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ABSTRACT

A Theory of Interest Rate Stepping:
Inflation-Targeting in a Dynamic Menu Cost Model*

A stylised fact of monetary policy-making is that central banks do not
immediately respond to new information, but rather, seem to prefer to wait
until sufficient ‘evidence’ to warrant a change has accumulated. However,
theoretical models of inflation-targeting imply that an optimising central bank
should continuously respond to shocks. This paper attempts to explain this
stylised fact by introducing a small menu cost which is incurred every time the
central bank changes the interest rate. It is shown that this produces a
relatively large range of inaction, because this cost will induce the central bank
to take the option value of the status quo into account. In other words,
because action is costly, the central bank will have an incentive to wait and
see whether or not the economy will move closer to the inflation target of its
own accord. Next, the Paper analyses the implications for the time series
properties of interest rates. In particular, we examine the effect of the interest
rate sensitivity of aggregate demand, the slope of the Lucas supply function,
the variance of demand shocks on the size of the interest rate step and the
expected length of the time period till the next interest rate step. Finally, we
analyse the effect of menu costs on inflationary expectations. In this respect
we find that the economy will suffer from an inflationary bias if the cost of
raising the interest rate exceeds the cost of lowering it.
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NON-TECHNICAL SUMMARY

Since the early 1990s many countries have adopted inflation-targeting as their
framework for monetary policy. As described by e.g. Svensson (1997b), the
implementation of inflation targeting involves a systematic, forward-looking
and optimising way of conducting monetary policy. In particular, it involves the
assignment of an explicit inflation target (goal dependence) and the freedom
to achieve this target over the medium-term without political interference
(instrument independence). Both from a practical as well as a theoretical
perspective, inflation-targeting implies inflation-forecast-targeting (see
Svensson (1997b)). In other words, due to lags in the transmission
mechanism, the conditional inflation forecast will serve as an intermediate
target for monetary policy. The advantage of this is that the conditional
inflation forecast is by definition closely related to the ultimate goal of
monetary policy and that this forecast will take all relevant information into
account.

In theory this means that the central bank’s instrument (i.e. the short-term
interest rate) should respond to changes in all the determinants of future
inflation. However, in practice, central banks do not respond to every bit of
incoming news about variables, which are generally thought to have predictive
power for future inflation. Rather, they change their key interest rate by
discrete amounts in the face of a continuously changing environment.
Following Bhundia and Yates (1997), we refer to this phenomenon as interest
rate stepping. In fact there are good reasons why the central bank should
want to economise on the number of interest rate steps to be taken, i.e. why
small deviations of inflation (or the conditional inflation forecast) from its target
will not be corrected. For instance, the central bank may take into account the
loss suffered by private agents who are locked into fixed nominal interest rate
contracts. Moreover, central bankers might fall victim to heavy criticism when
they have to reverse an interest rate step. The latter is very likely when the
inflation forecast is close to target given the random walk nature of ‘news’.
Finally, given the inevitable unpredictable shocks to the banking system’s
demand for central bank reserves and the concomitant random fluctuations of
the inter-bank interest rate around its target, changing the target by only a few
basispoints, to correct a small deviation of the inflation forecast from its target,
may reduce the signalling value of such a change.

We present a dynamic model in which the central bank engages in strict
inflation-targeting (i.e. it does not take output fluctuations into account
explicitly) and in addition incurs a small loss in utility whenever it changes the
interest rate. Because of this small ‘menu’ cost the central bank will allow
inflation to fluctuate randomly within a certain band around the target.



Moreover, because this cost will induce the central bank to take the option
value of the status quo into account, we only need a very small loss in utility to
have a significant effect on the width of this band. This option value arises
because, at every moment in time, the central bank can either decide to
change the interest rate or wait for a small period of time during which
stochastic shocks induce inflation to revert towards its target. Obviously, an
increase in the volatility of the process which drives inflation in the absence of
interest rate changes will also increase the option value of the status quo and
therefore also the width of the inflation band.

The volatility of inflation depends on three factors. First of all, there is a
positive relationship between the volatility of exogenous demand shocks and
the variance of the process which drives inflation, simply because the former
is the only source of uncertainty in the model. Next, the volatility of inflation will
increase if the interest rate sensitivity of aggregate demand goes up. This
effect arises because, for a fixed nominal interest rate, a change in inflation
will fuel a further change in the same direction through its effect on the real
interest rate. Finally, the volatility of inflation will decrease if aggregate supply
becomes more sensitive to surprise inflation. Because inflationary
expectations are locked into fixed nominal wage contracts, output is demand-
driven in the short run, i.e. a positive demand shock will be partly
accommodated by an increase in supply and partly by an increase in inflation.
If aggregate supply is more responsive to surprise inflation, this will reduce the
variability of inflation at the expense of increased output variability.

The model also allows us to identify factors that determine the optimal size of
the interest rate step. In general, factors that tend to increase the width of the
inflation band will also increase the optimal size of the interest rate step.
However, as far as the interest rate sensitivity of aggregate demand is
concerned there are two opposing effects. On the one hand, an increase in
this parameter will cause the width of the band to increase, because of which
the optimal size of the step will increase as well. On the other hand, an
increase in the interest rate sensitivity of aggregate demand will require a
smaller change in the nominal interest rate for any given width of the inflation
band.

We also look at the factors behind the expected period of time until the next
interest rate step, which basically depends on the cost of changing the interest
rate and the volatility of the process which drives inflation. As far as the latter
is concerned there are two opposing forces. On the one hand, an increase in
volatility will reduce the expected time period till the next interest rate step, i.e.
for any given width of the inflation band it will reduce the expected amount of
time that will elapse before inflation hits one of the edges. On the other hand,
an increase in volatility will also increase the width of the band within which



inflation is allowed to fluctuate without triggering an interest rate step. This
tends to increase the expected period of time till the next step.

Finally, we investigate the effect of menu costs on inflationary expectations. In
this respect we find that the economy will suffer from an inflationary bias if the
cost of raising the interest rate exceeds the cost of lowering it. This effect
arises even though the central bank does not systematically seek to create
surprise inflation in pursuit of some real objective. The reason for this result is
that wage-setters know that the central bank’s tendency to maintain the policy
stance longer in the face of upward inflationary pressures will produce an
average rate of inflation which exceeds the assigned target.
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1. Introduction

“…In sum, given that inflation was forecast to be close to the target in two year’s

time and that the outlook beyond then was highly uncertain, the Committee could

sensibly wait to gather more information before concluding that policy needed to be

changed…”

Minutes of Monetary Policy Committee Meeting, 5 and 6 August 1998

As a result of the disappointment with monetary targeting and/or fixed exchange rates,

many countries have now adopted a regime of (direct) inflation targeting. The use of

explicit inflation targets derives its theoretical rationale from the fact that they can

overcome credibility problems since they can replicate the results of optimal performance

incentive contracts (see Walsh (1995) and Svensson (1997a)). From a theoretical

perspective this has also stimulated the research on monetary policy rules which deal

with the question how these explicit inflation targets should be translated into monetary

policy instruments (see e.g. Taylor (1993,1998), Svensson (1997b) and Haldane (1997)).

This literature explicitly recognises the fact that, because of lags in the transmission

mechanism, the actual future rate of inflation will not be under direct control of the

central bank. Rather, central banks will use their ability to manipulate the (short-term)

interest rate to target the expected future inflation rate conditional on all information that

is currently available. Consequently, these models also prescribe the appropriate response

to a shock to one of the determinants of inflation. In particular, on the assumption that the
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central bank only cares about inflation stabilisation it should assess the impact of the

shock on the conditional inflation forecast and subsequently change the interest rate so as

maintain the equality between the conditional inflation forecast and the assigned inflation

target.2 As a result, the optimal conduct of monetary policy implies that the short-term

interest rate will inherit the time-series properties of the determinants of inflation.

However, a stylised fact of actual monetary policy making is that central banks do not

immediately change the interest rate in response to new information about the state of the

economy.3 Rather, the instrument of monetary policy tends to remain constant in the face

of a changing environment and tends to be changed by discrete amounts while the

variables which appear in the central bank’s reaction function (e.g. inflation and output)

change continuously. Following Bhundia and Yates (1997) we will refer to this

phenomenon as interest rate stepping. It should be emphasised that this is not the same as

interest rate smoothing. The latter can be defined as the well-established practice of

implementing a desired change in the monetary policy stance in a series of small steps in

the same direction rather then taking one single large step all at once.

The purpose of this paper is to reconcile interest rate stepping with optimising behaviour

on the part of the central bank and to explore the economic implications of the resulting

discrete interest rate changes in a continuously changing environment. To this end we

introduce a small ‘menu’ cost which is incurred every time the central bank changes the

                                                
2  For a formal treatment of this point see Svensson (1997c).
3 For useful surveys of this phenomenon see Rudebusch (1995), Goodhart (1996) and Bhundia and Yates

(1997).
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interest rate. Following the literature on the impact of such costs of decision making on

the behaviour of monopolistic price setters (see e.g. Mankiw (1985) and Akerlof and

Yellen (1985)), under these conditions it is no longer optimal for the central bank to

respond to small deviations from the optimum. Moreover, in a dynamic setting these

costs will induce the central bank to take the option value of the status quo into account.

Obviously, this option value will be irrelevant if action can be taken at no cost since in

that case there is nothing to prevent the central bank from keeping inflation equal to the

assigned target continuously. Since the cost, once incurred, will not be reversed by an

interest change in the opposite direction, there is an incentive for the central bank to wait

and see whether or not the economy will move inflation back towards the target of its

own accord. As a result, the central bank will allow the inflation rate to fluctuate freely

within a certain range.

The paper proceeds as follows, Section 2 outlines a simple closed economy and provides

a number of reasons for the existence of menu costs. In Section 3 we present the solution

to the model under three different scenarios; a benchmark case where menu costs are

absent, the case where the central bank solves a string of unrelated ‘period’ problems and

finally the case where the central bank explicitly recognises the intertemporal aspect of

its problem. Subsequently, we examine the factors which influence the width of the

inflation band. Section 4 examines the implications for the dynamics of short-term

interest rates in the light of the empirical literature on this subject. Section 5 solves for

the expected rate of inflation and assesses under which conditions the economy will

suffer from an inflationary bias. Finally, Section 6 concludes.
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2. A Simple Closed Economy Model

Consider the following economy in continuous time. Aggregate supply (yt
s) is given by

the familiar Lucas-supply function .

yt
s

t
e= −β π π( ) (1)

In this equation the natural rate of output (y*) has been normalised to zero. The parameter

β measures the slope of the Lucas supply function, πt is the (instantaneous) rate of

inflation rate and πe denotes inflationary expectations. As indicated by the absence of a

time subscript inflationary expectations do not depend on any particular point in time.

One can think of this as the result of the existence of fixed nominal wage contracts. More

precisely, agents will determine the expected rate of inflation using the long run

probability density function of inflation conditional on the central bank’s optimal

monetary policy.4 The exact factors which determine πe will be discussed in Section 5.

For now we note that the central bank will take inflationary expectations as given when

setting the interest rate. Aggregate demand (yt
d) is modelled as follows:

                                                
4 Formally, let F be the information set available to private agents containing the information they have

about optimal monetary policy and let g(π|F) be the long run probability density function of inflation

conditional on this information set. Then we have:

∫
∞

∞−

== πππππ dFgFEe )|()|(
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ttt
d
t iy ηπα +−−= )( (2)

Here it is the instrument of the central bank, i.e. the nominal interest rate which expresses

the monetary policy stance (e.g. the UK base rate, the US Federal Funds Target or the

ECB’s repo rate). The parameter α measures the sensitivity of aggregate demand to the

ex post real interest rate and ηt is an exogenous demand shock which follows a driftless

Brownian motion:

dwd ση =  (3)

There is no particular economic reason for assuming a continuous time random walk on

the demand shock. However, unlike more sophisticated processes (e.g. exhibiting mean-

reversion) this assumption will allow us to compute a relatively simple analytic solution

to the central bank’s problem.

As far as the preferences of the central bank are concerned, it is assumed that there is a

basic trade-off between deviations of the rate of inflation from the assigned target (π*), on

the one hand, and costs which are incurred whenever the interest rate is changed, on the

other. In view of this trade-off the central bank will minimise the following intertemporal

loss function:









=+−= ∑∫ −
∞

− πππππ δδ
0

2*

0

)()(
j

t
t

t jCedteEL (4)
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Here δ is the central bank’s discount rate (which is inversely related to the policy

horizon)  and tj denotes the instants where the central bank decides to change in the

interest rate. Each time this happens the central bank will incur a cost which is equal to

‘C’ for which it holds that C is small (i.e. C ∼ h). Apart from these costs, the central bank

is assumed to engage in strict inflation targeting.5 While this may seem a restrictive

assumption since virtually every central bank also cares about output fluctuations (at least

around the natural rate of output) it should be emphasised that in our model, which

features only demand shocks, inflation stabilisation implies output stabilisation.

The presence of a small cost of changing the interest rate in the central bank’s loss

function can be rationalised on a number of grounds. First of all, the central bank could

partly internalise the costs incurred by agents who are bound into fixed nominal interest

rate contracts.  For instance, Cukierman (1990, pp. 113) argues that the central bank will

be “… concerned with the predictability of interest rates rather than with their level..”.

The reason for this resides in the traditional task of the banking system to provide

liquidity by transforming short-term liabilities into long-term assets. This implies that the

interest rates charged on the asset side of the balance sheet are fixed for relatively long

periods while the interest rates paid on the liability side are likely to change every time

the official interest rate changes. Stable official interest rates will therefore reduce the

probability of an interest rate mismatch .

                                                
5 In reality, the actual future rate of inflation will of course never be under perfect control by the central

bank. However, Svensson (1997) has shown that inflation targeting implies that the conditional forecast of

inflation becomes the intermediate target of monetary policy. The latter can of course be perfectly and

instantaneously controlled by the central bank.
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Secondly, as argued by Crockett (1994) central bankers may also face a ‘psychological’

cost when they change their minds, for instance since this makes them vulnerable to

allegations of inconsistency or incompetence. As argued by Goodhart (1999) this cost is

likely to be prohibitive when the need for a change in the monetary policy stance is not

very obvious to outside observers (i.e. when inflation or the inflation forecast is close to

the target and output is close to potential). In that case, given the random walk nature of

news about these variables, there is a considerable chance that an interest change that is

optimal today will have to be reversed in the near future. This might give the impression

that the central bank is uncertain about the appropriate direction for monetary policy.

Moreover, despite a considerable degree of formal independence, the central bank may

still be under pressure from politicians not to raise interest rates. As a consequence, the

central bank will also be reluctant to lower interest rates because once they are lowered it

may be ‘politically difficult’ to increase them again.6

Finally, there is an argument related to the way the interbank money market works. The

Fed, for instance, announces a target for the Fed Funds Rate. Unpredictable shifts in the

demand curve for central bank balances will cause the Fed Funds Rate to fluctuate

randomly around this target (this is because the Fed subsequently corrects these shifts

through open market operations to maintain the Fed Funds Rate equal to the target on

average).  If the Fed were to react optimally to every bit of economic news that comes in

it would have to change the Fed Funds Target frequently by probably only a few

                                                
6 According to Huizinga and Eijffinger (1999) there is also a strategic argument for not changing the

monetary policy stance in response to every (supply) shock since this will lower inflationary expectations.
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basispoints. Given the afore-mentioned volatility of the actual Fed Funds Rate this would

reduce the information value of interest rate changes which presents an incentive to the

Fed to economise on the number of steps to be taken.

3. Solution under Static and Rational Expectations

3.1 no menu costs

As a benchmark we will first solve for the equilibrium in the absence of menu costs (C =

0). From equations (1) and (2) we can derive the following reduced form for inflation:

tt
e

t i η
αβαβ

απ
αβ

βπ
−

+
−

−
−

= 1
(5)

In order to rule out a perverse response of inflation to its determinants we need to assume

that β>α. Obviously, the central bank’s intertemporal loss function (4) will be minimised

if it sets it so as to ensure that the condition πt = π* holds continuously.7 Substituting this

condition in equation (5) and solving for it yields the following endogenous instrument

rule

t
e

ti η
α

ππ
α
βπ 1

)( ** +−+= (6)

                                                
7 Following Svensson (1997) this equality is simply the optimal (intermediate) target rule.
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This equation is very similar to the Taylor rule (Taylor (1993)) in the sense that it

expresses the optimal value of the central bank’s instrument as a linear function of the

determinants of inflation. In particular, the interest rate will inherit the time-series

properties of the demand shock and will therefore also follow a driftless Brownian

motion. 8 It appears that the afore-mentioned stability condition concerning the ratio of

the slope of the Lucas supply function and the interest rate sensitivity of aggregate

demand (β/α) implies that the response-coefficient for (πe-π*) will be strictly greater than

one. This is a well-known and robust condition for stability in the literature on monetary

policy rules (see Taylor (1998)).

Plugging the optimal rule (6) back into the reduced form for inflation (5) yields: πt=π*.

Since wage setters know that the central bank will always keep inflation equal to the

target they will determine the expected rate of inflation as follows: πe = E(π) = π*. As a

result, the economy will permanently be at the equilibrium where it holds that πt = πe =

π* and y = y* = 0 .

3.2 positive menu costs

If changing the interest rate is costly, it will no longer be optimal to do so if the deviation

of the inflation rate from the target is small (in a manner to be made more precise later).

In other words, there will be a trade-off between losses arising from deviations of

                                                
8 As we will show later, even in the presence of menu costs this rule describes the long-run behaviour of the

interest rate. Since the demand shock follows a continuous time random walk and since inflation will be

stationary as a result of optimal monteray policy it follows that both the nominal and the ex post real

interest rate will be non-stationary.
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inflation from its target, on the one hand, and losses stemming from interest rate

adjustments, on the other. As a starting point for the analysis we will compute the

solution for the inflation rate under the condition that the interest rate is kept constant.

Immediately after a change in the interest rate (at, say, t=0) the economy will be in a

situation where the inflation rate is equal to the target (π0=π*). Without loss of generality

we normalise the initial value of the demand shock to zero (η0 = 0). Inflationary

expectations are fixed and equal to πe. Plugging these parameter values into the optimal

instrument rule (6) yields the following for the nominal interest rate at t=0:

i e
0 = + −π β

α
π π* *( ) (7)

Substituting this expression into the reduced form equation for inflation (5) we obtain an

expression for πt which holds as long as the interest rate is maintained at the value

specified in equation (7). Since we can repeat this procedure for every instant the interest

rate is changed we can derive the following general expression for the rate of inflation

which holds for all periods between interest rate changes:

0;

)(

1
;

00

*

====

−
≡=≡−

ηεεσε

αβ
θθεππ

jt

ttt

dwd

x

(8)

Here εt is defined as the stochastic shock to the inflation gap (xt). This shock can be
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thought of as a re-normalised value of the demand shock (ηt). Starting from t=0 the shock

to the inflation gap will be equal to the demand shock (i.e. εt = ηt for it = i0 ). Now

suppose that at t=τ the central bank decides to change the interest rate. Obviously, the

new interest rate will be set so as to bring inflation back to the target (i.e. it will hold that

iτ = π* + (β/α) (πe-π*) + ητ/α ). Since at the time of resetting we need to have ετ=0 in

equation (8), it will hold that: εt = ηt - ητ for it  = iτ. Of course, this normalisation of the

demand shock can be applied to all instants in which the interest rate is changed (i.e. for

all tj ).

Now suppose the central bank ignores the fact that it is dealing with a dynamic

optimisation problem and simply solves a string of unrelated ‘period’ optimisation

problems instead. In other words, the central bank will treat εt as a ‘once and-for-all

shock’ or, equivalently, it has static expectations in the sense that it does not take the

stochastic properties of εt into account. At each point in time, the central bank will then

compare the discounted present value of the flow cost (xt
2/ δ) to the cost of changing the

interest rate (C). Hence, under static expectations, the central bank will set it according to

the optimal rule (6) if the following condition is met:

δππεθ
δ
εθ

CsC tt
t =>−=⇔> 2*2
22

)()( (10)

Consequently, even under static expectations ‘menu’ costs which are of second-order

smallness (C∼h2) will lead to a range of inaction which is of first-order smallness (s∼h) .
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As noted by Dixit (1991) it is in this sense that small menu costs produce relatively large

effects.

Under rational expectations the central bank will recognise the intertemporal aspect of its

problem and will explicitly take the stochastic process driving the demand shock into

account. In other words, if the loss stemming from the inflation gap passes the ‘static

expectations threshold’ in equation (10) it is no longer optimal to change the interest rate

and incur the cost of doing so. This is because the central bank has the option to wait and

see whether or not the economy will move inflation back to the target level of its own

accord. Similar to the case where the central bank has ‘static’ expectations, the

optimisation problem boils down to choosing a threshold level for the inflation gap (b)

which will trigger a change in the interest rate. On the assumption that the cost of raising

the interest rate is equal to the cost of lowering it, the upper and lower threshold levels

imply a symmetric band within which inflation is allowed to move according to the

process defined in equation (8). Moreover, because the cost of changing the interest rate

does not depend on the magnitude of the change (i.e. these costs stem simply from the

fact that there is a change in the interest rate) the inflation gap will be set to zero

whenever it hits one of the thresholds.

First of all, to solve the central bank’s problem (4) we now have to translate the

stochastic properties of the shock to the inflation gap (εt) into stochastic properties for the

inflation gap itself (xt). Applying the rules of stochastic calculus to equation (8) we can

write:9

                                                

 9 When x = g(ε) , where ε follows a driftless Brownian (see equation (3)),  it will hold that:
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dwdx θσ=  (11)

Next, we would like to find an expression for the loss function (4) which can be

minimised with respect to the central bank’s choice variable (b). We realise that the

interest rate will not be changed as long as the inflation gap is strictly within the band.

Hence, for any x ∈ (-b, b) we can express the RHS of equation (4)  by means of the

Bellman equation:

( ){ }L x x dt e E L x dxdt( ) = + +−2 δ (12)

Expanding the RHS of this equation and using Ito’s lemma (see Appendix A) yields a

second-order differential equation:

0)()(
2

1 2’’22 =+− xxLxL δσθ (13)

In Appendix A it is shown that the general solution to this equation can be expressed as

follows:

)(;
2

;)()(
2

222

bAAeeA
x

xL xx =≡+++= −

θσ
δγ

δ
σθ

δ
γγ (14)

                                                                                                                                                

dwgdtgdx σεσε )()(
2

1 ’2’’ +



=



15

The first two parts on the RHS denote the expected present value of the loss function

under the condition that the interest rate is never changed. Consequently, the third term

on the RHS captures the value of being able to make interest rate adjustments. In

particular, the effect of the threshold level b on the intertemporal loss function L(x) will

be fully incorporated in the constant of integration (A).

It now remains to solve for the constant of integration A and the threshold level b

simultaneously.  Following Dixit (1991,1993) there are two conditions which pin down

these parameters. First of all, the Value Matching Condition (VMC) which says that in

the optimum the reduction in the value of L(x) obtained by exercising control should

equal the cost of changing the interest rate. In other words, the optimal choice of the

threshold level implies that there are no discontinuities in the intertemporal loss function

(if there were ‘discrete jumps’ in L(x) for a particular choice of b this choice would

obviously not be optimal). Applying this to equation (14) we obtain:

( )
δ

γγ
2

2)0()(
b

CeeACLbL bb −=−+⇔=− − (15)

Secondly, the Smooth Pasting Condition (SPC) which requires the graphs of the L(x) and

C-functions to meet tangentially at the point where x=b. This can be understood by

observing that, for expression (14) to be minimised, we need the first order condition

A’(b)=0. Differentiating the Value Matching condition with respect to b and using this
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first order condition yields:10

( )
δ

γ γγ b
eeAbL bb 2

0)(’ −=−⇔= − (16)

Since both equation (15) and (16) are highly non-linear, A and b can generally only be

solved numerically. However Dixit (1991) has shown that the solution for b can be

approximated analytically (see Appendix A), this yields:
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Hence, under rational expectations fourth-order menu costs (C∼h4) will have a first-order

effect on the band of inaction (b∼h). The reason is that under rational expectations the

policymaker will take the option value of the status quo into account. In particular, when

the inflation gap hits the ‘static expectations threshold’ specified in equation (10) it is no

longer optimal for the central bank to reset the inflation gap back to zero by incurring the

small cost equal to C.  Instead at this point the central banker will wait for a small amount

of time (dt) during which he will receive new information about the state of the economy.

More precisely, the central bank will be able to see if the inflation gap moves back

                                                
10 Note that this condition proves that barriers will reduce the value of the loss function (relative to the

value obtained in the situation where control is never exercised) since equation (16) will only hold for A <

0.
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towards zero of its own accord. Consequently, the there will be a trade-off between the

‘period’ flow cost stemming from the inflation gap, on the one hand, and the cost of

exercising control plus the option value of the status quo, on the other.

This is illustrated in Figure 1which depicts the situation immediately after an interest rate

step has been taken. The aggregate supply curve (ys) is drawn for the situation where

πe=π*. The demand shock has the effect of shifting the aggregate demand curve (yd)

randomly along the aggregate supply curve. If there are no costs to changing the interest

rate (C=0) the central bank will offset each shock so as to preserve the situation where

inflation is equal to the target. However, if changing the interest rate is costly, the

demand curve will be allowed to shift around until the rate of inflation hits one of the

thresholds.

[insert Figure 1]

Equation (17) allows us to examine the effect of structural and preference parameters on

the threshold level for the inflation gap:

PROPOSITION 1:

The inflation gap threshold (b) will increase if:

1. The cost of changing the interest rate (C) increases

2. The volatility of the demand shock (σ) increases

3. The slope of the Lucas supply function (β) decreases

4. The interest rate sensitivity of aggregate demand (α) increases
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The proof of this proposition follows immediately from equation (17). Obviously, an

increase in the cost of changing the interest rate will induce the central bank to accept a

larger inflation gap before taking action. Next, the effect of the volatility of the demand

shock, the slope of the Lucas supply function and the interest rate sensitivity of aggregate

demand can be understood from the way they affect the volatility of the stochastic

process driving the inflation gap as described in equation (11). This is because an

increase in the volatility of the inflation gap will also increase the option value of the

status quo.

First of all, since the inflation gap is driven by the demand shock, an increase in the

volatility of the demand shock (σ) will spill over into higher inflation gap volatility. Next,

a decrease in the slope of the Lucas supply function (β) will enhance the effect of a given

demand shock on inflation since now a larger part of this shock will be absorbed by

inflation at the expense of the effect on output. Finally, if aggregate demand becomes

more sensitive to the ex post real interest rate (it-πt) this will enhance the well-known

‘vicious circle of instability’ by which an increase in inflation will increase aggregate

demand through the erosion of real interest rates thereby fuelling a further increase in

inflation.
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4. Implications for the Dynamics of Short-Term Interest Rates

The behaviour of the central bank’s key interest rate and the implication of this behaviour

for longer-term interest rates has been extensively studied in the empirical literature.11

For instance, Rudebusch (1995) provides a survey of empirical tests of the expectations

hypothesis of the term structure of interest rates, the upshot of which is that term spread

predicts future movements in interest rates fairly well in the very short-run (up to 1

month) and in the long run (2 years and longer) . The first finding can be attributed to the

tendency of many central banks to smooth interest rates (i.e. to implement the required

increase or decrease in a series of small steps rather than all at once). The second

observation can be explained by the fact that in the long run the level of interest rates will

be determined by the central bank’s desire to achieve its ultimate monetary policy goals.

Since the latter are to a considerable extent known to the public, agents will be able to

predict interest rate movements over long horizons with a reasonable degree of accuracy.

However, in the medium run the predictive ability of the term spread is very poor which

led many researchers to reject the rational expectations theory of the term structure.

Mankiw and Miron (1986) have argued that the lack of predictive ability can be

explained by explicitly taking the manner in which the central bank controls interest rates

into account. In particular, they suggest the Fed imparts random walk behaviour to the

Federal Funds Target in which case the hypothesis of rational expectations implies

                                                
11 Recent examples are Rudebusch (1995),  Balduzzi, Berola and Foresi (1997) and Balduzzi, Bertola,

Foresi and Klapper (1998).
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precisely that future short-term interest rates should not be predictable. This idea has been

extended by Rudebusch (1995), Balduzzi et al (1997) and Balduzzi et al (1998).  These

authors explicitly model the process generating the central bank’s target interest rate by

postulating that on any given day within the sample period, there will a relatively small

but equal probability of a target change of fixed size in either direction.12 Moreover,

Balduzzi et al (1998) document a new stylised fact, namely that the volatility and

persistence of the spread increases with the maturity of the loan. They show that spreads

of longer-term (e.g. 3 or 6 month) rates from the target are mainly driven by expectations

of future target changes. When a target change takes place, all ‘adjustment pressures’ will

be released. However, immediately thereafter the market starts to receive new

information which leads to partial predictability of the next target change. Obviously, in

view of the fact that the central bank engages in interest rate stepping, the impact of this

information on the spread will increase with the maturity of the debt instrument.

In view of this description of interest rate stepping in the empirical literature it is

interesting to investigate the factors which determine the size of the interest rate step, the

expected duration till the next target change and the extent to which the next target

change is predictable. First of all, in our model interest rate steps will always be of a

given and fixed size.13  This is because the interest rate will be reset at a new optimal

level if and only if the inflation gap hits one of the thresholds (i.e. if it holds that |xt| = b).

                                                
12 This formulation abstracts from interest rate smoothing considerations since these will induce a relatively

high probability of a target change in the same direction during the first month after a target change (see

Rudebusch (1995)).
13  Rudebusch (1995) shows that in reality the size of the interest rate step is drawn from a discrete
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Suppose that starting from t=0, the inflation gap first hits one of the barriers at t = τ .

From equation (8) it can be seen that this implies that |ετ| = b (β-α). Plugging this

expression into the optimal interest rate rule (6) yields:

 |iτ | = π* + (β/α) (πe-π*) +  b(β-α) / α . Subtracting the expression for i0 obtained in

equation (7) and using the expression for b in equation (17) will yield the following

expression for the absolute  value of the interest rate step:
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PROPOSITION 2:

The absolute value of the interest rate step ( | iτ - i0 | ) will increase if:

1. The cost of changing the interest rate (C) increases

2. The volatility of the demand shock (σ) increases

3. The slope of the Lucas supply funtion (β) decreases

4. The interest rate sensitivity of aggregate demand (α) increases for β/α<

3/2  or decreases for β/α > 3/2

Proof: see Appendix D.

                                                                                                                                                

probability distribution.
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The intuition is that an increase in C, an increase in σ or a decrease in β will induce an

increase in the threshold level (b). Hence, a larger interest rate step will be needed when

the inflation gap hits one of the barriers.  As far as an increase in α is concerned there are

two opposing effects. On the one hand this will cause the threshold level (b) to go up. On

the other hand, since aggregate demand will be more sensitive to interest rate changes, a

smaller step will be needed for any given value of the threshold which will tend to

decrease the size of the interest rate step.  The model predicts that the first effect will

dominate if the reaction coefficient for (πe-π*) in the optimal interest rate rule (6) is

‘relatively low’ (i.e. for 1 < β/α < 3/2).

Next, we can investigate the factors which affect the expected period of time that will

elapse before the next interest rate step is taken (T(x)) . In Appendix C it is shown that

for symmetric threshold levels (-b, b) this is given by:

2

22)(6)(
)(
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αβ xC

xT
−−−= (19)

The following proposition summarises the effect of several model parameters on T(x):
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PROPOSITION 3:

The expected time period that will elapse before the next interest rate step is taken

(T(x)) will increase if:

 1. the cost of changing the interest rate (C) increases

2. the slope of the Lucas supply function (β) increases for |x| < b/√2  or decreases for

|x| > b/√2

3. the interest rate sensitivity of aggregate demand (α) decreases for |x| < b/√2  or

increases for |x| > b/√2

 4. the volatility of the demand shock (σ) decreases for |x|  < b/√2  or increases for

 |x| > b/√2

Proof: see Appendix D

An increase in the costs of control (C) will increase the threshold level (b) because of

which it will take longer before the inflation gap reaches one of the threshold levels. The

result for the parameters β,α and σ is basically the outcome of two opposing forces. On

the one hand, an increase in β, a decrease in α and/or a decrease in σ will reduce the

volatility of the inflation gap (see equation (11)). This will increase the expected time

period that will elapse before the interest rate is reset for any given value of the threshold

level (b). However, there is also an indirect effect since a decline in the volatility of the
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stochastic process driving the inflation gap will reduce the threshold level itself (see

Proposition 1). All else equal, this will reduce the average time till the next interest rate

step.

Which one of these two effects dominates depends on the current value of the inflation

gap (x). The model predicts that a decrease in volatility will increase the expected

duration of the current monetary policy stance if the inflation gap is relatively small (i.e.

if |x| < b/√2). In particular, this will hold for the average duration between two

consecutive interest rate steps (T(0)) which is equal to the first term on the RHS of

equation (19). In the empirical literature the probability of a target change during any

given day in the sample period is usually estimated using the empirical frequency of

target changes (i.e. the number of target changes divided by the number of business days

in the sample, see e.g. Balduzzi et al (1997)).  Consequently, our model identifies some

of the factors that determine this probability since the latter will be inversely related to

T(0).

COROLLARY 1:

The average duration between consecutive interest rate steps (T(0)) will be

increasing in the slope of the Lucas supply function (β) and the cost of changing

the interest rate (C) and decreasing in the interest rate sensitivity of aggregate

demand (α) and the volatility of the demand shock  (σ).
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Finally, to obtain an indication of the predictability of the next interest rate step we can

compute the probability that the interest rate will be lowered next time Q(x). Suppose that

in general the cost of raising the interest rate (Ch) differs from the cost of lowering it

(Cl).
14  This will lead to an optimal range of inaction in the interval (-a, b) where a, b > 0.

An asymmetry in the cost technology may arise because of the interaction between the

desires of politicians and the central bank. For instance, when the latter is to some extent

politically subservient, the cost of raising the interest rate may very well exceed the cost

of lowering it. Raising the interest rate is politically unpopular while lowering it may

yield electoral benefits. The reverse situation may arise when the central bank wants to

assert its independence in the face of politicians clamouring for interest rate cuts. In

Appendix C it is shown that for x ∈ (-a , b), the probability that the interest rate will be

decreased when it is reset (Q(x)) is given by:15
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where tkdenotes the instants where the interest rate is raised and the central bank incurs a cost equal to Ch

while tm denotes the instants in which it is lowered yielding a cost equal to Cl . In that case we have two

Value Matching Conditions ( L(-a)-L(0)=Cl and (L(b)-L(0)=Ch ) and two Smooth Pasting Conditions

( L’(-a)=L’(b)=0 ) to determine the two barriers a and b and the two constants of integration. It can easily be

shown that b’(Ch) > 0 and that a’ (Cl) > 0 and therefore Ch > Cl implies b > a.
15  Of course the probability of an interest rate increase at the next step is simply the complementary
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First of all, from this equation it can be seen that interest rate changes are perfectly

anticipated by the time they occur (i.e. Q(-a) = 1 and Q(b)=0). This is because in our

model the central bank does not have an information advantage over the public. In

particular, this means that there is no uncertainty on the part of private agents concerning

the position of the thresholds which allows them to anticipate interest rate changes with

certainty the instant before they are implemented.  Next, the effect of the cost of raising

and the cost of lowering the interest rate (Ch and Cl respectively) on the probability of an

interest rate decrease at the next step is summarised by the following proposition:

PROPOSITION 4:

The probability of an interest rate decrease at the next step (Q(x)) will increase if

the cost of lowering the interest rate (Cl) decreases and/or if the cost of raising the

interest rate (Ch) increases.

Proof: see Appendix D.

The intuition is that the absolute value of the upper threshold will exceed the absolute

value of the lower threshold if the cost of raising the interest rate exceeds the cost of

lowering it. This means that the probability that the inflation gap will first reach the lower

threshold will increase for any given rate of inflation.

                                                                                                                                                

probability:  P(x) = 1 – Q(x)
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5. The Effect of Dynamic Menu Costs on Inflationary Expectations

Since the expected rate of inflation is locked into nominal wage contracts it will not

respond to short-run fluctuations in aggregate demand and/or any one particular interest

rate response to these fluctuations. In other words, the expected rate of inflation will be

determined by agents’ beliefs concerning the long-run characteristics of monetary policy.

In particular, they know the preferences of the central bank from which they can deduce

the range of inaction and, consequently, the long run probability density function for

inflation conditional on the thresholds chosen by the central bank. This, in turn, allows

them to compute a rational expectation of inflation.

In Appendix C it is shown that for thresholds –a and b, the long run probability density

function for the inflation gap φ(x) will be as follows:
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This probability density function is depicted in Figure 2.

[insert Figure 2]

Using this we can compute πe = E(x) + π*, where the expected value of the inflation gap

(E(x)) will be equal to:
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From this we can infer the following relationship between the inflationary bias and the

costs of raising or lowering the interest rate:

PROPOSITION 5:

The economy will suffer from an upward (downward) inflationary bias (πe >
< π*)

if the cost of raising the interest rate exceeds (is smaller than) the cost of lowering

it (Ch 
>

< Cl) .

Proof: see Appendix D

In most models an inflationary bias arises because the policymaker faces a systematic

temptation to create surprise inflation once nominal contracts are signed. This is because

unanticipated inflation enables the policy maker to pursue various real objectives16 (e.g.

an output level which is higher than the natural output level). In this model the central

bank is not tempted to cheat the public since its only ultimate monetary policy goal is to

stabilise inflation. The introduction of a small menu cost does not alter this basic fact,

even though it means that control will no longer be exercised continuously. In that case,

provided the cost structure is symmetric (implying a = b) inflation will not deviate

                                                
16 For a survey see Cukierman (1992, Chs. 2-7)
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systematically from its target (π*) because of which the latter will feature as the expected

rate of inflation which is locked into nominal wage contracts. All this implies that

observationally the economy will move along a stable Phillips curve of the form πt = π* +

(1/β)yt. This relationship is stable precisely because the central bank does not

systematically try to take advantage of this relationship17.

However, if for reasons mentioned earlier the cost of raising the interest rate is higher

than the cost of lowering it, the probability mass to the right of the point where the

inflation gap is zero (φ(0)) will exceed the probability mass to the left of this point (this is

the situation depicted in Figure 2).  Taking this into account wage setters realise that the

tendency to maintain the current policy stance longer in the face of upward inflationary

pressures will produce an average rate of inflation which is higher than the target. At the

risk of repetition it should be noted that this inflationary bias arises even though the

central bank does not face a systematic temptation to generate surprise inflation. The

optimal instrument rule (6) is fully credible (in the sense that the public faces no

uncertainty about this rule) and implies that the inflation gap will be set equal to zero

every time the central bank decides to ‘switch this rule on’. Moreover, changes in the

monetary policy stance (i.e. the interest rate) are always fully anticipated the instant

before they occur.

                                                
17  Of course, if the central bank were to try and take advantage of this relationship it would break down as

a result of the Lucas critique. In other words, this stable Phillips curve would fall victim to Goodhart’s law

that ‘..any statistical regularity will tend to collapse once pressure is placed upon it for control purposes…’

(Goodhart (1989))
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6. Summary and Conclusion

This paper studies a simple model of inflation targeting in which inflation stabilisation

features as the only ultimate goal of monetary policy. In addition, the central bank incurs

a small cost every time the monetary policy stance (i.e. the short-term interest rate) is

changed. Since this cost will induce the central bank to take the option value of the status

quo into account it will have a considerable effect on the inflation outcome. In particular,

costs of fourth-order smallness will have a first order effect on the band within which

inflation is allowed to fluctuate without a change in the interest rate. This band provides

an explanation for the well-documented central bank practice of interest rate stepping.

We examine how the width of this band depends on the cost of changing the interest rate

and the volatility of the inflation process. The latter will be determined by the volatility of

the underlying demand shocks, the slope of the Lucas supply function and the interest

rate sensitivity of aggregate demand.

In the empirical literature interest rate stepping has been used extensively to offer a

‘rational expectations consistent’ explanation for the failure of the term spread to predict

future movements in short-term interest rates. In view of these results we assessed the

factors that determine the size of the interest rate step, the expected time till the next

interest rate step and the probability that interest rates will fall next time the central bank

decides to take action. Some of the propositions we derive in this respect lend themselves

to empirical testing. For instance, the model predicts that the size of the interest rate step

will be increasing in the cost of changing the interest rate and the volatility of the demand

shock and decreasing in the slope of the Lucas supply curve. Similarly, the average



31

duration between two consecutive steps will be decreasing in the interest rate sensitivity

of aggregate demand and the volatility of the demand shock and increasing in the slope of

the Lucas supply function and the cost of changing the interest rate. Finally, we examine

the effect of these ‘menu’ costs on inflationary expectations. We show that the economy

will suffer from an inflationary bias if the cost of raising the interest rate exceeds the cost

of lowering. This result is interesting since it shows that an inflationary bias can arise

even if the central bank does not try to create surprise inflation in pursuit of various real

objectives.

In line with the literature on monetary policy rules, our model clearly distinguishes

between the interest rate as the control variable and the rate of inflation as a state

variable. However, it differs from most other models in assuming that inflation is

instantaneously and perfectly controllable, i.e. it abstracts from lags in the transmission

process. Nevertheless, in these models the conditional inflation forecast, which serves as

the intermediate target of monetary policy, can be perfectly and instantaneously

controlled. Hence, in our view the rate of inflation in our model is best viewed as the

conditional inflation forecast when considering the implications of the model for the real

world.  In this sense the model provides an explanation for the existence of bands for the

intermediate target of monetary policy even if this intermediate target itself is perfectly

controllable.
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Appendix A: Derivation of the optimal band of inaction

Using the fact that e-δdt ≈ 1 - δdt  we can rewrite equation (13) as follows:
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Since dx = θσdw, by Ito’s Lemma it holds that:
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2
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)( ’’22σθ= (A.2)

Substituting this equation in (A.1), ignoring terms which are small relative to dt and

subsequently dividing by dt will yield the second-order differential equation (13) in the

main text. The solution to this equation consists of the sum of a particular solution (Lp(x))

and the general solution of the homogeneous part:

xqxq
p BeAexLxL 21)()( ++= (A.3)

Here A and B are constants to be determined and q1 and q2 are the roots of the

characteristic equation of the homogeneous part.

Since the forcing term is quadratic in x, we try the following particular solution:
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21
2

0)( dxdxdxLp ++= (A.4)

Plugging the resulting expressions for L” (x) and L(x) in equation (13) and subsequently

equating coefficients across equations (13) and (A.4) yields: d0 = 1/δ , d1 = 0 and d2 =

(θ2σ2)/δ2 . As in Dixit (1993) the resulting particular solution can be thought of as the

present value of the intertemporal loss function under the condition that control is never

exercised18. Consequently, the effect of barriers will be fully captured by the

complementary function. To find this function we solve the characteristic equation of the

homogeneous part to obtain the following expression for the characteristic roots:

σθ
δδσθ 2
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2,1

222 ±=⇔=− qq (A.5)

Next, regarding equation (A.3) we note that the threshold level (b) will only affect the

constants A and B, since the band is symmetric we therefore must have: A=B.  Defining γ

= |q| and substituting the particular solution and equation (A.5) into (A.3) yields equation

(14) in the main text.

Finally, we can solve for b using the analytical approximation developed by Dixit (1991).

Dividing the VMC-condition (15) by the SPC-condition (16) yields:

                                                
18 This can easily be seen by plugging the particular solution into equation (13). The reason for this result is

that the Bellman equation (12) is valid for x ∈ (-b,b) which is the region in which control is never
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Provided γb is sufficiently small in a manner to be explained, the LHS can be

approximated by a fourth-order Taylor expansion around γb = 0:
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 (A.7)

Equating the outcome of this approximation to the RHS of equation (A.6) and solving for

b yields equation (17) in the main text.

Finally, we will examine under which conditions γb will be sufficiently small. Take the

following parameter values: δ = 0.05 , β =2 , α = 1, C = 0.01 and σ = 0.1. Plugging these

values into the expressions obtained for γ and b and subsequently computing the product

                                                                                                                                                

exercised.
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yields: γb ≈ 0.5. Since higher-order terms in the expansion of the LHS of (A.6) involve

terms like (γb)5/120 and smaller we can conclude that the approximation is quite robust.

Appendix B: Derivation of the probability of an interest rate decrease

and the expected time period till next interest rate step

Follwing Dixit (1993), let Q(x) denote that probability that x will first hit the lower

barrier. Furthermore assume that x is regulated within the band (-a,b) where a,b > 0. For

any x within this band it will hold that:

)(
2

1
)(

2

1
)( dxxQdxxQxQ ++−= (B.1)

Rewriting this equation and dividing by (dx)2 yields the following:

[ ] [ ]
( )2

)()()()(
0

dx

dxxQxQxQdxxQ −−−−+= (B.2)

Taking the limit of the RHS of this equation as dx→0 we have: Q’’ (x) = 0. Therefore the

general solution for Q(x) will be:

HFxxQ +=)( (B.3)

where F and H are constants to be determined by examining Q(x) at the boundaries. This
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yields:

00)(

11)(

=+⇔=
=+−⇔=−

HbFbQ

HaFaQ
(B.4)

Solving for F and H we find:

ab

xb
xQ

+
−=)( (B.5)

Next, let T(x) denote the expected time period till the next interest rate step. For

simplicity we assume that x is regulated within the symmetric band (-b,b). For any x

which is strictly in the interior of this band we have:

)(
2

1
)(

2

1
)( dxxTdxxTdtxT −+++= (B.6)

Rewriting this and dividing both sides by (dx)2 we have:

[ ] [ ]
22 )(

)()()()(

)(

2

dx

dxxTxTxTdxxT

dx

dt −−−−+=−
(B.7)

From equation (11) it follows that (dx)2=θ2σ2dt. Using this on the LHS of equation (B.7)

and subsequently taking the limit for dx→0 on the RHS yields:



41

22
’’ 2

)(
σθ

−=xT (B.8)

Since the RHS of this equation is a constant we try a solution of the form:

NMxLxxT ++= 2)( (B.9)

Using equation (B.8) it can be seen that L = -1/(θ2σ2). Next, from the condition that

T(-b)=T(b)=0 we can establish: M=0 and N = b2/(θ2σ2). Plugging these values into (B.9)

and using the expression obtained for b in equation (17) yields equation (19) in the main

text.

Appendix C: Derivation of the Long-Run Stationary Distribution for xt

Consider the variable xt which follows the Brownian motion described in equation (11)

and which is regulated within the band (-a,b) where a,b > 0. For any xt ∈ (-a,b) let:

2

1
2

1

probwithdxx

probwithdxxx

t

tdtt

−

+=+

(C.1)



42

From this, the stationary probability density function (φ(x)) must satisfy:

)(
2

1
)(

2

1
)( dxxdxxx ++−= φφφ (C.2)

Rewriting this and dividing by (dx)2 yields:

[ ] [ ]
( )2

)()()()(
0

dx

dxxxxdxx −−−−+= φφφφ
(C.3)

Taking the limit for dx→0  on the RHS of (C.3), it follows that φ’’ (x) = 0. Consequently,

the general solution for φ(x) will be:

GFxx +=)(φ (C.4)

where F and G are constants which can be determined by examining the behaviour of

φ(x) at the boundaries and the resetting point.  First for xt = -a + dx  it will hold that:

2

1
0

2

1
2

probwith

probwithdxax dtt

=

+−=+

(C.5)

From this we can conclude:
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)(2)2(

0)(

dxadxa

a

+−=+−
=

φφ
φ

(C.6)

Furthermore, since φ(-a+2dx) will satisfy equation (C.1), it can easily be shown that for

n≥1 and for –a < x < 0, it holds that:

)()( dxanndxa +−=+− φφ (C.7)

Similarly, for the upper boundary b it can be shown that:

)()(

0)(

dxbmmdxb

b

−=−
=

φφ
φ

(C.8)

where the second equation holds for for m≥1 and 0 < x < b. From equations (C.4), (C.7)

and (C.8) we can see that φ(x) will be linearly increasing in x  for x ∈ [-a,0) and linearly

decreasing in x for x ∈ (0,b]. It remains to examine φ(0) for which it holds that:
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1
)(

2

1
)0(

2

1
)0(

2

1
)0( dxbdxadxdx −++−+++−= φφφφφ (C.9)

Rearranging and taking limits (see also Bertola and Caballero (1990)) we can write:
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φφφφ

(C.10)

From this equation it follows that while φ(x) is continuous at x=0 (this is ensured by

(C.9)), it is not differentiable at this point since the RHS and the LHS derivatives at x=0

have opposite signs.

Consequently, the Brownian motion process for xt subject to barriers –a and b will give

rise to a triangular steady state probability density function the support of which is

determined by the control thresholds (see Figure 2).

Finally, φ(0) can be determined by the requirement that I-a
b φ(x) dx = 1. From Figure 2 it

can be seen that this boils down to the the condition that  ½ (a+b) φ(0) =1. Using this, we

obtain equation (20) in the main text.

Appendix D: Proof of Propositions

Proposition 2:

The sign of the partial derivatives of  | iτ - i0 | with respect to C, β and σ can be

unambiguously inferred from equation (18). As for the parameter α we can compute:
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Proposition 3:

From equation (19) in the main text we can compute:
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From this it can be seen that for T(x) to be increasing in β and decreasing in α and σ we

need to have:
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Proposition 4:

From equation (20) in the main text we can compute (note that x ∈(-a, b)) :



46

0
)(

)(
;0

)(

)(
22

<
+
−=

∂
∂>

+
+=

∂
∂

ba

bx

a

xQ

ba

xa

b

xQ
(D.4)

a and b (together with two constants of integration) are determined by the two Value

Matching Conditions: L(-a)-L(0) = Cl  , L(b)-L(0) = Ch  and the two Smooth Pasting

Conditions: L’(-a) = L’(b) = 0 . From these it can easily be shown that ∂b/∂Ch > 0 and that

∂a/∂Cl > 0 (see Dixit (1993)). Consequently we have: ∂Q(x)/∂Ch > 0 and ∂Q(x)/∂Cl < 0.

Proposition 5:

To prove that πe is increasing in Ch and decreasing in Cl it is sufficient to prove that this

holds for E(x). From equation (21) we have:
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xE

b

xE

Using  the  results obtained in the proof of Proposition 4 then yields the proof of this

proposition.
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Figure 1: The Optimal Band Width
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Figure 2: Probability Density Function for the Inflation Gap
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