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ABSTRACT

Consumption, Aggregate Wealth and Expected Stock Returns*

This Paper studies the role of de-trended wealth in predicting stock returns.
We call a transitory movement in wealth one that produces a deviation from its
shared trend with consumption and labour income. Using quarterly stock
market data we find that these trend deviations in wealth are strong predictors
of both real stock returns and excess returns over a Treasury bill rate. We also
find that this variable is a better forecaster of future returns at short and
intermediate horizons than is the dividend yield, the earnings yield, the
dividend pay-out ratio and several other popular forecasting variables. Why
should wealth, de-trended in this way, forecast asset returns? We show that a
wide class of optimal models of consumer behaviour imply that the log
consumption-aggregate (human and non-human) wealth ratio forecasts the
expected return on aggregate wealth, or the market portfolio. Although this
ratio is not observable, we demonstrate that its important predictive
components may be expressed in terms of observable variables, namely in
terms of consumption, non-human wealth and labour income. The framework
implies that these variables are co-integrated and that deviations from this
shared trend summarize agents’ expectations of future returns on the market
portfolio.
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NON-TECHNICAL SUMMARY

Understanding the link between asset returns and the macroeconomy is
important for a variety of reasons. For example, there is by now ample
evidence that expected stock returns vary over time. Many authors argue that
these movements should be linked to the business cycle. However, there is
little evidence of such a linkage, because it appears that stock can be
forecasted only over frequencies that are substantially lower than those
usually associated with business cycles. Moreover, the traditional forecasting
variables, such as dividend yields. Dividend-earnings ratios, term and default
spreads, are asset market variables. Traditional macroeconomic variables do
not appear to forecast stock returns.

This Paper adopts a new approach to investigating the linkages between
macroeconomics and financial markets. We study the role of transitory
movements in household wealth for predicting stock market fluctuations. We
de-trend wealth with aggregate consumption and aggregate labour income,
measuring a transitory movement in wealth as a deviation from its shared
trend with these variables. Our results show that these trend deviations in
wealth are a strong univariate predictor of both raw stock returns and excess
stock returns over a Treasury bill rate and can account for a substantial
fraction of the variation in future returns. This variable provides information
about future stock returns that is not captured by lagged values of other
popular forecasting variables and displays its greatest predictive power for
returns over business cycle frequencies, those ranging from one to five
quarters. This result occurs despite the fact that the individual growth rates of
consumption, labour income and wealth, like other macroeconomic variables,
bear little relationship to future stock returns.

Why should household wealth, de-trended in this way, forecast asset returns?
We show that this feature of the data may arise as an implication of a wide
range of forward-looking models of consumer behaviour where consumption is
a function of aggregate wealth (the ‘market’ portfolio), defined as the sum of
human and non-human wealth. To make the framework tractable, we employ
a log-linear approximation of the inter-temporal budget constraint. For a wide
class of preferences, the log consumption-aggregate wealth ratio predicts
asset returns because it is a function of expected future returns on the market
portfolio. This result has been noted previously by Campbell and Mankiw
(1989) and is the starting point of our theoretical framework.

The model we investigate implies that the log of consumption, labour income
and non-human wealth share a common stochastic trend (they are co-
integrated), and that the parameters of this shared trend are the average
shares of human and non-human wealth in aggregate wealth. But it is the



stationary deviations from this shared trend which produce movements in the
consumption-aggregate wealth ratio that are important for future asset returns.
This follows from the fact that the consumption-aggregate wealth ratio
summarizes agents’ expectations of future returns on the market portfolio.
Accordingly, these deviations from trend may forecast returns to non-human
wealth, as long as the expected return to human capital is not too volatile.

Our results can also be interpreted from a macroeconomic point of view. In the
empirical macroeconomic literature, consumption behaviour has traditionally
been studied using models that assume expected asset returns are constant
over time, as in the permanent income framework of Hall (1978) and Flavin
(1981). These models rule out any linkage between movements in asset
returns that can be forecasted and real consumption. The model we
investigate retains much of the permanent income flavour, but allows us to
directly connect the optimizing behaviour of consumers with future stock
returns. When consumption is below its shared trend with assets and labour
income, the framework implies that consumers must be expecting returns to
fall. When consumption is above its long-term trend with assets and labour
income, the framework implies that consumers must be expecting returns to
rise. By factoring these expectations into current consumption, agents can
insulate future consumption from transitory fluctuations in market returns.

An important policy implication of our results is that large swings in financial
assets need not be associated with large subsequent movements in
consumption. Recently, this issue has become one of pressing importance as
fears rise that substantial market swings will cause consumer spending to
fluctuate sharply. The model considered in this Paper suggests that the real
economy may be less vulnerable to transitory movements in asset values than
many analysts presume: with consumption well below its traditional ratio to
asset wealth and labour income, the model implies that households have
already factored the expectation of lower returns into today’s consumption and
will therefore not need to make large adjustments tomorrow.



1 Introduction

Understanding the empirical linkages between macroeconomic variables and �nancial mar-

kets has long been a goal of �nancial economics. One reason for the interest in these linkages

is that expected excess returns on common stocks appear to vary with the business cycle.1

This evidence suggests that stock returns should be forecastable by business cycle variables

at cyclical frequencies. Indeed, the forecastability of stock returns is well documented. The

studies of Shiller (1984), Flood, Hodrick and Kaplan (1986), Campbell and Shiller (1988),

Fama and French (1988), Hodrick (1992) and Lamont (1998), to mention just a few, ar-

gue that �nancial indicators such as the ratios of price to dividends, price to earnings, or

dividends to earnings have predictive power for excess returns over a Treasury-bill rate.

These �nancial variables, however, have been most successful at predicting returns over long

horizons. Over horizons spanning the length of a typical business cycle, stock returns have

typically been found to be only weakly forecastable.2 Moreover, traditional macroeconomic

variables have proven especially dismal as predictive variables.

The question of whether expected returns vary at cyclical frequencies and with macroe-

conomic variables is also pertinent to the debate over why excess returns are predictable.

One possibility is that �nancial markets are ine�cient. Alternatively, predictable variation in

returns could simply reect the rational response of agents to time-varying investment oppor-

tunities, possibly driven by cyclical variation in risk aversion (e.g., Campbell and Cochrane,

1999) or in the joint distribution of consumption and asset returns. If these rational ex-

planations are correct, it is reasonable to expect that key macroeconomic variables should

perform an important function in forecasting stock returns. As yet, however, there is little

1This conclusion is often drawn from the volatility-test literature: the procyclical volatility of price-

dividend ratios cannot be accounted for by variation in expected dividends or the risk free rate, implying

that expected excess returns must vary. See, for example, Campbell and Shiller (1988), Shiller (1989),

Cochrane (1991a, 1991b).
2One exception to this is a study by Campbell (1987) which found that Treasury bill rates and several

measures of the term spread could explain a substantial fraction of the variation in next month's excess stock

return. However, these �ndings appear to be a feature of the sample period used in that study. Extending

the sample out to the third quarter of 1998, these indicators display much weaker forecasting power.
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empirical evidence that real macroeconomic variables perform such a function.

This paper adopts a new approach to investigating the linkages between macroeconomics

and �nancial markets. We study the role of transitory movements in household wealth for

predicting stock market uctuations. We detrend wealth with aggregate consumption and

aggregate labor income, measuring a transitory movement in wealth as a deviation from its

shared trend with these variables. Our results show that these trend deviations in wealth

are a strong univariate predictor of both raw stock returns and excess stock returns over

a Treasury bill rate, and can account for a substantial fraction of the variation in future

returns. This variable provides information about future stock returns that is not captured

by lagged values of other popular forecasting variables, and displays its greatest predictive

power for returns over business cycle frequencies, those ranging from one to �ve quarters.

This result occurs despite the fact that the individual growth rates of consumption, labor

income, and wealth{like other macroeconomic variables{bear little relationship with future

stock returns.

Why should household wealth, detrended in this way, forecast asset returns? We show

that this feature of the data may arise as an implication of a wide range of forward-looking

models of consumer behavior where consumption is a function of aggregate wealth (the

\market" portfolio), de�ned as the sum of human and nonhuman wealth. To make the

framework tractable, we employ a log-linear approximation of the intertemporal budget

constraint. For a wide class of preferences, the log consumption{aggregate wealth ratio

predicts asset returns because it is a function of expected future returns on the market

portfolio. This result has been noted previously by Campbell and Mankiw (1989) and is the

starting point of our theoretical framework.

There are two important obstacles that must be overcome before the log consumption-

aggregate wealth ratio can be empirically linked with future asset returns. The most im-

mediate is that aggregate wealth { speci�cally the human capital component of it { is un-

observable. One way to make it observable would be to �nd a proxy for human capital.

This approach is likely to be fraught with practical obstacles, however, since there is little

direct evidence available to assess the empirical validity of such a proxy. Instead, this paper

argues that the important predictive components of the consumption-aggregate wealth ratio
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for future market returns may be expressed in terms of observable variables, namely in terms

of consumption, nonhuman wealth and current labor income.

Our approach assumes that aggregate labor income may be well described by the product

of a stationary \return", times the aggregate stock of human capital, implying that the

nonstationary component of human capital may be captured by labor income itself. Put

another way, labor income is just the annuity value of human wealth. This speci�cation for

labor income is quite general: it places no restrictions on the functional form of expected

or realized returns to human capital, and it makes no assumptions about the relationship

between returns to human capital and returns to nonhuman capital, or assets. It follows that

the unobservable log consumption-aggregate wealth ratio may be expressed as the di�erence

between log consumption and a weighted average of log labor income and log asset wealth.

The weights on log labor income and log assets are just the average ratios of human and

nonhuman wealth in aggregate wealth, respectively.

The model we investigate implies that the log of consumption, labor income and non-

human wealth share a common stochastic trend (they are cointegrated), and that the pa-

rameters of this shared trend are the average shares of human and nonhuman wealth in

aggregate wealth. But it is the stationary deviations from this shared trend, which produce

movements in the consumption-aggregate wealth ratio that are important for future asset

returns. This follows from the fact that the consumption-aggregate wealth ratio summarizes

agents' expectations of future returns on the market portfolio. Accordingly, these deviations

from trend may forecast returns to nonhuman wealth, as long as the expected return to

human capital is not too volatile.

A remaining obstacle to using deviations in the common trend among consumption, labor

income and asset wealth as a forecasting variable is that the parameters of this shared trend

are unobservable, and must therefore be estimated. In ordinary empirical applications this

estimation is problematic due to the presence of endogenous regressors. In our application,

however, consumption, labor income and asset wealth are cointegrated and we may obtain a

\superconsistent" estimate of the cointegrating parameters that will be robust to the presence

of regressor endogeneity. We discuss this further below.

We characterize deviations from the shared trend in consumption, labor income and
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assets as transitory movements in wealth. To understand this characterization, it is useful to

relate our approach to the work of Cochrane (1994) who uses separate bivariate, cointegrated

autoregressions to characterize the transitory components in GNP and stock prices. Using a

consumption/GNP bivariate autoregression he shows that the consumption/GNP ratio is a

potent forecaster of GNP growth, while consumption is nearly a random walk. Analogously,

using a dividend/stock price bivariate autoregression he shows that dividend/price ratios

forecast returns while dividends are nearly a random walk. The former result is interpreted

using a simple permanent income model, the latter using a present value{dividend smoothing

model.

The model of this paper is an alternative that brings these concepts together in a single

trivariate system. The framework we investigate generalizes the simple permanent income

model because it allows for time-varying expected returns. As we discuss in more detail

below, we characterize deviations from the shared trend in consumption, labor income and

assets as transitory movements in wealth, rather than as transitory movements in consump-

tion or labor income, because they forecast asset growth, while consumption and labor

income follow relatively persistent processes. We show that this forecastability of the growth

in asset wealth is driven by the forecastability of expected stock returns, consistent with the

theoretical framework we present.

In the empirical macroeconomic literature, consumption behavior has traditionally been

studied using models that assume expected asset returns are constant over time, as in the

permanent income framework of Hall (1978) and Flavin (1981). These models rule out

any linkage between forecastable movements in asset returns and real consumption. The

model we investigate retains much of the permanent income avor, but allows us to directly

connect the optimizing behavior of consumers with future stock returns. When consumption

is below its shared trend with assets and labor income, the framework implies that consumers

must be expecting returns to fall. When consumption is above its long term trend with

assets and labor income, the framework implies that consumers must be expecting returns

to rise. By factoring these expectations into current consumption, agents can insulate future

consumption from transitory uctuations in market returns.

The rest of the paper is organized as follows. The next section presents the consumption-
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based framework linking consumption, aggregate wealth and expected returns, and shows

how we express the important predictive components of the consumption-aggregate wealth

ratio in terms of observable variables. In section 3, we present the results of estimating the

trend relationship among consumption, labor income, and nonhuman wealth, and discuss

how our method of detrending assets is related to the approach of Cochrane (1994). We

then move on to test the important implication of the model presented in Section 2, that

deviations from trend asset wealth are likely to lead stock returns. Section 4 discusses

the data used in our forecasting regressions for asset returns and presents some summary

statistics. Sections 5 and 6 document our main �ndings on the predictability of stock returns,

while section 7 presents some results on the out-of-sample forecasting performance of the

detrended wealth measure. Section 8 concludes.

2 A Consumption Framework

This section presents a general framework linking consumption, nonhuman wealth and labor

income with expected returns. We build o� the forward-looking model of consumer behavior

developed previously in Campbell and Mankiw (1989) and Campbell (1993).

Consider a representative agent economy in which all wealth, including human wealth, is

tradable. LetWt be aggregate wealth (human and nonhuman) in period t. Ct is consumption

and Rw;t+1 is the net return on aggregate wealth. The accumulation equation for aggregate

wealth may be written3

Wt+1 = (1 +Rw;t+1)(Wt � Ct): (1)

We de�ne r � log(1 + R); and use lowercase letters to denote log variables throughout.

Campbell and Mankiw (1989) and Campbell (1993) show that, if the consumption-aggregate

wealth ratio is stationary, the budget constraint may be approximated by taking a �rst-order

Taylor expansion of the equation. The resulting approximation gives an expression for the

3Labor income does not appear explicitly in this equation because of the assumption that the market

value of tradable human wealth is included in aggregate wealth.
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log di�erence in aggregate wealth

�wt+1 � k + rw;t+1 + (1� 1=�w)(ct � wt) (2)

where �w is the steady-state ratio of invested to total wealth, (W � C)=W , and k is a

linearization constant that plays no role in our analysis.4 Solving this di�erence equation

forward and imposing that limi!1 �
i
w(ct+i � wt+i) = 0, the log consumption-wealth ratio

may be written

ct � wt =

1X
i=1

�iw(rw;t+i ��ct+i): (3)

Equation (3) holds simply as a consequence of the agent's intertemporal budget constraint

and therefore holds ex-post, but it also holds ex-ante. Accordingly, we can take conditional

expectations of both sides of (3) to obtain

ct � wt = Et

1X
i=1

�iw(rw;t+i ��ct+i): (4)

Equation (4) shows that the consumption-wealth ratio is a function of expected future re-

turns to the market portfolio in a broad range of optimal consumption models, where the

information set upon which expectations are conditioned will depend on the state variables

in the model. These models may di�er according to their speci�cation of preferences, or

according to what assumptions are made about the stochastic properties of consumption

and asset returns, but all of them imply that the consumption-aggregate wealth ratio is a

function of expected future returns. We now discuss a few of these models.

One widely used model of consumption behavior may be obtained by combining (3) with

the presumption that consumers maximize the discounted sum of expected future power

utility functions.5 In this case, the log �rst-order condition for optimal consumption choice

is given by

Et�ct+1 = �t + �Etrw;t+1; (5)

4We omit unimportant linearization constants in the equations from now on.
5More generally, (5) may be obtained by assuming that agents maximize the discounted sum of objective

functions speci�ed by Epstein and Zin (1989), which retains many of the attractive features of power utility,

but breaks the link between the parameters governing risk aversion and intertemporal substitution.
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where � is the elasticity of intertemporal substitution (EIS) and �t �Vart[�ct+1� �rw;t+1].
6

Combining (4) and (5) shows that this model has a simple log-linear solution where the log

consumption-wealth ratio takes the form

ct � wt = (1� �)Et

1X
i=1

�iw(rw;t+i � �t+i): (6)

Equation (6) shows that the log consumption-aggregate wealth ratio summarizes the ex-

pectations of future returns to wealth. The log consumption-aggregate wealth ratio depends

on the discounted sum of expected returns to total wealth multiplied by 1� �. With � > 1;

an increase in returns lowers the log consumption-wealth ratio because substitution e�ects

outweigh income e�ects; with � < 1, income e�ects dominate and high returns increase

consumption relative to wealth. If � = 1 the two e�ect exactly o�set and the consumption-

wealth ratio is constant.

Other speci�cations of consumer preferences also give rise to a relationship between ct�wt

and expected future returns on the market portfolio. For example, a more complicated, but

similar expression for the consumption-aggregate wealth ratio may be obtained using the

preferences assumed in Campbell and Cochrane (1999) which generates time-varying risk

aversion. Campbell and Cochrane add an external consumption \habit" to the standard

power utility function; the utility function takes the form
(Ct�Xt)

1�
�1

1�
, where Xt is the

external habit and the surplus consumption ratio is de�ned as St � Ct�Xt

Ct
: Using these

preferences and the evolution equation for the log surplus consumption ratio assumed by

Campbell and Cochrane, the log consumption-aggregate wealth ratio may be expressed

ct � wt = Et

1X
i=1

�i[rw;t+i � �t+i + �t�1+iEt�1+irw;t+i + (1� �)(s� st�1+i)�

�(st�1+i)(ct+i � Et�1+ict+i)]; (7)

where �t+i contains the time-varying second moments of �ct; �st, and rw;t; �t�1+i is a time-

varying parameter which is a function of st; s is the mean log surplus consumption ratio,

6This solution may be obtained exactly if returns and consumption are assumed to be jointly lognormally

distributed, and it holds approximately without distributional assumptions by taking a second-order Taylor

expansion.
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and � is a parameter governing the evolution of st.
7 According to their parameterization,

the conditional expectation of consumption growth is constant, and (7) collapses to (within

a constant of) (4).

Although the formulations in (6) and (7) can not be considered consumption solution (the

parameters �t+1�i, �t+i, and st depend on consumption), they share the common implication

that the log-consumption aggregate wealth ratio is a function of expected future returns on

the market portfolio. Moreover, models in which returns have time-varying second moments,

as in (6), and time-varying risk aversion, as in (7), also imply that the consumption-aggregate

wealth ratio may be a function of expected future excess returns over the risk-free rate, or

risk premia.

Because aggregate wealth is not observable, however, none of the models above are di-

rectly suited in their current form for predicting asset returns. Although the nonhuman

wealth component in aggregate wealth may be approximated by an index of common stocks,

there is no such readily observable measure of human capital.

Rather than proposing an explicit proxy for human capital, we pursue a strategy which

allows us to express the important predictive components of ct�wt for future market returns

in terms of observable variables. Our approach begins with the assumption that aggregate

labor income, Yt, may be well described by the product of a stationary simple net return

to human capital, Rh;t, times the stock of human wealth, Ht.
8 Thus, the nonstationary

component of human capital is captured by labor income itself. Put another way, labor

income is the annuity value of human wealth, Yt = Rh;tHt, or in logs, yt = logRh;t + ht.
9

Note that (ignoring a linearization constant) rh;t � log(1 + Rh;t) t 1=�y(yt � ht); where

7
�t�1+i =

1
(1+�(st+1�i))

; where �(st�1+i) is the sensitivity function speci�ed in Campbell and Cochrane.
8This de�nition uses the notational convention that the stock of human capital,Ht, is measured beginning-

of-period, while the return, Rh;t, denotes the return on the stock of human capital held from (the end of)

time t� 1 to time t.
9We assume that real labor income may be described as total income from human capital, including both

\capital gains" and \dividends". We think of dividends as the cash-ow from the stock of human capital

while the price of human capital, for a given current cash ow, may uctuate on the basis of changes in the

expected future cash ows. Less generally, labor income can be thought of as simply the dividend to human

capital if the price is not too volatile.
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�y �
1+Y=H

Y=H
. This speci�cation is quite general. It places no restrictions on the functional

form of expected or realized returns, and it makes no assumptions about the relationship

between returns to human capital and returns to nonhuman capital, or assets.10

We are now in a position to express the consumption-aggregate wealth ratio in terms of

observable variables. Let At be nonhuman, or asset, wealth, and let 1 + Ra;t be its gross

return. Aggregate wealth is therefore Wt = At + Ht and log aggregate wealth may be

approximated as

wt t !at + (1� !)ht; (8)

where ! equals the average share of nonhuman wealth in total wealth, A=W . This ratio may

also be expressed in terms of steady state labor income and returns as RhA=(Y +RhA).

The return to aggregate wealth can be decomposed into the returns of its two components

1 +Rw;t = !t(1 +Ra;t) + (1� !t)(1 +Rh;t): (9)

Campbell (1996) shows that (9) may be transformed into an approximate equation for log

returns taking the form

rw;t t !ra;t + (1� !)rh;t: (10)

We may plug (10) into any of the consumption wealth formulations discussed above, in-

cluding the ex-ante budget constraint (4). To understand how preferences might inuence

the relationship between expected returns and the consumption-aggregate wealth ratio, it is

useful to consider a speci�c set of preferences. For example, we may combine (10) with the

expression for power preferences in (6) to obtain (again ignoring constants)

ct � !at � (1� !)ht = (1� �)Et

1X
i=1

�iw(!ra;t+i + (1� !)rh;t+i � �t+i): (11)

This equation still contains the unobservable variable human wealth on the left hand side.

To remove it, we substitute our formulation for the log of labor income into (11) which yields

10This assumption ignores e�ects that arise from an endogenous choice of labor supply in models where

utility over leisure and consumption is non-separable.
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an approximate equation describing the log consumption-aggregate wealth ratio using only

observable variables

ct � !at � (1� !)yt =

(1� �)Et

1X
i=1

�iw(!ra;t+i + (1� !)rh;t+i � �t+i)� (1� !)�yrh;t: (12)

The expression for the model with time-varying risk aversion, (7), is analogous. We denote

the trend deviation, ct � !at � (1� !)yt as cayt:

These deviations from the common trend in consumption, asset wealth and labor income

are produced by movements in the consumption-aggregate wealth ratio. Because we �nd that

these trend deviations are largely driven by uctuations in nonhuman wealth, rather than

by movements in consumption or labor income, we may use consumption and labor income

to detrend assets and think of deviations from this common trend as transitory movements

in asset wealth. We discuss this further in the next section.

The sign of the correlation between cayt and expected future returns depends on the

value of the elasticity of intertemporal substitution. This may be seen most clearly in (12)

where the EIS is a constant. In cases where the EIS is not constant, such as in (7), �t

may be parameterized so that its mean value is close to zero, as in Campbell and Cochrane

(1999). Several researchers have estimated the EIS and typically �nd that is quite small,

indeed close to zero (for example, Campbell and Mankiw 1989; Hall 1988 ). As long as � is

less than one, the income e�ect dominates and the equations above imply that cayt should

be positively correlated with expected future returns, consistent with what we �nd below.

When at and yt decline below their customary ratio with ct (cayt is rises), investors must be

expecting some combination of high future returns on human and nonhuman wealth.11

Equation (12) implies that the di�erence between log consumption and a weighted average

of log asset wealth and log labor income summarizes investors' expectations of future returns

11This statement abstracts from the terms that do not involve returns in equations (6)-(7). These terms

will typically be small relative to the discounted value of returns to aggregate wealth, however, and it should

be noted that the terms involving st and �t in (7) will have mean values that are close to zero according to

the model in Campbell and Cochrane (1999).

12



to human and nonhuman capital. When � < 1, this deviation from the shared trend in

consumption, labor income and wealth plays a role for expected returns that is similar to that

played by deviations from the shared trend in consumption and total (labor and asset) income

for expected labor income growth in a simple permanent income model where returns are

assumed constant (Campbell 1987). In the simple permanent income model, savings, equal to

total income minus consumption, is a function of expected future declines in labor income. If

labor income is expected to fall in the future, consumption will dip temporarily below total

income (saving will rise) as households attempt to insulate future consumption from the

expected decline. The consumption framework explored above generalizes the permanent

income model because it allows for variation in returns, but has analogous implications.12 In

the present framework, if returns to human and nonhuman capital are expected to decline

in the future, consumption will dip temporarily below its long term relationship with both

assets and labor income as households attempt to insulate future consumption from lower

returns. In the simple permanent income model, households save for a \rainy day" in labor

income growth; in the model above, they save for a rainy day in returns to human and

nonhuman capital.

Equation (12) also shows that cayt will be a good proxy for market expectations of

future asset returns, ra;t+i, as long as expected future returns on human capital, rh;t+i, and

the second moments in �t+i are not too variable, or as long as these variables are highly

correlated with expected returns on assets.

It is instructive to compare (12) to an expression for another variable that has been widely

used to forecast asset returns, the log dividend-price ratio. Let dt and pt be log dividend

and log price, respectively, of the stock of asset wealth. Campbell and Shiller (1988) show

that the log dividend-price ratio may be written

dt � pt = Et

1X
j=1

�ja(ra;t+j ��dt+j); (13)

where �a = P=(P +D). This equation is often referred to as the `dynamic dividend growth

12This generalization we make here is simply that expected returns are allowed to vary over time, it does

imply that the current model nests the permanent income model considered in Campbell (1987) which has

quadratic preferences.
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model' and is derived by taking a �rst-order Taylor approximation of the equation de�ning

the log stock return, rt = log(Pt+Dt)� log(Pt): This equation says that if the dividend-price

ratio is high, agents must be expecting either high returns on assets in the future or low

dividend growth rates.

Note the likeness of this equation to (4). Like (4), equation (13) holds ex-post as well as

ex-ante. The role of consumption in (4) is directly analogous to that of dt in (13): when the

consumption-aggregate wealth ratio is high, agents must be expecting either high returns

on the market portfolio in the future or low consumption growth rates. Thus, consumption

may be thought as the dividend payed from human and nonhuman wealth. Unlike dividends

in the Campbell Shiller model, however, the determinants of consumption are more readily

de�ned by theory and we can combine the budget constraint formulation in (4) with various

models of consumer behavior to obtain expressions like (7) or (12).

The dividend-price ratio of asset wealth (usually approximated by a broad stock market

index) summarizes the expectations of future dividend growth and returns to asset wealth.

Just as with the trend deviation on the left-hand-side of (12), equation (13) shows that

the log dividend-price ratio should forecast asset returns. If expectations of future dividend

growth rates are not too variable, the dividend-price ratio should be a good predictor of asset

returns. Analogously, if future returns to human capital and the second moments contained

in �t+i are not too variable, the trend deviation term in (12) should be a good predictor of

asset returns. Each variable is a noisy predictor of asset returns but contains di�erent sources

of noise. In this way, the log dividend-price ratio and the log consumption-aggregate wealth

ratio may contain independent information for forecasting returns at di�erent horizons. We

investigate this possibility below.
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3 Estimating the Trend Relationship Among Consump-

tion, Labor Income and Nonhuman Wealth

An important task in using the left-hand-side of (12) to forecast asset returns is the estimation

of the parameters of the shared trend in consumption, labor income and wealth in (12).13 At

�rst glance, it may appear that obtaining a consistent estimate of these parameters would be

di�cult since the regressors at and yt are likely to be endogenously determined. This section

discusses how we apply the asymptotic properties of cointegrated variables to circumvent

this di�culty.

Before estimating the parameters of the shared trend, we deal with a measurement issue

that arises from the nature of the data on consumption. Previous empirical work which has

investigated consumption-based models like that which we explore has used expenditures

on nondurables and services as a measure of consumption. The use of these expenditure

categories is justi�ed on the grounds that the theory applies to the ow of consumption;

expenditures on durable goods are not part of this ow since they represent replacements and

additions to a stock, rather than a service ow from the existing stock. But since nondurables

and services expenditure is only a component of consumption, the standard solution to this

problem requires the researcher to assume that total consumption is unobservable and a

constant multiple of nondurable and services consumption (Campbell 1987; Blinder and

Deaton 1985; Gal�i 1990).

We follow in this tradition and use nondurables and services as our consumption mea-

sure, and assume a constant scale factor governing the relationship between the log of total

consumption and the log of nondurables consumption, denoted cn;t. Thus we write log total

consumption, ct = �cn;t, where � > 1, implying that the estimated cointegrating vector for

cn;t, at; and yt will be given by [1;� 1
�
!;� 1

�
(1�!)].14 We de�ne �a =

1
�
!, and �y =

1
�
(1�!),

13This section draws heavily from Ludvigson and Steindel (forthcoming).
14Previous research has worked with formulations in levels, rather than in logs as we do here. Because

Blinder and Deaton (1985) report that the share of nondurables and services in measured expenditures has

displayed a secular decline over the sample period, the assumption that total consumption is a constant

multiple of nondurable consumption may be questionable. By contrast, we postulate that the log of total
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the parameters of the cointegrating relation to be estimated. Note that �a + �y identi�es

1=�.

The data used for this estimation are quarterly, seasonally adjusted, per capita variables,

measured in 1992 dollars.15 As a preliminary step, we test whether each variable passes a

unit root test. Given that consumption, labor income and household net worth all appear to

contain a unit root, we then move on to test for the presence of cointegration in our sample

1952:4-1998:3. We provide the results of these tests in Appendix A, and simply note here

that there is strong evidence supporting the hypothesis of a single cointegrating vector for

consumption, labor income and wealth.

To estimate �a and �y; we employ a method that generates optimal estimates of the coin-

tegrating parameters in a multivariate setting. One approach to estimating these parameters

would be to simply run an ordinary least squares (OLS) regression of cn;t on yt and at. It is

now well recognized, however, that standard OLS estimates are not asymptotically optimal.

We follow Stock and Watson (1993) and use a dynamic least squares (DLS ) technique which

speci�es a single equation taking the form

cn;t = �+ �aat + �yyt +

kX
i=�k

ba;i�at�i +

kX
i=�k

by;i�yt�i + �t; (14)

where the symbol � is the �rst di�erence operator.

Equation (14) is estimated by OLS, and this methodology provides a consistent estimate

of the cointegrating parameters through its estimates of �a and �y. Note that a standard OLS

regression of consumption on labor income and nonhuman wealth also provides a consistent

consumption is a constant multiple of the log of nondurable and services consumption. Unlike the ratio of

levels, the ratio of logs appears to have exhibited little secular movement during our sample period.
15The consumption data are for nondurables and services excluding shoes and clothing in 1992 chain

weighted dollars. The nonhuman wealth data is the household net worth series provided by the Board of

Governors of the Federal Reserve. Labor income is de�ned as wages and salaries plus transfer payments plus

other labor income minus personal contributions for social insurance minus taxes. Taxes is de�ned as (wages

and salaries/ (wages and salaries + proprietors income with IVA and Ccadj + rental income + personal

dividends + personal interest income))*personal tax and non tax payments. Both the net worth variable

and the labor income variable are deated by the PCE chain-type price deator.
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estimate of the cointegrating parameters. The DLS speci�cation adds leads and lags of the

�rst di�erence of the right hand side variables to eliminate the e�ects of regressor endogeneity

on the distribution of the least squares estimator. We also make a Newey-West correction

to the t-statistics for generalized serial correlation of the residuals.

It is important to recognize that estimates of �a and �y will be consistent despite the fact

that �t will typically be correlated with the regressors at and yt. In ordinary empirical appli-

cations this is not the case, and regressor endogeneity is often an intractable problem that

may lead to incorrect inferences about the parameters one seeks to estimate. Applications

involving cointegrated variables, however, have an important and unusual property: ordinary

least squares estimates of cointegrating parameters are robust to the presence of regressor

endogeneity. This follows from the fact that OLS estimates of cointegrating parameters are

\superconsistent", converging to the true parameter values a rate proportional to the sam-

ple size T rather than proportional to
p
T as in ordinary applications (Stock 1987).16 This

means that the data should provide a consistent estimate of !; in e�ect making observable

the average ratios of each component of wealth.

Implementing the regression in (14) using data from the fourth quarter of 1952 to the

third quarter of 1998 generates the following point estimates (ignoring coe�cient estimates

on the �rst di�erences) for the parameters of the shared trend consumption, labor income

and wealth,

cn;t = 0:68 + 0:28at + 0:62yt; (15)

(8:73) (10:51) (25:07)

where the corrected t-statistics appear in parentheses below the coe�cient estimates.17 The

16These results apply asymptotically. As Campbell and Perron (1991) emphasize, however, �nding evi-

dence of cointegration in a given sample suggests that the data set contains a su�ciently large number of

observations that the researcher may, in practice, exploit the asymptotic results in �nite samples of the size

encountered.
17We experimented with various lead/lag lengths in estimating the DLS speci�cation. For the results

reported in (15), the value of k = 2 was used. Neither the cointegrating parameter estimates nor the

forecasting results we present below are sensitive to the particular value of k for k ranging from 1 to 8.

Similar estimates of the cointegrating parameters were also obtained using Johansen's (1988) full information
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coe�cient estimates suggest that � is about 1.10, implying that the share of nonhuman

capital in aggregate wealth is close to one-third, while the share of human capital is close to

two-thirds. We denote the estimated trend deviation bydcayt � cn;t� b�aat� b�yyt where hats
denote estimated parameters.

How can we interpret deviations from the shared trend in consumption, labor income

and assets? We mentioned above that we characterize the estimated trend deviation,dcayt;
as transitory variation in asset wealth. To clarify this interpretation, it is useful compare our

approach to that of Cochrane (1994) who uses separate bivariate autoregressions|one for

consumption and GNP, and one for stock prices and dividends|to characterize the transitory

components in GNP and stock prices. Each of these pairs of variables are cointegrated, and

the errors in the bivariate cointegrating relationships, that is the log consumption-GNP ratio

and the log dividend-price ratio, predict GNP growth and stock returns, con�rming that each

of these variables has important transitory components.

To interpret transitory movements in GNP, Cochrane uses a simple permanent income

model which implies that consumption and total income should be cointegrated; to inter-

pret the transitory movements in stock prices he use a present value-dividend smoothing

model which implies that dividends and prices should be cointegrated. Because the per-

manent income model assumes that returns are constant, however, it cannot account for

the forecastability of stock returns that the present value-dividend smoothing model can.

By contrast, the dividend-smoothing model cannot account for the forecastability of GNP

growth by the log consumption-GNP ratio because it does not explicitly model the link

between consumption and dividends. For this reason, Cochrane uses separate bivariate,

cointegrated vector autoregressions (VARs) to study the dynamic properties of output and

stock prices.

Rather than using two bivariate systems to study these features of the data, the model

of this paper is an alternative that brings these concepts together in a single trivariate

system. The framework provides both a model of the optimal consumption decision and

allows for time-varying returns, implying that consumption, asset wealth and labor income

maximum-likelihood technique.
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are cointegrated and that the error in this shared trend predicts returns to asset wealth

and human capital, provided that there are indeed predictable, or transitory, components in

these returns.

To investigate the properties of this trivariate system, it is instructive to examine a

three-variable, cointegrated vector autoregression where the log di�erence in consumption,

asset wealth and labor income are regressed on their lags and an error-correction term,

the estimated lagged trend deviation, dcayt�1. We focus on the relationship between the

estimated trend deviation and future growth rates of each variable. Table 1 presents these

results using a two lag VAR.18;19 Note that, in this cointegrated autoregression, as well as in

the forecasting regressions for asset returns presented in the next section, standard errors do

not need to be adjusted to account for the use of the generated regressor,dcayt�1. Again, this
follows from the fact that estimates of the cointegrating parameters converge to their true

values at rate T , rather than at the usual rate
p
T (see Stock 1987; Campbell and Perron,

1991). The table reveals at least two interesting properties of the data on consumption,

household wealth and labor income.

First, estimation of the asset growth equation shows thatdcayt�1 predicts asset growth,
implying that deviations in assets from its shared trend with labor income and consumption

uncover important transitory variation in wealth. In section 5 below we show that this

variable predicts asset growth because the estimated trend deviation forecasts asset returns,

consistent with the theoretical framework discussed above.

A second feature of the data is revealed by inspecting the consumption and labor in-

come growth regressions. As Cochrane (1994) emphasizes, transitory variation in the (log)

levels of a series requires forecastability of the growth rates. Both consumption and labor

income growth are somewhat predictable by lags of consumption growth, as noted elsewhere

(Flavin 1981; Campbell and Mankiw 1989), but the adjusted R2 statistics{especially for the

labor income equation{are lower than that in the asset regression. More importantly, the

magnitude of the coe�cient on the trend deviation, dcayt�1, in the asset growth equation

is substantially larger than in either the consumption or labor income equation. Further-

18This lag length was chosen in accordance with �ndings from Akaike and Schwartz tests.
19This system is also studied in Ludvigson and Steindel (forthcoming).
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more, this error-correction term does not enter statistically signi�cantly in the consumption

growth equation, and is signi�cant only at the 10% level in the labor income growth equa-

tion.20 Other speci�cation tests (not reported) suggest that consumption and labor income

are both very persistent and close to random walks.

Taken together, these considerations suggest that deviations from the shared trend in

consumption, labor income and assets are better described as transitory movements in asset

wealth than as transitory movements in consumption or labor income. When log consump-

tion deviates from its habitual ratio with log labor income and log assets, it is asset wealth,

rather than consumption or labor income, that is forecast to adjust until the equilibrating

relationship is restored. In this way, we may interpret consumption and labor income as

de�ning the trend in assets much in the same way that Cochrane interprets consumption as

de�ning the trend in GNP, and dividends as de�ning the trend in stock prices.

The next step in our analysis is to investigate the role of transitory movements in as-

set wealth in forecasting asset returns. Before doing so, we discuss the data used in this

investigation and examine summary statistics fordcayt and for our �nancial data.

4 Asset Return Data

Our �nancial data include stock returns, dividends per share and quarterly earnings per

share from the Standard & Poor's (S&P) Composite index for which quarterly earnings

data are available. In addition we also consider returns on the value-weighted CRSP index

(CRSP-VW). The CRSP index (which includes the NYSE, AMEX and NASDAQ) should

provide a better proxy for nonhuman component of total asset wealth since it is a much

broader measure than is the S&P index.

Let rt denote the log real return of the index under consideration and rf;t the return on

the 30-day Treasury bill (the `risk-free' rate). The log excess returns is measured as rt� rf;t.

20Note that Cochrane (1994) found that the log consumption-GNP ratio forecasts GNP growth, of which

labor income growth is one component. Since asset returns and labor income are both components of national

income, the bivariate approach does not reveal which components may be more highly forecastable by the

error-correction term.
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Log price, p is the natural logarithm of the relevant index. Log dividends, d, are the natural

logarithm of the sum of the past four quarters of dividends per share. Log earnings, e, are

the natural logarithm of a single quarter's earnings per share. We call d � p the dividend

yield and, following Lamont (1998), d� e the payout ratio.

Table 2 presents summary statistics for the variables mentioned above and for the relative

bill rate, the T-bill rate minus its 12 month backward moving average. Campbell (1991) and

Hodrick (1992) apply this stochastic detrending method to T-bills in order to forecast returns.

The properties of stock returns, d � p, d � e and the relative bill rate are well-known,

thus we focus our discussion on the estimated trend deviation variabledcay. This variable is
contemporaneously positively correlated with excess stock returns, the dividend-price ratio

and the dividend-earnings ratio. The correlation with the relative bill rate is negative.

However, none of the correlations are large (in absolute value). Relative to its mean,dcay
varies less than d� p and d� e.

How does the persistence of dcayt compare to other variables known to forecast excess

stock returns? It is well-known that the price-dividend ratio is very persistent. The autocor-

relation ofdcayt is fairly high but substantially lower than for d� p, 0.77 compared to 0.92.

What factors might be at the root of this di�erence in autocorrelation?

To address this question, we consider a simple illustrative example comparing (12) and

(13).21 For the moment we ignore the �yrH;t term in (12) and suppose the expected log return

on each component of wealth may be well described by a �rst-order autoregressive process.

That is, Etra;t+1 = xt and Etrh;t+1 = gt, where xt = �xt�1 + "t and gt =  gt�1 + �t. Taken

together, these assumptions imply that the expected return on the market portfolio is given

as Etrw;t+1 = !xt + (1� !)gt � zt. The data suggest that the �rst-order autocorrelation of

dt � pt, �, is 0.92 while the �rst order autocorrelation of zt should be 0.77. Assuming that

xt and gt have equal variances and a correlation coe�cient of 0:5, then  , the �rst order

autocorrelation of Etrh;t+1 should equal 0.71.22

21For the purpose of this example we assume that �t is a constant and that log-dividends follow a random

walk; assuming a stationary process for the �rst di�erence of log dividends would not change the main

conclusions.
22This exercise produces similar results for di�erent values of the relative variance of x and y and their
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Accordingly, the di�erences in autocorrelation between dt�pt anddcayt may be reconciled
if the expected log return to human capital is less persistent than the expected log return to

nonhuman capital.23 Of course, this example is only suggestive, but it raises the possibility

that di�erences in persistence between equations (12) and (13) may be driven by di�erences

in the stochastic processes governing expected returns on human and nonhuman capital.

Figure 1 plots the standardized trend deviation,dcayt, and the standardized excess return

on the S&P Composite Index over the period spanning the fourth quarter of 1952 to the

third quarter of 1998. The �gure shows a multitude of episodes during which positive trend

deviations preceded large positive excess returns and negative ones preceded large negative

returns. Moreover, large swings in the trend deviation tend to precede spikes in excess

returns. This pattern is evident during the 1950s and early 1960s whendcayt shot up prior to

a sequence of up-ticks in excess returns, during the 1970s when sharp declines indcayt led the
bear markets of those years, and during the 1980s when the trend deviation turned negative

prior to the 1987 stock market crash. The trend deviation term also displays some notable

cyclicality, typically rising during recessions and falling during booms.

To some extent, the tight link exhibited between these variables appears to have broken

down in the most recent period;dcayt became negative in 1995 and declined sharply until the

second quarter of 1998, while the stock market{in a delayed response relative to its historical

pattern{did not turn down until the third quarter of 1998.

Perhaps the most striking feature of the Figure 1 is how foreboding are current levels of

dcayt for returns in 2000 and beyond. This model is not alone in exhibiting such a bearish

projection; the log dividend-price ratio is well below its historical mean, indeed at a post-war

low in our S&P data. Thus, the dynamic-dividend growth model of Campbell and Shiller

(13) implies that dividend growth would have to be implausibly high to rationalize the view

that returns should not be expected to fall going forward. Of course, we cannot preclude

covariance.
23These results were obtained by ignoring the �yrH;t term in (12). Campbell, Lo and MacKinlay (1997)

show that positive autocorrelation of expected returns may lead to negative autocorrelation of realized

returns. Such negative serial correlation in �yrH;t could also bring down the autocorrelation ofdcayt relative

to dt�pt. The inuence of this one term on the persistence ofdcayt seems likely to be small, however, relative

to the inuence of the discounted sum of many positively serially correlated expected returns.
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the possibility that a structural shift has occurred in the underlying parameters governing

these relationships. Nevertheless, the unusually low values ofdcayt in recent data suggests

that consumers are expecting a stock market correction, and have already factored that

expectation into today's consumption.

5 Quarterly Forecasting Regressions

We now move on to asses the forecasting power of detrended wealth for asset returns. In

advance of presenting these �ndings, we note that the largest autoregressive root ofdcayt is
substantially less than one, close 0.8. Thus the use ofdcayt in the forecasting equations below
does not present the inference problems that arise with other popular forecasting variables

(e.g., the log dividend-price ratio) which are very persistent and contain roots much closer

to unity. This is consistent with evidence displayed in Appendix A that consumption, assets

and labor income are cointegrated.

Table 3 shows a typical set of results using the lagged trend deviation,dcayt, as a predictive
variable. The top panel of the table reports one-quarter ahead forecasts of the real return

on the S&P Composite Index and on the CRSP-VW Index. The bottom panel of the table

reports these forecasts for excess returns. In each case, we ask whetherdcayt \Granger causes"
next period's return or excess return; we call these our benchmark regressions.

Focusing on the S&P composite index, the �rst row of each panel of Table 3 shows

that the forecasting power of a regression of returns on one lag of the dependent variable is

quite weak. This model predicts only 1 percent of next quarter's variation in real returns,

and a negligible percent of next quarter's excess return variation. By contrast, the trend

deviation explains a substantial fraction of the variation in next quarter's return. For the

S&P Composite Index,dcayt regressions of real returns and excess returns on their own lags

and on one lag ofdcayt both produce an adjusted R2 of 9%, so that adding last quarter's

value ofdcayt to the model allows the regression to predict an additional 9 percent of the

variation in both next period's real and excess return. Moreover, the Newey-West corrected

t-statistic for this variable indicates that the coe�cient estimate is nonzero with very high

probability. These results are little a�ected by whether the lagged value of the real return
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is included in the regression as an additional explanatory variable (row 3).

The predictive impact of dcayt on future returns is economically large: the point estimate
of the coe�cient ondcayt is about 2.2 for real returns. To understand these units, note that

the variables comprised indcayt are in per-capita terms, measured in billions of 1992 dollars

and thatdcayt itself has a standard deviation of about 0.01. Thus a one-standard deviation

increase indcayt leads to a 220 basis point rise in the expected real return on the S&P index

and about the same rise in the excess return, roughly a 9 percent increase at an annual rate.

The regressions considered so far use the one-period lagged value of the trend deviation

as regressor. Relative to �nancial variables, macroeconomic variables are reported with a

lag of about one month. The sixth column in each panel shows regression results when the

one-quarter lagged value,dcayt, is replaced with the two-quarter lagged value,dcayt�1; as an
predictive variable. Due to the serial correlation indcayt, the coe�cient on the two-period

lagged variable is also strongly statistically signi�cant, but the point estimate falls to about

1.6. And, although, as would be expected, the R
2
is somewhat lower than when the one-

period lagged value is used, including the two-period lagged value of dcayt into the benchmark
equation still allows the regression to pick up an additional 5 percent of the variation in both

next quarter's raw and excess return.

Using the broader CRSP value-weighted (CRSP{VW) index as a measure of returns

produces slightly higher R
2
statistics than for the S&P 500 index. The t-statistics of the

dcayt coe�cients increase to over 4, for both real returns and excess returns. According to

the consumption framework presented above,dcayt forecasts expectations of future returns
to the market portfolio, so it is not surprising that it forecasts the broader CRSP-VW index

better than the S&P 500 index.

The results in Table 3 shows that transitory movements in asset wealth are positively

correlated with the conditional �rst moment of excess returns. When log assets and log labor

income are unusually low relative to log consumption (dcayt rises), expected excess returns

rise. This variation in dcayt is also countercyclical: its contemporaneous correlation with

consumption growth and real GDP growth is -0.07 and -0.12 respectively, a phenomenon

illustrated graphically in Figure 1 which shows thatdcayt tends to decline during expansions
and rise just prior to the onset of a recession. Accordingly, expansions are characterized by
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increasing consumption, but an even greater rate of increase in assets.

Interestingly, these features of the data may be plausibly interpreted using the time-

varying risk aversion framework of Campbell and Cochrane (1999). In that model, con-

sumption booms are periods during which consumption increases above habit, leading to a

decline in risk aversion. The decline in risk aversion leads, in turn, to a greater demand for

risky assets and a decrease in expected excess returns, or risk premia. Thus, in that model,

booms are times of rising consumption but declining ratios of consumption to wealth, con-

sistent with what we �nd.

How robust are the results? Table 4 reports estimates from forecasting regressions which

include a variety of variables shown elsewhere to contain predictive power for excess returns.

Shiller (1984), Fama and French (1988) and Campbell and Shiller (1988) all �nd that the

ratios of price to dividends or earnings have predictive power for excess returns. Lamont

(1998) �nds that the ratio of dividends to earnings has forecasting power at quarterly hori-

zons. Campbell (1991) and Hodrick (1992) �nd that the relative T-bill rate (the 30-day

T-bill rate minus its 12-month moving average) predicts returns, and Fama and French

(1989) study the forecasting power of the term spread (the 10-year Treasury bond yield mi-

nus the 1-year Treasury bond yield) and the default spread (the di�erence between the BAA

and AAA corporate bond rates). We include these variables in the benchmark equations for

the excess return on the S&P Composite Index in Table 4.24

The �rst row of Table 4 shows that the dividend yield has an virtually no e�ect on excess

returns at a horizon of one quarter; the R
2
statistic for this regression is negligible. This

is not surprising since it is by now well known that this variable typically performs better

at forecast horizons in excess of two years (Campbell 1991, Campbell, Lo and MacKinlay,

1997). When we include the trend deviation in this regression with the dividend yield (row

3), the R
2
statistic increases to 9%, and the point estimate ondcayt is strongly signi�cant.

24In other tests (not reported) we included the one-period lagged value of consumption growth, labor

income growth and PCE ination as predictive variables. None of these variables inuence the coe�cient

estimates on dcayt, or the incremental R
2
from including dcayt in the regression. The former two are not

statistically signi�cant, and ination, while individually signi�cant, does not increase the explanatory power

of the regression by a measurable amount.
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In a recent paper, Lamont (1998) argues that the dividend payout ratio should be a

potentially potent predictor of excess returns, a result of the fact that high dividends typically

forecast high returns whereas high earnings typically forecast low returns. The third row of

Table 4 shows the regression results when both the lagged dividend yield, dt � pt, and the

lagged dividend payout ratio, dt�et, are included in the forecasting equation. This regression

has more explanatory power than the univariate model for returns used in Table 4, but the R
2

statistic is still just 2%. Adding the trend deviation term,dcayt; again signi�cantly improves

the one-quarter ahead predictive capacity of the regression; of the three, this variable is the

only one with statistically signi�cant explanatory power, and including it increases the R
2

to 9%.

The �nal row of the top panel in Table 4 augments the benchmark regression by including

the lagged relative bill rate, the lagged term spread, and the lagged default spread along with

the lagged dividend yield and the lagged payout ratio. Of these seven explanatory variables,

the only ones that have signi�cant marginal predictive power are the relative bill rate and

the trend deviation term. Both the trend deviation and the relative bill rate are highly

signi�cant, and the estimated coe�cient on the relative bill rate has the expected negative

sign. Nevertheless, a comparison of rows 4 and 5 makes clear that the relative bill rate,

while having marginal explanatory power, does not help explain much of the variation in

next quarter's excess return. The R
2
including this variable (row 5) is 10 percent, just

1 percent higher than in row 4 where the variable is excluded (the unadjusted R-squared

statistics are similar). Furthermore, the coe�cient estimate fordcayt is little a�ected by the

inclusion of the relative bill rate or other variables in the forecasting equation; regardless

of which speci�cation we consider, the point estimates are always between 1.9 and 2.3 and

the t-statistics are above 3. This reveals thatdcayt contains information about future asset

returns that is not included in other well known forecasting variables.

Our results on the forecasting power of the dividend payout ratio and the dividend yield

di�er from those of Lamont (1998). He reports that both variables are strong predictors of

the excess return on the S&P index and he reports an (unadjusted) R2 of 13% in a regression

using these indicators as explanatory variables.

We investigate these di�erences in the last two rows of Table 4, which change the sample
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period to more closely match that of Lamont's. Lamont's data spanned the period from

the �rst quarter of 1947 to the fourth quarter of 1994, whereas our data runs from the

fourth quarter of 1954 to the fourth quarter of 1998. As the last two rows show, if we run

our equations over the period corresponding roughly to Lamont's sample (we do not have

data for at before 1952:4) we obtain results very similar to those obtained in that paper.

In this case both the dividend yield and the payout ratio are strong predictors of next

quarter's excess return, and the regression explains about 11% of next quarter's variation.

The predictive power ofdcayt over this shorter sample is somewhat higher than in the full

sample, with the R
2
from using this single variable as a predictor equal to 0.11 compared to

0.09 (Table 3) in the full sample. On the whole, however, the results fordcayt are very similar
to those using the full sample: the trend deviation remains a strong marginal predictor of

excess returns over this period and including it as an explanatory variable along with dt� pt

and dt� et increases the R
2
statistic by 6% to 17%. We now ask how detrended asset wealth

compares to other forecasting variables as a predictor of returns over horizons greater than

one quarter.

6 Long Horizon Forecasts

In this section, we investigate the relative predictive power of each variable just explored for

returns at di�erent horizons. In the next subsection we discuss the results of single-equation

regressions of returns over various horizons on the important predictive variables considered

above. This approach follows Fama and French (1988). Although this technique provides a

direct estimate of the long-horizon properties of the data, it has been criticized for having

poor statistical properties in �nite samples. To address these �nite sample di�culties, we

explore, in the second subsection, the long-horizon characteristics of returns by using the

Vectorautoregression (VAR) approach of Campbell (1991).
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6.1 Single Equation Regressions

Table 5 presents the results of regressions of returns over horizons spanning 1 to 24 quarters

on lagged variables. The dependent variable in each regression is the H-period log excess

return on the S&P Composite Index, rt+1 � rf;t+1 + ::: + rt+H � rf;t+H . We start by using

just the log dividend yield, dt � pt, as a regressor. We then move on to investigate the

results for models which include, dt � pt and dt � et together,dcayt by itself, and all three

of these variables along with the relative bill rate. For each regression the table reports the

estimated coe�cient on the included explanatory variable(s), the adjusted R2 statistic, and

the Newey-West corrected t-statistic for the hypothesis that the coe�cient is zero.

The top panel of Table 5 reports results from regressions of the log return on the S&P

Composite Index on to the lagged dividend yield. These results are consistent with those

obtained elsewhere (for example, Fama and French 1988; Campbell, Lo and MacKinlay 1997).

At a horizon of one quarter, the dividend yield displays little predictive power for returns,

the R
2
is negligible and the coe�cient estimate is not signi�cantly di�erent from zero. The

estimated coe�cient on the log dividend-price ratio does not become signi�cant until the

return horizon is at least 4 quarters. Once the horizon is increased beyond 4 quarters, the

predictive power of the dividend yield becomes much stronger. At a horizon of 8 quarters,

the dividend yield predicts 8% of the variation in returns over that period, at a horizon of six

years this number rises to 30%. Thus, consistent with existing evidence, the dividend yield is

a powerful forecaster of long-horizon returns but has little capacity to forecast short-horizon

returns.

The next three panels of Table 5 gives an indication of the forecasting power of other

variables for long-horizon returns. Panel 2 shows that the adding the dividend payout ratio

to the equation produces results that are very similar to those using just the dividend yield.

Each variable has an important impact on returns over horizons exceeding 8 quarters, but

not on returns over shorter horizons. The R
2
statistic suggests that these variables have

their greatest predictive power at horizons of 3 years or more, explaining about 40% of the

variation in returns at a six year horizon.

Table 5 reveals that the forecasting power of the trend deviation term is concentrated at
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much shorter horizons. The third panel of shows that the predictive power ofdcayt is humped
shaped and peaks around one year; using this single variable alone achieves an R

2
of 0.21

for excess returns over a 5 quarter horizon (not reported in the table).

When we include the stochastically detrended short rate, the dividend yield, the payout

ratio and the trend deviation together as predictive variables, the R
2
statistic at each fore-

casting horizon is close to the sum of the R
2
statistics from the second and third panels.

By including all four variables, the model now has forecasting power for returns at every

horizon we consider, although the total fraction of variation in long horizon returns that is

predicted remains above that of short horizon returns. These results underscore the �nding

thatdcayt is the best univariate predictor of returns at short to intermediate horizons: at a 4
quarter horizon, the R

2
from the regression using justdcayt is almost as large as that in the

last panel of Table 5 obtained using all four variables.

How can we understand the relative strengths and weaknesses of dcayt and dt � pt at

forecasting returns over di�erent horizons? One way to understand these di�erences is to

note that the discount rates in (12) and (13) di�er. In (13) �a � 1=(1� exp(d� p)), where

exp(d� p) is average ratio of dividends to prices, about 0.99 at a quarterly rate.25 By

contrast, the discount rate, �w; in (12) is slightly smaller, equal to about 0.97 as suggested

by using our estimates of ! and sample mean ratios of C=A and C=Y: Accordingly, changes

in expected returns in the far future are discounted a bit more in the equation for cayt than

in the equation for dt � pt. Thus the dividend-price ratio is a better proxy for returns into

the distant future than is the trend deviation term. Even abstracting from this di�erence in

discount rates, however, di�erences in the forecasting power at di�erent horizons may arise

if the time series process for expected asset returns is more persistent than that for expected

returns to human capital. In this case,dcay would be less persistent than the dividend-price

ratio, consistent with the evidence in Table 2, and would therefore explain a smaller fraction

of the variation in expected returns at longer horizons than would the dividend yield.26

25These estimates come from Campbell, Lo and MacKinlay (1997).
26Campbell, Lo and MacKinlay (1997, Ch. 7) develop a simple example to illustrate the e�ect of persistent

in expected returns on the forecastability of returns as the horizon increases.
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6.2 Vector Autoregressions

The single equation regressions presented in the last section provide a simple way to sum-

marize the marginal predictive power of each forecasting variable, as well as the overall

explanatory power of the forecasting equation. An alternative approach uses VARs to im-

pute long-horizon statistics rather than estimating them directly. One advantage of this

approach is that it avoids small sample biases that may occur in single equation techniques

and that can be especially pronounced when the horizon is large relative to the sample

size.27 In this section, we investigate the predictive power of the full VAR counterpart to

the equations analyzed previously for long-horizon returns. The methodology for measuring

long-horizon statistics by estimating a VAR has been covered by Campbell (1991), Hodrick

(1992), and Kandel and Stambaugh (1989), and we refer the reader to those articles for a

description of the approach.

For each return horizon we consider, we calculate an implied R2 using the coe�cient

estimates of the VAR and the estimated covariance matrix of the VAR residuals. Table 6

gives the results from estimating two �rst-order VARs. The �rst system is a four variable

VAR that includes the excess return on the S&P Composite Index, the relative bill rate, the

log dividend-price ratio and the log dividend-earnings ratio. The second is a �ve variable

VAR that adds detrended asset wealth to this system. The table reports the coe�cient

estimates from each VAR in the top and bottom panels along with Newey-West corrected

t-statistics in parentheses. The bottom row of each panel gives the implied R2 of a regression

of long-horizon excess returns on the other variables in the system.

The coe�cient estimates from the �ve variable VAR withdcayt indicate that there are some
cross-e�ects between the trend deviation and the log dividend-price ratio: each variables

enter signi�cantly in the other's equation. Nevertheless its clear that the relatively high

persistence of these variables accounts for most of next quarter's variation in each of them;

a univariate autoregression describes the dynamics of dt � pt anddcayt almost as well as the
VAR does.

27Hodrick (1992) presents Monte Carlo evidence that the VAR alternative supplies unbiased measurements

of long-horizon implied statistics.
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The predictive power of the full VAR for long-horizon returns is similar to that obtained

using the single-equation, direct-estimation approach presented in Table 5. In general, the

VAR R2 statistics from the model which includesdcayt are considerably higher than those

from the model which excludes this variable. At a horizon of 2 quarters, addingdcayt to the
VAR increases the implied R2 by 9%, raising it from 13% to 22%; at a horizon of 3 quarters

the implied R2 is doubled by addingdcayt, rising from 15% to 30%, and at a horizon of two

years, the VAR withdcayt explains 35% of the variation in excess returns compared to 23%

excluding this variable.

As we extend the horizon out further, including deviations from the trend in assets

continues to improve forecasts, but the incremental predictive power gradually declines and

becomes quite small at horizons as long as six years. Nevertheless, the explained variance of

the compound six year return is 44%, primarily due to the long-horizon forecasting power

of the log dividend-price ratio. Thus the VAR results underscore the conclusions drawn

previously, that a substantial fraction of the variation in excess returns at horizons ranging

from 1 quarter to over 5 years may be explained by combining information on deviation from

the shared trend among consumption, assets and labor income, with information on �nancial

variables such as the dividend yield, the dividend payout ratio, and the relative bill rate.

7 Out-of-Sample Forecasting

The results above show thatdcayt has considerable forecasting power for excess stock returns
over short to intermediate horizons in-sample. This section presents some results on the

power ofdcayt to predict one-quarter ahead excess stock returns on the S&P 500 Composite

Index out-of-sample.

We evaluate the out-of-sample performance by comparing the mean-squared forecasting

error from an unrestricted model which includes dcayt to a restricted, benchmark model

which excludes this variable. Thus the unrestricted model nests the benchmark model. The

exercise compares the one-step ahead forecasting performance of the benchmark with that

of the benchmark augmented bydcayt:
Before making this comparison, we must choose an appropriate benchmark. We do so by
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comparing the mean-squared forecasting error from a regression that included just the lagged

excess return, rt � rf;t, as a predictive variable, to the mean-squared-error from regressions

that included, in addition to this variable, the other control variables used in Table 4, that

is the log dividend-price ratio, the log dividend-earnings ratio, the relative bill rate, and the

term spread. Including these control variables did not improve, and often even deteriorated,

the out-of-sample predictive power of a regression which used just the lagged dependent

variable as a predictor.28 Accordingly, we take the more parsimonious model, using just the

one-period lagged value of excess returns, as our benchmark. Results are presented from

alternately augmenting the benchmark with either the one-period lagged value of detrended

wealth, denoteddcayt, or the two-period lagged value, denoteddcayt�1.
Each model is �rst estimated using data from the fourth quarter of 1952 to the �rst

quarter of 1968. We use recursive regressions to reestimate the model, adding one quarter at

a time and calculating a series of one-step ahead forecasts. The forecasts are evaluated by

comparing the mean-squared error from the set of one-step-ahead forecasts. At each step,

the cointegrating parameters indcayt are also reestimated. Since reestimation is likely to

introduce sampling error in our estimates of these parameters during the early recursions, we

present, for comparison, results based on a �xed cointegrating vector where the cointegrating

parameters are set equal to their values estimated in the full sample. The latter case gives

some idea of how the model would perform going forward if a practitioner used the existing

estimates of �a and �y and faced a similar historical pattern of data.

Table 7 presents the results. In each case, the mean-squared forecasting error of thedcayt{
augmented models is lower than that of the benchmark model. The bottom panel shows that

�xing the cointegrating parameters at their full sample values further produces the greatest

relative forecasting power of thedcayt{augmented models. This suggests that reestimation

of the cointegrating parameters induces some sampling error in the cointegrating parameter

28This �nding is not surprising and reects the classic trade-o� between in-sample �t and out-of-sample

forecast performance that commonly allows more parsimonious models to prevail in out-of-sample forecast

comparisons. Most of the control variables used in Table 4 have a statistically insigni�cant impact on next

quarter's excess return in our sample. An exception is the relative bill rate which{although statistically

signi�cant{adds very little to the R
2
of the in-sample regression.
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estimates, making it harder for the augmented models to register an improvement over the

benchmark. Nevertheless, includingdcayt in the benchmark regression would have consis-

tently improved forecasts even when the cointegrating vector is reestimated. Furthermore,

using the one-period lagged value of the trend deviation term reduces the mean-squared

error by more than a model which instead uses the two-period lagged value of this variable,

but both models post improvements over the benchmark.

For each forecast comparison, we also ask whether the lower mean-squared error of the

dcayt{augmented forecasts is statistically signi�cant. Table 7 provides two test statistics

designed to determine whether the one-step ahead mean-squared forecasting error from a re-

stricted, benchmark model is statistically di�erent from an unrestricted model which includes

additional predictive variables. Clark and McCracken (1999) derive the (non-standard)

asymptotic distributions for a large number of statistical tests as applied to nested mod-

els and numerically generate the asymptotic critical values. The two tests we consider are

those found by Clark and McCracken to have the best overall power and size properties.29

The �rst test, the CM test, is a modi�ed Harvey, Leybourne and Newbold (1998) test statistic

adapted to address potential small sample biases; the second is an out-of-sample F -type test

(OOS F -test) developed in McCracken (1999). Both methods compare the mean-squared

error of the unrestricted model with that of the restricted models, and each tests the null

hypothesis that the restricted model's forecast \encompasses" all the relevant information

for next period's value of the dependent variable against the alternative that the unrestricted

model contains additional information. For each set of one-step ahead forecasts we consider,

the CM and OOS F -Test both strongly reject the null that transitory wealth contains no

additional information about future excess returns when the test statistics are compared

against asymptotic critical values.

29Clark and McCracken use Monte Carlo simulations to evaluate the size and power of a battery of equal

forecast accuracy and encompassing tests. They �nd that size distortions in the CM and OOS F -test, as

well as in in-sample Granger causality tests, are small. They also show that popular test statistics such

as the Diebold and Mariano (1995) and Harvey, Leybourne and Newbold (1998) fail to converge to the

standard normal distribution when the models being compared are nested rather than non-nested. Clark

(forthcoming) studies the �nite-sample properties of these test statistics.
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8 Conclusion

The last decade has brought forth an outpouring of research suggesting the existence of

time-variation in expected asset returns. It is now widely accepted that excess returns

are predictable by variables such as dividend-price ratios, earnings-price ratios, dividend-

earnings ratios and an assortment of other �nancial indicators. For the most part, these

�nancial variables have been successful at predicting long horizon returns, but less successful

at predicting returns at short horizons.

In this paper, we investigate a broad framework for optimal consumption which implies

consumption, labor income and asset wealth are cointegrated, and that deviations from this

shared trend summarize investors' expectations of future returns on the market portfolio. We

show that these deviations from trend primarily forecast future movements in asset wealth,

rather than future movements in consumption or labor income, implying that consumption

and labor income can be used to detrend household asset wealth.

To develop the empirical implications of this framework, we investigate the power of these

deviations from trend in assets for forecasting asset returns. We �nd that trend deviations

in household net worth contain important predictive elements for stock market returns over

short and intermediate horizons. Indeed, of the popular forecasting variables explored to

date, we �nd that this variable is the best univariate predictor of stock returns for horizons

up to one year. Combining observations on these trend deviations with those on the log

dividend-price ratio and the log dividend-earnings ratio reveals that stock returns exhibit

substantial forecastability at horizons ranging from short to long.

These empirical results can be understood using the optimal consumption framework we

investigate. The model we present directly connects consumer behavior with future stock

market returns: consumers tend to smooth out anticipated, transitory movements in tomor-

row's returns by factoring them into consumption today. When wealth is temporarily higher

than its long term trend with consumption and labor income, investors must be expecting re-

turns on the market portfolio to fall and are holding consumption temporarily below its trend

relationship with assets and income in anticipation of lower returns. Accordingly, deviations

from the shared trend in consumption, labor income and wealth should be a good proxy
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for market expectations of future asset returns, as long as expectations of future returns to

human capital are not too variable.

We �nd that the deviation in the shared trend among consumption, labor income and

wealth forecasts excess stock returns over a risk-free rate just as well as it forecasts real

stock returns. This feature of the data suggests that expected excess returns, or risk premia,

vary over time, a conclusion that has been drawn previously from evidence that long-horizon

returns are predictable by variables such as the dividend-price ratio. Yet the dividend-price

ratio provides only indirect evidence that risk premia vary at cyclical frequencies, since its

forecasting power is concentrated at longer horizons. By contrast, we �nd that transitory

asset wealth, as measured by the deviation in wealth from its shared trend with consumption

and labor income, has strong predictive power for excess stock returns at business cycle

frequencies, providing direct evidence that risk premia vary countercyclically.

An important policy implication of our results is that large swings in �nancial assets need

not be associated with large subsequent movements in consumption. Recently, this issue has

become one of pressing importance as fears rise that substantial market swings will cause

consumer spending to uctuate sharply. The model considered in this paper suggests that

the real economy maybe less vulnerable to transitory movements in asset values than many

analysts presume: with consumption well below its traditional ratio to asset wealth and labor

income, the model implies that households have already factored the expectation of lower

returns in to today's consumption and will therefore not need to make large adjustments

tomorrow.

An obvious next step for research is to link these �ndings on the time series behavior of

excess returns to the large literature on cross-sectional asset pricing. In an intertemporal

setting, cross-sectional asset pricing models imply that the risk of an asset can be measured

by the innovation covariance of the asset's return with the current market return, and by

its covariance with revisions in expected future returns, where the latter is often called the

\hedging" component of asset demand. To date, however, researchers have not found an

important intertemporal hedging component in the demand for assets (for example, Camp-

bell 1996; Hodrick, Ng, and Sengmueller 1998). This could be because the intertemporal

component of asset demand is not important, or because researchers have not yet found an
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adequate proxy for expected future returns to the market portfolio.

Moreover, a number of papers have emphasized the importance accounting for the return

to human capital in the market return (Roll 1977; Campbell 1996). Since human capital is

not observable, assumptions have to be made in obtaining a tractable proxy. For example,

Campbell (1996) assumes that the return to human capital may be expressed as the expected

future value of labor income growth discounted by the return on �nancial wealth. While

these and other assumptions seem plausible, there is no way of testing their validity.

The economic variable explored in this paper provides a fresh opportunity to investigate

the determinants of asset risk. The predictive power of deviations from trend wealth may

be obtained under the relatively unrestrictive assumption that the nonstationary component

of human wealth is well captured by labor income itself. The consumption framework in-

vestigated here implies that investors' own behavior, as captured by deviations in household

wealth from its trend relationship with consumption and labor income, should reveal expec-

tations of future returns to both human and nonhuman capital, providing a unique proxy of

expected returns to the market portfolio.
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Appendix A: Tests for Cointegration

This appendix describes procedures we use to test for cointegration among consumption,

labor income and household wealth. We furnish the output from these tests in Tables A.1-A.4

at the end of the text.

The consumption data are for nondurables and services excluding shoes and clothing. The

nonhuman wealth data is the household net worth series provided by the Board of Governors

of the Federal Reserve. Labor income is de�ned as wages and salaries plus transfer payments

plus other labor income minus personal contributions for social insurance minus taxes. Taxes

are de�ned as (wages and salaries)/ (wages and salaries + proprietors income with IVA and

Ccadj + rental income + personal dividends + personal interest income))*(personal tax and

non tax payments), where IVA is inventory evaluation and Ccadj is capital consumption

adjustments. Consumption is in 1992 chain weighted dollars; wealth and labor income are

deated by the PCE chain-type price deator.

We report the results of two types of cointegration tests: residual based tests designed

to distinguish a system without cointegration from a system with at least one cointegrating

relationship, and tests for cointegrating rank designed to estimate the number of cointegrat-

ing relationships. The former requires that each individual variable pass a unit root test and

are conditional on this pretesting procedure. Table A.1 presents Dickey-Fuller tests for the

presence of a unit root in c, y, and a, over several autoregressive structures. The procedure

tests the null hypothesis of a unit root against the alternative hypothesis that the series is

stationary around a trend. The test statistics fall within the 95 percent con�dence region

and are therefore consistent with the hypothesis of a unit root in those series.

Table A.2 reports test statistics corresponding to the Phillips-Ouliaris (1990) residual

based cointegration tests. This test is designed to distinguish a system without cointegra-

tion from a system with at least one cointegrating relationship. The approach applies the

augmented Dickey-Fuller unit root test to the residuals of from a regression of consumption

on labor income and household wealth. The table shows both the Dickey-Fuller t-statistic

and the relevant 5 and 10 percent critical values.30 In the model without a deterministic

30Phillips and Ouliaris (1990) tabulate critical values for the augmented Dickey-Fuller t test applied to



trend, the hypothesis of no cointegration is rejected at the 5 percent level by the augmented

Dickey-Fuller test with 1, 2 or 3 lags, but is not rejected by the test with 4 lags. We applied

the data dependent procedure suggested in Campbell and Perron (1991) for choosing the

appropriate lag length in an augmented Dickey-Fuller test. This procedure suggested that

the appropriate lag length was one, implying that test results favoring cointegration should

be accepted.

Next we consider testing procedures suggested by Johansen (1988, 1991) that allow the

researcher to estimate the number of cointegrating relationships. This procedure presumes

a p-dimensional vector autoregressive model with k lags, where p corresponds to the number

of stochastic variables among which the investigator wishes to test for cointegration. For

our application, p = 3. The Johansen procedure provides two tests for cointegration: under

the null hypothesis, H0, that there are exactly r cointegrating relations, the `Trace' statistic

supplies a likelihood ratio test of H0 against the alternative, HA, that there are p cointe-

grating relations, where p is the total number of variables in the model. A second approach

uses the `L-max' statistic to test the null hypothesis of r cointegrating relations against the

alternative of r + 1 cointegrating relations. The test procedure depends the number of lags

assumed in the vector autoregressive structure. The table presents the test results obtained

under a number of lag assumptions. The same e�ective sample (1954:1 to 1998:3) was used

in estimating the model under each lag assumption.

The critical values obtained using the Johansen approach also depend on the trend char-

acteristics of the data. We present results allowing for linear trends in data, but assuming

that the cointegrating relation has only a constant (Table A.3). See Johansen (1988, 1991)

for a more detailed discussion of these trend assumptions.31 The Table also reports the 90

residuals of a cointegrating equation with up to �ve variables.
31In choosing the appropriate trend model for our data, we were guided by both theoretical considerations

and statistical criteria. Theoretical considerations imply that the long-run equilibrium relationship between

consumption, labor income and wealth do not have deterministic trends, although each individual data

series may have deterministic trends. Moreover, statistical criteria suggested that modeling a trend in the

cointegrating relation was not appropriate: the normalized cointegrating equation under this assumption

did not correspond to any reasonable hypothesis about the long-run relationship among these variables. For

example, with trends speci�ed in the cointegrating relationship, the parameters of the cointegrating vector
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percent critical values for these statistics.32

The Johansen L-max test results establish strong evidence of a single cointegrating rela-

tion among log consumption, log labor income, and the log of household wealth. Table A.4

shows that, for every lag speci�cation we consider, we may reject the null of no cointegration

against the alternative of one cointegrating vector. In addition, we cannot reject the null

hypothesis of one cointegrating relationship against the alternative of two or three. While

the evidence in favor of cointegration is somewhat weaker according to the Trace statistic

(we cannot reject the null of no cointegration against the alternative of 3 cointegrating rela-

tions), this evidence is contradicted by the unit root tests which suggest that each variable

contains a unit root. Moreover, according to the Trace statistic, we may not reject the null

of one (or two) cointegrating relations against the alternative of three.

were often negative, at odds with any sensible model of consumer behavior.
32The critical values are based on calculations made by Johansen and Nielsen (1993).
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Table 1

Estimates From a Cointegrated VAR

Sum of regression coe�cients of column variable on row variable

�ct �at �yt

�ct�i;i=1;::2 0.296 0.208 0.575

(t-stat) (2.232) (0.581) (2.130)

�at�i;i=1;::2 0.019 0.177 0.081

(t-stat) (0.706) (1.601) (1.685)

�yt�i;i=1;::2 0.074 0.239 -0.060

(t-stat) (0.821) (1.258) (-0.325)

dcayt�1 -0.015 0.445 0.100

(t-stat) (-0.275) (2.885) (1.754)

�R2 0.12 0.14 0.05

Notes: Sample period is 1952:4 to 1998:3. Entries in the top panel report the sum of the coe�cients

on the lags of variables; beneath each coe�cient sum is the Newey-West corrected t-statistic for the

sum. Signi�cant coe�cients at the 5% level are highlighted in bold face. dcayt is ct � b�aat � b�yyt,
the estimated trend deviation:



Table 2

Summary Statistics

rt � rf;t dt � pt dt � et RRELt dcayt
Correlation Matrix

rt � rf 1.00 -0.15 0.08 -0.30 0.28

dt � pt 1.00 0.01 -0.01 0.43

dt � et 1.00 -0.46 0.15

RRELt 1.00 -0.23

dcayt 1.00

Univariate Summary Statistics

Mean 0.016 -3.358 0.680 0.000 0.593

Standard Error 0.077 0.277 0.199 0.011 0.011

Autocorrelation 0.12 0.93 0.70 0.71 0.79

Notes: rt � rf;t is quarterly log excess returns on the S&P Composite index; dt � pt is the log

dividend yield; dt � et is the log dividend payout ratio; RRELt is the relative bill rate; dcayt
is ct � b�aat � b�yyt, the estimated trend deviation. The statistics are computed for the largest

common span of available data for all the variables. Sample period is 1952:4 to 1998:3.



Table 3

Forecasting Quarterly Stock Returns

Dependent Variable Index Constant rt dcayt dcayt�1 R
2

(t-stat) (t-stat) (t-stat) (t-stat)

rt+1 S&P 500 0.017 0.136 0.01

(3.131) (2.221)

0.029 2.220 0.09

(4.672) (3.024)

0.026 0.062 2.109 0.09

(4.645) (0.981) (2.806)

0.024 0.075 1.662 0.06

(5.188) (1.312) (2.677)

CRSP-VW 0.028 -0.007 2.513 0.10

(4.889) (-0.157) (4.754)

small stocks 0.040 -0.099 3.512 0.09

(5.484) (-1.356) (4.690)

Dependent Variable Index Constant rt � rf;t dcayt dcayt�1 R
2

(t-stat) (t-stat) (t-stat) (t-stat)

rt+1 � rf;t+1 S&P 500 0.014 0.119 0.00

(2.952) (1.976)

0.024 2.165 0.09

(4.328) (3.226)

0.023 0.043 2.089 0.09

(4.345) (0.707) (2.988)

0.021 0.059 1.621 0.05

(4.945) (1.064) (2.902)

CRSP-VW 0.022 -0.038 2.528 0.10

(4.612) (-0.483) (4.583)

small stocks 0.036 -0.107 3.455 0.09

(4.659) (-1.361) (4.707)



Notes for Table 3: Sample period is 1952:4 - 1998:3. Regressions of stock returns on lagged variables.

rt is the quarterly log real return on the index named in the row heading; rt+1�rf;t+1, is quarterly

log excess return on the index named in the row heading;dcayt � ct � b�aat � b�yyt, the estimated
trend deviation in consumption. The index of small stocks is taken from Ibbotson and Associates.

Newey-West corrected t-statistics appear in parentheses below the coe�cient estimate. Signi�cant

coe�cients at the 5% level are highlighted in bold face.



Table 4

Forecasting Quarterly Excess Returns on the S&P 500 Index

Sample Constant dt � pt dt � et dcayt rt � rf;t RRELt TRMt DEFt R
2

(t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat)

1952:4-1998:3 0.100 0.025 0.00

(1.157) (0.965)

-0.012 -0.011 2.274 0.09

(-0.135) (-0.404) (4.131)

0.058 0.025 0.060 0.02

(0.656) (0.805) (1.531)

-0.036 -0.009 0.043 2.145 0.09

(-0.398) (-0.267) (1.289) (4.182)

1953:2-1998:3 0.038 0.004 0.011 1.906 -0.004 -1.377 -0.082 -0.883 0.10

(0.278) (0.095) (0.270) (3.197) (-0.065) (-2.443) (-0.125) (-0.543)

1952:4-1994:4 0.257 0.100 0.126 0.11

(2.768) (3.257) (3.055)

0.021 2.642 0.11

(3.657) (4.488)

0.175 0.070 0.105 2.082 0.17

(2.379) (2.910) (3.039) (3.952)

Notes: OLS regressions of excess stock returns on lagged variables named at the head of a column.

The dependent variable, rt+1� rf;t+1, is quarterly log excess returns on the S&P Composite index;

dt�pt is the log dividend yield; dt� et is the log dividend payout ratio; RRELt is the relative bill

rate; TRMt is the term spread, the di�erence between the 10 year Treasury bond yield and the 3

month Treasury bond yield; DEFt is the BAA Corporate Bond rate minus the AAA Corporate

Bond rate; dcayt is ct � b�aat � b�yyt, the estimated trend deviation. Newey-West corrected t-

statistics appear in parentheses below the coe�cient estimate. Signi�cant coe�cients at the 5%

level are highlighted in bold face. The regression using the term and default spreads is run over

the largest common sample available for all the variables in the equation.



Table 5

Long-Horizon Regressions 1952:4-1998:3

Regressors Forecast Horizon H

1 2 3 4 8 12 16 24

dt � pt 0.02 0.05 0.09 0.13 0.28 0.36 0.43 0.99

(0.97) (1.01) (1.01) (1.12) (1.25) (1.46) (1.70) (3.76)

[0.00] [0.01] [0.02] [0.03] [0.08] [0.09] [0.11] [0.30]

dt � pt 0.02 0.06 0.09 0.13 0.29 0.41 0.53 1.18

(0.82) (0.92) (0.93) (1.04) (1.22) (1.53) (2.26) (5.55)

dt � et 0.06 0.07 0.09 0.09 0.15 0.24 0.40 0.71

(1.66) (1.05) (0.89) (0.67) (0.73) (0.99) (2.07) (2.95)

[0.02] [0.02] [0.03] [0.04] [0.09] [0.12] [0.17] [0.41]

dcayt 2.22 3.96 5.74 7.17 9.17 9.63 9.30 15.84

(3.22) (3.13) (3.21) (3.43) (3.26) (2.98) (2.68) (3.49)

[0.09] [0.12] [0.17] [0.19] [0.16] [0.14] [0.11] [0.18]

RRELt -1.17 -2.35 -3.23 -3.82 -0.27 1.99 0.12 1.36

(-2.48) (-3.05) (-2.91) (-2.57) (-0.16) (0.81) (0.05) (0.48)

dt � pt -0.00 0.02 0.03 0.07 0.17 0.24 0.31 0.85

(-0.08) (0.34) (0.43) (0.67) (0.84) (1.04) (1.49) (4.95)

dt � et 0.02 -0.02 -0.03 -0.05 0.17 0.24 0.31 0.65

(0.47) (-0.29) (-0.33) (-0.49) (0.44) (1.16) (2.06) (2.86)

dcayt 1.89 3.13 4.43 5.37 7.24 7.69 5.63 5.90

(3.45) (3.01) (3.03) (3.25) (3.01) (2.20) (1.81) (1.91)

[0.11] [0.15] [0.21] [0.23] [0.18] [0.19] [0.18] [0.42]

Notes: See next page.



Notes for Table 5: Long-horizon regressions of excess returns on lagged variables using data from

1952:4-1998:3, OLS estimation. The dependent variable is the sum of H log excess return of the

S&P composite index, rt+1 � rf;t+1 + :::+ rt+H � rf;t+H . The H-period excess return is regressed

on one-period lagged values of the log dividend yield dt�pt, the dividend earnings ratio dt�et, the

deviations from trenddcayt = ct � b�aat �
b�yyt, and combinations thereof. For each regression, the

table reports OLS estimates of the regressors, Newey-West corrected t-statistics in parentheses and

adjusted R2 statistics in square brackets. Signi�cant coe�cients at the 5% level are highlighted in

bold.



Table 6

Vector Autoregression of Excess Returns and Implied Long-Horizon R2

Dependent Variable Constant rt � rf;t RRELt dt � pt dt � et R
2

(t-stat) (t-stat) (t-stat) (t-stat) (t-stat)

rt+1 � rf;t+1 0.000 0.078 -1.309 0.033 0.025 0.06

(0.035) (1.287) (-2.700) (1.307) (0.682)

RRELt+1 -0.000 0.009 0.684 -0.004 -0.006 0.52

(-0.058) (1.127) (10.062) (-1.201) (-1.839)

dt+1 � pt+1 -0.007 -0.102 1.347 0.972 -0.038 0.94

(-1.491) (-1.535) (2.784) (40.597) (-1.080)

dt+1 � et+1 -0.001 -0.142 -2.499 0.012 0.644 0.50

(-0.119) (-1.067) (-2.191) (0.356) (8.273)

H 2 3 4 8 12 16 24

Implied R2 0.13 0.15 0.17 0.23 0.28 0.32 0.39

Dependent Variable Constant rt � rf;t RRELt dt � pt dt � et dcayt R
2

(t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat)

rt+1 � rf;t+1 -0.000 -0.008 -1.181 -0.003 0.016 1.908 0.11

(-0.028) (-0.126) (-2.600) (-0.101) (0.451) (3.316)

RRELt+1 -0.000 0.012 0.679 -0.002 -0.005 -0.072 0.52

(-0.037) (1.515) (9.435) (-0.620) (-1.790) (-0.952)

dt+1 � pt+1 -0.007 -0.047 1.264 0.995 -0.032 -1.235 0.94

(-1.458) (-0.698) (2.687) (39.723) (-0.913) (-2.358)

dt+1 � et+1 -0.001 -0.162 -2.469 0.004 0.642 0.441 0.50

(-0.127) (-1.057) (-2.184) (0.091) (8.178) (0.411)

dcayt+1 -0.000 -0.049 -0.062 0.004 0.001 0.862 0.78

(-0.303) (-8.235) (-1.499) (2.858) (0.331) (21.854)

H 2 3 4 8 12 16 24

Implied R2 0.22 0.30 0.30 0.35 0.38 0.40 0.44



Notes for Table 6: Sample period is 1952:4 - 1998:3, OLS estimation. Coe�cients from vector

autoregressions (VARs) of returns, relative bill rate, dividend yield, dividend payout ratio and the

trend deviation term. rt+1 � rf;t+1, is quarterly log excess returns on the S&P Composite index;

RRELt is the relative bill rate; dt� pt is the log dividend yield; dt� et is the log dividend payout

ratio;dcayt is ct � b�aat � b�yyt, the estimated trend deviation. Newey-West corrected t-statistics

appear in parentheses below the coe�cient estimate. Signi�cant coe�cients at the 5% level are

highlighted in bold. H denotes the return horizon in quarters. The row labeled \Implied R2" gives

the explanatory power of the VAR for the return at horizon H named in the row above and is

calculated from the estimated parameters of the VAR and the estimated covariance matrix of VAR

residuals.



Table 7

Out-of-sample Predictive Power of dcayt in One-Quarter-Ahead Forecasts of Excess Returns

Cointegrating Vector Reestimated

Row Lag of trend-deviation MSEu=MSEr CM Test Statistic OOS F -Test Statistic

1 dcayt 0.955 9.15** 5.72**

2 dcayt�1 0.985 4.02** 1.85*

Fixed Cointegrating Vector

Row Lag of trend-deviation MSEu=MSEr CM Test Statistic OOS F -Test Statistic

3 dcayt 0.925 12.93** 9.84**

4 dcayt�1 0.955 6.58** 5.72**

Notes for Table 7: One-step ahead forecasts of excess returns on the S&P Composite Index, rt+1�

rf;t+1:dcayt is ct � b�aat � b�yyt, the estimated one-period lagged trend deviation. In rows 1 and 3,

MSEu is the mean-squared forecasting error from a model which includes the one-period lagged

dependent variable rt � rf;t; and the one-period lagged value ofdcayt as explanatory variables;

rows 2 and 4 replace the one-period lagged value,dcayt, with the two period lagged value,dcayt�1
. MSEr is the mean-squared error from the model using only the lagged dependent variable.

The column labeled \CM Test Statistic" gives the modi�ed Harvey, Leybourne, and Newbold test

statistic (Clark and McCracken 1999). The column labeled \OOS F -Test Statistic" gives the out-

of-sample F -test statistic (McCracken 1999). The initial estimation period begins with the fourth

quarter of 1954 and ends with the �rst quarter of 1968. The model is recursively reestimated until

the third quarter of 1998.

*Signi�cant at the 5 percent or better level.

**Signi�cant at the 1 percent or better level.



Table A.1

Dickey-Fuller Tests for Unit Roots

Dickey-Fuller t-statistic Critical Values

Lag=1 Lag=2 Lag=3 Lag=4 5% Critical Level 10% Critical Level

Log(Wealth) -2.088 -2.763 -2.607 -2.926 3.44 3.14

Log(Labor Income) -0.760 -0.920 -0.944 -0.919 3.44 3.14

Log(Consumption) -0.734 -1.120 -1.246 -1.578 3.44 3.14

Notes: Sample is 1953:1 to 1998:3. All variables are real, in per-capita terms. Model includes a

time trend.

Table A.2

Phillips-Ouliaris Test for Cointegration

Dickey-Fuller t-statistic Critical Values

Lag=1 Lag=2 Lag=3 Lag=4 5% Critical Level 10% Critical Level

-4.282 -4.017 -3.800 -3.636 -3.80 -3.52

Notes: See Table A.1. Dickey-Fuller test statistic has been applied to the �tted residuals from

the cointegrating regression of consumption on labor income and wealth. Critical values assume

trending series. \Lags" refers to the number of lags of �rst di�erences used in the regression of

residuals on the lagged residual and lags of �rst di�erences of the residual.



Table A.3

Johansen Cointegration Test: I(1) Analysis With Linear Trend in the Data

Lag in VAR Model= 1

L-Max Trace Ho = r

Test Statistic 90% CV Test Statistic 90% CV r =

19.49 13.39 24.85 26.70 0

5.28 10.60 5.36 13.31 1

0.08 2.71 0.08 2.71 2

Lag in VAR Model = 2

L-Max Trace Ho = r

Test Statistic 90% CV Test Statistic 90% CV r =

21.03 13.39 25.17 26.70 0

4.05 10.60 4.14 13.31 1

0.10 2.71 0.10 2.71 2

Lag in VAR Model = 3

L-Max Trace Ho = r

Test Statistic 90% CV Test Statistic 90% CV r =

16.01 13.39 20.08 26.70 0

4.00 10.60 4.08 13.31 1

0.08 2.71 0.08 2.71 2

Lag in VAR Model = 4

L-Max Trace Ho = r

Test Statistic 90% CV Test Statistic 90% CV r =

14.80 13.39 19.17 26.70 0

4.09 10.60 4.37 13.31 1

0.27 2.71 0.27 2.71 2

Notes: See Table A.1. Constant included in cointegrating relation. The columns labeled \Test

Statistic" give the value for the test named in the row above; \90% CV" gives the 90 percent



con�dence level of that statistic.
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Figure 1
Excess Return and Trend Deviation 1952:4 to 1998:3

Notes: Excess return is the return on the S&P Composite Index less the return on the three month Treasury bill rate;
Trend deviation is the estimated deviation from the shared trend in consumption, labor income and asset wealth
(normalized to standard deviations of unity). Shaded areas denote recessions.
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