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ABSTRACT

Reading the Smile: The Message Conveyed by
Methods which Infer Risk Neutral Densities™

In this study we compare the quality and information content of nsk neutral
densities obtained by various methods. We consider a non-structural method,
based on a mixture of log-normal densities, and the semi-nonparametric ones,
based on an Hermite approximation of Abken, Madan, Mine, and
Ramamurtie, or based on an Edgeworth expansion of Jarrow and Rudd. We
also consider two structural approaches namely Malz, who assumes a jump-
diffusian for the underlying process, and Heston's stochastic volatility model.

We apply those models on FF/OM OTC exchange rate options for various
dates ranging between May 1996 and June 1887 - covenng the 1997 snap
glection. Models differ wher mnportant news hits the market (here the
anticipated elections). The non-structural model provides a good fit to options
prices but is unable to provide as much information about market participants’
expectations as Malz's jump-diffusion medel. Methods based on polynomial
expansions have difficulties describing the exchange rate data at hand.
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NON-TECHNICAL SUMMARY

The ability to access what other investors believe about the possible future
evoiution of a financial market would certainly have high value for all sorts of
imvestors as well as for policy-makers and central banks. investors could
check therr own beliefs; financial mstitutions could use it to limit their value at
nsk; and central banks could use it as a tool to check their credibility. The
existence of financial mstruments such as options {which are forward looking
and contingent on the value taken by the underlying asset at some point in the
future} exactly allows for this type of analysis.

To gain an intuition as to how this can be achieved we have to go back to the
onginal Black-Scholes and Merton model. That model assumes that the
underlying asset has a constant volatility. in the case where this assumption is
violated, possibly because volatility changes in a complicated manner or
because jumps occur in the underlying asset, several issues anse. A first
implication of a non-constant volatility, or jumps, is that an option can no
longer be perfectly hedged. A second one is that agents' anticipation about
the future, and their nsk aversion, leads to a specific demand of oplions
depending on the anticipated level of the underlying asset. For example, if
investors anticipate a devaluation of ther currency they can be expected to
have a relatively high demand for put options with a very low strike price.

This asymmetry in demand allows us to summarize market participants’
anticipation about the future values of the underlying asset as a risk neutral
probability density (RND), This probability holds for an environment that is risk
neutral. By considering the evolution through time of this density it becomes,
nonetheless, possible fo draw inference about the risk perception in the actual
world.

In this paper we compare a set of five different models on foreign exchange
rate data using a database containing observations for 20 dates covering
several interesting political events. The first mode! under consideration is a
non-structural one meaning that i makes no assumption on how the
underlying asset s supposed to evolve through time. This model just assumes
that the nisk neutral density can be described with a mixture of densities. The
next set of models assumes that the RND is given as a perturbation either to a
normal or to a log-normal densily, We then consider fully structural models
where some assumption is being made concermming the evclution of the
underlying asset. We consider a model that assumes that there s the
possibility of a single jump in the underlying asset. Finally, our last model 1s
based on the assumption that the price process has volatilities which vary
stochastically.



Our comparison proceeds along several dimenstens. In a cross-sectional
dimension we use two well-chosen dates, namely one on which financial
markets were calm and one, just a few days after President Chirac announced
snap elections, when markets were roiling. We notice that it is difficult to
obtan a message from simple parameter estimations of non-structural
models, but that parameters for the jump-diffusion mode! direclly convey a
message. The stochastic volatility model, on the other hand, even though it is
parametric, 1s not easily nterpretable. When focusing on compansons of the
RND we notice the cioseness of the models based on perturbations of the
normal and the log-normal density. We also notice that all models under
consideration yield simitar measures of the mean and vanance, They differ,
however, in their ability to capture higher moments. In particular the models
based on perturbations of the normal and leg-normal densily, as well as the
stochastic volatility model, have difficulty captunng large changes i
anticipation, corrasponding to sudden directional moves.

in a time series dimension, where we focus on each model's ability to correctly
price the options, we notice that for the short horizon a model involving =
muxture of log-normal densities appears fine but in the fong run a modet with a
jump 1s best. We mnterpret this in the following way: in the short run, if a
political event occurs, market participants know that the market will be roiling
for a while. This corresponds to a change in regime to a state that has little
probability of cccurnng, but once it does it will affect strongiy the economy for
several weeks. In other words there is some persistence following the political
event. Knowing that most political events that move markets last at most
several weeks, once we shift to the long honzon, such evenis will appear
punctuat n time. In the long run, a model involving a jump has, therefore, a
hetter chance of describing such an event.






1 Introduction

Much of the literature [oliowing the serminal work on opuion pricing by Black-Scholes (1973}
and Merton (1973) assumed that the asset underlying an cption follows a log-normal diffusion
pracess. Empirical studies of option volatility, such as Rubinsten’s (1994) presidential address.
fiave shown that exchange rate options out or in the money are associated with a different jevel
of volatility than at the maoney cpuons, a {eature called the options smile. This fnding 15 1n
contradiction with the assumption of a log-normal distribution for the underiying asset and
shows that 1o correctly pnice options raore general models are requred.

Vanous methods have been suggested to extract out of optiens’ prices the underlyng risk
neutral density (RIND). This density 1s related to markel participants’ expectations of the future
price process in a risk newtral environment. As shown by Bakra (1998) and Campa, Chang.
and Reider (1997}, once such a density 15 obtained 1t 1s possible to compute moments as well
as confidence mtervals. As such, the RND plays an important role as a tocl to evaluate the
credibility of the Central Bank. RNDs are also important [or an investor, for :nstance sn Risk
Management, who needs to quantify n terrss of probability how a market may evoive m the
fuzure. RNDs can also be used to price exotic cptions.

The contribution of this study s the companson of the advantages and drawhbacks of various
methods which extract risk neutral densities applied 1o FF/DM Eurcpean type exchange rate
options. We were able to obtam a time sertes of abservauons of OTC option covenng 20 dates
ranging between May 1996 and June 1897, For each day we dispose of a set of maturities up
1o one vear. First, we discuss the implementation of the varicus meethods m a cross sectional
framework by focusing on just two dates: May 17th 1996, a day when the exchange rate markels
were known to be caim. and on April 23th 1957, a few days after the French President Chirac
announced dissofution of the National Assembly which implied nation-wide elections. Second.
we run all methods o a time series context which allows us to further retam a satisfying moded
for the exchange rate data at hand. The discussion of the message contamed in a tine series
of confidence intersuls obtaned frora BNDs illustrates the usefuiness of this type of research.

Duning the period under mvestigation we have another noticenble event 1n the summer of 1956



where we Bnd a significant depreciation of the FF/DM due to the uncertsnty about the ability
of the French government to sausfy the Masstricht criteria (especially the defiat critena).

We first provide a description of a large number of methods which allow construction of
a BND. A first method based on approximating the RND with a mixture of densittes, which
could be called nen-struefurel. is ndvocated by Bahra {1996), Campa. Chang. and Reider (1897}
Melick and Thomas (1997) indicate :n addition how to price Amenican options. In a study by
Séderlind and Svensson (1897} 1t 15 shown how this muxture of dessities method can be applied
1o various financal assets asking what can be iearnt from the point of view of a policy-maker.

We aiso consider an approach based on the work of Jarrow and Rudd (1982) who developed
a method for option pricing under the assumplion that the underiying assel s not log-normally
distributed. They show how the RND can be obtained as an Edgeworth expanston around
a log-normal density. We consider this approsch to be of semi-nonparametric nature. Ther
approach has been implemented by Corrado and Su {1996) who show that with this method
options can be betler priced,

In 2 similar spirit Madaa and Milne (1993} describe the underiving RND with an Hermite
pelynomial approximation. Abken, Madan. and Ramamurtie {1996) provide an applicat:en and
show how higher moments of the underiving asset are perceived to vary through time.

Bates (1996) or Malz (1996} go one step further and consider a sfructural mode by assuming
that the underiving process follows a jump-diffusion. respectively its Bernoulli version. Thus,
they assume a full specification lor the underiving price process. The RND obtained 1n thewr
modef depends on some parameters which can be estimmated from options pnices. Theirr work aimns
at extracting information concerning market participants expeciations out of options prices.

Further structural models 1n which the price process of the underiving asset is fullv specified
are modeis of stochasuic volatility. Hull and White (1987), Chesney and Scott {1989), Melino and
Turnbull (1990}, Ball and Roma {1994). assume that volarility foliows a diffusion process. To
make their model tractable they have 1o make siroplifyving assumnptions concernuny the correlation
between volstility and the underfving asset’s return. Heston (1993) by assuming a different

process for volatility and by using a different numerical approsch provides an ajmost ciosed



form selution for option prices for a more general stochasuc velatility envirenment.

The airn of most of those studies 15 to provide a pncisg tool. Breeden and Litzenberger {1978}
observe Lthat second derivatives of optiens’ price with respect o the strike price yields the RND.
This observation mukes 1t possible to derive from any option pricing model the underiving
RND. Similar work 15 by Gesser and Poncet {1997} whao exhibit an interesting term structure
of volatility and compare the actual term structure with the ones generated by Huli and White
as well as by Heston.

Several other approaches to obtain a RND have been proposed. Alt-Sahalia and Lo (19953)
provide a non-parametric wethod based on time series analys:s and kernel estimates. Stutzer (1096)
suggests a muitistep procedure where the 1nitial step also 1nvoives histonical prices of the under-
iving asset. Rubinstemn (1994) and Jacktwerth and Rubinstein (1996) develop a methed based
on binomsal trees. We restrict ourseives to madels which do not mvolve trees and where no
history of the underiyving asset 15 required.

Unlike some of the literature which has addressed the question how to price opuions under
non-constant volatility {e.z. Derman and Kan: (1884}, Dumas, Flerng, and Whaley {1506).
Dupire (1894}, Shimko {1993). as well as Stein and Stein (1991)) we address the question what
15 the information content 1n optiens of various matur:ties,

[n section 2 we review vanous non-structural, serat-nenpararnetric, and structural methods.
In section 3 we introduce the data. Section | contains a cross-sectional companson of the
methods with a discussion of the parameters obtained for our structural models and a comparison
of higher moments and confidence mntervals. In section 3 we turn to the time series comparison.

Section 6 concludes. Estimation issues are relegated to an appendix.

2 Recovering RNDs

The following section cuilines notations and the general paradigm within which we evaluate
RXNI)s. Several of the methods described below could be adapted to instances were the under-
{ying asset is not an exchange rate. Such instances include Black’s (1976) model for options on

futures.



Let 5 be the price ot £ of s unit of foreign curreney w locsl money.! An European call
option wrillen en S mives 1Us owner the night to buy the underlying asset for the exercse {alse
called strike) price A at the expiration {or maturity} date +. Since a rational investor will only
exercise his night i he realizes a profit, the pavoff for a call 15 max(S, - K, ().

An Eurepean put epuion wniten on S, gives his owner the night to sell the underiving asset
for the exercise price A atl the expiration date 7. Exercise before v 1s not possible. The payoff
for a put 15 max(K — 5.,0).

Under the assumption that the market 15 arbitrage free. Harrison and Piiska (1981} show
that there exists sorue probability density for the underiying price process so that the call and

put option price can be written as

G = Emrr/' (S¢ = K)alSs, 7; 5, 118)dS (1
2. =K
Se=K
and Po= f."’T/ (K — Se)alS;, m; 5, 10)dS, (2}
v
where 8 15 a vector of parameters describing the RND a(-} and where we defined the Lime to
expiration as T =1 — t.°
2.1 The benchmark case of log-normality: Garman-Kohlhagen
2.1.1 The model
Much of the early research on oplions has assumed a given price process for S;. For instance
that 5 follows a fog-normal diffusion such as 1n

dS; = pSidt + ¢ 5:d1Y, &3]

where y, and ¢ represent respectively the instantanecus mean and volatility. W 15 o Brownen

motion with respect e some probability measure P

*For mstance for the DM/FF eptions, Sc will represent the number of FF necessarv to acquire onie umt of
DM.
1At 1extbook level this denvation can be found in Duffe (1033) p. 114



Under such an sssumption {or the underlymg asset, it can be shown that 1 s risk nestrai

workd the process 5¢ can be wrnitten as:

dSe = (r — r)Sedt + a5, dW7, 4

where H* 15 again a Browman motion with respect to Q, an equivalen: moartingale measure.
r and r* represent the domestc and foreign continuously compounded risk free interest rates,
Under log-normality the RND associated with the future exchange rate can be obtained by the
fuct that In{S.) follows a normal with mean In(5;) + (r — r" — g%} T and vanance o7, This

result follows from Ito's lemma.? Fhus, the BND 1s

1 (ln(sf)wm(sl}—(r—r‘-awzal")g}_ s)

(50) = 11 _
a{Sy) = _'_J;.—ch,.exp 3 Y
For this situation cail and put options can be evaluated as truncated expectations. Garman
and Kohlhagen {1983), fellowing the methodology outlined by Black and Scholes (1973}, and

Merton {1973), obtam that

CE T K o) = 7 T50{d) — e TR O(dn), {6)
PE.T. Koo'} = —""TS[1—0(d)] — e "TK[1 — B(dn)], e
(S /K + (r -+ 0T
dy = e _ (8}
b = In{S:/K) + {r :r' ~ 30T ®
ovT

As a consequence of non-arbitrage, under the risk neutrat probability the discounted expecta-

tion of the future price must be equal to the current price. This transiates into the following

*Fram {4) we bruwn dnfS) = (r—r* ~ %07t + od1T and hence in(S.) = IniS)) + (r—r° ~ 4a*)T +
o{W - W), Sinee H7 — WY 15 distributed 0s a normal random variable with mean 0 and varianee 7 we can
conelude. We recall that if 16{8) ~ A{p, 07) then the density of 5 s S{(in(8) ~ u}/e3/ (o5} and its distribution
tunctian s {I6(S} — p}/e). In this work ¢ and & represent always the density and the cumuintive density of
the normal distribution,

A1)



martingale restriclion:
-
AR ?T[ Sra(S: Sy {10
[

2.1.2 The link between deltas and strike prices

OTC options” quotation 1s not done it terms of prices for a set of exercise prices but m terms
of voiatilities for opliens of vanous deltas. Given volatility, the spot exchange rate, the various
mterest rates, and tirae io maturty. there exists as we indicate beiaw, # one to one relation
between deltas and the strike price.

The deita of an option is defined as the denivative of the price with respect to the uaderlying

value. Hengce, for a call, respectively for a put. we have

8 = ggj{sﬁﬁ:‘\'.mnr’)=E“"T'¥’(€51)

5 = %‘(S,, T K,or ey = s Tl{—d)

whete dy 15 defined i (9). Since § 15 u sirictly decreasing function of A, for cach 6 there
corresponds a unique strike price which can be extracted nuroenically.

Since European calis and puts are related through the put-call panty, if we have the K for
a cali then | — ¥ corresponds to a put with the same velatility and the same K. In other terrms,
rather than working with calls and puts we focus only on calls. In practice oniy in the money
call and put options are quoted. The non-exsstence of call and put oplions with a same strike
unplies that we cannot back out further information such as an wnplied spot exchange rate.

Once the strike prce K is obtmined it 15 possible to mvert the pricing {ormulas {7} to (9) for

each option and to ebiam for each ane a price in FF.3

*11 prices were quoted in numerawe, then, as the underiving asset changes, 1 would be necessary to contmuousiy
update the options price. Further. il options were quoted for a gIVED ot of exercise prices, as the spot rate moves
1t would be necessary to mtroduce new strike prices.



2.2 A non-structural approach

Focusing on (1}, we obtain by applving Leibuz’ rule, as in Breeden and Litzenberger (1976).
that
G

Pt T alhe
e e Tha(i, 7 5, 110). {11}

Thus, a simple computation of second derpvatives gives us the actualized RND. This suggests a
firsz methad to extract a RND where the only {vet key) assumption to be made 15 that there exist
enough strike prices to approxiusste numerically the density and where we need the assumption
of arbitrage-free markets.®

However, nurserical derivatives are known to be pumerncally unstable, and a more frustful
strategy 1s to assume that the RND, a-), takes certamn particular expressions. Sherrik, Garea.
and Tirapattur (1996} assume for ¢ the Burr IIT distribution and Abadir and Rockinger (1598)
fit densities derived from Kummer functions. In this work we do not pursue this road but follow
Bahra (1996}, Melick and Thomas (1997). and Soderlind and Svensson (1997) who describe @
as a mxture of Jog-normal distributions.

Let {(S:: pi. 00} (L{S+i 4. 0,)) denote the log-normal density (and its associated edf) with

paramelers g; and o, then

M -
C o eT Za;] (Ss = KM(Ss: g, 2 )dSs
Sk

i@

will describe the option price as a raixture of Af log-normal distributions. The a; are positive and

surn up to 1. This formula can be evaluated easity since the formuia for truncated expectations

It should be mestioned that 6(-) = the unaccounted AND an which we focus m this study whereas e Tal)
represents ai Arrow-Debreu state price. [n the liternture this state price gets semetunes referred to as the RAND.

I



of log-normals®
f TS - KW, 0dSs = (EISH1Se > K]~ K\PHSHS, > K]
Se

gives us a formula. equivalent, from the pomt of view numencal coraplexity, ta the Garman-

Kohlhagen formula:

af . a . N
Co=e TS oy explu + %G’?T) ([1 - (%ﬁ«;l‘%fﬂ)} S is P (%)D .

izl
In addition, the martingale constramt can be wnposed with

A
. 1
Syl o E aiexpl(u + «,;G?T).

1=}
2.3 A semi-nonparametric approach involving Edgeworth expansions

In the following section we want Lo outline the methiod deveioped by Jarrow and Rudd (1982)
for which a nurpersca! application can be found 1z Corrado and Su {1996).7 The idea of Jarrow
and Rudd {1982} 1s to capture deviations from log-normality by an Edzeworth expansion of the
RND a{S., m S, 1|0} 1n (11) around the log-normal densiiv.® The obtention of an Edgeworth
expanston 15 conceptually similar to Tavlor expansions but applies to functions. In a conventional
Taylor expansion sorae function 15 approximated at a given point by a simpler polynomial. Here,
the RND 15 appreximated by an expansion around a lognormal denssty. A further difference 15
that expansions are usually made to obtain simplifications whereas here the appraximation, by
wvoiving parameters which can be vaned, allows us (o generale more complicated functions.

[r: the next section we will present an siternative approach given by Madan and Milne {1994).

fJohnsan, Kotz, and Balakrishnan {1994), p.241. indicate that if § ~ A{p.a”} then

3= DLy — ) K —pn
EJ

T~ $(Lo}

EISIS > K] = explys + 50%) where Up =

"Beiow we adapt ther work to the pricing of Evrapean foreign exchange options,
gEdgewun.h cXpansions are {requently used in statstical theory to obtasn distributions which deviate from the
normal ene.



There 1t s assumed that the RND car be obtasned as a multiplicative perturbation of some
gwven density. Thiz muluplicative error allows for o certan control of higher moments. As
shown further on. both methiods can vield numerically similar resuits but, conceptuaily, they
are different.

First we will sketch how Edgeworth expansions can be obtained. Let A be the cumslanve
distribution function of a random variable X and a 1ts dessity. Define the charactenstic function
of X as {4, t) = [ e™a(z)dr. If moments of X exist up to order n then there exist cumulants

#;{A) 1mplicitly defined by the expansion
n—i ivF
(AN =3 f:j{.‘a)ﬁfjf?n +a{t" 4,
=1 '

If a charactenstic funcuon s known, by taking an expansion of its iogarithm around ¢ = 0.
1t 15 possible to obtain the cumulants. Belween cumulants and moments up to the fourth
order we have s (A} = ELX], sa(A) = VarlX], xa(4) = E[(Y — ELX])3, se{A) = E|(X -
E[X{}'] - 3Var[X]. Jarrow and Rudd show that an Edgeworth expansion of the fourth order for
the trae probability distribution A around the fog-normal distribution L can be written, after
eposing that the first moment of the appracmating density and the true probability are equal.

{rg{L) = n(A)}:

ra(l) = wa(L) °i(s)  {ma(A) — ra(L)) ¥U(s)

alsh = M)+ = pre 3 s
{ra( Ay — g (L)) + 3{raf{ A} - NQ{L))E d*{s) +e(s)
4t dst !

where ¢(s) captures terms negiected 15 the expansion. The various terms m the expansion
correspond o adjustments of the varnance, skewness. and kurtosis. This expression s similar
to a Taylor expansion. yet st 15 not the same since the coefficients of the terms m d?lfds’ are
paramelers and not risen to any power.

Jarrow and Rudd further show that the price of an European call option struck at A can



be written as

A,-‘(- PC:]{.-H - H;g(ﬂ) rﬂ(f\-]

~ el A) = ma(L)
Cl) = O+ TR () - = 5
e UalA) = o (L)) 4 a4} = ma( L)) FIK) vak, A

] dsz

Since £ stands for the log-normal distribution 1t foliows that C(L) corresponds to the Garrean-
Kohlhagen formula and higher order cumulants can be obtamed as functions of elementary

corppenents:

a(L) =Sl k(L) = iry(L)gl?,

wa(L) = [ (L)gPFBq + 0%, wa(L) =[xy (L)q (1667 + 15¢% + 64° + ),

where q = {e":T ~1)1? and where the Brst reiation follows from risk neutral valuation.
Jarrow and Rudd suggest identification of the second motment by 1mposmg xa{L) = ma{A).
This argument 1s also justified on numerical grounds by Corrado and Su (1996) who notice that
without this cordition there will exast & problem of multicolineanty between the second and the
fourth mornent. Corrado and Su {1696) rather than estimating the remaming cumuiants, {xa(A4)

and x4(A)). estirnale skewness and kurtosis {writien respectively (A} and 13(A)) through

o A e kelA)
71 (A _—mmlﬁe(-‘l)iaf2’ ya{d) = PREYE

Clearly, similar expressions hold of the distribution L. With the assumption concerming equality

of the second cumulants for the approximating and the true distribution 1t follows that

CA) = CL) —e T (n(A) = (L)) 2 (L’d;‘;”
e T {a(4) - g(L}}M(L)d:g) (13

Using this expression 1t 15 sasy 1o estimate with NLLS the raplied volatility, (¢?), skewness,

(1 (A)), and kurtosis, (32(4)).

10



The expression of the RND can be obtuined after twice differentiating (13} with respect to

A and then evalustion over S;,

w32 1{5,] S(LY NS,
(50 = 1050 = () =N TE L o BBEEL g

where the partiai derivatives can be computed iteratively using

a (l+in(5,)mm)l(51-)

as. a*T 3.

a4 in{S,;) —my | 8I{57) i

— = -{z — = 1{S:),

252 ( YT )S,— a3, sza-'( )

A n(S;) ~my 1 845} 2 BI(S.) L

a5 ”(” pez )"s"i" TS, o7 a5, T ek

a1 _(“m(sr)—m)‘}"a%(s,)_ 3 S, 3 sy 1S.)
851 a:T 5. TS, Sigt 85% | Sig8 g8, Spat T

and where m = In(S;) + (r—r* — o2 /T. Those computations indicate that the RND n the
Edgeworth case will be a polynomial whose coefficients directly command the skewness and
furtesis of the RND, We also notice that the RND mvotves rather complicated terms imvolving

derivatives of the log-normal density.

2.4 A semi-parametric approach involving Hermite polynomials

The thearetical foundations of this method are ciaborated in Madan and Milne (1994} and
applied in Abken, Madan, and Ramamurtie (1996). Other recent research using Hermite ap-
proximations within an option pricing context 15 Knight and Satchell (1997).

Their model operates as follows. First, they assurse that the underiving asset foilows a

lognormal diffusien

dS, = uSudl + 95,dW, (13)

where W, 15 a Browman motion with respect to some abstract reference density o(-) assumed

to be Normoal with mean zero and vanance . This inplies. when we move to a discretization



that
5 = Sexp{{p — ,_,icg)T +avTz) (16}

where  ~ A{0.1).

The key idea of this approach 1s that the RN} can be obtained through a multiplicative
perturbatson, (A}, to the normal density so that a(z) = A(z}é(z). This can be alternativeiy
viewed as a change 1n probability. Rather than assum:ng specific expressions for A to go from
one probability to another as one does under the martingale appreach for oplion valuation, they
assurne a parametric structure for A, The mamn thrust of their work amss al estimating A{z).

The key observation of their approach 1s that the reference measure being 8 normai one, the
varlous components mvoived 1n the opiion pricing can be expressed as linear combinations of
Hermute polynom:als. Let {hy}{2, be Lhose polynormals. Such polynormais are known to form
an orthogonal basis with respect to the scalar produet < f.g >= [ f{z)g{z)d(z}dz.?

Since under the reference measure, &{z]. the dynarmucs of the underiving asset are perfectly
defined. Madan and Milne show how 1t 1s possible to write any payofl, such as for instance the

pavofl of a call option as:
-K)" = T aghy(z).

The ax are well defined and their expression depends on .0, T, 7.
On the other hand, 3t 15 also possible to wrnite Mz) with respect to the basis as Mz} =
S abih{sh Following (1} and given the orthogonality property of Hermite poivnemals, the
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price of a call option can then be written as

b
C= z Qpig.
k=g
N - £
*I'he Hermite poiynomial ai order & 1s defined bv i () = (—l)k%?—, where O 15 the mean Zero and upit

vaniance normal density.  After standardizatian of the polynomials Hi to unyt norm. one obtams that the first
tour standardized Hermite polvnomads are Ao{r} = t.hy{2) = r. kao{r) = (£~ U/ Balr) = (2 - 35}/ VE,
Balz) = (2% = Br + A2



where the 7 = ¢ "7k ure mierpreted as the nnplict price of polynomtal risk hy. Since the
Herm:te polynomial of order £ will depend on a k-th moment we will also refer to 73 and =5 as
the price of skewness and kurtosis.

For practicaf purposes the infimte sum can be truncated up o the fourth crder. One can
then either estmate 7,k = i.---,4 or follow Abken. Madan, and Ramarurue {1996) and
T -

umpose @y = € 1 = wg = { and estimate u, 7, and 73,74, [n this case the RXD simplifies to

a(;y:w(n{l+%(:3—321+%(f‘—5:=+3}}: (17)

where the B; are parameters to be estimated. The payameters by and by correspond io the
skewness and kurtesis ¥ z follows a normal distribution. It 15 smportant to emphasize that
undike the Edgeworth case, since a further change of vanable from = to 5; has to be made, b3
and by wili not correspond in general to the skewness and kurtosis of the future exchange rate S;.
It is also worth mentiomng that the expression given by (17) is sometimes calied a Gram-Charlier
expansions which 1s the basis for other recent research (see Krght and Satchell (1997)).

in the empincal part of this work we will further pin down ¢ by wnposing Lhe marungale
restriction {10} and estimete oniy o and the future value of the third and fourth pnce of
risk. The actual risk neutral density a(S7) can then be inferred using the change of vanable
5 = [In{&,} = (5) = (r =" = aYNT)/avVT. Careful comparison of this AND with the one
obtained in the previous section shows that, even though bath involve a polynom:at of the fourth
degree, those pelynomials are not equal even though they may vield similar shapes \n numerical

applications.

2.5 Risk neutral density for a process with jumps

in this section we assume that 5, 15 a log-normal jump-diffusien hence the sum of & geometric
Brownian motion and & Poisson jump process. Pricing formala for the jump-diffusion can be
found 1 Cax, Ross (1976). and Bates {1901, 1996a. 1996b). \Within this framework Malz (1996)

shows how information can be recovered from options when eniy very littie mformation 1s

13



wvailable.
Under the assumption that the price process i Lhe sum of a geometrie Browman motion

and & sump componenl we can wrlle Lhat

S = 1 Sdl 4+ oSV + kSidy

where g 15 a Poisson counter with average rate of jump occurrence A and sjump size &, In s very
general set-up & could be assumed to be a random vanable,

The price pracess under the risk neutral probability can be shown to be

48y = (r —r* — AE[kI}Sudt + 0S,dW,' + kSydq..

Ball and Torous {1983,85) and Malz {1997} assume for simplicity that ever the honzon of the
option there will be ai most one jump of constant size. In this case, referred to as the Bernoulli

version of the jump diffusion, the call and put prices become respectively:

(1= ATVCLSL T, Koo, e + M)+ {ATICTS L + kLT K oot + Ak)

(1= ATVYP(S, T, Koo r r* + AR} + (AT)P(S {1 + k)T, K, aror 4+ Ak).

[n those formulas | — AT represents the probability of no jump before maturity. For numerical
purpaoses, Bates and Malz signal the difficuity to disentangie A and k. For this reason we will
only mnterpret fater on the expected jurnp size A&,

We aiso would like 1o mention at this stage that we will estimate this structural model for
various dates apd maturities. This will vield for each date and matunity a set of estimates.
This may sppenar 10 coniradiction with the assumpuion of constant parameters in the underiving
process. an the other hand this 1ssue 1s the same as with guoting options i terms of volatijites.
We will follow the literature and mterpret the estimates as bemng those percerved to be valid
al sormse pomnt of ume by market participants till the expiration of the option. It should be

further noticed that the time series of parameters so obtamed may correspond to a pracess of

14



the underlying asset which has little to do with historicaily observed processes.

2.6 Risk neutral density for a model with stochastic velatility

An alternative to sssurning jumps s to assume. as i Heston's {1993} model, that volatility 1s
stochastie. [n the following we recall the formulas for Heston's modei.

The price dynamics 1s assumed to be given by

dS, = pSdf 4 S5 Sdn,
dog = {8 — o}l + 4 EdiVa,,

The parameters of Heston's model represent: § the long-run volatility, « the mean-reversion
speed, v the volatility of the volatility diffusion, v 15 the mstantanecus volatility, A Priorl ty
5 hol a parameter to estimate but the realization of a random variable. However, since 1t 1s
uncbservable, 1t 1s fairly natural 1o estimate 1t with the true parameters. Lastly, 7 denotes the
correlation between the 1we Brownsan motions Wi and Hh,.

Heston shows that the call option price s

C = 7 T5P - TER

, é+é'/—xRe(exp(—»z:in(h}i_ﬁ-{:])dI P
2w

T

'U
f

where the integrand can be constructed witk!?

Uy o= Youg= —1/2,
a = &Kf,
by = r¥+A- foa
ba = kA
. : 2 2 2 b2
dj = I(mz:«bj} w3 Qujer - 17)
% is the complex namber, solution to ¥ = — |,



by = pyir 4 d;

by —pyrr — d;

bj w x4y 1~ exp(d; T}
7 I —g; expld;T)

C, = (r—r'}i:T%:}ﬁ._:[{bi—m'u+dj]7’w21n(l—_gi—&~‘§gf—ﬁ”
—

fi = expl{Cy+ Dy + exin{Sy))

where A stands for the price of the volatility risk. The parameters to be estimated are a. by, b,
£, 7. Because A s not identifiable we mtroduce x* = x8/(x + A) and 6* = x + A, Thus,
only 3 parameters have to be esumated. Usmg {11}, the RND can be easily inferred. Since the
option pricing formula invelves mtegrals, clearly, the computation of the RND will also mvolve

wntegrals, For numencal purpeses this evaluation will take a significant amount of tsme.

3 The data

The OTC data used was provided by a large French bank. Options are 1ssued on a regular basis
and reach maturity between a few davs and one year. Anecdotal evidence supgests that market
participants consider this market liquid. We were able to ebiain data for 20 seregularty spaced
dates.!! The Brst one 1 May 17th 1996 and the izst one 1s June ?71h 1997,

As discussed 1n section 2.1.7 this type of option 1s quoted in terms of 4. For all dates we have
at least mnformation for options with § taking the vaines 19, 13, 20, 30, 40, 50 (corresponding to
the ef the money aption), 80, 76, 80, 85, 90. Between the first date and June 1006 we afso have
informatien for the 5 and 95 delta options. Since optiens in the extremes were rather iiliquid
their quotation was given up at that trme. In this study we used data for all possible &,

For all dates we were given bid and ask prices for in the reoney put and call options. Following
the literature we decided to work with the average between the bid and ask prices. Even though
we cbtained all resuits for options with §, 2. 3, 6. 9, and 12 month to maturity we decided to

report the results for only fewer maturites. ¥

H'Even strenuous efforts did not allow us to shtam more dates,
“The full sex of estmrates for the two dates ean be found in a watking paper version of this study.
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The interest tates » and " are the domestic {French} and foretgn (German) euro-currency
mterest rates chosen to matceh the expiration of the eplions. We transforms these rates into therr
contimuiously compound equivalents. The spot exchange tate 15 easily availuble.

By using a nurmerical procedure and the methodology outlined 1n section 2.1.2 we extract
for each option of a given maturity the corresponding strike price. The difference between the
actual data and the delta obtained for the optimal K s in all cases smaller than 0.07% of the

nitial delta!

4 Cross sectional comparison

In this section we are going te present and nterpret estimation results for two dates only. In
the next section we will compare the methods within a time seres context.

To get a feel for the data at hand, we trace the volatility of an option as a function of the
delta and matunity in Figures 1 and 2. If log-normality held then we should observe one straight
line sndependent of maturity. For 4 gsven maturity, the deviation from the strasght line 18 calied
the volatility smife. The shift across maturities 1s the term structure of voiatilisies, Here oplions
with fow § (high strike prices) are highly veiued, meansng that the market expects an increase

mn the exchange rate {a FF depreciation).
Insert somewhere here Figures 1 and 2

Those smiles confirn that more complicated models than Garman-Kohihagen should be
considered for the data at hand. For future comparisons we nonotheless estimated this model,
by using the NLLS procedure outlined in the Appendix. This yielded for each data and matunity
a single velatility estimate. Those volutilites are then used to construet a set of benchmark RNDs
which will be presented later on for comparison purposes.

We also estimated the parameters for the other non-stractural models. For the maxture of
log-normals the values of the parameter estimates have no cbvious explanation but tiwey could
be used to nfer the vanous moments of the mxture density, For the Edgeworth expansion

the parameter imdicate by construction the volatility, skewness, and kurtosis of the underlying
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density. We decided, however. to compare the moments of sl models simuitaneously ai « fater
stage. Before discussing mornents we wish to present the parameter estimates for Lhe structural

madeis of Malz and Heston which have an economic meanmng.

4.1 Parameter estimates for structural models
4.1.1 'The jump-diffusion case

We first turn to Lhe parameter estimates for the jump-diffusion model of Malz presented in Table
1. Turning to the first date we notice 1hat ¢ increases from (.0172 1o 0.0205. This means that
investors expect a greater uncertamnty about price movernents in the longer run. The probability
that a Jump occurs before maturity, (AT}, varses from 0.0399 to 0.0699 suggesting that for the
calm date mvestors do not believe 1 a great likelihood of a jummp occurrence.

Turning o the expected jump size, {Ak), we notice that this measure decreases from 0.0104
down to 0.0G38. This means that what 1s considered to be a jump in the short run becomes
normal 1n the long run. "fo sum up, investors expect that a jump will eccur with a higher

probability 1n the fong run bui then onfy large varistions will be considered to be jumps.**
Insert somewhere here Table 1

Turning to the second date, when the markel was more agitaled. we notice that ¢ decreases
across maturities. Further, for the one montk to maturty, ¢ 1s higher for the new date than for
the first one {0.0186 agamst (.0172). [n the long run instead o 1s smaller for the new date. Thoze
resuits moply that there s higher non-directicnal uncertainty for the short run after Chirac's
anncuncernent of a snap election: markets were expected by imvesiors to either move up or
dewn. In the long run, however, since then fundamental unceriainty, given by o, 1s now smaller
than for the first date, 1nvestors appear to anticipate the creation of a single currency area.
Ciearly. for a single currency area one expects ¢ to vanish completely.

The jurap probability AT decreases from 0.0717 to 0.0574 showing that investors attach also

a higher probability to a depreciation of the Franc 1n the short run. When turmng to the mpact

P\ are grateful here to Allan Malz for helping s gottng the IRTerpretations straight.
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of 2 jJump on prices. given by Ak, we notice its sharp increase relstsve to Lhe Brst dute and this for
all maturities. The sign which 15 aiwavs positive for this component suggests that if anything.
the FF was expected to depreciale aganst the mark. To sum up, Chirac’s announcement lead
to important market turbulences. On April 25th 1997 1n an environment of agitated foreign
exchange markets investors expected that a yump of ratier lurge magntude was expected to

occur 1o the short run.

4.1.2 Stochastic volatility

After estimating this model for each matunity, given the great instability of the parameters across
maturities, we decided to also report 1n Table 2, the estimates for the stochastic volatility model

where for a gmiven date we used all maturities ssmultaneously,
Insert somewhere here Table 2

We notice for the first date that the Jong-run volatility {\/6") increases from 0.0264 to 0.0340
whereas for the second date 1t decreases from 0.0720 to 0.0038. This variable captures a similar
message than the diffusion volatility namely that on & nommal. calm day there should be an
upward stoping terra structure of volatilities. and a decreasing one {or at jeast a fess steep one)
on a day with agitated markets.

The parameter p captures the skewness of the distribution. 1.e. the probability of an asym-
metnc event. Its impact on the RND has to be read 1n combination with v, the volatility of
volatility. We notice for both dates that v decreases whereas pinereases with maturities. Those
findings appear similar to the ones bolding for Ak of the jump diffusion model, narmely that in
the long run, an event has to be very farge in order to be considered as a shock (i.e. to be gen-
erating skewness through p). In other words, i the iong run most of the events are considered
normai. !

Some of the parameter estunates dispiay rather large vanability. For this reason we alsc

estimate the medel with ali maturities simultapeousiv. We first netice that for the first date

HThe situation of normatity would cotrespond to a situatien with 4 = 0.
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the measure of current volatility, /Ty, (0.0224), w5 smaller than for the second date, {G.63m,
This shows that the joint estimation 1s able to capture the increased market uncertamty due to
palitical tisk on the second maturity. The parameter p which captures the slope of the smile
has also increased. The parameter V& corresponds to the leng-run volatility. This parameter
takes the value 8.0316 for the first date and 0.0283 for the second cne. This decrease m value
confirtas what we obtained with the jump-diffusion namely that investors are more confident
on the second date that in the long run market volatility will be small because of a possible
unigue European currency. The parameter «°, capturing the speed by which voiatility 15 mean.
reverting, decreases {rom 4.03 down te 3.282,'% This means that for the agitated date mnvestors
expect that it will take Ionger belore the market reverts to normal. This observation 15 further
corroborated by 1, the volatility of volatility. This parameter increases slightly from the first to

the second maturity.

4.2 Moments for the various models

To further compare the different models we check the statistical properties of the various RNDs
displayed in Table 3. First. we wili verify that the first moment of the RNDs 15 squal to the
forward rate. Second, we check hew the constramts imposed by log-normality on the third and
fourth moments can bias the variance estimates, Last, 1t 1s tempting to compare the estimates

of the skewness and the kurtosis obluned under the different RNDs,
Insert somewhere here Table 3

Some models {log-nermality, Edgeworth expansion and jump diffusion) impose the constrasnt
that the first non-central morsent equals the forward rate. For other mmodels. the better the
adjustment. the closer the first moment 1s to the forward rate. We notice that for the first date.
all the models give o first moment equal to the forward rate. For the second date however, the
Hermite approuch gives » small gap for the 3-month maturty {3.3749 instead of 3.3758) and

sumilar for the 12 month matarny,

YW nouice here the large ditference m the parameter estimates betwenn the madel with all maturities combined
and the ethers. This illustrates our diffieulties (o pin down the mean-reversion parameter.
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As far as volatilities are concerned, we see the bias implied by the log-normislity assumpuon:
the velatility snduced by the fog-normal model appears svstematically smaller than the cne
obtarmned with the other approaches. Otherwise we observe a great homogeneity of the valatilities
given by the other models.

The estimates of skewness and kurtosis are rouch more contrasted, since at this levei the
specificities of the different modeis can be cbserved. The log-normal medel 15 less interesting
from this pont of view, since on theoretical grounds 1t does not allow for asymmetry nor fat
tails. First, we observe that skewness as well as kurtosis are generally far from the one obtained
under log-normality: for the first date for instance, skewness 1s between 0.68 and 1.48 and excess
kurtosis 15 between 2.74 and 4.39. The skewness obtained from semi-nonparametsnc models are
systematically lower than the ones obtained with other models, even if this difference seems
to rernan small. Nonetheless, concermng hurtosis, we notice pronounced differences between
models: the jog-normal mxture model and the stochastic velatility model give generally very

iarge excess kurtosis (especially for the second date}.
Insert somewhere here Figures 3, 4, 3, and 6

The graphs of the RND further corroborate our earlier findings. All RNDs differ significantiy
fram the benchmark one. Further, we notice that the RND for the Hermite and Edgeworth ex-
pansion are very ciose. Those two approaches have the unfortunate drawback to yield negative
densities. The reason for this 1s that oniy a limited range of skewness-kurtosis pairs are compat-
ible with positive approximations.’® Goimng back to Table 3 we see that for those approximations
skewness and kurtosis are always smallest: the reason 1s that those methods have difficulties to
accommodate higher moments beyoad a certain range. Those models scem unable to capture
the high skewness of exchange rate data.

When we mspect Figures 3 1o 6 we realize thet the model with stochastic volatility distin-
guishes 1tself by a curvature which 1s fess pronounced than the other modeis. This means that

this type of model has difficulties n capturing the strong skewness which appears m the data.

Seq also Barten and Denms (1952),



When gomng back to Table 3 we notice that the model with stochastic velatility always hus
smaller values of skewness but seme time the jargest kurtosis, This suggests that the stochastic
volatility model is unable to capture the asymmetry in the dota and suggests as a substitute for
skewness o higher kurtosis. In a situation where fears are directionat (such as for a devaluation)
this feature seerns to be somewhat beside the point.

To summarize, we notice a great deal of homogeneity for the different models as far as the
first and the second moments are concerned. What really differentiates the models 15 their

ability to capture the third and fourth moment.

4.3 The use of RNDs

An moportant point to check n the companson of the various methods 15 whether they give
siniar confidence intervals. This pomt 1s of particular mterest for policy-makers. since the
bandwidth of confidence imntervals can be seen as an indicator of credibility of the monetary
policy. As it 15 well known, 1t 1s not possible to extract directly forecasts from option prices,
since the underiving distributions are based on the assumption of risk neutrality of marke:
partcipants. [t mmght be argued that this type of anaiysis 15 misleading since one assumes
risk neutrality. Hewever, Rubinstein {1994, p. 804) using a numerical example 15 lead to the
statement: “... despile warmngs o the conlrary we can justifially suppose a rough similarily
between the rak-neutral probabilitics mmplied 1n optien prices and subjective beliefs.” For this
reason we follow Campa, Chang and Reider (1997} and construct RNDs which are based on
the forward rate. In that case, confidence intervals are not imnterpreted 1n levels, because 1t 15
riisleading to read foor and ceiling of an mterval in FF/DM, but one can anaiyze the reiative
intervals and the relative bandwidths expressed as a percentage of the forward rate.

Thus, we estymate, for each matursty and each method, two confidence intervals: the bands
of mummnum width such that market parucipants put a 80% (and a 93%) probability on the fact
that the FF/DM will be inside the baad at the end of the penod. As the RNDs are centered on
the foerward rate, we define the bandwidth as half the difference between the floor and ceiling

expressed as a percentage of the forward rate.

[+
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Insert somewhere here Table 4

Table 4 reports the estimates of the floor, the ceiling and the bandwidin. Several ponts
are worth noting: first, we clearly observe the asymmetry of the RNDs for all methods and all
matuarities since the forward to feor ratio 15 always smaller than the ceiling to forward ratio.
For mstance for the bandwidth contaimng 90% of the distribution for May 17th 1996 for the
l-month maturity, the former is about 0.85% whereas the latter 1s about 1.4%. For more distant
maturities, the gap is even larger.

[n the same way, we notice that the asymmetry increases for the second date, since the
ceiling to forward ratio 15 at least twice the forward to foor ratio. This resuit cleariy shows that
the uncertainty mn April 1987 was unfavorable to the FF.

Second, the excess kurtosis can be measured to a certain extent from the bandwidth. As
1t clearly appears, for a given probability, the bandwidth of the log-normal model 15 always
narrower than the ones of the other approaches. This means that, for & miven bandwidt, the
more sophisticated methods (which allow for fat tails} will pive a higher probability outside the
bandwidth than the fop-normal model.

The comparnison of the vastous methods 1s alse interesung. The log-normal model shows no
asyrrnetry since the forward to floor ratio and the ceiling to forward ratio are almost the same.
Other approaches are much more homogenacus, except perhaps for Hestons model. Indeed
this model seems less asymmetrical than the other ones. More precisely, in rmany cases, the
ceiling 15 nearer the forward rate. This result can be explained by the already mentioned {act
that the stochasuic volatility model is unable to generate a hump {as the Malz approach 1s} and
thus 1t has to compensate the lack of Hexibility with a tess rapidly decreasing density (see aiso
figures 3 and 6}, Accordingly we note for instance for the [-month maturity on April 25th 1997
an important gap between confidence intervals evaluated by Heston s modei and by the other
approaches: the bandwidth contasming 95% of the distribution s 1.40-2.28 for Heston s modet

and about 1.03-2.61 for the other models.



5 Time series comparison

In this section we wish to compare the performance of the various models and ta show how they

cun be used to read information contained in the data.

5.1 Relative performance

As a prelimmary remark we have to menuon that we decided in the time series context to drop
the model with stochastc volatility. The reason for this 15 the ebvious difficulty of that model

to capture the larpe skewness which appears to reside m the data at hand,!7
Insert somewhere here Tables 5 and 6

Those remarks bemng made we dispiay in Tables 5 and 6 the absolute relative errors for the
various dates and models. We notice 1n Table 3 that for the short matunity for most of the
cases the mxture of lognormals s the best model. For the short matunty we notice further
that the jump diffusion model does also quite weil, Table 6 shows that for the longer matunty
option Malz' model 15 the best except for one date, For practical purposes, this suggests that
one should use for short-run options the mixture of log-normals model and the Jump-diffusion

madel i the lenger run.

5.2 The message contained in confidence intervals

As an illustration we display in Figure 7 the evolution over the 20 dates for which we have
iformation of the 90% confidence interval, We have chosen as method the mixture of lognormals
which appears tc be an adequate method for the short run.

In the summer of 1996 we cebserve a sirong widening of the mterval. Anccdotal evidence
suggests that this 1s related to the nelitic uncertanty 1n France. First, at the beminmng of

the surmmer there was a Cabinet reshuffle and mare iraportantiy the Financsal markets had

doubts about the ability of France to satisly the public deficit criterion of the Maastricht treaty.

YWe did nat experiment with this model on other data tor which 1t might well be optimal.



Therefore the depreciation of the FE was accomparted by the widenung and an upward shift of
the confidence mterval, After a reassuring budget announcement, we notice botd an sppreciation
for the FF and & narrowing of the interval. At the end of 96 we remark a new widening of ihe
interval, but without depreciation of the FF. This can be explained by heterogeneny of beliefs.
If & small number of investors believe thal markets may strongly wncrease and a large number
of others believe that markets will move weekly downwards then we expect that the confidence
interval widens but that at the same Ume the jorward rate does not change,

Later on, the interval regularly narrowed up o April 97, At this time President Chirac
snnounced a snap efection. Once again, the widenng of the interval is associzted with an upward
shift of the mterval: the forward exchange rate is about 3.38, and the market participants affect
& 10% probability to the event of an exchange rate higher than 3.3.1. After the snap electson
and the victory of the left~hand coalition, the mterval tends to reduce significantly, but the
upward shift cleariy remaimms, This means that the new government held reassuring talks about

the EMU and its general economic policy.

6 Conclusion

In this paper we implement several methods to extract risk neutral densitses. The methads
range form the non-structurat {mven by a muxture of fognormals) to the fully structural model
(2 jump-difiusion and a stachastic velatility model). We also mmplement methods based on
Hermite and Edgeworth expansions.

First, we compare those various methods for two dates. The first date 15 rather cafm whereas
the second date corresponds o an agitated market. We find that all models yield BNDs which
differ significantiy from the lognormal benchmark. Coencermng stability and speed of estimation
we found that the mixture of logrormais and the stechastic volatility model requise Bxing some
parameters on a grid while estimating the remamng ones. This obviously results in a rather
stow procedure. The other methods converge quickly and yield rather stable results.

We further find that models differ 1n their ability to capture the large skewness existing In

the foreign exchange data at hand. In parucular polfynomial approximations and the stochastic

g
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volatility modet have difficulties at this level.

Second, we compare the vanious methods on time series data using as criterion the abselute
relative error. We see that the mixture of lognormals model performs weil on short-matunty
options and that the jump diffusion model cutperforms all models for longer maturities. The
canstruction of confidence mtenvals reveals interesting patterns and shows therr usefulness for
policy makers or for mvestors who need to know what other market pariicipants anticipate

about a roarket's future,
APPENDIX

Here we describe how we implemented the non-linear least squares (NLLS) estimation. We first
introduce some notations, then discuss the traditional NLLS estimation. Eventually we explamn
how we estimated poaramecters i more difficult situations.

For a given date, we consider ¥ options characterized by subscnipt r. The 1th option has
strike price K, and matunty T. The market price, wntten C;}'. s given. Last, Jet C;}}(Q) be the
theoreticat price for the ith strike price and matunty T where  is a parameter vacior describing

the RND assccinted with modet X

NLLS consists i finding the solution to the program!®

Mo X ]
g};g':lz .{CiT Ci(e))

N

where © 15 the domain to which @ can beiong.

For scme of the models the parameter estimation turped cut te be difficuit. In particuler,
il parameters need to be obtained 1n a svstematic way such as in the time series framework, 1t
becomes necessary to make sure that the aigorithm does not diverge. In most cases what did
the trick was, first, to restrict parameters to jay in certam intervals {such a restniction can be
obtained by using a logistie transform) and, second, to force certain parameters to take values

on a grid whereas the other paramelers were obtamned withoul restrictions. When a parameter

8T his type af program canr be casily implemented within Gauss using the OPTMUM module.



was runming on & grid we eventually ran an unconstruned estimation using as starting values
the estimates obtamed over the grid with mimmal error.

We encountered difficulties 1n the following cases: For the mexture of lognermals case we
noticed that we often obtammed parameter estimales where all the weight was put on one density
and yielding a degenerate density (with zero vartance) for the density with no weight. Further
experiments with this method revealed the existence of multiple miumums. To mitigate this
problern we decided to take the weight over a grid starting close to 0 and ending close to | and
to estumate for each of the weights optimal parameters. We aiso decided to constrain. by using
a logistic transform, the means of the various densities 1n a range deemed to be reasonable.

We also encountered similar difficuities in estimating the stochastic volatility model. For this
case we {orced the A parameter on a grid taking values between two bounds chosen sufficientiy

wide apart to cover a reascnable range of values. All other methods tended to be fast and stable.
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CAPTIONS

Table 1 presents the parameter estimates for the Bernoulli version of a Jump-diffusion. o 15
the diffusion volatility. The jump will occur with probability A within one year. Its size 15 4.
AT represents the probability of a jump te occur before the maturity of the option. Ak 15 the
anpualized impact of a possible jump. Parameters are always estimated using non-linear lesst
squares as further explained 1n the appendix. Al options are European. For 17.05.96 {25.04.97}
we have options for 13 {11) deitas. The first date corresponds to a calm market whareas the
secand one o an agitated market.

Table 2 presents the results for Heston's steehastic volatility modei described by

dS: = pSdt+ JEdiWy,

dey m(8 — v ddt 4 v/ TedlVay

where ¥}, 12, are two Browman motions with possible correlation p. ¥ ts the vofatility of
volatility. /% is a measure of instantaneous volatility. « and 8 represent the mtensity of mean
reversion and long run voiatility. ¥ A s the risk premium ther 1" = k0/{x+ ) and 0 = k+ A,
We estimated parameters 1n lwo stages. first runmng <* on a grid between 2 and 5 and then
Tunning an estimation with «° free using as starung veiue the optimai one from the first stage.
The last coluran combines all maturities for a given date.

Table 3 displays & comparson of vanous moments for the RNDs. For 17.05.96 (25.04.97) the
actual forward prices for the [, 3, and 12 monti: options are 3.3089, 3.3933. and 3.1131 {3.3740.
3.3758, and 3.3820}

Table 4 displays 90 and 95 percent confidence intervals for the 1.3, and 12 month opuons.
Actual forward prices are as in Table 3.

Tabie 5 presents the absolute relative errors (ARE) for the vanous models for the { month to
maturity options. The = marks the mode! with the smatlest error [or a mven day. The mnemonics
Bench. Mix. HE, ED. JD stand respectivety for the berchmark, mixture of lognormals. hermite

approximation, edgeworth expansion, and jump-diffusion model.
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Table 6 s similar to Table 3 but far the 12 month to maturity options.



Table 1:

17.05.96
1 month 3 month & month 12 month
g 0.0172 0.0178 (L1093 025
AT 60399 (}.0621 0.0635 0.0689
Ak G.0104 0.0085 0.0073 0.0058

23.04.97
1l month 3 month 6 month 12 month
c 0.0186 0.0176 0.0160 1.0165
AT o.0vly 0.0608 20600 0.0574
Mk 0.0230 0.0128 00089 0.0083

Estimates of the Bernouili version of the jump-diffusion model.

17.05.96
| month 3 month 6 month 12 month Combined

K* 3.2556 3.9781 34815 2.2940 4.0300
VB 0.0264 0.0362 0.0386 0.0349 0.0316
¥ 0.1562 0.1423 0.1596 0.1064 0.1508
<] 0.4497 05727 0.5434 0.5968 0.5430
N 0.0221 0.0180 4.6020 0.0167 0.0224
25.04.97
I month 3 month 8 menth 12 month Combined
K 3.2514 31687 34267 1.8023 32820
V& 0.0720 0.0432 0.0184 (0038 0.6283
5 0.3068 0.1837 0.1332 0.1430 0.1570
p 0.5176 0.6269 0.6226 0.6337 G.6170
Vo 00185 0.0208 0.0367 1.0587 (.6300
Table 2: Parameter estimates of the stochastic volatility model.

33



Log-gormal
Log-nortoal nuxture
Herrite approximaiion
Edgewarth expansion
Jump-diffusion
Stochastic-volatility

Log-normal
Log-notmal mixture
Hermute approximation
Edgeworth expansion
Jump-diffusion
Stochastic-velatility

Log-normal
Log-normal muxture
Hermite appreximation
Edgeworth expansion
Jump-diffusion
Stechastic-volatility

Log-notmal
Log-normal mixture
Hermite approximation
Edgeworth expansion
Jump-diffusien
Siochastic-volatility

Log-normal
Log-normal mixture
Hermite approximation
Edgeworth expansion
Jump-diffusion
Stochastic-volatility

Log-normal
Log-normal mxture
Hermite approximation
Edgeworth expansion
Junip-diffusion
Stochasue-volatility

Table 3: Moments of the risk neutral densiy.

forward

3.3808
3.3898
3.3898
3.3808
3.3898
3.3898

3.3933
3.3933
3.3935
3.4933
3.3933
3.3932

3.4131
3.4130
34132
34131
34131
3.4132

fosward

3.3740
3.970
3.3741
3.3740
3.3740
33738

3.3738
3.3758
3.3719
3.3758
3.3758

3.3757

3.3820
3.3801
3.3787
3.3820
3.3820

33840

£7.05.96

volat,  skew.
1-raonth
0.0202 0,0179
0.0225 0.9096
0.0224 0.7127
0.0224  0.6898
0.0219  £.2932
0.0215 L1647
J-roonth
0.0227 0.0348
0.0253 1.3548
0.0248 1.1410
0.0251 10211
0.024%  1.3715
0.0244 13373
12-meonth
0.G6267 0.0813
0.0282 1.3369
0.0280  1.1495
0.6291  1.6215
0.028% 1,2982
0.0281 1.4897
25.04.97
volat.  shew.
l-mmonth
0.0257 0.0228
¢.a300  1.8572
.0291 14133
0.0294  1.3080
0.0291  1.6362
0.0284 14149
3-mmonth
0.0248 0.0382
0307 2.3017
0.0307  1.3105
(L0299 1.3830
0.0206  2.0354
0.0274 L7039
12-month
0.0291  6.0741
0.0290 25141
00315 13475
0.0303 1.3888
00297  2.2992
0.0271  1.8602

kurt,

0.6006
43917
3.2319
3.2137
3.5955
3.4252

0.9022
4.1869
27441
2.9609
3.0700
3.6976

0.0118
3.6170
25381
2.7068
2.6747
13789

Rurt.

0.0609
§.1805
31687
3.6579
3.8315
4.7203

0.0026
9,481
6650
4.8034
3.2717
41.9168

0.0098
9.2247
5.2982
5.6886
64363
3.6027



Log-normal
Log-normal mixture
Hermite approximation
Edgesworth expansion
Jump-diffusion
Stachastic-volatility

Log-normal
Log-normal mxture
Hermite appraximation
Edgeworth expansion
Jumnp-diffusion
Stochastie-volatility

Log-narmat
Log-normal mixture
Hermite appraximation
Edgeworth expansion
Jurap-diffusion
Stechastic-volatiiity

Log-normal
Log-normal muxture
Hermite appreximation
Edgeworth expansion
Jump-diffusien
Stochastic-volatility

Log-normal
Log-normal mixture
Hermnite approximation
Edgeworth expansion
Jump-diffusion
Stochastic-valatility

Log-normal
Log-normal mixture
Hermite approxirsation
Edgeworth expansion
Jump-diffusion
Stochastic-volatiiity

Table 4: 95 and 90 percent confidence intervals.

95 % boundares

fwd/floar
1.1950
1.3950
1.0833
1.0461
10461
1.0833

23178
19764
1.8631
1.8631
L9764
1.9764

5.3041
41.6638
4.5076
+.3106
1.66358
4.5076

fwd /foor
1.3005
12377
{.1361
1.1361
1.2377
14074

3.5206
2.0111
1.9768
1.8052
2.0i11
2.1144

19931
3.8779
3.9491
33115
3.89135
3.9847

ceil /fwd
{.1850
1.7310
1.8402
1.8038
1.8766
1.6218

ceil/fwd
14887
26139
2.5137
2.5468
2.5:460

8.1417
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17.40

i

5.96

90 % boundaries

| month
bandwith | fwd/leor
1.1830 rO719
i.-i359 0.8606
1.453% 0.8236
11195 0.8236
1.4539 0.8977
1.3467 0.8606
3 month
23726 1.9386
2.7452 1.8372
2.6907 1.58997
2.6807 1.53997
2.8543 1.6748
2.5088 1.5997
12 menth
5.3141 4.5866
§.2540 3.8797
§.2179 3.8407
6.0913 37239
6..1348 39571
3.0467 3.7239
25.04.97
i oonth
bandwith | fwd/foor
14879 {2716
19177 10347
1.8185 14010
1.8331 1.0010
1.9342 1.0685
L8351 11023
3 month
2.4949 21144
3.4202 {.7026
3.3211 1.7368
3.1889 1.600%
3.5194 1.7368
3.1228 17626
12 month
£.R1B0 4.1634
6.0103 3.3113
6.7950 3.1525
6.3332 3.0306
7.1908 3.3819
5.9869 33153

ceil/ffwd  bandwith

1.0030
12214
£.4398
1.4034
10394
1.2234

1.9161
2.5706
2.8979
2.897%
2.7888
2.3888

4.5075
3.9174
6.5319
6.4396
612335
34836

ceil /fwd
1.2573
18194
2.1169
2.116%
2.1500
1.6210

2.0931
30845
39767
319106
41.0098
2.8862

13175
5.9646
8.2736
80427
82736
5.5358

0.9828
10374
1,138
L1102
0.9646
1.0374

1.9089
2.0507
2.2362
22362
2.2180
1.9817

44465
4.8361
31133
3.0249
3.1133
4.5369

bandwith
1.2564
1.4218
19340
1.5540
1.6036
1.35336

2.0819
2.3793
2.8419
27428
2.8584
2.2801

4.0372
4.5850
3.8054
3.4921
3.7725
13706



date  Bench Mix HE ED
17.05.96 157.168 16.834 11.G25° 13.922
31.05.96 169.831 17.695° 21.908 23.334
1410696 164191 17.284" 17.376 1B.636
28.06.96 186.198 J8.823° 72.850 TL.B74
3.07.96 177.835 26.208° 73.016 T73.908
260796 176.727 17410 14344 13.008°
23.08.96 203.223 10348 28.238 28.692
6.02.96 198.543 10.189 25.635 26200
41096 161.028 13.723° 18941 20,000
31.310.96 170,431 16.270 28.076 20476
8.11.86 170431 16.277" 28.0676  29.202
£.12.85  197.480 24042 3G.a7 306486
27.12.96 168.213 15.368 12.680 13.113
30.01.97 168.217 15.372 12679 13.114
98.2.97 228196 20606 35.285 35237
3.0:4.07 251.562 22.192° 56.416  35.709
25.04.97 239733 7734 18135 17.831
206.97 237.059 16.900* 27.901 27.432
28.06.97 283.858 15.231* 53.13¢ 31707

JD
36,260
37.281
36.895
40.947
37.268
39.841
9.283°
9.540°
31611
22.907
22,923
16.212*

B8.278
8.276*
26.843*
33.403
B8.933
21.176
22,162

Tabie 5: AREs for { month to maturity options,

date  Bench Mix HE ED
17.0586 176.747 32930 10432 39437
31.05.86 186.032 41.181 52648 351.178
14.06.86 191.236 33.007* 64.5357 64.634
IR0606 185231  ZLV95  A7.700 46682
50796 200.735 56328 Bl.774 81302
2607.96 204238 63.731 42407 42400
230896 215.753 2484 28,366 28.349
6.09.96 215.863 32244 36.051 36.234
1.10.96 168.531 3757 30.615 324904
31.10.96 1B85.067 41.579% 38.035 30.015
B11.96 177486 41.6582 36.035 37.010
41206 222621 34087 28767 28179
27.12.86 232423 38671 42900 41.428
300197 232434 38743 42982 41437
28.2.9% 251,202 35277 5RE6R 56.635
3.04.97 255440 ATV 828  G3.055 60.506
35,0497 248672 .11.034 38826 37143
206,07 236277 35634  45.607 43.402
220697 291310 G3.565 B81.166 77.084

JD
23.238°
d2.722°

34,589
18,8007
47.969°
19.539°
15.302°
24.515°
19.109°
21.964°
17.371°
112740
10137
14.016"
23.769°
15.203*
16.694*
19.789*
34.435°

Table 6: AREs for the 12 month to maturity options.
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