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NON-TECHNICAL SUMMARY

Impulse responses are standard tools in vector auto-regressive (VAR)
analyses. Usually, in this context, an economic system of interest is described
by a VAR model, which is estimated from the available time series data in
unrestricted form or with various types of structural and statistical restrictions
imposed. There are a number of problems related to commonly applied
procedures. First of all, impulse responses are usually computed from
estimated coefficients and are therefore also estimates. This fact is ignored in
part of the literature where the point estimates are plotted only and the relation
of the variables involved is interpreted on the basis of these point estimates
without properly taking into account the estimation variability. In another part
of the literature the estimation uncertainty of impulse responses is assessed
by setting up confidence intervals (CIs). In many studies it was found,
however, that the CIs are rather wide and, hence, the impulse responses are
not very informative so that nothing much can be said about the actual
underlying relations. Clearly this reflects the substantial sampling variability in
the estimated VAR parameters, which in turn is a consequence of estimating
these quantities in a largely unrestricted model with many parameters.

Another potential problem in this context is that the CIs for the impulse
responses are often based on bootstrap methods. The standard approach is
to estimate the model, resample from the estimation residuals, generate
bootstrap time series from the resampled residuals, estimate the VAR
parameters from the bootstrap time series and compute impulse responses
from these estimates. Once that is done a large number of times, a set of
bootstrap impulse responses is obtained which is then used for inference on
the underlying true impulse response coefficients. For instance, lower and
upper percentage points of the bootstrap estimates are often used in setting
up CIs.

It can be shown, however, that this procedure can fail completely by producing
CIs with actual coverage probability of zero, regardless of the desired nominal
confidence level. In other words, these kind of bootstrap CIs may give a
distorted impression of the range of likely impulse responses for a VAR model.

The purpose of this article is to illustrate and discuss the importance of these
problems for applied work and to suggest possible improvements. Two small
German monetary systems are used to show that it is crucial to take into
account the estimation uncertainty when interpreting impulse responses in the
context of dynamic econometric models. It is argued that the commonly used
bootstrap methods for determining CIs of impulse responses are problematic
and an alternative variant proposed by Hall is advocated. Moreover it is shown
that imposing restrictions on the short-term dynamics of a system can result in



major improvements in the precision of the estimated impulse responses
which in turn can lead to a more informative picture of the dynamic
interactions between the variables of the system under consideration.

In the analysis, vector error correction models (VECMs) are used and special
attention is given to the treatment of co-integration relations. In the examples,
it makes a difference whether the co-integration restrictions are taken into
account or the model is estimated in unrestricted VAR form. Therefore it is
proposed to perform a detailed co-integration analysis and base the impulse
response analysis on the VECM rather than the VAR model. It is also found
that, in the examples considered, it does not make much difference whether or
not the co-integration parameters are re-estimated in each bootstrap
replication or fixed at the originally estimated values. Thus, taking into account
the co-integration relations in the model is important, whereas their treatment
in the bootstrap procedure appears to be less important.



1 Introduction

Impulse responses are standard tools in vector autoregressive (VAR) analyses. In this con-

text an economic system of interest is described by a VAR model which is estimated from

the available time series data in unrestricted form or with various types of structural and

statistical restrictions imposed. There are a number of problems related to commonly ap-

plied procedures. First of all, impulse responses are computed from estimated coe�cients

and are therefore also estimates. This fact is ignored in part of the literature where the point

estimates are plotted only and the relation of the variables involved is interpreted on the

basis of these point estimates without properly taking into account the estimation variability.

In another part of the literature the estimation uncertainty of impulse responses is assessed

by setting up con�dence intervals (CIs). In many studies it was found, however, that the CIs

are rather wide and, hence, the impulse responses are not very informative so that nothing

much can be said about the actual underlying relations. Clearly this reects the substantial

sampling variability in the estimated VAR parameters which in turn is a consequence of

estimating these quantities in a largely unrestricted model with many parameters.

Another potential problem in this context is that the CIs for the impulse responses are

often based on bootstrap methods. It has been argued by Benkwitz, L�utkepohl & Neumann

(1998) (henceforth BLN) that the usual bootstrap procedure used in this context can fail

completely by producing CIs with actual coverage probability of zero, regardless of the

desired nominal con�dence level. In other words, the bootstrap CIs may give a grossly

distorted impression of the range of likely impulse responses for a VAR model.

The purpose of this article is to illustrate and discuss the importance of these problems

for applied work. We will use two small German monetary systems and show that it is

crucial to take into account the estimation uncertainty when interpreting impulse responses

in the context of dynamic econometric models. We argue that the commonly used bootstrap

methods for determining CIs of impulse responses are problematic and we point out that the

method favored by Hall (1992) is advantageous. Moreover we show that imposing restrictions

on the short-term dynamics of a system can result in major improvements in the precision

of the estimated impulse responses which in turn can lead to a more informative picture of

the dynamic interactions between the variables of the system under consideration. In our

analysis we will focus on vector error correction models (VECMs) and we will pay special
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attention to the treatment of cointegration relations.

The paper has the following structure. The general framework of the analysis is pre-

sented in the next section and inference on impulse responses is considered in Section 3.

In particular, alternative methods for computing bootstrap CIs for impulse responses are

discussed. These methods are applied and compared within two small monetary systems for

Germany in Section 4. Conclusions are drawn in Section 5.

The following notation is used throughout: L(X) denotes the distribution of the random

variable X. The natural logarithm is abbreviated as log and � is the di�erencing operator

de�ned such that for a time series variable yt, �yt = yt � yt�1. Nonstationary variables

which become stationary upon di�erencing once are referred to as I(1) variables.

2 Analysis of VAR Processes

Many macroeconomic analyses are based on linear dynamic models of the type

A0yt = A1yt�1 + � � �+ Apyt�p +	xt + �Dt + ut (2:1)

where yt = [y1t; : : : ; yKt]
0 is a K-dimensional vector of observable endogenous variables,

the Ai (i = 0; 1; : : : ; p) are (K � K) coe�cient matrices, xt represents a vector of N un-

modelled observable variables, Dt contains all deterministic terms such as seasonal dummy

variables, intercepts and polynomial trend terms, 	 and � are also coe�cient matrices and

ut = [u1t; : : : ; uKt]
0 is a white noise process, that is, the ut are serially uncorrelated or in-

dependent with zero mean and nonsingular (positive de�nite) covariance matrix �u. The

model (2.1) is somewhat more general than the typical pure VAR model in that it may

contain unmodelled variables whereas in standard VAR analyses all stochastic variables are

treated as endogenous. We will still refer to (2.1) as our basic VAR model. The maximum

lag length p of the endogenous variables is usually referred to as the order of the VAR process

and the process is briey called a VAR(p). The process may be stationary or it may contain

I(1) variables and r cointegrating relations, where 0 < r < K. In the latter case it is often

written as a VECM,

�0�yt = �� 0yt�1 + �1�yt�1 + � � �+ �p�1�yt�p+1 +	xt + �Dt + ut (2:2)

where the �j (j = 0; 1; : : : ; p � 1) are the short-run parameter matrices, � is the (K � r)

loading matrix and � is a (K � r) matrix containing r linearly independent cointegration
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relations. In the examples in Section 4 the exogenous variables xt are stationary variables.

Regardless of the stationarity properties, the model in (2.1) or (2.2) summarizes the

instantaneous and intertemporal relations between the variables. The exact form of these

relations is usually di�cult to see directly from the coe�cients, especially if there are only

just identifying restrictions on the short-term parameters �i (i = 0; 1; : : : ; p� 1). Therefore

impulse response functions are often computed which represent the marginal responses of

the endogenous variables of the system to an impulse in one of the endogenous variables.

These may be regarded as conditional forecasts of the endogenous variables given that they

have been zero up to time 0 when an impulse in one of the variables occurs. Depending

on the kind of impulse hitting the system there are various di�erent impulse responses

that have been used for interpreting VAR models. For detailed discussions see Sims (1980,

1981), L�utkepohl (1990, 1991), Watson (1994), L�utkepohl & Breitung (1997). The important

property of these quantities from the point of view of our analysis is that they are particular

nonlinear functions of the parameters of the model in (2.1) or (2.2), say,

�ij;h = �ij;h(A0; A1; : : : ; Ap) = �ij;h(�; �;�0;�1; : : : ;�p�1); (2:3)

where �ij;h represents the response of variable i to an impulse in variable j, h periods ago.

Precise formulas for di�erent versions of impulse responses may be found in L�utkepohl (1991,

Chapter 2) or L�utkepohl & Breitung (1997), for instance. Because the VECM in (2.2) can

always be written in the equivalent levels form in (2.1) and vice versa and because our

example models in Section 4 are VECMs we will focus on the latter version in the following

in order to minimize repetition. The VECM is also the more convenient model form for

discussing the treatment of cointegration relations.

3 Inference on Impulse Responses

Usually the coe�cients of the model in (2.2) are estimated by some standard procedure such

as (pseudo) maximum likelihood (ML) or feasible generalized least squares (GLS) possibly

estimating the cointegration parameters in a �rst stage and keeping them �xed in estimating

the other parameters. Estimators of the impulse responses are then obtained as

�̂ij;h = �ij;h(�̂; �̂; �̂0; �̂1; : : : ; �̂p�1) (3:1)
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where the �̂; �̂; �̂0; �̂1; : : : ; �̂p�1 are the estimated VECM parameter matrices. Under general

assumptions the resulting impulse responses have asymptotic normal distributions which

may be used for constructing CIs. In practice, bootstrap methods are often used for this

purpose, because these methods occasionally lead to more reliable small sample inference

than CIs based on standard asymptotic theory. However we want to emphasize the fact

that both approaches, standard asymptotics and the bootstrap, are based on asymptotic

arguments.

The analytical expressions of the asymptotic variances of the impulse response coe�cients

are rather complicated. Using the bootstrap for setting up CIs, the precise expressions of

the variances are not needed and, hence, deriving the analytical expressions can be avoided.

In the following we will discuss some methods that have been proposed in this context.

The following bootstrap method will be considered:

(1) Estimate the parameters of the model in (2.2) by a suitable procedure.

(2) Generate bootstrap residuals u�1; : : : ; u
�

T by randomly drawing with replacement from

the set of estimated and recentered residuals, fû1��u:; : : : ; ûT��u:g, where ût = �̂0�yt�
�̂�̂ 0yt�1 � �̂1�yt�1 � � � � � �̂p�1�yt�p+1 � 	̂xt � �̂Dt, and �u: = T�1

P
ût.

(3) Set (y�
�p+1; : : : ; y

�

0) = (y
�p+1; : : : ; y0) and construct bootstrap time series recursively

using the levels representation given in (2.1),

y�t = Â�1
0

�
Â1y

�

t�1 + � � �+ Âpy
�

t�p + 	̂xt + �̂Dt + u�t

�
; t = 1; : : : ; T:

(4) Reestimate the parameters �0;�1; : : :�p�1;	;�; �; � from the generated data.

(5) Calculate a bootstrap version of the statistic of interest, say �̂�ij;h, based on the param-

eter estimates obtained in Stage (4).

In Stage (4) where the bootstrap estimates are computed there are two alternative ways to

do so. The �rst possibility is to use the same estimation method in each bootstrap replication

that was used in estimating the VECM coe�cients from the original data. In this procedure

the cointegration matrix � is reestimated for each bootstrap sample. Alternatively one

may argue that the � matrix is estimated superconsistently from the original data and is

therefore treated as known and �xed in the bootstrap replications. We will explore these

two possibilities in the context of the examples in Section 4.
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In the following we use the symbols �, �̂T and �̂�T to denote some general impulse re-

sponse coe�cient, its estimator implied by the estimators of the model coe�cients and the

corresponding bootstrap estimator, respectively. The subscript T indicates the sample size.

The most commonly used method in setting up CIs for impulse responses in practice

proceeds by using =2- and (1 � =2)-quantiles, say s�=2 and s�(1�=2), respectively, of the

bootstrap distribution L(�̂�T j y�p+1; : : : ; y0; : : : ; yT ; x1; : : : ; xT ), and de�ning

CIS =
h
s�=2; s

�

(1�=2)

i
:

The interval CIS is the percentile con�dence interval described, e.g., by Efron & Tibshirani

(1993). These authors point out, however, that it may not have the desired coverage prob-

ability. This problem occurs for example if �̂T is a biased estimator of �. In that case the

bootstrap distribution may be asymptotically centered at � plus a bias term and, hence,

CIS is a (1 � )100% CI for the latter quantity and may have a grossly distorted level as

a CI for �. To �x this drawback modi�cations of CIS were proposed in the literature. In

the context of impulse response analysis Kilian (1998) has suggested a method to reduce

the problem if the data generation process is a stationary VAR. Since in practice we often

have to deal with processes containing integrated nonstationary variables we will not use

this variant here, in particular, since our example models in Section 4 involve cointegrated

variables. Moreover, Kilian's modi�cation has not been used much in applications and its

asymptotic properties are not fully clear. In fact, it is shown by BLN that the asymptotic

coverage probability for a nominal (1� )100% CIS can be zero for any  strictly between

zero and one. Therefore we will present another bootstrap variant (see Hall (1992, Chapter

3)) which overcomes some of the problems of the standard interval.

Let t�=2 and t�(1�=2) be the =2- and (1� =2)-quantiles of

L(�̂�T � �̂T j y�p+1; : : : ; y0; : : : ; yT ; x1; : : : ; xT );

respectively. According to the usual bootstrap analogy,

L(�̂T � �) � L(�̂�T � �̂T j y�p+1; : : : ; y0; : : : ; yT ; x1; : : : ; xT );

one gets the interval

CIH =
h
�̂T � t�(1�=2); �̂T � t�=2

i
:
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Hall (1992) calls this CI \percentile interval". Therefore, in the following we refer to the

method leading to CIH as Hall's percentile method, whereas the method underlying CIS is

referred to as the standard method. If L(
p
T (�̂�T � �̂T ) j y�p+1; : : : ; y0; : : : ; yT ; x1; : : : ; xT )

has the same limit distribution as L(
p
T (�̂T � �)) it follows immediately that CIH has the

correct size asymptotically, that is, Pr (� 2 CIH) �! 1 �  as T ! 1 and, hence, Hall's

percentile method is asymptotically correct.

It is well established in the bootstrap literature that the quality of the bootstrap ap-

proximation of the distribution of a general statistic �̂T , say, can be improved by reducing

its dependence on the unknown distribution that governs the data generating process. For

example, with respect to the sample mean of i.i.d. random variables it is well-known that

studentizing leads to a better rate of approximation by the bootstrap (see, e.g., Hall (1992)).

Therefore, it may be advantageous to use a studentized statistic (�̂T � �)=
qdvar(�̂T ) as a

basis for constructing con�dence intervals. Hence in the present context it may be advanta-

geous to determine a bootstrap quantile based on the statistic (�̂�T � �̂T )=
qdvar(�̂�T ). In this

approach the variances are also estimated by a bootstrap, that is,

dvar(�̂T ) = 1

B� � 1

B�X
i=1

�
�̂
�;i
T � �̂�T

�2

and

dvar(�̂�T ) = 1

B�� � 1

B��X
i=1

�
�̂
��;i
T � �̂��T

�2
;

where �̂
��;i
T is obtained by a double bootstrap, that is, pseudo-data are generated according

to a process obtained on the basis of the bootstrap systems parameters and B� and B��

are the respective numbers of bootstrap replications in the �rst and second stages (see Hall

(1992) for details).

Let t��=2 and t��(1�=2) be the =2- and (1� =2)-quantiles, respectively, of

L
�
(�̂�T � �̂T )=

qdvar(�̂�T )
���� y�p+1; : : : ; y0; : : : ; yT ; x1; : : : ; xT

�
: (3:2)

Using these quantiles we get the studentized Hall interval

CISH =

�
�̂T � t��(1�=2)

qdvar(�̂T ); �̂T � t��=2

qdvar(�̂T )
�

which also has an asymptotically correct coverage probability if (3.2) and L((�̂T��)=
qdvar(�̂T ))

have identical proper limiting distributions. In the next section we will use these CIs in an-

alyzing the impulse responses of two German monetary systems.
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4 Analysis of German Monetary Systems

Br�uggemann & Wolters (1998) (BW) and L�utkepohl & Wolters (1998) (LW) consider small

models for the German monetary sector to investigate the channels of monetary policy. LW

use M3 as measure of the money stock whereas BW consider a system for the more narrow

measure M1. In both studies impulse responses are used to analyze the dynamic interactions

of the variables in VECMs which can be represented in the form (2.2). Both studies do not

report measures of sampling variability for the impulse responses and they conclude that the

impact of the Bundesbank policy on ination may have been quite limited since prices do

not react strongly to changes in the money stock and to changes in the interest rate. In the

following we will reconsider these results by checking the signi�cance of the e�ects observed

in the aforementioned articles. Moreover, we will demonstrate the e�ects of using di�erent

methods for computing bootstrap CIs. We will begin with a system presented by BW and

then turn to LW.

4.1 M1 System

BW construct quarterly models for the period 1962(1) - 1989(4) and the extended period

1962(1) - 1996(2) using seasonally unadjusted data. In the following we will concentrate on

the model version for the extended period which includes German uni�cation in 1990 and

allows for international price movements inuencing domestic prices. The following variables

are included in the system: m1t is the logarithm of (nominal) M1; yt is the logarithm of

real GNP; pt is the logarithm of the GNP deator, hence, (m1 � p)t is the logarithm of

real M1 and �pt = pt � pt�1 is the quarterly ination rate; Rt is a long-term interest rate

(`Umlaufsrendite'); pmt is an import price index which is treated as an unmodelled variable

reecting the openness of the German economy and capturing the e�ects of exchange rates.

The precise data sources are provided in the Appendix. In addition there are a number of

deterministic variables in the model such as seasonal dummies and a shift dummy S90q3t

which takes into account the level shifts in m1t and yt due to the German uni�cation. It is

zero until 1990(2) and afterwards it has the value one.

BW found that there is one cointegration relation between the I(1) variables m1t, pt, yt

and Rt. For the period from 1961(4) to 1996(2) they found the following long-run money

8



demand relation (see BW, Equation (3.4))

(m1� p)t = 1:105yt � 5:133Rt + 0:407S90q3t + ec1t: (4:1)

Here ec1t stands for the deviations from the long-run relation. The estimated VECM of

BW is given in Table 1 except for deterministic terms. The model is estimated by Zellner's

seemingly unrelated regressions method. Note that the model may be viewed as a reduced

form because �0 is an identity matrix. Moreover, the instantaneous residual correlation is

quite small and therefore no orthogonalization is needed for computing meaningful impulse

responses. This model is the result of a speci�cation procedure described in detail in BW

which initially also allows for instantaneous relations of the variables (i.e., �0 6= I).

Since the model is in reduced form a fully unrestricted version with full rank error cor-

rection term may be estimated by considering the VAR form in (2.1) with order p = 5. We

have used that model to compute impulse responses together with all three versions of 95%

bootstrap CIs (CIS, CIH , CISH). The results based on 2000 bootstrap replications are plot-

ted in Figure 1.1 For CISH we used 50 bootstrap drawings for estimating dvar(�̂�T ). Clearly
in this case the di�erences between the methods are not substantial. Because in most cases

the CIs are almost symmetric around the estimated impulse response coe�cients it is not

surprising that CIS and CIH are similar. Exceptions are, for instance, the response of p to

an impulse in the same variable and the response of R to an impulse in m1. Also, the CISH

intervals are in most cases quite similar to CIH . An analogous result was also obtained for

other cases considered in the following. Therefore we focus on CIH because it has the better

theoretical basis than CIS (Hall (1992, pp. 128)) and it is much less computer intensive than

CISH .

A major problem with the intervals in Figure 1 is that they are rather wide and, hence,

the actual responses in the underlying system are quite uncertain if the CIs properly reect

the estimation variability. For example, based on the CIs in Figure 1, an impulse in m1

does not have a signi�cant e�ect on the price level. Moreover, an increase in the price level

does not have a signi�cant impact on income. Thus, an impulse response analysis based

on the full unrestricted reduced form model does not give a clear indication of the relations

1The computations were performed with a GAUSS program. We have checked the sensitivity with

respect to the number of bootstrap replications and found that very similar results are obtained if at least

1000 bootstrap replications are used.
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between the variables. The results in the �gure also show the importance of computing CIs

for the impulse responses because an interpretation that ignores the substantial estimation

uncertainty may be quite misleading.

An improvement in the estimation precision can be expected from taking into account

the restrictions imposed by BW. In Figure 2 the impulse responses and corresponding CIH

intervals are shown which are obtained for the restricted VECM. The CIH intervals from the

unrestricted VAR model are given for comparison purposes. Obviously, taking into account

the restrictions results in a substantial improvement in the precision as expected. Now the

response of m1 to an impulse in the price level p has become signi�cant and the same holds

for the response of p to an impulse in m1, for instance. Thus, the present analysis sheds

doubt on the previous interpretation from BW that the impact of changes in m1 on the price

level may not be very strong.

Interestingly, in Figure 2 it can be seen that the impulse responses from the model with

restrictions are in most cases within the CIs from the unrestricted model. On the other

hand, the CIs from the restricted model do not always contain the estimates of the impulse

responses from the unrestricted model. Hence, estimating the impulse responses from an

unrestricted model does not only increase the uncertainty in the estimates but may also lead

to quite di�erent point estimates. There is more overlap between the CIs if intervals are

computed from the restricted VECM and a VECM where only the cointegration restriction

is imposed. These CIs are shown in Figure 3, where it is seen that the CIs from the less

restricted model are substantially wider than the CIs from the restricted model. The long-

run development of the impulse responses from both models is similar due to enforcing the

cointegration restriction. It may also be worth noting that using the bootstrap for an un-

restricted model may result in singularities in the asymptotic distributions of the estimated

impulse responses. This in turn may lead to strongly distorted and, hence, unreliable boot-

strap CIs as pointed out by BLN. Thus, using a restricted model is also useful for removing

one source of problems for the bootstrap CIs.

The question whether to �x the estimated cointegration relation in the bootstrap or to

reestimate it in each replication is addressed in Figure 4. In most cases there is nearly

no di�erence in the CIs. If there are di�erences the CIs based on reestimated cointegration

vectors tend to be larger. Of course, without a detailed analysis it is di�cult to interpret this
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result because the reduced length intervals obtained by �xing the cointegration parameters

may be the outcome of ignoring the estimation variability in the cointegration vector. Hence,

it may cover up the actual estimation uncertainty that remains in the estimates. Without

further knowledge on the properties of the estimates it may be preferable to reestimate the

cointegration parameters in each bootstrap replication.

4.2 M3 System

Using seasonally unadjusted data for the period 1976(1) - 1996(4), LW construct a quarterly

model for M3. They include similar variables as BW in their model. In addition to the

variables de�ned in the context of the M1 model they use the following variables: m3t is the

logarithm of (nominal) M3 and, hence, (m3� p)t is the logarithm of real M3; (R� r)t is the

di�erence between the long-term interest rate and the own rate of M3, denoted by rt, so that

this variable represents the opportunity costs of holding M3 rather than longer term bonds,

dt(R � r)t is identical to (R � r)t for the period 1994(3) - 1995(4) and is zero otherwise, it

is used to model a nonlinearity in the impact of the interest rate di�erential on the demand

for money in the period mentioned. The variable is treated as a member of the group of

unmodelled variables in (2.2). Again there are some additional deterministic variables such

as seasonal dummies and dummies to take care of the uni�cation.

LW �nd that the variables (m3 � p)t, yt and �pt are I(1) and that there is one cointe-

gration relation between these variables of the form (see LW, Equation (3.2))

(m3� p)t = yt � 13:50�pt + 0:14S90q3t + ec3t (4:2)

which may be interpreted as an essential part of a long-run money demand relation. Here

ec3t represents the deviations from the long-run relation. The estimated VECM of LW is

given in Table 2 where deterministic terms are excluded as in Table 1. The estimation

method used is iterated three-stage least squares. The details of the speci�cation procedure

are provided by LW. Notice that the instantaneous �2pt appears in the �(m3�p)t equation

and, hence, the model is a structural form in the sense that �0 is not the identity matrix if

the model is written in the form (2.2). It may also be worth noting that the instantaneous

residual correlation is quite small so that interpreting the residuals as impulses to speci�c

variables is justi�ed.
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Rewriting the model in such a way that it looks like (2.1) or (2.2), an impulse response

analysis can be carried out as described in Section 2. Since we now consider a model in

structural form we compare again CIS and CIH to check whether a similar result is obtained

as in the reduced form case. The impulse responses together with approximate 95% CIs are

depicted in Figure 5 where the cointegration parameters are reestimated in each bootstrap

replication. The impulse responses are identical to those in Figure 1 of LW. They still look

a bit di�erent because they have been scaled in a di�erent way. The scaling in our Figure 5

is adjusted to the width of the CIs. Thus, it is less arbitrary than the scaling used by LW. It

is seen in the �gure that the two types of CIs are again very similar. The small di�erences

indicate that some of the underlying distributions may not be symmetric. Moreover, Figure

5 reveals that impulses in money and the interest rate di�erential may have signi�cant e�ects

on the ination rate. In other words, the Bundesbank's policy may have been more e�ective

than suggested by Figure 1 of LW. Thereby the importance of providing measures for the

estimation uncertainty of the impulse responses as in the �gure is apparent.

5 Conclusions

In this study we have illustrated some problems related to standard impulse response analysis

in VAR models and we have suggested alternative procedures. It has been demonstrated

on the basis of two small monetary systems for Germany that it is very important to take

into account that the commonly considered impulse responses are estimates and, hence,

subject to some uncertainty. This estimation uncertainty has to be taken into account in the

interpretation of the impulse responses. Plotting CIs together with point estimates of the

impulse responses can provide a good picture of the uncertainty involved. In practice, in this

context CIs are often based on bootstrap methods. We have argued that standard bootstrap

CIs may be heavily distorted and therefore may be misleading. A simple alternative is

proposed and applied for analyzing the two German monetary example systems. It is shown

that the common practice of performing an impulse response analysis on the basis of a largely

unrestricted model may not be very informative with respect to the actual relation of the

variables because the estimation uncertainty can be substantial. Imposing restrictions on

the parameters of the model can lead to substantial improvements in this respect.
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It should be noted, however, that there are a number of open questions regarding the

properties of the procedures used in this study. First, the asymptotic and small sample

properties of bootstrap CIs in the present context are not fully clear, especially if the model

contains cointegrated variables. Although there is a range of Monte Carlo studies exploring

the small sample properties of estimated impulse responses, most of these studies focus on

stationary VAR processes. Moreover, the underlying data generation processes are necessar-

ily quite limited compared to the wide range of models that have been used in applied work.

Hence, it is not clear whether the simulation results are generalisable to a particular model

under consideration in empirical work. Second, as is common in the empirical literature,

we have constructed CIs for the individual impulse response coe�cients. It may be more

plausible from a conceptual point of view to consider joint con�dence regions for the impulse

response functions because not only individual impulse response coe�cients but the overall

shape of some response is often of interest.

In conclusion, it is clear that there are a number of open problems surrounding impulse

response analysis in the context of VAR models. Despite these problems is is important

to use the available tools for getting an impression of the uncertainty underlying any spe-

ci�c analysis. Therefore it is surprising that some popular software packages for dynamic

econometric analysis do not provide con�dence intervals for impulse responses and thereby

complicate the interpretation of the results.

Appendix. Data Sources

Seasonally unadjusted quarterly data were used for the following variables taken from the

given sources. All data refer to West Germany until 1990(2) and to the uni�ed Germany

afterwards.

M1: nominal monthly values fromMonatsberichte der Deutschen Bundesbank; the quarterly

values are the values of the last month of each quarter. The variable m1 is log M1.

M3: nominal monthly values fromMonatsberichte der Deutschen Bundesbank; the quarterly

values are the values of the last month of each quarter. The variable m3 is log M3.

GNP: quarterly real gross national product fromDeutsches Institut f�ur Wirtschaftsforschung,

Volkswirtschaftliche Gesamtrechnung. The variable y is log GNP.
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Price index: GNP deator (1991 = 100) from Deutsches Institut f�ur Wirtschaftsforschung,

Volkswirtschaftliche Gesamtrechnung. The variable p is the logarithm of the price

index.

Average bond rate (Umlaufsrendite) (R): monthly values fromMonatsberichte der Deutschen

Bundesbank; the quarterly value is the value of the last month of each quarter.

Own rate of M3 (r): the series was constructed from the interest rates of savings deposits

(rs) and the interest rates of 3-months time deposits (rt) from Monatsberichte der

Deutschen Bundesbank as a weighted average as follows:

r =

8><
>:

0:24rt+ 0:42rs for 1976(1)� 1990(2)

0:30rt+ 0:33rs for 1990(3)� 1996(4)

The weights are chosen according to the relative shares of the corresponding compo-

nents of M3. The quarterly value is the value of the last month of each quarter.

Import price index: PM (1991 = 100) from Deutsches Institut f�ur Wirtschaftsforschung,

Volkswirtschaftliche Gesamtrechnung. The variable pm is the logarithm of PM.

The data may be obtained from the internet,

http://wotan.wiwi.hu-berlin.de/oekonometrie/engl/data.html
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Figure 1: Estimated impulse responses for fully unrestricted M1 VAR system (solid line)

with 95% CIs: CIS (dotted lines), CIH (strong dashed lines), CISH (light dashed lines)
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Figure 2: Estimated impulse responses of restricted VECM for M1 (solid line) with 95%

CIH (dashed lines) and 95% CIH from fully unrestricted VAR system (dotted lines)
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Figure 3: Estimated impulse responses of restricted VECM for M1 (solid line) with 95%

CIH (dashed lines) and 95% CIH from unrestricted VECM (dotted lines)
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Figure 4: Estimated impulse responses of restricted VECM for M1 (solid line) with 95%

CIH when the cointegration vector is reestimated (dashed lines) or �xed (dotted lines) in

every bootstrap drawing
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Figure 5: Estimated impulse responses of restricted VECM for M3 (solid line) with 95%

CIs: CIS (dotted lines), CIH (dashed lines)
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