads
observed on Nasdaq. In contrast day-traders claimed that their presence
improved price discovery by forcing dealers to closely monitor their quotes.

In this article, we develop a theoretical model in which imperfect monitoring by
market-makers creates profit opportunities for speculators who compare with
SOES day-traders. We show how imperfect monitoring affects price formation
and we address, theoretically and empirically, some of the issues raised in the
debate regarding the impact of SOES day-traders on market quality. We
distinguish between two forms of monitoring: (i) market-monitoring and (ii)
quote-monitoring. Market-monitoring entails monitoring the arrival of new
information, e.g. public announcements, whereas quote-monitoring is limited
to monitoring quote updates. Traders learn new information through these two
forms of monitoring. Monitoring information arrival requires some effort,
however. In contrast, quote-monitoring does not require any effort because it
can be automated.

In our model, market-makers post firm quotes and select how intensively they
monitor information arrival. Since market-monitoring is costly, they never
monitor news continuously. Imperfect monitoring of news by the market-
makers creates occasional profit opportunities due to ‘stale’ quotes. A second
group of agents, referred to as speculators, seek to exploit these profit
opportunities. These speculators behave like the SOES day-traders. They
monitor news arrivals and the dealers’ quote updates. When the speculators
observe new information or a quote revision indicating a change in the asset
value, they ‘pick off’ dealers that fail to adjust their quotes. In equilibrium,
consistent with stylized facts, speculators’ expected profits are positive.

We find that market-monitoring by one dealer can generate either a positive or
a negative externality for the other dealers. By monitoring quote updates, a



dealer can free ride on the efforts that his competitors exert to monitor the
market. This is the source of the positive externality. The negative externality
stems from the fact that speculators can use quote updates to ‘discover’ stale
quotes. Therefore, more market-monitoring by one dealer increases the
likelihood that a speculator will be able to ‘pick off’ other dealers before they
update their quotes.

These externalities influence dealers’ bidding behaviour. The positive
externality induces dealers to match the best offers in the market rather than
undercutting. As a consequence, dealers can capture strictly positive
expected profits in equilibrium even if they compete in prices, à la Bertrand. In
contrast, the negative externality increases the competitive pressure. In fact,
by undercutting, a dealer can induce other dealers to monitor less
aggressively, which reduces the negative externality.

This interaction between price formation and information externalities has
implications for market design. Automatic execution makes it easier for
speculators to trade based on quote updates since dealers can not ‘back
away’ from trading at posted prices. We show that this feature of automatic
execution weakens dealers’ incentive to free ride on information produced by
their competitors. As a result, automatic execution encourages dealers to
compete in prices and tightens the spread. It also strengthens their incentive
to monitor the market, which ultimately is beneficial to price discovery.

Interestingly, the SOES’s automatic execution feature has been a major bone
of contention between day-traders and Nasdaq dealers. Accordingly, Nasdaq
has attempted to eliminate this feature several times. The policy debate has
also focused on the effect of SOES on trading costs on Nasdaq. Two
intertwined questions have been considered both by regulators and
researchers. Namely, whether the spreads are largely due to trading by SOES
day-traders and what determines the level of SOES day trading activity.
Based on the comparative statistics for the spread and the level of speculator
activity in our model we address these two questions empirically. We do not
find evidence of higher spreads for stocks with higher levels of SOES activity.
This surprising result is inconsistent with the theoretical model and with the
claim that Nasdaq spreads are largely because of SOES day-traders. We do
find that the level of SOES activity is negatively related to the spread and is
positively related to volatility and the minimum quoted depth as predicted by
the model.

The implications of our theoretical findings are discussed in the context of the
controversy on the effects of SOES trading. The economic insights that our
model provides apply more generally, however. For example, investors
submitting limit orders are typically exposed to a ‘picking off’ risk. As the
dealers in our model, limit order traders face a trade-off between the risk of



being picked off and the costs of monitoring the information flow. Free-riding
behaviour induced by the possibility of learning new information from quote
changes is also observed in other market structures. For instance, dealers in
US regional exchanges have an incentive to match NYSE specialists’ quotes
and thereby to free ride on their investment in price discovery. Analysing the
effect of the externalities induced by market- and quote-monitoring is therefore
important to sharpen our understanding of price formation in financial markets.



1 Introduction

Nasdaq's Small Order Execution System (SOES) allows brokerage �rms to automatically

execute small orders at the best quotes posted by Nasdaq dealers. Participation in SOES is

mandatory for all dealers, who must post �rm quotes valid up to a maximum quantity, �xed

by Nasdaq.1 Although it was intended for small retail customers, SOES mainly attracted

professional day traders (labeled SOES \bandits" by market makers), who account for a

large proportion of the SOES trading volume. The bandits trade when they observe a

shift in the value of the asset, either because they become aware of new public information

before the dealers or because some dealers are slow to update their quotes.2 The role of

the SOES and its alleged impact on Nasdaq trading costs, liquidity, and volatility has been

the subject of a long and heated policy debate.3

Harris and Schultz (1998) show that bandits on average make positive trading pro�ts,

at the expense of dealers. Pro�table trading by the bandits is puzzling since they trade

on information, which is publicly available, and pay commissions on their trades. Har-

ris and Schultz (1998), p.61, suggest that imperfect monitoring by dealers is a potential

explanation:

The existence and pro�tability of SOES bandits raise new questions about the
e�ciency of di�erent market structures. Bandits do not have any more in-
formation than the market makers that they trade against and in many cases
they have less information. But bandits still make money. [...]. We believe
the answer is that market makers are inherently less e�cient at price discovery
than are bandits. [...] bandits have a much greater incentives to concentrate on
what they are doing, to follow stock prices closely, and to stay in front of their
terminals than do market maker employees. Unusually fast or skillful traders
may �nd SOES trading to be more pro�table than working for a Nasdaq market
maker.

1The minimum quoted depth in the SOES has varied between 100 and 1000 shares since 1987.
2See Harris and Schultz (1997) for a detailed description of the SOES \bandits'" trading strategies.
3In a Washington Post article, on February 7, 1994, Joseph Hardiman, president of the National

Securities Dealers Association said that `The SOES activists were picking o� market makers, who were
slow to adjust. The losses to SOES activists made market makers gun shy, causing them to widen their
price spreads.' In a testimony before the House Committee on Commerce, David Whitcomb, argued
that `Abolishing SOES would remove the `market discipline', which keeps market makers on `their toes'
and causes prices to rapidly adjust when news occurs.' See the GAO report on `The E�ects of SOES
on the Nasdaq Market' for a summary of the main arguments in the SOES controversy and important
SOES-related events.

1



In this paper, we develop a theoretical model of imperfect monitoring by market makers

and show how this friction a�ects price formation. We distinguish between two forms of

monitoring: (i) market monitoring and (ii) quote monitoring. Market monitoring entails

monitoring the arrival of new information, e.g., public announcements, whereas quote

monitoring is limited to monitoring quote updates. Traders learn new information through

these two forms of monitoring. Monitoring information arrival requires some e�ort. In

contrast, quote monitoring does not require any e�ort because it can be automated.

In our model, market makers post �rm quotes and select how intensively they monitor

information arrival. Since market monitoring is costly, they never monitor news con-

tinuously. Imperfect monitoring of news by the market makers creates occasional pro�t

opportunities due to \stale" quotes. A second group of agents, referred to as speculators,

seek to exploit these pro�t opportunities. These speculators behave like the SOES bandits.

They monitor news arrival and the dealers' quote updates. When the speculators observe

new information or a quote revision indicating a change in the asset value, they \pick o�"

dealers that fail to adjust their quotes. In equilibrium, speculators' expected pro�ts are

positive. This provides an explanation for the puzzling stylized fact reported in Harris and

Schultz (1998). This explanation does not rely on di�erences in monitoring costs, di�er-

ences in ability, or agency problems in trading.4 The market maker's losses from trading

with the speculators are o�set by gains from trading with liquidity traders.

Our main results are:

1. Market monitoring by one dealer can generate either a positive or a negative exter-

nality for the other dealers. By monitoring quote updates, a dealer can free ride on

the e�orts that his competitors exert to monitor the market. This is the source of the

positive externality. The negative externality stems from the fact that speculators

can use quote updates to \discover" stale quotes. Therefore, more market monitor-

ing by one dealer increases the likelihood that a speculator will be able to \pick o�"

other dealers before they update their quotes.

4However, the model can be extended to consider agency issues in trading as well as di�erences in
skills. The monitoring decision can be interpreted as an unobservable (and non-contractible) choice of
e�ort made by the trader, who is an employee at a market making �rm.
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2. These externalities in
uence dealers' bidding behavior. The positive externality in-

duces dealers to match the best o�ers in the market rather than undercutting. As

a consequence, dealers can capture strictly positive expected pro�ts in equilibrium

even if they compete in prices, �a la Bertrand. In contrast, the negative externality

increases the competitive pressure. In fact, by undercutting, a dealer can induce

other dealers to monitor less aggressively, which reduces the negative externality.

3. This interaction between price formation and information externalities has implica-

tions for market design. Automatic execution makes it easier for speculators to trade

based on quote updates since dealers can not \back away" from trading at posted

prices. We show that this feature of automatic execution weakens dealers' incentive

to free ride on information production by their competitors. As a result, automatic

execution encourages dealers to compete in prices and tightens the spread. It also

strengthens their incentive to monitor the market, which ultimately is bene�cial to

price discovery.

Interestingly, the SOES's automatic execution feature has been a major bone of con-

tention between bandits and Nasdaq dealers. Accordingly, Nasdaq has attempted to elim-

inate this feature several times. The policy debate has also focused on the e�ect of SOES

on trading costs on Nasdaq. Two intertwined questions have been considered both by reg-

ulators and researchers. Namely, whether the spreads are larger due to trading by SOES

bandits and what determines the level of SOES bandit activity. Based on the comparative

statics for the spread and the level of SOES activity in our model we address these two

questions empirically. We do not �nd evidence of higher spreads for stocks with higher

levels of SOES activity. This surprising result is inconsistent with the theoretical model

and with the claim that Nasdaq spreads are large because of SOES bandits. We do �nd

that the level of SOES activity is negatively related to the spread and is positively related

to volatility and the minimum quoted depth as predicted by the model.

Our model is most closely related to Copeland and Galai (1983), who analyze the free-

trading option aspect of �xed quotes. We show how the free-trading option problem arises

in equilibrium as a result of imperfect monitoring decisions by market makers. Kandel

3



and Marx (1998) develop a theoretical model to study whether odd-eighth avoidance is a

rational response by Nasdaq dealers to SOES bandits. In their model the pro�t opportuni-

ties of the SOES bandits are implicitly assumed to be due to imperfect monitoring by the

dealers. Our contribution is to explicitly model imperfect market monitoring and analyze

its impact on the spread and the level of SOES activity in equilibrium.

Battalio, Hatch, and Jennings (1997), using vector autoregressions, show that SOES

bandits may speed up the price discovery process and that SOES bandits' activity is

positively related to price volatility. We obtain results consistent with these empirical

�ndings. Harris and Schultz (1997) analyze trading in the 20 largest Nasdaq stock around

a rule change that decreased the maximum SOES trade size from 1000 to 500 shares. They

provide evidence suggesting that the rule change had its intended e�ect of reducing the

marker makers' losses to SOES bandits. In our model, a decrease in the minimum quoted

depth lead to the entry of fewer speculators and thus to lower losses for the dealers.

The implications of our theoretical �ndings are discussed in the context of the controversy

on the e�ects of SOES trading. The economic insights that our model provides apply more

generally, however. For example, investors submitting limit orders are typically exposed

to a \picking o�" risk. As the dealers in our model, limit order traders face a trade o�

between the risk of being picked o� and the costs of monitoring the information 
ow.

Free riding behavior induced by the possibility of learning new information from quote

changes are also observed in other market structures. For instance, dealers in U.S. regional

exchanges have an incentive to match NYSE specialist's quotes and thereby to free ride

on his investment in price discovery (see Amihud and Mendelson (1991)). Analyzing the

e�ect of the externalities induced by market and quote monitoring is therefore important

to sharpen our understanding of price formation in �nancial markets.

The rest of the paper is organized as follows. The general features of the model are

presented in the next section. In Section 3, we show that market monitoring by one

dealer can be a positive or a negative externality for the other dealers. In Section 4, the

equilibrium with a �xed number of speculators is analyzed. In Section 5, we study the

e�ect of automatic execution on spreads and price discovery. We analyze the factors that

determine the number of speculators and the spread in Section 6. An empirical study of

4



the model's predictions is presented in Section 7. The �nal section concludes. All proofs

are in the appendix.

2 The Model

2.1 Timing, Traders and Market Structure

We consider the market for a risky asset. The liquidation value of the risky asset is

uncertain and is denoted ~V . There are three types of traders in this market: (i) M � 2

dealers, who post quotes and monitor the market, (ii) N � 1 speculators, who monitor the

market and submit market orders when they perceive pro�t opportunities, and (iii) liquidity

traders. Let M and N denote the set of all dealers and all speculators, respectively. The

expected value of the asset at the beginning of the trading day is denoted v0.

The trading day consists of a sequence of trading rounds. Figure 1 depicts the di�erent

stages in a trading round. Each trading round comprises three stages. In the �rst stage,

the quoting stage, the risk neutral dealers simultaneously determine their quoted spread.

We denote by Si the spread that is posted by dealer i. We assume that the dealer bid and

ask quotes are centered around the asset's expected value. The bid quote posted by dealer

i is bi = v0 �
Si
2
and the ask quote is ai = v0 +

Si
2
. Let Sb = MinfSigi=Mi=1 be the market

spread, i.e., the lowest spread posted in the market and let Mb be the subset of dealers

posting this spread. We assume that the dealers who do not post the market spread (i.e.,

the best ask and bid quotes) do not participate in the next stages of the trading round.5

The market organization is such that the dealers posting the market spread are required

to honor their quotes for up to Q shares, the minimum quoted depth, of the risky asset

and that execution is automatic for all order sizes of Q or smaller. For orders larger than

Q, dealers can back away from their quotes.

In the second stage, after observing the quotes posted in the market, the dealers who

5Alternatively we could assume that, after the quoting stage, the dealers can choose whether or not
they wish to maintain their quotes. In this case, the dealers who are not posting the best quotes will
optimally decide not to participate in the subsequent stages of the trading round. In practice, a dealer
who does not want to trade can post a very large spread so as to deter traders from hitting his quotes.
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remain active and the speculators choose their monitoring levels. The monitoring level

chosen by a trader determines the probability that she is the �rst to discover a public

announcement regarding the asset value. The monitoring decision is described in more

detail below. We refer to the second stage as the monitoring stage.

In the third stage, the trading stage, one of the three following events occurs. With

probability � < 1, information arrives indicating an increase or a decrease in the asset

value, with equal probabilities. In the case of an increase, the new expected value becomes:

v1 = v0+
�
2
, whereas in the case of a decrease the new expected value becomes: v1 = v0�

�
2
.

With probability (1 � �), no information arrives. In this case, with probability � > 0,

a buy or a sell market order is submitted by a liquidity trader, with equal probabilities.

The expected size of the liquidity trader's order is �Q. Finally with probability (1 � �),

no order is submitted. In the case of new information, the �rst trader who reacts to the

new information is denoted by f . If f is a dealer then he updates his quotes. If f is a

speculator then she can submit a market order. In all the cases, a market order is split

equally among the dealers who post the best quotes, thus, ifMb dealers are tied at the best

price, each dealer buys or sells a fraction 1=Mb of the market order.

A trading round ends either when a transaction occurs or when all the dealers have

updated their quotes. For brevity, we will just focus on a single trading round since all the

trading rounds are replications of the same game.

Our assumptions closely match some of the key features of the Nasdaq's SOES trading

system. The quantity, Q, is the minimum quoted depth. The speculators can be thought

of as the SOES bandits. A speculator cannot trade more than one time against the

dealers. This assumption is consistent with Nasdaq rules, which prohibit SOES traders

from initiating more than one position in the same stock within �ve minutes. Another

feature of Nasdaq is that dealers execute, at their posted quotes, orders that are larger

than the minimum quoted depth. SOES bandits typically do not take part in these trades

since they are negotiated by phone. This slows down the execution process and dealers

can back away from their quote upon realizing that the counter-party is a bandit (See

Harris and Schultz (1997) and Houtkin (1998)). This suggests that, in our model, there is

no reason to restrict our attention to values of � that are lower than one. SOES bandits
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make pro�ts by reacting more quickly than dealers to public news announcements.6 This

is possible because dealers do not perfectly monitor the arrival of public information. We

will now describe the monitoring activity in more detail.

2.2 Market Monitoring and Quote Monitoring

In each period new information, which will change the asset value, arrives with probability

�. Dealers and speculators can become aware of new information by directly monitoring the

information 
ow, an activity that we call market monitoring. We model market monitoring

as follows. Let �i 2 [0;+1) be the monitoring level of market-maker i 2 M and let


j 2 [0;+1) be the monitoring level of speculator j 2 N . If new information arrives,

the probability that dealer i is the �rst trader to observe the new information is denoted

by P (�i). We denote the corresponding probability that speculator j is the �rst trader to

observe the new information by P (
j). These probabilities are given by :

P (�i) � Prob(f = i) �
�i

�i +
P

m6=i �m +
P

j 
j
8i 2 M; (1)

P (
j) � Prob(f = j) �

j


j +
P

k 6=j 
k +
P

i �i
8j 2 N : (2)

First, note that P (�) increases in the monitoring level chosen by a trader. This captures

the intuition that the more closely a trader monitors the market, the larger the chance

that he will be able to react to public announcements before the other traders. Second,

note that the larger the aggregate monitoring level of the other traders is, the lower is

P (�). This captures the intuition that the larger the monitoring levels of other traders

are, the lower is the probability that a given trader will be the �rst to react to a public

announcement. Finally note that P (0) = 0 and that P (+1) = 1. This means that a

monitoring level equal to zero corresponds to the decision of not monitoring the market

at all. Conversely, an in�nite monitoring level corresponds to a decision of continuously

6Houtkin (1998) describes the trading strategies followed by SOES bandits. He provides a list of the
events that can trigger trades by the SOES bandits. For example, business news, earnings announcements,
price movements in related stocks, brokerage �rms'upgrades and downgrades of stocks, announcements of
economic indicators. Within our model these events would be considered public news announcements.

7



monitoring the market. For any intermediate monitoring level there is some monitoring

but it is imperfect.

Each trader must exert e�ort to support their chosen level of monitoring. We denote the

monetary disutility associated with a given monitoring level by 	d(�) for a dealer and by

	s(
) for a speculator. The monetary disutility is strictly increasing and strictly convex

both for dealers and speculators. We assume that7:

	(�i) =
cd
4
�2i 8i 2 M; (3)

and

	(
j) =
cs
4

2j 8j 2 N : (4)

We refer to cj > 0 as the monitoring cost for trader j.

Speculators and dealers simultaneously choose their monitoring levels in the second stage

of the trading round, after observing the quotes posted in the �rst stage.8 We denote by

�(Sb;Mb) = (�1(Sb;Mb); :::; �Mb
(Sb;Mb)), the vector of monitoring levels chosen by each

dealer given the market spread and the number of market makers who post this spread.

The dealers who are not posting the market spread do not participate in the trading stage

and thus optimally choose not to monitor the market. In the same way, 
(Sb;Mb) is the

vector of monitoring levels chosen by each speculator.

Dealers and speculators can also monitor quote updates. In this way, traders can also

acquire new information. An important feature of quote monitoring is that it requires

no e�ort. Traders can invest in software that alerts them to quote updates in di�erent

securities.9 Consequently, the probability of being the �rst trader to react to a quote

update is more likely to be determined by the trading technology used than by the e�ort

7Quadratic monitoring cost functions allow us to derive monitoring levels and equilibrium spreads in
closed form. Our qualitative results however only rely on the strict convexity of these functions.

8We have assumed that traders choose their monitoring level after observing the market spread for two
reasons. First, a trader's monitoring (e�ort) level is unobservable and therefore quotes cannot be made
contingent on monitoring levels. Second, traders can adjust their e�ort, once the quotes have been posted.
For this reason it is natural to assume that the monitoring levels are chosen after the quoting stage, i.e.,
can be contingent on the market spread.

9SOES day trading �rms have provided SOES day traders with software to monitor market-makers with
stale quotes. Market makers reacted by automating their quote monitoring. See the General Accounting
O�ce 1998 report on \The E�ects of SOES on the Nasdaq Market".
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exerted. Quote monitoring does not contribute to price discovery. Rather it enables traders

to free ride on information production by the dealers (which is re
ected in their quote

updates). Dealers can then use this information to update their quote and speculators can

use it to trade against dealers who are slow to adjust their quotes.

Given that no e�ort is required for quote monitoring we assume that when a dealer is

�rst to update his quote, there is an exogenous probability � that one speculator reacts to

this quote update before the (Mb�1) remaining dealers react. In this case, each speculator

has an equal probability (1=N) of being the speculator who �rst reacts. With probability

(1 � �), the (Mb � 1) remaining dealers update their quote before a speculator gets the

chance to react to the initial quote update. Note that if � = 0, only dealers bene�t

from quote monitoring and if � = 1, only speculators bene�t from quote monitoring.

Thus � can be seen as a measure of speculators' relative advantage in quote monitoring.

This parameter depends on the trading rules as well as the technology used. Nasdaq has

attempted several times to replace SOES with alternative trading systems (e.g., N*Prove

in 1994 and NAqcess in 1995) allowing dealers a delay to accept or to decline an incoming

order.10 It has been correctly pointed out by several commentators that this amounts to

eliminating automatic execution. In this case, it becomes more di�cult for speculators

to \pick o�" dealers through quote monitoring since a dealer can decline execution when

he realizes that the order arrival is concomitant with his competitors' quote updates.

Accordingly, we can analyze the e�ect of a suppressing automatic execution by comparing

the case in which � = 0 (automatic execution is not enforced) with the case in which � > 0

(automatic execution is enforced). This comparison is performed in Section 4.11

2.3 Equilibrium

Assume that the market spread is strictly lower than the size of the revision in the asset's

expected value in case of information arrival, i.e., Sb < � (this will always be the case in

10In 1991, dealers were allowed a 15-second delay to update quotes before being obliged to execute a
second SOES order in the same security.

11Nasdaq's Autoquote Policy prohibits software that would automatically update one market maker's
quotes as a function of other market makers' quotes. By forcing a dealer to update his quotes manually
when he receives an alert, this policy increases his reaction time. In our setting, we can also analyze the
e�ect of suppressing this policy by considering the impact of a decrease in �.
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equilibrium). Given our previous assumptions, the optimal course of action for the dealers

and the speculators in the trading stage is as follows. If a dealer is �rst to observe the new

information, he revises his quotes accordingly. If his competitors react to this quote update

before the speculators, they revise their quotes as well. If a speculator is �rst to react to

a quote update by a dealer or to observe new information, she submits a market order of

size Q (buy or sell depending on the direction of the quote revision).12 Tables 1 and 2 list

the payo�s to the dealers and the speculators, for di�erent decisions and outcomes in the

monitoring and quoting stages.

If the asset volatility, �, is large then a quote revision can result in a \cross", i.e.,

a situation in which the best bid price is temporarily above the best ask price. This

sometimes occurs in Nasdaq. It is worth stressing, however that our results hold for all

values of � > 0, i.e., they do not speci�cally rely on the possibility of crossed markets.

We solve for the perfect equilibrium of the trading round, i.e., a set fS�b ;M
�
b ; �

�(:; :); 
�(:; :)g

such that (i) ��(Sb;Mb) and 
�(Sb;Mb) form a Nash equilibrium of the monitoring stage

for all possible outcomes of the quoting stage and, (ii) fS�b ;M
�
b g is a Nash equilibrium of

the quoting stage. Although we always consider M as exogenous, the number of dealers

(Mb) posting the market spread is endogenous. Note that the case in which Mb = 1 and

� > 0 is subsumed in the case Mb = 1 and � = 0. Actually if there is only one market

maker, then, speculators cannot pick o� the market maker posting the market spread by

acting upon his quote update. Thus everything is as if � = 0 and Mb = 1.

3 Monitoring Externalities

In this section, we show that market monitoring by one dealer can generate a positive

or a negative externality for the other dealers, depending on �, the probability that a

speculator reacts �rst after a quote update. These externalities play an important role in

determining the quotes and we refer to them as monitoring externalities.

12Note that in our model quote revisions always imply changes in the asset value. In reality, quote
revisions may occur for other reasons, for example, changes in inventories. Uncertainty about the cause of
the quote revision will make it harder for speculators to draw inferences from quote revisions and to take
advantage of information contained in revisions, which is equivalent to a decrease in � in the model.
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Consider one dealer, say i, posting the market spread Sb and monitoring with intensity

�i. There are two ways dealer i can be picked o� when new information arrives. In the

�rst case, a speculator reacts �rst to the information. This event occurs with probability

Prob(f 2 N ). Let �A �
P

i �i and 
A �
P

j 
j be the aggregate monitoring levels of the

dealers and the speculators respectively. Using Equation (2), we obtain:

Prob(f 2 N ) =

A

�A + 
A
: (5)

In the second case, a dealer (di�erent from dealer i) observes the arrival of information,

updates his quote and a speculator is �rst to react to the quote update of this dealer. The

probability of this event is �Prob(f 2 Mbni). Using Equation (1), we obtain:

Prob(f 2 Mbni) =

P
m6=i �m

�A + 
A
: (6)

Let �d(�i; ��i; 
;Mb) be dealer i's expected pro�t for given levels of monitoring, ��i and


, for the other dealers and the speculators respectively. Using the payo� table (Table 1),

we obtain:

�d(�i; ��i; 
;Mb) = ��[Prob(f 2 N ) +
�Mb

Mb � 1
Prob(f 2 Mbni)]

(� � Sb)Q

2Mb

+(1� �)
��QSb
2Mb

� 	d(�i) 8Mb � 2: (7)

The �rst term, which is negative, represents dealer i's expected loss from the risk of

being picked o� by speculators. The term in brackets is a measure of the total adverse

selection risk faced by a dealer. The second term is positive and corresponds to dealer

i's expected pro�t from trading with a liquidity trader. The last term is the monitoring

cost incurred by dealer i. The probability of being picked o� for dealer i is a�ected by

the monitoring levels chosen by the other dealers. Consequently, dealer i's expected pro�t

depends on the other dealers' monitoring decisions. Thus market monitoring by one dealer

is an externality for the other dealers. The direction of this externality is obtained by

di�erentiating one dealer's expected pro�t, say dealer i, with respect to another dealer's

monitoring level:
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@�d(�i; ��i; 
;Mb)

@�m
= ��

"
@Prob(f 2 N )

@�m
+

�Mb

Mb � 1

@Prob(f 2 Mbni)

@�m

#
Q(� � Sb)

2Mb

=
�

(�A + 
A)2

�
(1�

�Mb

Mb � 1
)
A � (

�Mb

Mb � 1
)�i

�
Q(� � Sb)

2Mb

8m 6= i: (8)

Analyzing the sign of this partial �rst derivative, we obtain the following lemma.

Proposition 1 : Consider two dealers i and m who are posting the market spread. There

exists a constant �� 2 (0; 1) such that:

1. If � 2 [0; ��] then market monitoring by dealer m is a positive externality for dealer

i, i.e., @�d(�i;��i;
;Mb)
@�m

� 0.

2. If � 2 [��; 1] then market monitoring by dealer m is a negative externality for dealer

i, i.e., @�d(�i;��i;
;Mb)
@�m

� 0.

where �� = 
A(Mb�1)
(
A+�i)Mb

.

The economic intuition for this important property of market monitoring is as follows.

An increase in market monitoring by dealer m increases the probability that this dealer

will be �rst to observe new information. This indirectly bene�ts dealer i since a quote

update by dealer m signals to dealer i that his own quotes are misaligned. Thus, the

increase in market monitoring by dealer m reduces dealer i's probability of being picked o�

through speculators' market monitoring (@Prob(f2N )
@�m

< 0). This is the source of the positive

externality. However, there is a second e�ect since speculators monitor quote updates to

learn about stale quotes. If � > 0, an increase in market monitoring by dealer m results in

a greater probability of being picked o� through speculators' quote monitoring for dealer

i since @Prob(f2Mbni)
@�m

> 0. This is the source of the negative externality. For su�ciently

low values of �, the reduction in the risk of being picked o� through market monitoring is

larger than the increase in the risk of being picked o� through quote monitoring. When �

is large, the reverse is true. Accordingly, an increase in market monitoring by one dealer

is a double-edged sword: it can amplify or reduce the adverse selection risk faced by his

competitors.
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4 Bidding Strategies, Spreads and Monitoring Exter-

nalities

In this section, we study the implications for price formation of the monitoring external-

ities. The equilibrium spread depends on the monitoring decisions of the traders, which

themselves are a�ected by the spread. Thus we proceed by backward induction and we

analyze �rst the equilibrium monitoring decisions for a given market spread.

4.1 Equilibrium in the monitoring stage

Given the monitoring levels chosen by the other traders, dealer i chooses the monitoring

level which maximizes �d(�i; ��i; 
;Mb). Using the expression for dealer i's expected pro�t,

the �rst order condition is:

��

"
@Prob(f 2 N )

@�i
+ (

�Mb

Mb � 1
)
@Prob(f 2 Mbni)

@�i

#
(� � Sb)Q

2Mb

= 	
0

d(�i):

More monitoring reduces the probability of being picked o� but requires additional e�ort.

The terms inside the brackets measure the marginal e�ect of increased monitoring by dealer

i on the probability of being picked o�. The �rst order condition sets the marginal bene�t

of monitoring equal to the marginal cost for dealer i. Using Equations (5) and (6), we can

rewrite the �rst order condition as:

�Q(� � Sb)

2Mb(�A + 
A)2

2
4
A + (

�Mb

Mb � 1
)
X
m6=i

�m

3
5 = 	

0

d(�i): (9)

The second order condition is satis�ed if Sb < �, which will be the case in equilibrium.

Let �s(
j; �; 
�j) be the expected pro�t for speculator j, for given monitoring levels of the

other traders. Using Table 2, we obtain:

�s(
j; �; 
�j) =
�Q(� � Sb)

2

"
Prob(f = j) +

�Prob(f 2 Mb)

N

#
�	s(
j): (10)

In the case of a change in the asset value, a pro�t opportunity arises because the dealers'

quotes are temporarily mispriced. Recall that a speculator can capture this pro�t oppor-

13



tunity in two di�erent ways: either (i) she is the �rst to react to the public announcement

of a change in the asset value or (ii) she is the �rst to react to the quote update of a dealer.

The term in bracket is the sum of the probabilities of these two events. Using Equation

(1), we obtain:

Prob(f 2 Mb) =
�A

�A + 
A
:

Speculator j chooses the monitoring level that maximizes �s(
j; �; 
�j). This implies

setting the marginal bene�t of monitoring equal to the marginal cost for speculator j:

�Q(� � Sb)

2(�A + 
A)2

2
4�A(N � �

N
) +

X
s6=j


s

3
5 = 	

0

s(
j): (11)

The second order condition is satis�ed if Sb < � in this case as well. It follows from

the previous analysis that a Nash equilibrium of the monitoring stage is a pair of vectors

(��(Sb;Mb); 

�(Sb;Mb)) that solves Equations (9) and (11), for all the dealers posting the

market spread and all the speculators. We say that the Nash equilibrium of the monitoring

stage is symmetric if all the traders of a given type (e.g., all the dealers) choose the same

monitoring level.

Lemma 1 : If there exists a Nash equilibrium in the monitoring stage, it is symmetric.

Let �� be the monitoring level chosen by each dealer and let 
� be the monitoring level

chosen by each speculator, in equilibrium. Since the equilibrium must be symmetric, the

system of equations characterizing the traders' best responses is obtained by rewriting

Equations (9) and (11) as:

�Q(� � Sb)

Mb(Mb�� +N
�)2
[N
� + �Mb�

�] = cd�
�; (12)

and

�Q(� � Sb)

(Mb�� +N
�)2

�
Mb(

N � �

N
)�� + (N � 1)
�

�
= cs


�: (13)
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Solving this system equations yields the equilibriummonitoring levels and expected pro�t

functions. The solution is given in the next proposition.

Proposition 2 : When Mb dealers post a market spread Sb < �, the equilibrium of the

monitoring stage is unique and is characterized by the following monitoring levels for the

speculators and the dealers (with � = 0 if Mb = 1):


�(Sb;Mb) =

s
�Q(� � Sb)

cs

q
(�(N��

N
) + (N � 1)

� +N
; (14)

��(Sb;Mb) =
�

Mb


�; (15)

where � = N
2r(N��)

�q
((r(N � 1)� �)2 + 4r(N � �)� ((N � 1)r � �)

�
and r � cd

cs
.

For these monitoring levels, the expected pro�ts of the speculators and the dealers when

the market spread is Sb are:

�d(�
�(Sb;Mb); 


�(Sb;Mb);Mb) =
Q

2Mb

[��(� � Sb)R(Mb;�; r) + (1� �)��Sb]; (16)

with R(Mb;�; r) �
N

�+N
+

��

�+N| {z }
Adverse Selection Risk

+(
r�2

2
)
(�( (N��)

N
) +N � 1)

Mb(� +N)2| {z }
Monitoring Cost

; (17)

and

�s(�
�(Sb;Mb); 


�(Sb;Mb);Mb) =
Q

2N
[�(� � Sb)R

0(N;�; r)]; (18)

with R0(N;�; r) �
N

�+N
+

��

�+N| {z }
Probability of Hitting Stale Quote

�
1

2

(�(N � �) +N2 �N)

(� +N)2| {z }
Monitoring Cost

: (19)

The proposition reveals several interesting properties of the monitoring strategies fol-

lowed by the traders:

� Speculators and dealers always put some e�ort in market monitoring (
� > 0 and

�� > 0). In particular, it is never optimal for speculators to entirely base their
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trading strategies on dealers' quote updates.13

� The monitoring level of both types of traders decreases with the size of the spread.

When the dealers increase their spread, speculators monitor the market less inten-

sively since the pro�t obtained by picking o� dealers is lower. The dealers react by

monitoring the market less intensively.

� There is a positive relationship between the monitoring level of the speculators and

the monitoring level of the dealers, for a given number of speculators (see Equation

(15). This means that securities that are closely monitored by the speculators are

also closely monitored by the dealers.

� For a given spread, the aggregate monitoring level of the dealers (��A = Mb�
�) is

independent of the number of dealers. The reason for this is that the loss conditional

on being picked o� is shared with the other dealers, thus, if the number of dealers

increases each dealer responds by lowering his monitoring e�ort.

The dealer's expected pro�t, given by Equation (16), is central to the analysis of the

equilibrium spread in the next subsection. Note that the constant R determines the size

of the expected loss per share, for a dealer, i.e., the (per unit) cost of market making. This

expected loss re
ects the adverse selection risk borne by the dealer and the monitoring cost

that a dealer incurs in order to limit the risk of being picked o�. The latter is re
ected

in the last term of Equation (17). The adverse selection risk is captured by the sum of

the �rst two terms in Equation (17), which together make up the probability of the dealer

being picked o� in equilibrium.

Equation (18) determines the expected pro�t for a speculator. The speculator's pro�t

depends on the probability of hitting a stale quote, that is, the adverse selection risk for

the dealers, the pro�t conditional on this event, and the monitoring cost. This equation

will be used when we analyze the entry decision of the speculators in Section 6.

13This result is consistent with Harris and Schultz (1998) who, empirically, do not �nd a strong support
for the view that bandits only trade after quote updates.
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The above results are all conditional on the spread. In the next section we proceed by

solving the quoting stage of the game for the equilibrium spread.

4.2 Equilibrium in the quoting stage

The dealer's bidding behavior in the quoting stage crucially depends on whether market

monitoring is a positive or a negative externality. In order to pinpoint the causes for this

result, we start by considering the case in which market monitoring is unambiguously a

positive externality, i.e., the case in which speculators cannot pick o� dealers through quote

monitoring (� = 0). Then we consider the more general case in which market monitoring

can be a negative externality (� > 0).

4.2.1 The Market Spread in the Absence of Quote Monitoring by the Specu-

lators (� = 0)

We �rst consider the possible equilibria in which all the dealers post the market spread

(M�
b =M). A market spread equal to S�b is a Nash equilibrium of the quoting stage if (i)

no dealer has an incentive to widen his spread given that the other dealers post a spread

equal to Sb, and (ii) no dealer has an incentive to undercut their competitors' quotes. The

�rst condition ensures that dealers do not expect to incur losses:

�d(�
�(S�b ;M); 
�(S�b ;M);M) � 0:

Let Ŝ(M;�; r) be the spread such that this equation is binding. Using Equation (16),

we get:

Ŝ(M;�; r) = ��(
R(M;�; r)

�R(M;�; r) + (1� �)��
): (20)

In equilibrium, the market spread must be at least equal to Ŝ for the dealers to break

even. Now suppose that a dealer improves slightly upon the equilibrium market spread. In

this case, only this dealer is exposed to the risk of being picked o� and thereby mon-

itors (Mb = 1). It follows that the expected pro�t for the dealer who undercuts is
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�d(�
�(S�b ; 1); 


�(S�b ; 1); 1). In equilibrium, the dealer must be better o� not undercut-

ting. This requires that the pro�ts earned by matching the quotes of other dealers are at

least as high as the pro�ts from undercutting their quotes:

G(S�b ) = �d(�
�(S�b ;M); 
�(S�b ;M);M)� �d(�(S

�
b ; 1); 


�(S�b ; 1); 1) � 0: (21)

Computations yield:

G(S�b ) = �
(M � 1)Q

2M
[S�b (� �R(r) + (1� �)��)� �� �R(r)];

where

�R(r) =
N

�+N
+
(1 +M)

2M

�N

(� +N)2
:

Let �S(r) be the spread such that G( �S(r)) = 0. We obtain:

�S(r) = ��(
�R(r)

� �R(r) + (1� �)��
):

As G(:) decreases with S�b , Equation (21) is satis�ed if and only if S�b � �S(r). It is

straightforward to show that Ŝ < �S since R(M; 0; r) < �R(r), for all the values of the

parameters. Based on the arguments above we derive the following result.

Proposition 3 : In the absence of quote monitoring by the speculators (� = 0), the

situation in which all the dealers post a market spread equal to Sb is a Nash equilibrium

of the quoting stage if and only if Sb 2 [Ŝ(M;�; r); �S(r)]. Furthermore, for all the Nash

equilibria in which the market spread is strictly larger than Ŝ(M; 0; r), the dealers obtain

strictly positive expected pro�ts.

In the quoting stage dealers compete in prices, �a la Bertrand. One would therefore

expect the equilibrium to feature zero expected pro�ts for the dealers. But this is not

necessarily the case. The intuition for this result is as follows. When a dealer undercuts

his competitors, two e�ects are at work. On the one hand, the dealer captures a larger part

of the order 
ow. On the other hand, the dealer monitors the market more intensively.

This follows because his competitors lose price priority but, for this reason, face no risk
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of being picked o�. As a consequence, they do not monitor the market at all. It follows

that the dealer who undercuts loses the bene�t of the positive externality associated with

market monitoring by the other dealers. He therefore must devote more e�ort to market

monitoring. These two e�ects have opposite impacts on the expected pro�t of a dealer.

The �rst e�ect (larger share of the order 
ow) increases a dealer's pro�t, gross of the

monitoring cost, but the second e�ect increases his market monitoring cost. It turns out

that for all spreads below �S(r), the second e�ect is larger than the �rst. Dealers are better

o� not undercutting their competitors in order to bene�t indirectly from their monitoring.

Consequently, the positive externality associated with market monitoring by the dealers

helps to sustain spreads that are larger than the competitive level.

The possibility for dealers to free-ride on market monitoring by other dealers has another

implication: it makes quote matching strategies pro�table. It follows that there is no

equilibrium in which some dealers prefer to bid themselves out of the trading round. To

formally establish these points, let �J(Mb; Sb) � Mb�d(�
�(Sb;Mb); 


�(Sb;Mb);Mb) be the

dealers' joint expected pro�t when Mb < M dealers quote a market spread Sb.

Proposition 4 : In the absence of quote monitoring by speculators,

� If �J(Mb; Sb) � 0 then �J(Mb+1; Sb) > 0. It follows that quote matching is always a

pro�table strategy since each dealer obtains an equal share of the joint expected pro�t.

� This implies that there is no equilibrium in which a dealer chooses not to post the

market spread or M�
b =M is the unique possibility in equilibrium.

The intuition is as follows. Consider a dealer, say i, who does not post the market spread

when Mb < M dealers already post this spread. If dealer i does not match or improve

upon the market spread, he obtains zero pro�ts. Suppose that instead dealer i matches this

spread. Now (Mb + 1) dealers monitor the market. Each dealer monitors the market less

but the aggregate monitoring level of the dealers is unchanged in equilibrium (��A does not

depend onMb). Consequently, quote matching by dealer i leaves unchanged the probability

of being picked o� for each dealer and thereby leaves unchanged the gross joint expected

pro�t for the dealers. However each dealer can free-ride on a larger number of dealers and
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the total monitoring cost is now \shared" among (Mb + 1) dealers. As 	d(:) is strictly

convex, this cost sharing results in a lower total monitoring cost ((Mb + 1)	d(
�A

(Mb+1)
) <

Mb	d(
�A
Mb

)). Eventually dealers' joint expected pro�t, net of the monitoring cost, is larger.

Note that the set of possible equilibrium spreads is determined by the ratio of dealers'

and speculators' monitoring costs (r) and not by the absolute costs. Thus, our results hold

even if market monitoring costs are small.

Corollary 1 : (spread and monitoring cost) The lower bound and the upper bound

of the set of possible equilibrium spreads have the following properties:

� They go to zero when dealers' monitoring cost becomes negligible relative to specula-

tors' monitoring cost (limr!0 Ŝ = limr!0
�S = 0),

� They increase when dealers' monitoring cost increases relative to speculators' moni-

toring cost (@Ŝ
@r

> 0 and @ �S
@r

> 0),

� They go to ��
�+(1��)�� when speculators' monitoring cost becomes negligible relative to

dealers' monitoring cost (limr!+1 Ŝ = limr!+1
�S = ��

�+(1��)�� ).

The �rst part of the corollary shows that imperfect market monitoring is the source

of trading cost. In fact, when dealers' monitoring cost becomes relatively small, their

monitoring increases (and the speculators' monitoring decreases). As a consequence, the

risk of being picked o� vanishes and the spread becomes zero. The second part of the

corollary shows that the spread widens when the monitoring cost for the dealers increases

relative to the monitoring cost for the speculators. The intuition is as follows. Other

things equal, when dealers' monitoring costs increase, �� decreases, i.e., dealers put less

e�ort in market monitoring. It follows that the probability of being picked o� increases.

Consequently, dealers must increase their spreads in order to break-even. This means that

di�erences in monitoring ability or monitoring costs between dealers and speculators a�ect

the size of the spread.14 However, these di�erences are not necessary for dealers to be

14There is another way to interpret a change in r in the model. Suppose that the marginal cost of e�ort
is identical to speculators and dealers (cd = cs = c) but that dealers recover only a fraction � < 1 of their
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exposed to the risk of being picked o� in case of public information arrival. Thus, from

now on, we assume that r = 1. This assumption does not a�ect the qualitative results

derived below but simpli�es the computations. Furthermore, it ensures that the results

do not come from ad hoc assumptions about di�erences in monitoring skills between the

dealers and the speculators.

4.2.2 The Market Spread in the Presence of Quote Monitoring by Speculators

(� > 0)

We will now solve the quoting stage of the game for the case of � > 0. First, we note that

when r = 1, � = N
N�� . In this case, the per unit cost of market making, given by Equation

(17), simpli�es as:

R(Mb;�; 1) =
N

N + 1� �| {z }
Adverse Selection Risk

+
N

2Mb(N + 1� �)2| {z }
Monitoring Cost

; 8Mb � 2: (22)

Recall that having Mb = 1 and � > 0 is identical to Mb = 1 and � = 0. It follows that:

R(1;�; 1) = R(1; 0; 1) =
N

N + 1
+

N

2(N + 1)2
: (23)

From now on, we will write R(Mb;�; 1) simply as R(Mb;�). We can proceed exactly as

in the previous section to show that for fS�b ;Mg to be a Nash equilibrium of the quoting

stage, it is a necessary condition that S�b 2 [Ŝ(M;�); �S(�)] where Ŝ(M;�) is de�ned as in

Equation (20) and :

�S(�) = ��(
�R(�)

� �R(�) + (1� �)��
);

with:

�R(�) =

MN
N+1

+ MN
2(N+1)2

� N
N+1�� �

N
2M(N+1��)2

M � 1
: (24)

trading pro�ts (but bear in full the disutility due to market monitoring). This assumption is consistent
with the fact that dealers act as agents of market-making �rms. In this case, we can derive exactly the
same results as those derived until this point, substituting cd by c

�
. Thus a decrease in � has the same

e�ect as an increase in r.
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Lemma 2 :

1. Ŝ(M;�) increases with � whereas �S(�) decreases with �.

2. There exists �̂(M;N) 2 (0; 1) such that (i) if � 2 [0; �̂] then Ŝ(M;�) � �S(�) and

(ii) if � 2 (�̂; 1] then Ŝ(M;�) > �S(�).

(�̂ is characterized in the proof of this lemma).

An increase in � has two e�ects. On the one hand, it increases the adverse selection risk.

This explains why the zero expected pro�t spread, Ŝ, increases with �. On the other hand,

it makes the negative externality stronger (see Proposition 1). The negative externality has

an e�ect opposite to the e�ect of the positive externality: it encourages dealer i to improve

upon the quotes of his competitors. If dealer i turns out to be the sole dealer posting the

market spread in the quoting stage, his competitors will not monitor the market in the

subsequent stages. Consequently if he undercuts, dealer i can eliminate the risk of being

picked o� because of the signal sent by his competitors' quote updates. Thus, when � > 0,

undercutting acts as a defensive strategy against the risk of being picked o� through quote

monitoring. For this reason it is more di�cult to sustain a non-competitive spread as an

equilibrium when � increases. This explains why the largest possible equilibrium spread,

�S, decreases with �.

For an equilibrium with all the dealers (M�
b = M) quoting the inside spread, it is

necessary that: Ŝ(M;�) � �S(�). The lemma above (2nd part) states that this occurs if

and only if � is su�ciently small. When � > �̂, the negative externality is so strong that

one dealer is always better o� undercutting the zero expected pro�t spread withM dealers

(i.e., �S(M;�) < Ŝ(�)). In this case there is no equilibrium with all the dealers posting

the market spread.

Proposition 5 :

1. When 0 � � � �̂, the situation in which all the dealers post a market spread equal to

Sb is a Nash equilibrium of the quoting stage if and only if Sb 2 [Ŝ(M;�); �S(�)]. The
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expected pro�ts of the dealers posting the market spread are strictly positive when the

equilibrium market spread is strictly larger than Ŝ(M;�).

2. When �̂ < � � 1, the unique Nash equilibrium of the quoting stage is such that only

one dealer (M�
b = 1) posts the market spread which is S�b = Ŝ(1; 0). The expected

pro�t of the dealer posting the market spread is zero.

Figure 2 represents the set of possible equilibrium spreads as a function of �. The

explanations for the �rst part of the proposition are the same as the explanations we gave

for Proposition 3. The claim in second part of Proposition 5 stands in striking contrast

with our result regarding the pro�tability of quote matching strategies in the previous

section. In order to avoid the negative externality associated with quote monitoring,

dealers undercut each other until the point where a single dealer has no incentive to

undercut the market spread. For this reason, the dealer posting this spread just breaks

even. The equilibrium spread in this case is also such that if another dealer were to match

the spread, then the two dealers posting the best quotes would incur losses. This is due

to the negative externality they in
ict on each other. Quote matching exacerbates the

negative externality and thus becomes an unpro�table strategy when speculators react

relatively quickly to quote updates.

When � < �̂, there is a multiplicity of possible equilibrium spreads.15 In order to

sharpen our prediction regarding the outcome of the quoting stage, we use the concept

of Pareto-Dominance. Pareto-Dominant equilibria are the natural outcomes when players

can communicate before the game takes place (See Fudenberg and Tirole (1991)). A

Nash equilibrium of the quoting stage is Pareto-Dominant if there is no other equilibrium

outcome that improves or leaves unchanged each dealers' expected pro�ts.

Proposition 6 : When there is a multiplicity of equilibria in the quoting stage, the

unique Pareto-Dominant equilibrium is such that dealers post the largest possible equi-

librium spread, S�b = �S(�).

15In addition to the equilibria described in the �rst part of Proposition 5, there is another equilibrium

with M�

b = 1 when � � �̂ but � su�ciently greater than zero. In this equilibrium, the equilibrium spread

is S�b = Ŝ(1; 0), which belongs to the set of possible equilibrium spreads described in the �rst part of
Proposition 5.
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The result is immediate since each dealers' expected pro�t increases with the market

spread (see Equation (16)). We will refer to the equilibrium in which dealer posts a spread

equal to �S(�) as the Pareto-Dominant equilibrium and to the equilibrium in which dealers

post a spread equal to Ŝ(M;�) as the zero expected pro�t equilibrium.16

To sum up, in this section, we have shown how externalities associated with market

monitoring in
uence the price formation process. The possibility for dealers to free-ride

on market monitoring by other dealers (i) reduces the incentive to undercut and (ii) makes

quote matching strategies pro�table. Free-riding is more dangerous when speculators can

pick o� dealers based on quote updates, however. In fact, if speculators react su�ciently

quickly to quote updates, a dealer can be hurt by other dealers' quote updates. This

negative externality (i) encourages dealers to undercut and (ii) can make quote matching

strategies unpro�table. In the next section, we derive the implications of these results for

market design.

5 Market Quality and Automatic Execution

Should dealers be protected against the automatic execution of stale quotes or not? This

question has been central to the controversy between Nasdaq dealers and SOES bandits.

Nasdaq dealers have argued that automatic execution made it easier for bandits to pick o�

dealers who were slow to adjust their quotes. Accordingly dealers were obliged to widen

their spreads. In response, SOES bandits have argued that their presence has strengthened

price competition among dealers. They also argued that they contributed to price discovery

by forcing dealers to monitor more closely the stocks in which they were making the market.

As explained previously (Section 2.2), we can formally examine these arguments regarding

the e�ects of automatic execution by comparing market spreads and monitoring levels in

the cases � = 0, automatic execution is not enforced and � > 0, automatic execution is

16Kandel and Marx (1997) show that multiple equilibrium spreads can be obtained when a �nancial
market features a positive tick size. Interestingly we obtain a multiplicity of equilibrium spreads even if
the tick size is zero. A positive tick size would clearly not change this result but could help dealers to
coordinate on the Pareto-Dominant equilibrium.
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enforced.17

Corollary 2 :

1. When the equilibrium of the quoting stage is the Pareto-Dominant equilibrium, the

market spread is smaller when automatic execution is enforced.

2. When the equilibrium of the quoting stage is the zero expected pro�t equilibrium, the

market spread is larger when automatic execution is enforced.

Consider Figure 2. If the dealers post the zero expected pro�t spread then the equilibrium

spread is clearly larger when � > 0 than when � = 0. This re
ects the fact that the

adverse selection risk for the dealers is larger when speculators can use the information

revealed by quote updates to pick o� dealers. This supports the standard argument that

the presence of SOES bandits and automatic execution increase the spread. On the other

hand, if dealers post the Pareto-Dominant equilibrium spread, the conclusion is reversed:

the equilibrium spread is smaller when � > 0 than when � = 0. Recall that the dealers'

incentive to undercut are stronger when speculators can hit dealers who are slow to adjust

their quotes than when they cannot do so. As a result, non-competitive spreads are

more di�cult to sustain when dealers can not decline or delay execution of trades. This

observation supports the SOES bandits' claim that they have increased price competition

among dealers. This discussion points to one interesting e�ect of automatic execution: it

makes free-riding on other dealers' market monitoring less pro�table for a dealer. In this

way automatic execution is conducive to price competition and can indeed result in a lower

spread.

We examine now the e�ect of automatic execution on the equilibrium monitoring level

chosen by a dealer. From Proposition 2, we obtain:

8>><
>>:
��(�) =

r
N�Q(��S�

b
)

cM2(1+N��)2 for � � �̂

��(�) =

r
N�Q(��Ŝ(1;0))

c(1+N)2
for � > �̂

17Stoll (1992) discusses the impact of automatic execution on the values of the \free trading options"
in limit order markets and in dealer markets. He points out that automatic execution can be detrimental
to market quality because it increases the risk of being picked o� for traders with stale quotes.
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Corollary 3 : The monitoring level chosen by a dealer in equilibrium is always larger

when automatic execution is enforced, both in the zero expected pro�t and in the Pareto-

Dominant equilibria.

The direct e�ect of automatic execution is to strengthen dealers' incentive to be �rst

to discover new information. Actually free riding on monitoring by other dealers is more

dangerous since speculators can use the information contained in a quote update at the

dealers' expense. This e�ect is present whatever the nature of the equilibrium in the

quoting stage. Automatic execution has also has an indirect e�ect on market monitoring

because it a�ects the equilibrium spread. The direction of the indirect e�ect depends on the

equilibrium in the quoting stage. In the Pareto-Dominant equilibrium, enforcing automatic

execution reduces the spread and in this way further enlarges dealers' market monitoring.

In contrast, in the zero expected pro�t equilibrium, enforcing automatic execution widens

the spread and in this way reduces dealers' need to monitor. Still this is insu�cient for

their equilibrium monitoring level to be smaller than when automatic execution is not

enforced.

The previous result shows that automatic execution forces dealers to monitor the market

more closely. However, for price discovery, it is the total e�ort, �A + 
A, exerted by all

the traders in monitoring the market that matters.18 Thus we compare now the aggregate

monitoring level when � = 0 and when � > 0.

Corollary 4 :

1. When the equilibrium of the quoting stage is the Pareto-dominant equilibrium, the

aggregate monitoring level, ��A + 
�A, of all the traders is larger when automatic exe-

cution is enforced.

2. When the equilibrium of the quoting stage is the zero expected pro�t equilibrium, the

aggregate monitoring level, ��A + 
�A, of all the traders is smaller when automatic

18In the model, the probability that one trader will discover whether an informational event has taken
place is always equal to one. However, it is easy to modify the model in such a way that this probability
is less than one, by adding a constant p in the denominators of P (�i) and P (
j). The probability that the
informational event will not be discovered is then p

�A+
A+p
. It decreases with (�A + 
A). Thus the speed

of price discovery increases with (�A + 
A).
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execution is enforced.

Automatic execution may or may not improve price discovery. On the one hand, it

strengthens dealers' incentives to monitor the market. On the other hand, it alters the

monitoring strategy followed by the speculators. They have less incentive to directly

monitor the information 
ow since they can use the costless information contained in

quote updates to pick o� dealers. In the zero expected pro�t equilibrium, this e�ect

is reinforced by the fact that the spread is larger when automatic execution is enforced

(
� decreases with the spread). It follows that in this case the aggregate monitoring is

lowest when automatic execution is enforced. On the contrary, in the Pareto Dominant

equilibrium, the spread is smaller with automatic execution. In this case the increase in

dealers' aggregate monitoring is larger than the reduction in speculators' monitoring level

and price discovery is improved.

6 Empirical Implications

Much of the debate about the possible e�ects of SOES on Nasdaq trading has focused on

two related empirical questions. The �rst question is whether or not trading by SOES

bandits have caused market makers to post wider spreads. A second question is what

determines the level of SOES bandit activity. Researchers have noted that the spread

and the level of SOES bandit activity are likely to be interdependent. Thus, in order to

formally address these key questions in the SOES debate using our model it is necessary to

solve for the level of speculators activity. This is one goal of this section. A second goal is

to derive comparative statics for the model. All through the analysis, we treat the number

of dealers, M , as exogenous. The number of dealers on Nasdaq is likely to be determined

by all the trades they execute, not just those going through SOES. In contrast, the number

of SOES bandits is certainly determined by the pro�tability of the trades they execute on

SOES.

We �rst establish that the market spread depends on the number of speculators.
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Proposition 7 : An increase in the number of speculators results in an increase in the

equilibrium spread, both in the zero expected pro�t and in the Pareto Dominant equilibria.

When the number of speculators increases, the risk of being picked o� is larger for the

dealers. Accordingly the expected loss to speculators is greater. It follows that dealers

must widen their spreads in order to break-even.

We assume that a trader decides to become a speculator, or not, before the quoting stage

of the trading game. A speculator bears a �xed cost, K > 0, that is sunk at the entry

stage. The number of speculators is then determined in such a way that the expected

trading pro�t of a speculator is just equal to the �xed cost borne by the speculator.19 For

brevity, from now on, we assume that � < �̂(M; 1). As �̂(M;N) increases with N , this

assumption guarantees that, in equilibrium, all the dealers post the market spread (See

Proposition 5). This assumption simpli�es the presentation of the results in this section

but does not a�ect them qualitatively.

Using Proposition 2, the speculator's expected pro�t when � = N
N�� is given by:

�s(�
�(S�b ); 


�(S�b ); S
�
b ; N) = �Q(� � S�b )

"
2N(N + 1� �)� (N � �)2)

4N(N + 1� �)2

#
: (25)

The expected pro�t decreases in the equilibrium market spread. The latter increases

with the number of speculators. It is therefore straightforward to show that a spec-

ulator's expected pro�t decreases with the number of speculators. Assume that K �

�s(�
�(S�b ); 


�(S�b ); S
�
b ; 1) (otherwise no speculator would �nd it pro�table to enter the mar-

ket). The equilibrium number of speculators, N�, solves:

�s(�
�(S�b ); 


�(S�b ); S
�
b ; N

�) = K: (26)

Using the fact that S�b < �, we obtain:

lim
N!+1

�s(�
�(S�b ); 


�(S�b ); S
�
b ; N) = 0 < K:

19There may not be an integer solution to the equality. In order to avoid this technical problem, we
treat N as a real number, as it is usual in market entry analysis.
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Thus, as �s decreases with N , the equilibrium number of speculators is uniquely de�ned

whereby 1 � N� < +1.

We illustrate the e�ect of a change in the exogenous parameters on the market spread

and the number of speculators assuming that dealers post the zero expected pro�t spread

in equilibrium. The case of the Pareto-Dominant equilibrium is discussed at the end of

the section. Recall that the zero expected pro�t spread is:

Ŝ(M;�; N) = ��(
R(M;�)

�R(M;�) + (1� �)��
): (27)

Note that, for a given number of speculators, an increase in �, the size of the innovations

in the asset value, widens the market spread whereas an increase in � or �, the probability

of or expected size of liquidity trades, reduces the market spread. By replacing S�b by

Ŝ(M;�; N�) in Equation (25), we obtain that:

(
�(1� �)��Q�

�R(M;�) + (1� �)��
)

"
2N�(N� + 1� �)� (N� � �)2)

4N�(N� + 1� �)2

#
= K: (28)

This equation de�nes implicitly the equilibrium number of speculators. We use this

equilibrium condition to derive the next proposition.

Proposition 8 : When the dealers post the zero expected pro�t market spread, the fol-

lowing comparative static results are obtained in equilibrium:

� When the average order size (�) submitted by liquidity traders increases, the number

of speculators increases and the spread decreases.

� When the probability of a liquidity trade (�) increases, the number of speculators

increases and the spread decreases.

� When the size of the innovation in the asset value (�) increases, the number of

speculators increases and the spread increases.

� When the number of dealers (M) increases, the number of speculators increases and

the spread decreases.
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Consider an increase in the average order size of a liquidity trader, i.e., �. The direct e�ect

of such an increase is that the spread posted by the dealers decreases, other things equal.

But for this reason, more speculators are active (See Equation (25)). This counterbalances

the initial e�ect of the change in the average order size on the spread but never su�ciently

to ultimately result in an increase of the spread. Exactly the same argument can be used

to explain the impact of a change in � on the spread and the number of speculators. Note

that both � and � measure the trading activity (respectively the trading volume and the

trading frequency) that is independent of speculators' activity.

When � increases, the price revisions generated by news arrival are larger. Thus � is

a measure of price volatility. The third part of the proposition shows that the number

of speculators is greater when price volatility is high. The speculator's expected pro�t

increases with the size of the price revision, other things equal. Dealers' expected loss

when they are picked o� also increases with the size of the price revision. Combined with

the increase in the number of speculators, this e�ect explains why the spread increases

with price volatility. Battalio et al. (1997) �nd empirical evidence consistent with this

prediction. Finally, when the number of dealers increases, each dealer can free-ride on larger

number of dealers for market monitoring. Each dealer monitors less and the monitoring

cost incurred by each dealer is lower. Thus, one component of the cost of market making

is lower (the adverse selection component is not a�ected by M), which explains why the

zero expected pro�t spread decreases. This triggers an increase in a speculator's expected

pro�t, which explains why the number of speculators is positively related to the number

of dealers.

The minimum quoted depth, Q, is of interest since it has been changed several times on

Nasdaq; it was reduced from 1000 shares to 500 shares in January 1994, for most stocks,

on a trial basis; it was restored to 1000 shares in March 1995 and eventually it has been

reduced to 100 shares starting in January 1997. Nasdaq argued that the reduction of the

minimum quoted depth would lessen SOES bandits activity and in this way would help to

narrow spreads. We obtain the following result.
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Proposition 9 : When the dealer's minimum quoted depth (Q) decreases, the number of

speculators decreases and the spread decreases.

The direct e�ect of a decrease inQ is to reduce speculators' expected pro�t (See Equation

(25)). For this reason, other things equal, the number of speculators decreases when the

minimum quoted depth is reduced. But it follows that the risk of being picked o� for the

dealers is lower. This explains why the spread narrows when the minimum quoted depth

is reduced.20 In line with our prediction, Harris and Schultz (1997) �nd a decline in the

number of trades initiated by SOES bandits after the reduction in the minimum quoted

depth in 1994.21

Note that all the previous results have been obtained considering the zero expected pro�t

equilibrium. It is straightforward to show that changes in parameters fQ; �; �; �g have a

similar e�ect in the Pareto Dominant equilibrium. The impact of a change in the number

of dealers on the spread depends on the nature of the equilibrium, however. This is the

next result.

Proposition 10 : In the Pareto-Dominant equilibrium,

1. For a given number of speculators, N , there exists ��(M;N) 2 (0; �̂(M;N)) such

that the market spread decreases with the number of dealers if � 2 [0;��(M;N)]

and increases with the number of dealers if � 2 [��; �̂(M;N)] (where ��(M;N) is

characterized in the proof).

2. This implies that an increase in the number of dealers can result in an increase in

the spread and a decrease in the number of speculators.

Recall that each dealer monitoring is reduced when the number of dealers increases.

Consequently an increase in the number of dealers posting the market spread results in

lower monitoring cost for each dealer posting this spread. But this also means that a

20Interestingly it is possible to show that both dealers and speculators' aggregate monitoring decreases
when the minimum quoted depth is reduced. Thus such a reduction has an adverse e�ect on price e�ciency.

21Barclay et al. (1998) observe the same phenomenon after this quantity was reduced to 100 shares in
1997.
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dealer who indercuts faces a larger increase in its monitoring cost, making undercutting

less attractive as the number of dealers increases. On the other hand, each dealer executes

a decreasing fraction of the order 
ow when the number of dealers increases. This e�ect

encourages undercutting when spreads are above the zero expected pro�t spread. As

claimed in the proposition, which of the two e�ects dominates, depends on �. If � is

su�ciently large, an increase in the number of dealers help dealers in sustaining non-

competitive spreads.

7 Empirical Analysis

Based on our model and the comparative static results presented in the previous section

it is possible to address empirically the two main questions in the debate on the e�ect

of SOES trading. Namely, does an increase in the SOES bandit activity lead to higher

spreads and what factors determine the level of SOES bandit activity? At �rst glance,

this might seem impossible given the multiplicity of equilibria. However, note that most

of the comparative statics, except the e�ect of a change in the number of market makers,

were identical in the Pareto-Dominant and the zero-pro�t equilibrium. Furthermore, the

probability � can be interpreted as being constant across the stocks as it is mainly driven

by the trading rules and the technology used. We will make this assumption here. This

is clearly not the only possibility, but a more detailed analysis is beyond the scope of this

study.

7.1 Empirical Predictions

Equations (26) and (27) determine the equilibrium number of speculators and the equilib-

rium bid-ask spread respectively. The bid-ask spread, S, and the speculator activity, N ,

are determined jointly and therefore Equations (26) and (27) can be estimated as a sys-

tem of simultaneous non-linear equations. Rather than directly estimating this non-linear

system, we consider the following system of linear simultaneous equations for stock i:
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8><
>:
Si = a1 + a2Ni + a3�i + a4Mi + a5�i + a6�i

Ni = a1 + b2Si + b3�i + b4Qi

We do not observe the actual number of speculators. A natural measure of speculator

activity is the unconditional probability of observing a trade initiated by a speculator. In

our model, this probability is given by:

�(Prob(f 2 N ) + �Prob(f 2 M)) =
�N

N + 1� �
;

in equilibrium. Note that it is strictly increasing in the number of speculators N . The

qualitative e�ects of a change in the exogenous parameters on the number of speculators

and the probability of observing a trade initiated by a speculator are identical. Further-

more in our model speculators always place orders equal to the minimum quoted depth.

Consequently we will use the probability of a maximum size SOES trade as our proxy

for speculator or SOES bandit activity. Studies by Harris and Schultz (1997) and others

suggest that the frequency of maximum size SOES trades provide a good proxy for SOES

bandit activity.22

We use the volatility of the hourly mid-quote returns as a proxy for the size of a price

revision, �. Recall that � determines the average size of liquidity demand in the theoretical

model. The average size of all Nasdaq trades except maximum size SOES trades is a

proxy for this theoretical variable. We will also use an indicator for stocks with di�erent

minimum quoted depth. For the period we consider there are stocks traded with a minimum

quoted depth of 1000 and 500 shares. The bid-ask spread may, of course, depend on other

variables outside our model. We will include two such variables, the price level and the

market capitalization of the stock. The price level may a�ect the bid-ask spread if there

is a \tick size" e�ect (See Kandel and Marx (1999)). The market capitalization may

proxy for the number of analysts following a given stock and thereby a�ect the adverse

selection component of the spread. For both variables we would therefore expect a negative

22Harris and Schultz (1997) document a dramatic shift in the frequency of trade size from 1000 to 500
shares when Nasdaq reduced the minimum quoted depth from 1000 shares to 500 shares in 1994. They also
�nd that maximum size SOES trades are more likely to be motivated by information than other trades.
Thus the number of maximum size SOES trades is a proxy for SOES bandits activity.
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coe�cient. In addition, we include the lagged probability of maximum SOES trades as

an independent variable. This variable can potentially capture clustering e�ects in SOES

bandit activity. If there is a clustering we expect this variable to have a positive e�ect on

the level of SOES activity. The system of equations that we estimate is given by

8>>>>>>>><
>>>>>>>>:

SPREADti = a1 + a2SOESti + a3VOLTYti + a4NDLRSti

+a5LIQDEMti + a6log(AVGPti) + a7log(MKTCPti);

SOESti = b1 + b2SPREADti + b3SOESt�1;i + b4VOLTYti + b5MAXQti;

(29)

where i = 1; : : : ; N index the stocks and t = 1; : : : ; T index the trading days. The list

below de�nes the variables used in the empirical analysis. The variables are daily averages

for each stock i, i = 1; : : : ; N .

List of Variables

SOESti The probability of a maximum size SOES trades (N)

(the ratio of the number of maximum size SOES trades

to the total number of trades)

SPREADti The percentage bid-ask spread (S)

NDLRSti The number of market makers (M)

V OLTYti The volatility of the hourly mid-quote returns (�)

LIQDEMti The average size of all Nasdaq trades excluding the maximum size SOES trades (�)

AV GPti The average price of the stock computed based on the mid-quotes

MKTCPti The market capitalization of stock i [million dollars]

MAXQti Indicator, which is one if the minimum quoted depth is 1000 shares (Q)

The �rst equation determines the daily relative bid-ask spread as a function of the

probability of a maximum size SOES trade, the volatility of the stock, the number of

market makers, the liquidity demand, the logarithm of the price level, and the logarithm

of the market capitalization. The probability of a maximum SOES order is expressed as

a function of the bid-ask spread, the lagged value of the probability of a maximum size

SOES trade, the volatility, and an indicator for the maximum SOES trade size.
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The following exclusion restrictions imply that the system is overidenti�ed. In the model,

the bid-ask spread is determined by the per share costs of market making and is thus not

directly dependent on the minimum quoted (SOES) depth (MAXQ). We assume that the

current bid-ask spread is not a�ected by the lagged level of SOES activity (SOES(t-1)).

This provides two restrictions for the spread equation. According to the theoretical model

the number of market makers (NDLRS) and the liquidity demand (LIQDEM) do not a�ect

the level of SOES activity directly. These variables only a�ect the SOES activity through

their e�ect on the bid-ask spread. This provides three restrictions for the second equation.

The model predicts that a2 > 0 and a3 > 0 whereas a5 < 0. It also predicts that b2 < 0,

b4 > 0, and b5 > 0. Finally the sign of a4 can be positive or negative depending on the

nature of the equilibrium. Thus, the last prediction is the only one that is dependent

on whether the relevant equilibrium is the Pareto-Dominant or the zero-pro�t one. Our

estimation strategy can not deal with stocks that are traded in di�erent types of equilibria.

7.2 The Data

We use data provided by NASDAQ on transactions and dealer quotes for a sample of NAS-

DAQ stocks in December 1996. The sample consists of the 50 most actively traded stocks

on NASDAQ for 1996 (measured by number of stock traded), for which the maximum

order size was 1000 shares and a random sample of 50 stocks that were traded using a

maximum SOES trading size of 500 shares.

Table 3 provides summary statistics for the variables we use in the analysis. Each

variable is averaged for each stock over the one-month sample and the cross-sectional

means, medians, standard deviations, minimum, and maximum values are reported (N=50

stocks and T=21 trading days). For Panel A, the average daily number of maximum size

SOES trades is 437. There is however large cross-sectional variation with a minimum of 4

and a maximum of 2916. The bid-ask spread is on average 0.71% for the sample stocks.

The standard deviation of 0.58% indicates that there is also large variation in the spread

across the stock in our sample. The number of market makers varies between a low of

18 and a high of about 63. There is also variation across time for individual stocks. The
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volatility and trading activity variables indicate that there are relatively large 
uctuations

in prices and active trading for stocks in Panel A. For stocks in Panel B, the maximum

order size is 500 shares. Those stocks are small capitalization stocks. Their spreads are on

average larger than for stocks in Panel A. These stocks are also less actively traded and

have a lower number of dealers on average. Interestingly, the average number of maximum

orders size SOES trades is much lower for Panel B than for Panel A. According to the

model, this can be due both to the lower maximum order size and to the larger spread for

the stocks in Panel B.

7.3 Empirical Results

The system of equations presented above was estimated using GMM with all the prede-

termined variables as instruments. The results are reported in Table 4. The results for

the stocks with a maximum SOES size of 1000 (500) are reported in Panel A (B). Panel

C reports the results for the combined sample of stocks.

Based on the model we expect increased SOES activity to be associated with larger

spreads. While this coe�cient is positive in Panel B it is not signi�cant. Thus, we do not

�nd evidence that higher levels of SOES activity lead to higher spread for these stocks.

Even more surprising, in the second sample (Panel B), the SOES activity coe�cient is

negative and signi�cant. This result is not consistent with the model predictions. For the

combined sample the e�ect found in the second sub-sample seems to dominate producing a

statistically signi�cant negative coe�cient. The coe�cient on the number of market makers

is negative in all three samples. This result is not consistent with the Pareto-Dominant

equilibrium where we would expect a positive coe�cient for the number of market makers.

It is, of course, not possible to conclude that we are in the zero-pro�t equilibrium based on

these results. Within the model, this �nding only suggests the data is consistent with an

equilibrium where the negative externality is not too strong (� is small). The other model

variables, volatility and liquidity demand, have the expected signs in all three equations.

The level of SOES activity is in all three equations negatively related to the spread and

positively related to volatility as predicted by the model. The coe�cient on the minimum

36



quoted depth is positive and statistically signi�cant, which is also consistent with our

model.

The system of equations is overidenti�ed. The test statistics for a test of overidentifying

restrictions is reported at the bottom of each panel. The tests do not reject the model.

8 Conclusion

We present a model of price formation with costly monitoring of the information 
ow.

In particular we consider a trading environment where speculators, di�erent from dealers,

monitor the arrival of news and quote updates. We show how information externalities

associated with monitoring arise and how they a�ect the price formation process. In

particular we �nd that quote matching is a way for dealers to free ride on monitoring by the

other dealers, which leads to equilibria in which posted spreads are above the competitive

level. Allowing dealers to decline the execution of an incoming order strengthens dealers

incentive to free ride on information production by other dealers. For this reason, such a

policy can result in wider spreads and be detrimental to price discovery.

Our model captures key features of Nasdaq's Small Order Execution System (SOES).

The alleged e�ects of this trading systems on trading costs has generated intense regulatory

interest. Using our model predictions we revisit the main empirical questions regarding

the e�ects of SOES. We �nd that the level of SOES bandit activity is positively related to

the minimum quoted depth in SOES, the volatility, and negatively related to the spread as

predicted by our model. Surprisingly we �nd either no e�ect or a negative e�ect of SOES

bandit activity on the bid-ask spread. This empirical �nding contradicts the claim that

SOES bandits can be held responsible for large spreads on Nasdaq.

In our model, it is always optimal for the market makers to adjust their quotes as they

discover new information. This is consistent with the fact that dealers can not automati-

cally execute trades against dealers in Nasdaq.23 In other market structures, the relevant

choice may be to either update the quotes or to conceal the information and attempt to

23Note that even if they had the choice they may choose not to do so for reputation reasons.
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trade against other market participants. This is an interesting question for future research.
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9 Appendix

Proof of Proposition 1

The R.H.S. of Equation (8) is positive if and only if the expression in square brackets

is, i.e., as long as (1� �Mb

Mb�1
)
A � ( �Mb

Mb�1
�i) � 0. Hence �� follows directly. Q.E.D

Proof of Lemma 1.

Suppose (to be contradicted) that there exists a Nash equilibrium in which some dealers

do not choose the same monitoring levels. Consider two dealers i and i0 such that ��i > ��i0 .

Using the fact that Equation (9) must hold for these two dealers, we obtain the following

equality:

�Q(� � Sb)

2Mb(�A + 
A)2

�
(
�Mb

Mb � 1
)(��i0 � ��i )

�
= 	

0

d(�
�
i )�	

0

d(�
�
i0):

Since (a) ��i > ��i0 and (b) 	d(:) is strictly convex, the L.H.S of this inequality is strictly

negative whereas the R.H.S is strictly positive, which is impossible. This implies that in

equilibrium all the dealers choose the same monitoring level. In the same way we can prove

that in equilibrium all the speculators must choose the same monitoring level. This proves

that the Nash equilibrium in the monitoring stage must be symmetric.Q.E.D.

Proof of Proposition 2.

Dividing Equation (12) by Equation (13), we �nd that �� and 
� must satisfy:

N
� + �Mb�
�

(N��)
N

Mb�� + (N � 1)
�
= r(

Mb�
�


�
):

This equation can be written as an equation with unknown � � Mb�
�


�
. Since the mon-

itoring levels must be positive, it must be the case that � � 0. The previous equation

imposes:

N + ��
(N��)

N
�+ (N � 1)

= r�:

This equation has two solutions but only one is positive. This solution is:
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� =
N

2r(N � �)

�q
(r(N � 1)� �)2 + 4r(N � �)� ((N � 1)r � �)

�
:

Substituting �� by �
�

Mb
in Equation (13), we �nd that 
� solves:

�Q(� � Sb)(�(
N��
N

) + (N � 1))


�(� +N)2
= cs


�:

There is a unique positive solution to this equation, which yields the closed form solution

for 
�. Since � and 
� are uniquely de�ned, there is a unique Nash equilibrium in the

monitoring stage.

Substituting the expressions for �� and 
� in Equations (5) and (6), we obtain that in

equilibrium:

Prob(f 2 N ) =
N

�+N
; (30)

and

Prob(f 2 Mbni) =
(Mb � 1)�

Mb(� +N)
: (31)

Direct substitution of these probabilities in Equations (7) and (10) yield the dealer and

speculator pro�t functions. Q.E.D.

Proof of Proposition 3. Immediate from arguments in the text.

Proof of Proposition 4.

Suppose that the outcome of the quoting stage is fSb;Mbg. The expected pro�t of a

dealer posting the market spread is:

�d(�
�(Sb;Mb); 


�(Sb;Mb);Mb) =
Q

2Mb

[��(� � Sb)R(Mb; 0; r) + (1� �)��Sb]

Note that R(Mb; 0; r) decreases with Mb. This means that if Sb is such that Mb dealers

obtain positive expected pro�ts then Mb+1 dealers must obtain strictly positive expected

pro�t when they post this spread. This proves the �rst part of the proposition. But this

means that we cannot construct an equilibrium in which Mb < M dealers are active at the

best o�ers and the remaining dealers are better o� not matching the best o�ers.Q.E.D
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Proof of Corollary 1.

As � = 0, � can be written:

� =

s
(N � 1)2

4
+
N

r
�

(N � 1)

2
:

It follows that @�
@r

< 0. Furthermore it can be checked that: r�(� + (N � 1)) = N .

Consequently, R(Mb;�; r) =
N

�+N
+ �N

2Mb(�+N)2
. Thus we obtain:

@R

@r
= �

@�

@r
(� +N)(�2)

 
N �

N

2M
+

N�

M(� +N)

!
> 0:

Since Ŝ increases with R, it follows that @Ŝ
@r

> 0. � becomes in�nite when r goes

to zero and goes to zero when r becomes in�nite. Thus limr!0R(M; 0; r) = 0 and

limr!+1R(M; 0; r) = 1. Consequently:

limr!0Ŝ(M;�; r) = 0 and limr!+1Ŝ(M;�; r) =
��

� + (1� �)��
:

Similar computations yield the results for �S.Q.E.D

Proof of Lemma 2.

Using Equations (22) and (24), we get:

@R(M;�)

@�
> 0 and

@ �R(�)

@�
< 0:

Since Ŝ ( �S) increases with R(�) ( �R(�)), we obtain the �rst part of the lemma. The

condition Ŝ(M;�) � �S(�) is equivalent to R(M;�) � �R(�). This condition turns to be

equivalent to:

(1 +N � �) [(1 +N)(1� 2�)� �]�
(N + 1)2

M
� 0:

The L.H.S of this equation is decreasing with �. It is equal to (1+N)2(M�1)
M

when � = 0

and it is strictly negative for � � 1
2
. Thus there exists �̂(M;N) 2 (0; 1=2) such that the

previous condition is satis�ed if and only if � � �̂(M;N). The threshold �̂(M;N) solves:
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(1 +N � �) [(1 +N)(1� 2�)� �]�
(N + 1)2

M
= 0

This equation has two solutions, but only one is lower than 1. This solution is:

�̂(M;N) =
(1 +N)(2 +N)

3 +N
[1�

vuut(1�
(M � 1)(3 +N)

M(2 +N)2
]:

Note that �̂(:; :) increases with M and N .Q.E.D

Proof of Proposition 5

It is direct that R(Mb;�) decreases with Mb for Mb � 2. Thus, using exactly the same

argument as in the proof of Proposition 4, we can show that there cannot be an equilibrium

with 1 < M�
b < M . Recall that R(1;�) = R(1; 0). As there exists values of � such that

R(1; 0) < R(2;�), we cannot exclude in this case the possibility of equilibria with only one

dealer posting the best o�ers.

Equilibria in which M�
b = M exist if and only if � � �̂ since �S(�) � Ŝ(M;�) if and

only if � � �̂. In this case if a dealer expects his competitors to post a market spread

S�b 2 [Ŝ(M;�); �S(�)] then he optimally matches their o�ers, which proves that fM;S�b g is

a Nash equilibrium.

When � > �̂, the previous arguments impose that M�
b = 1 if an equilibrium exists. For

an equilibrium with only one dealer posting the best o�ers to exist, three conditions must

be satis�ed. First the active dealer should not widen his spread in the quoting stage. This

requires S�b � Ŝ(1; 0) (recall that when Mb = 1, everything is as if � = 0). Second among

the dealers who do not post the market spread, none should be better o� undercutting.

This requires that the dealer posting the market spread obtains zero expected pro�t, i.e.,

S�b = Ŝ(1; 0). Third among the dealers who do not post the market spread, none should

be better o� matching the best o�ers. Using Equation (16), this imposes:

R(2;�) > R(1; 0)

We show that this is the case if � > �̂. First note that when � = �̂, Ŝ(M; �̂) = �S(�̂).

This implies that the expected pro�t of a dealer is zero in equilibrium when � = �̂. In
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this case a dealer is just indi�erent between undercutting the zero expected pro�t market

spread with M dealers or matching this spread. Therefore Ŝ(M; �̂) = Ŝ(1; 0) which is

equivalent to R(M; �̂) = R(1; 0). Since R(M; :) increases with �, it is the case that

R(M;�) > R(M; �̂) when � > �̂(M;N). Furthermore R(:;�) decreases with Mb for

Mb � 2. It follows that:

R(2;�) > R(M;�) > R(M; �̂) for � > �̂;

But since R(M; �̂) = R(1; 0), then R(2;�) > R(1; 0) for � > �̂. It follows that no dealer

can pro�tably match the o�ers of the dealer posting Ŝ(1; 0). Q.E.D

Proof of Proposition 6. Each dealer's expected pro�t increases with the market

spread (see Equation 16). Thus the equilibrium that features the largest spread is Pareto-

Dominant. Q.E.D

Proof of Corollary 2. Immediate using Lemma 2 and Proposition 5

Proof of Corollary 3.

Suppose � � �̂. In the zero expected pro�t equilibrium, the monitoring level of a dealer

is:

��(�) =

vuut N(�(1� �)�Q��)

cM2[�R(M;�) + (1� �)��](1 +N � �)2
:

This can be written as:

��(�) =

vuut N(�(1� �)�Q��)

cM2
h
�
�
N(1 +N � �) + N

2Mb

�
+ ((1� �)��)(1 +N � �)2

i :
It follows that @��

@�
> 0 in this case. In the Pareto Dominant equilibrium, we obtain

the same expression for ��, but R(M;�) is replaced by �R(�). As �R(�) decreases with

�, it is direct that dealers' monitoring level increases with �. Thus, independtly of the

equilibrium we consider in the quoting stage, we obtain:

��(0) < ��(�) 8� � �̂: (32)
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For � > �̂, S�b = S(1; 0). Thus we obtain:

��(�) =

vuutN�Q(� � S(1; 0))

c(1 +N)2
8� > �̂

Note that in this case ��(�) does not depend on �. Let �� � ��(�) for � > �̂. Recall

that Ŝ(M; �̂) = �S(M; �̂) = S(1; 0). This implies (i) that ��(�̂) takes the same value in

the zero expected equilibrium and in the Pareto Dominant equilibrium and (ii) that this

value is:

��(�̂) =

vuutN�Q(� � S(1; 0))

cM2(1 +N � �)2

Using the fact that �̂ < 1
2
, computations show that ��(�̂) < ��. Combining this inequality

with Equation (32), we obtain:

��(0) < ��(�̂) 8�:

Q.E.D.

Proof of Corollary 4.

Suppose � � �̂. In this case, M�
b = M . Using Proposition 2, we obtain that the

aggregate monitoring level is:

��A(�) + 
�A(�) =M�� +N
� = �(N + 1� �)
�:

which yields:

��A(�) + 
�A(�) =

s
N�Q(� � S�b )

c

For � > �̂, M�
b = 1. It follows that the aggregate monitoring level is:

��A(�) + 
�A(�) = �� +N
� = (N + 1)
�

which is:
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��A(�) + 
�A(�) =

s
N�Q(� � S(1; 0))

c

Now consider the zero expected pro�t equilibrium. In this case, S�b = Ŝ(M;�) for

� � �̂ and Ŝ(M; �̂) = S(1; 0). As Ŝ(M;�) increases with �, it follows from the previous

equations that:

��A(�) + 
�A(�) < ��A(0) + 
�A(0) 8� > 0:

Now consider the Pareto-Dominant equilibrium. In this case, S�b = �S(�) for � � �̂ and

�S(M; �̂) = S(1; 0). As �S(M;�) decreases with �, we now obtain that:

��A(�) + 
�A(�) > ��A(0) + 
�A(0) 8� > 0:

Q.E.D

Proof of Corollary 7.

Case 1: � � �̂.

Computations yield

@R(M;�)

@N
=

(N + 1� �)[(1� �)2M + 1]� 2N

2M(1 +N � �)3
:

As � � �̂ < 1
2
, we obtain @R

@N
> 0 which implies that @Ŝ

N
> 0. Furthermore, we obtain:

@ �R(�)

@N
=

M(N+3)
2(N+1)3

� @R(M;�)
@N

M � 1
:

Computations show that @2R(M;�)
@�@N

< 0. It follows that @2 �R(�)
@�@N

> 0. Now for � = 0, we

get:

�R(0) =
N

N + 1
+

(M + 1)N

2M(N + 1)2
;

which increases with N . This �nally yields:
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@ �R(�)

@N
>
@ �R(0)

@N
> 0: (33)

It follows that �S(�) increases with N .

Case 2: � > �̂. In this case the equilibrium spread is:

Ŝ(1; 0) = ��(
R(1; 0)

�R(1; 0) + (1� �)��)
) (34)

R(1; 0) increases with N which implies that Ŝ(1; 0) increases with N .Q.E.D

Proof of Proposition 8.

Equation (28) implicitly de�nes N� in term of the exogenous parameters. The L.H.S of

this equation is a speculator's expected pro�t in equilibrium. We denote it by ��s. Consider

the e�ect of a change in �. Using Equation (28), we obtain:

dN�

d�
= �

@��

s

@�
@��

s

@N�

It is straightforward that @��

s

@�
> 0 and we know that @��

s

@N�
< 0. It follows that dN�

d�
> 0.

Then recall that:

�s(�
�(Ŝ); 
�(Ŝ); Ŝ; N�) = K = (� � Ŝ)Q�

"
2N�(N� + 1� �)� (N� � �)2)

4N�(N� + 1� �)2

#
:

As the number of speculators increases with �, the term in bracket in the R.H.S. of the

previous equation decreases with �. But we have found that a speculator's expected pro�t

(the L.H.S. of the equation) increases with �, in equilibrium. Consequently the market

spread Ŝ must decrease when � increases. The same type of argument can be used to

derive the impact of �, � and M on the zero expected pro�t market spread and the

number of speculators. Q.E.D.

Proof of Proposition 9.

Using Equation (28), we obtain:

dN�

dQ
= �

@��

s

@Q

@��

s

@N�

:

46



It is straightforward that @��

s

@Q
> 0. It follows that dN�

dQ
> 0. Since Ŝ increases with the

number of speculators, it follows that Ŝ increases with Q.

Proof of Proposition 10.

The market spread in the Pareto-Dominant equilibrium increases with �R(�), which is

given in Equation (24). Computations yield:

@ �R(�)

@M
=

1

(M � 1)2

"
R(M;�)� R(1; 0) +

N(M � 1)

2M2(1 +N � �)2

#

The term in bracket increases with �. It is strictly negative for � = 0 and strictly

positive for � = �̂ (because R(1; 0) = R(M; �̂)). Thus there exists �� 2 (0; �̂) such that

@ �R(��)
@M

= 0. For � < ��, @ �R(�)
@M

< 0 and for � > ��, @ �R(�)
@M

> 0. This proves the �rst part

of the corollary.

For the Pareto-Dominant equilibrium, the equilibrium number of speculators is deter-

mined by the following equation:

(
�(1� �)��Q�

� �R(�) + (1� �)��
)

"
2N�(N� + 1� �)� (N� � �)2)

4N�(N� + 1� �)2

#
= K: (35)

which is identical to Equation (28), except that �R(�) replaces R(M;�). Now consider

an equilibrium in which the number of dealers, the equilibrium number of speculators and

� are such that: � 2 (��(M;N�); �̂(M;N�). Using the fact that in this case @ �R(�)
@M

> 0

and Equation (35), we can proceed as in the proof of Proposition 8 to prove the second

part of Proposition 10.Q.E.D
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Table 3: Summary Statistics

Panel A: Maximum SOES quantity of 1000 (N=50, T=21)

Variable Mean Median Std. Dev. Min Max

SOES 437 202 601 4 2916

SPREAD 0.0071 0.0058 0.0051 0.0010 0.0239

NDLRS 37 36 9 18 64

VOLTY 0.0087 0.0083 0.0036 0.0029 0.0240

NTRDS 1743 1183 1613 189 7846

LIQDEM 1617 1347 761 821 4101

AVGP 38.71 33.25 27.49 3.22 132.30

MKTCP 12000 3487 24905 90 108619

Panel B: Maximum SOES quantity of 500 (N=50, T=21)

Variable Mean Median Std. Dev. Min Max

SOES 10 9 8 0 41

SPREAD 0.0197 0.0188 0.0068 0.0078 0.0474

NDLRS 10 10 5 3 23

VOLTY 0.0110 0.0100 0.0038 0.0039 0.0192

NTRDS 140 106 119 3 509

LIQDEM 1489 1362 659 373 3816

AVGP 24.12 21.44 13.12 7.95 74.51

MKTCP 539 353 551 30 3109

Table 3 reports summary statistics on the daily number of maximum size
SOES trades (SOES), the bid-ask spread (SPREAD), the number of market
makers (NDLRS), the hourly mid-quote volatility (VOLTY) , the number
trades (excluding maximum size SOES trades) (NTRDS), the average trade
size (LIQDEM), and the average mid-quote (AVGP), and the market capi-
talization (MKTCP)in million dollars for the stocks in our samples. Panel
A presents the statistics for a sample of 50 actively traded NASDAQ stocks
for December 1996. These stocks traded with a maximum SOES trade size
of 1000 shares. Panel B presents the statistics for a sample of 50 NASDAQ
stocks, which traded with a maximum SOES size of 500 units, in Decem-
ber 1996. All �gures are computed by �rst computing a cross-section of
stock speci�c time-series averages for all variables and then by computing
the di�erent statistics based on this cross-section.

52



T
a
b
le

4
:
E
s
t
im

a
t
io
n

R
e
s
u
lt
s

P
a
n
el
A
:
M
a
x
S
O
E
S
S
iz
e
1
0
0
0
(N
=
5
0
,T
=
2
0
)

P
a
n
el
B
:
M
a
x
S
O
E
S
S
iz
e
5
0
0
(N
=
5
0
,T
=
2
0
)

P
a
n
el
C
:
F
u
ll
S
a
m
p
le
(N
=
1
0
0
,T
=
2
0
)

S
p
re
a
d
E
q
.

S
O
E
S
E
q
.

S
p
re
a
d
E
q
.

S
O
E
S
E
q
.

S
p
re
a
d
E
q
.

S
O
E
S
E
q
.

V
a
ri
a
b
le

C
o
e�
.

t-
st
a
t.

C
o
e�
.

t-
st
a
t.

C
o
e�
.

t-
st
a
t.

C
o
e�
.

t-
st
a
t.

C
o
e�
.

t-
st
a
t.

C
o
e�
.

t-
st
a
t.

C
o
n
st
.

2
.9
9
�
1
0
�

2

7
0
.2
0
0

3
.3
9
�
1
0
�

2

9
.4
3
0

5
.6
5
�
1
0
�

2

3
8
.6
0
0

1
.8
5
�
1
0
�

2

2
.8
8
0

4
.0
7
�
1
0
�

2

4
4
.5
0
0

3
.2
6
�
1
0
�

2

7
.2
7
0

S
O
E
S
(t
)

5
.0
7
�
1
0
�

4

0
.5
9
5

-5
.0
2
�
1
0
�

2

-8
.3
7
0

-1
.6
9
�
1
0
�

2

-8
.4
6
0

S
P
R
E
A
D

-4
.4
6
�
1
0
0

-1
4
.1
0
0

-3
.8
8
�
1
0
�

1

-1
.3
0
0

-2
.1
2
�
1
0
0

-9
.0
8
0

S
O
E
S
(t
-1
)

3
.2
0
�
1
0
0

1
6
.3
0
0

1
.9
9
�
1
0
0

1
4
.4
0
0

2
.1
6
�
1
0
0

1
3
.1
0
0

V
O
L
T
Y

2
.8
6
�
1
0
�

2

2
.9
1
0

7
.9
5
�
1
0
�

1

6
8
.8
0
0

1
.1
1
�
1
0
�

1

4
.8
3
0

4
.6
3
�
1
0
�

1

2
2
.9
0
0

5
.0
6
�
1
0
�

2

2
.8
4
0

7
.4
5
�
1
0
�

1

5
0
.2
0
0

N
D
L
R
S

-7
.7
5
�
1
0
�

5

-1
0
.6
0
0

-8
.0
3
�
1
0
�

4

-1
9
.9
0
0

-2
.8
3
�
1
0
�

4

-1
8
.5
0
0

L
IQ
D
E
M

-1
.9
1
�
1
0
�

7

-3
.2
4
0

-2
.9
1
�
1
0
�

7

-2
.1
0
0

-5
.6
5
�
1
0
�

8

-0
.4
7
0

A
V
G
P
)

-6
.4
4
�
1
0
�

3

-3
3
.9
0
0

-6
.6
3
�
1
0
�

3

-1
3
.3
0
0

-4
.5
7
�
1
0
�

3

-1
1
.3
0
0

M
K
T
C
P

2
.0
3
�
1
0
�

4

2
.5
2
0

-1
.0
2
�
1
0
�

3

-4
.4
5
0

-6
.3
5
�
1
0
�

4

-3
.5
3
0

M
A
X
Q

2
.1
8
�
1
0
�

7

2
.8
3
0

J
-t
es
t

1
.2
9
9

(0
.2
4
5
))

2
.0
9
9

(0
.4
7
1
)

2
.3
1

(0
.1
9
6
)

T
a
b
le
4
p
re
se
n
ts
th
e
es
ti
m
a
ti
o
n
re
su
lt
s
fo
r
th
e
sy
st
em
o
f
eq
u
a
ti
o
n
s
d
es
cr
ib
in
g
th
e
jo
in
t
d
et
er
m
in
a
ti
o
n
o
f
th
e
b
id
-a
sk
sp
re
a
d
(S
P
R
E
A
D
)
a
n
d
th
e

S
O
E
S
a
ct
iv
it
y
(S
O
E
S
).
T
h
e
ex
o
g
en
o
u
s
va
ri
a
b
le
s
a
re
th
e
la
g
g
ed
S
O
E
S
a
ct
iv
it
y
(S
O
E
S
(t
-1
))
,
v
o
la
ti
li
ty
(V
O
L
T
Y
),
n
u
m
b
re
o
f
m
a
rk
et
m
a
k
er
s
(N
D
L
R
S
),

th
e
av
er
a
g
e
o
rd
er
si
ze
fo
r
n
o
n
-m
a
x
im
u
m
S
O
E
S
tr
a
d
es
(L
IQ
D
E
M
),
th
e
lo
g
a
ri
th
m
o
f
th
e
av
er
a
g
e
p
ri
ce
(A
V
G
P
),
th
e
lo
g
a
ri
th
m
o
f
th
e
m
a
rk
et
ca
p
it
a
li
za
ti
o
n

(M
K
T
C
P
),
a
n
d
th
e
in
d
ic
a
to
r
fo
r
a
m
a
x
im
u
m
S
O
E
S
o
rd
er
si
ze
o
f
1
0
0
0
sh
a
re
s
(M
A
X
Q
).
P
a
n
el
A
p
re
se
n
ts
th
e
re
su
lt
s
fo
r
a
sa
m
p
le
o
f
5
0
a
ct
iv
el
y
tr
a
d
ed

N
A
S
D
A
Q
is
su
es
fo
r
D
ec
em
b
er
1
9
9
6
.
P
a
n
el
B
p
re
se
n
ts
th
e
re
su
lt
s
fo
r
a
sa
m
p
le
o
f
5
0
N
A
S
D
A
Q
is
su
es
tr
a
d
ed
u
si
n
g
a
m
a
x
im
u
m
S
O
E
S
si
ze
o
f
5
0
0
st
o
ck
s.

P
a
n
el
C
p
re
se
n
ts
th
e
re
su
lt
s
fo
r
th
e
fu
ll
sa
m
p
le
o
f
1
0
0
st
o
ck
s.
T
h
e
sy
st
em
o
f
eq
u
a
ti
o
n
s
p
re
se
n
te
d
in
E
q
u
a
ti
o
n
(2
9
)
is
es
ti
m
a
te
d
a
s
a
sy
st
em
u
si
n
g

G
M
M

w
it
h
a
ll
th
e
ex
o
g
en
o
u
s
va
ri
a
b
le
s
a
s
in
st
ru
m
en
ts
.
T
h
e
co
e�
ci
en
t
es
ti
m
a
te
s
a
re
re
p
o
rt
ed
to
g
et
h
er
w
it
h
th
e
t-
st
a
ti
st
ic
s
in
p
a
re
n
th
es
is
.
T
h
e
J
-t
es
t

o
f
ov
er
id
en
ti
fy
in
g
re
st
ri
ct
io
n
s
is
re
p
o
rt
ed
o
n
th
e
la
st
li
n
e
w
it
h
th
e
co
rr
es
p
o
n
d
in
g
p
-v
a
lu
es
in
p
a
re
n
th
es
is
.

53



Figure 1: Timing of the trading game
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Figure 2: Equilibrium Spreads
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