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ABSTRACT

Empirical Analysis of Limit Order Markets*

We analyse order placement strategies in a limit order market, using data on
the order flow from the Stockholm Stock Exchange. Traders submitting market
or limit orders trade off the order price against both the execution probability
and the winner’s curse risk associated with different order choices. The
optimal order strategy is characterized by a monotone function, which maps
the liquidity demand of the investors into their order choice. We develop and
implement a semiparametric test of this monotonicity property, and find no
evidence against the monotonicity property for buy orders or sell orders. We
do find evidence against the hypothesis that the trader’s decision to be a
buyer or a seller depends only on the trading profits available in the limit order
book. We estimate that traders submitting market buy orders have private
valuations that exceed the asset value by 2.3% on average and receive an
average pay-off of at least 1.8% of the asset value. Traders submitting limit
buy orders at the price below the best ask quote have private valuations
between 0.1% and 2.3% above the asset value, and earn an average pay-off
of between 0.3% and 1.8% of the asset value. Although the distribution of
liquidity demand does not depend on conditioning information, conditioning
information helps us to predict the composition of the order flow in our data.
These findings imply that variation in the composition of the order flow can be
explained by empirical variation in the relative profitability of alternative order
choices and movements in the common value of the asset.

JEL Classification: C14, D44, G10
Keywords: auctions, electronic trading systems, limit order markets and
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NON-TECHNICAL SUMMARY

In this Paper, we develop and test a model of optimal order placement in a
computerized limit order market. Our data set is obtained from the Stockholm
Stock Exchange and contains detailed data, which allow us to approximate
the information available to the traders at the time of order submissions, and
to track the eventual outcomes of all orders. We use the data on traders’ order
placement choices together with the outcomes of these choices to estimate
the expected pay-offs from alternative trading strategies. Theory imposes
testable restrictions on the relative pay-offs of alternative order choices, which
we test in our data. We use our empirical estimates of the optimal trading
strategy and the conditional distribution of the traders’ order entry decisions to
make inferences on the traders’ liquidity demands in the market. This allows
us to decompose variation in the order flow into changes in trading
opportunities and changes in the distribution of liquidity demand.

A computerized limit order market resembles a continuous double auction
market, which has been studied extensively by economists. The practical
importance of this market structure is growing as many financial markets have
adopted computerized limit order books, while others are evaluating the merits
of introducing limit order books into their market architecture. The Stockholm
Stock Exchange completed the introduction of a computerized limit order
market in 1990. The computerized trading system SAX (Stockholm Automated
Exchange) is very similar to other electronic limit order markets, such as the
Paris Bourse.

In a limit order market, buyers and sellers can submit orders of two types. A
market order executes immediately at the most attractive price posted by
previous limit orders. A limit order specifies a particular price, and is a promise
to trade at that price. Unexecuted limit orders enter the electronic limit order
book where they are stored until executed or cancelled. In most limit order
markets there are no floor traders, market makers or specialists with special
quoting obligations or trading privileges. The most important source of liquidity
is the queue of unfilled limit orders in the order book. There is a trade-off
between the order price and the probability that the limit order transacts, which
is reflected as an implicit cost for immediacy or liquidity. In addition, the
underlying value of the asset generally moves stochastically, and since a
trade involves a previously submitted limit order being transacted against a
newly submitted market order, trades typically involve a market order
submitted by a trader who has better information than the trader who
previously submitted the limit order. Therefore, limit orders may be exposed to
adverse selection, which we refer to as winner’s curse.

Overall, the order placement problem involves trade-offs between the order
price, the probability of execution, and the winner’s curse. These trade-offs



form the basis of much of the theoretical literature on the choice between limit
and market orders. Our contribution is to estimate these trade-offs directly in
our data set, and to test whether the traders’ observed order placement
decisions can be rationalized by these trade-offs that our model characterizes.
We also use the observed order choices made by the traders to make
inferences about their demands for liquidity.

Our empirical approach is as follows. The theoretical model characterizes the
optimal order submission strategy in terms of the conditional probability that
different limit orders transact, along with the conditional winner’s curse
associated with different limit orders. We use non-parametric methods to
estimate conditional execution probabilities and winner’s curse terms and use
these to construct estimates of the optimal order submission strategy. The
theoretical model imposes a monotonicity restriction on non-linear functions of
the conditional execution probabilities and associated winner’s curse terms.
We form tests of these monotonicity restrictions in our data set. Combining the
estimates of the optimal order strategy with the actual choices made by the
traders, we infer properties of the distribution of traders’ liquidity demands.

Our empirical analysis uses data on all orders submitted for one of the most
actively traded stocks on the Stockholm Stock Exchange, Telefon AB LM
Ericsson. We find that the conditional probability that a limit order eventually
transacts decreases as the limit order price distances from the best quotes.
We do not reject the monotonicity property implied by traders’ optimization
over limit and market orders when we analyse buy and sell decisions
separately. Thus, traders appear to behave in a way that can be rationalized
by the trade-offs between the order price, the conditional probability that the
order transacts, and the winner’s curse. Our monotonicity test rejects the
implication that the trader’s choice to be a buyer or a seller of the asset is
based only on the profits available in the limit order book. Our empirical
estimates imply that the average market order buyer earns an average pay-off
of at least 2 kronor (SKr) per share, or roughly 1.8% of the average value of
Ericsson from the order submission, while the corresponding pay-offs for the
average market order seller are at least 1.6 SKr per share, approximately
1.5% of the average value of the asset. Traders submitting limit orders have
less extreme private valuations than traders submitting market orders and
earn a smaller average pay-off from their order submissions. Overall, our
empirical work provides evidence that limit orders are submitted by traders
with an active interest in trading who earn positive pay-offs from their order
submissions. Our estimates of liquidity demand distribution reveal little
evidence that conditioning information affects distribution trends. Since the
conditioning information helps predict the distribution of order submissions,
our estimates imply that changes in the trading opportunities – rather than
changes in liquidity demand – drive much of the empirical variation in the
distribution of order submission strategies.



Our empirical findings have two important implications for empirical studies
that measure the performance or pay-off on different order placement
strategies. First, they imply that the trading opportunities available in the
market influence traders’ order placement strategies. Second, limit orders are
submitted by traders who have an active interest in trading, that is, traders
with a non-zero demand for immediacy. Thus, in order to accurately measure
the pay-off on a given order strategy it is crucial to account for the information
that the traders have when they make their order entry decisions, and to
consider the valuations of these traders following a given order strategy.
These considerations are likely to be relevant for any market institutions that
include a limit order book in their design. Glosten (1994) and Seppi (1997)
derive equilibrium limit order books in environments where limit orders are
submitted by perfectly competitive traders with a zero liquidity demand,
implying that the marginal limit order earns zero expected profits. In our data,
we cannot reject the null hypothesis that the average pay-off of the most
aggressive limit order is zero. Traders submitting the most aggressive buy
limit orders have negative private valuations for the asset and traders
submitting aggressive sell orders have strictly positive private valuations for
the asset. Traders submitting less aggressive limit orders receive strictly
positive average pay-offs and the average private valuations of these traders
are non-zero. On average, limit orders are submitted by traders with an active
interest in trading, who earn positive pay-offs from their order submissions.
Overall, the results are consistent with the arguments in Glosten (2000) that
limit orders need not be submitted by marginal traders earning zero profits.



1 Introduction

In limit order markets, the order flow determines trading activity in the market, and the composition

of the order flow generally depends on the number and nature of unfilled orders in the limit order

book. In this paper, we develop and test a model of optimal order placement in a computerized limit

order market. Our data set is obtained from the Stockholm Stock Exchange, and contains detailed

data which allow us to approximate the information available to the traders at the time of order

submissions, and to track the eventual outcomes of all orders. We use the data on traders’ order

placement choices together with the outcomes of these choices to estimate the expected payoffs

from alternative trading strategies. Theory imposes testable restrictions on the relative payoffs of

alternative order choices which we test in our data. We use our empirical estimates of the optimal

trading strategy and the conditional distribution of the traders’ order entry decisions to make

inferences on the traders’ liquidity demands in the market, allowing us to decompose variation in

the order flow into changes in trading opportunities and the changes in the distribution of liquidity

demand.

A computerized limit order market resembles a continuous double auction market, which has

been studied extensively by economists. The practical importance of this market structure is

growing as many financial markets have adopted computerized limit order books, while others

are evaluating the merits of introducing limit order books into their market architecture. For

example, Domowitz (1993) documents that approximately 35 financial markets in 16 different

countries contain elements of limit order mechanisms in their designs. Recently, the New York

Stock Exchange has debated the benefits of adopting elements of a consolidated limit order book

into its design (New York Stock Exchange Market Structure Report, (2000)).

In a limit order market, buyers and sellers can submit orders of two types. A market order

executes immediately at the most attractive price posted by previous limit orders. A limit order

specifies a particular price, and is a promise to trade at that price. Unexecuted limit orders

enter the limit order book where they are stored until executed or canceled. There is a trade-off

between the order price and the probability that the limit order transacts, which is reflected as an
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implicit cost for immediacy or liquidity. In addition, the underlying value of the asset generally

moves stochastically, and since a trade involves a previously submitted limit order being transacted

against a newly submitted market order, trades typically involve a market order submitted by

a trader who has better information than the trader who previously submitted the limit order.

Therefore, limit orders may be exposed to adverse selection which we refer to as winner’s curse.

Overall, the order placement problem involves trade-offs between the order price, the probability

of execution, and the winner’s curse.

These trade–offs form the basis of much of the theoretical literature on the choice between limit

and market orders.1 Our contribution is to estimate these trade–offs directly in our data set, and to

test whether the traders’ observed order placement decisions can be rationalized by these trade–offs

that our model characterizes. We also use the observed order choices made by the traders to make

inferences about their demands for liquidity.

Our empirical approach is as follows. The theoretical model characterizes the optimal order

submission strategy in terms of the conditional probability that different limit orders transact, along

with the conditional winner’s curse associated with different limit orders. We use nonparametric

methods to estimate conditional execution probabilities and winner’s curse terms and use these

to construct estimates of the optimal order submission strategy. The theoretical model imposes

a monotonicity restriction on nonlinear functions of the conditional execution probabilities and

associated winner’s curse terms. We form tests of these monotonicity restrictions in our data set.

Combining the estimates of the optimal order strategy with the actual choices made by the traders,

we infer properties of the distribution of traders’ liquidity demands.

The trade–offs that determine the optimal order strategy are similar to the familiar trade–offs

in auction settings. In auctions, bidders trade off the probability of winning the object against the

price that they pay and the value of the object, conditional upon winning the auction. Elyakime,
1Demsetz (1968) studies the costs of immediacy in an environment where buyers and sellers arrive at different

times. Cohen, Maier, Schwartz, and Whitcomb (1981) theoretically analyze a trader’s optimal choice between market
and limit orders. Biais, Martimort and Rochet (2000), Foucault (1999), Glosten (1994), O’Hara and Oldfield (1986),
Parlour (1998), Parlour and Seppi (2001), Rock (1996), and Seppi (1997), analyze prices, trading volumes and
efficiency in financial markets with limit order books. Domowitz and Wang (1994) solve for the stationary distribution
of the order book and the waiting time to order execution in a model with exogenous arrival rates of market and
limit orders using queuing theory.
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Laffont, Loisel and Vuong (1994) and Guerre, Perrigne, and Vuong (2000) and Laffont and Vuong

(1996) show how to construct nonparametric estimators of the optimal bidding strategy in different

private value auction settings. In these papers, empirical estimates of the optimal bidding strategies

are used to invert for bidders’ valuations to estimate the distribution of valuations, assuming that

the empirical bidding strategy is monotone. These authors do not develop empirical tests of the

monotonicity property of the optimal bidding strategy.

There are important differences between the financial limit order market that we study and

the auction environments analyzed previously. The limit order market is a sequential market,

in which traders choose order prices from a discrete set. In financial markets, we expect the

underlying value of the asset to be stochastic. Since trades involve a previously submitted limit

order transacting with a newly submitted market order, limit orders may be exposed to changes

in the underlying asset value. The order book, which is the queue of unfilled limit orders, is a

stochastic process. Together with the stochastic value of the asset, this implies that the expected

payoffs and the optimal strategy may depend on information available to the traders when they

submit their orders. Our econometric techniques deal with the time series nature of the data and

allow for conditioning information.

There has been previous empirical work studying limit orders. Using data on limit and market

orders from the Paris Bourse, Biais, Hillion and Spatt (1995), find evidence that traders submit

more market orders when the order book is relatively full and more limit orders when the order

book is relatively empty. This behavior is consistent with order placement strategies that depend

on the trading opportunities offered in the limit order book.2

Our empirical analysis uses data on all orders submitted for one of the most actively traded

stocks on the Stockholm Stock Exchange, Telefon AB L.M. Ericsson. We find that the conditional
2Harris and Hasbrouck (1996), and Handa and Schwartz (1996) analyze the profitability of alternative order

placement strategies in different market conditions. Lo, MacKinlay, and Zhang (2001) estimate several econometric
models of limit order execution times. Kavajecz (1999) presents empirical evidence on the interaction between the
specialist and the limit order book on the New York Stock Exchange and Ready (1999) provides a theoretical and
empirical analysis of the interaction between the limit order book and the specialist’s use of stopped orders on the
New York Stock Exchange. Goldstein and Kavajecz (2000) document dramatic shifts in traders’ willingness to submit
limit orders in the limit order book during extreme market movements in the New York Stock Exchange. Sand̊as
(2001) estimates a model of competitive market making in a limit order market.
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probability that a limit order eventually transacts is decreasing in the distance of the limit order

price from the best quotes. We do not reject the monotonicity property implied by traders’ opti-

mization over limit and market orders when we analyze buy and sell decisions separately. Thus,

traders appear to behave in a way that can be rationalized by the tradeoffs between the order price,

the conditional probability that the order transacts, and the winner’s curse. Our monotonicity test

rejects the implication that the traders’ choice to be a buyer or a seller of the asset is based only

on the profits available in the limit order book. Our empirical estimates imply that the average

market order buyer earns an average payoff of at least 2 Kronor (SKr) per share, or roughly 1.8%

of the average value of Ericsson from the order submission, while the corresponding payoffs for the

average market order seller are at least 1.6 SKr per share, approximately 1.5% of the average value

of the asset. Traders submitting limit orders have less extreme private valuations than traders

submitting market orders and earn a smaller average payoff from their order submissions. Overall,

our empirical work provides evidence that limit orders are submitted by traders with an active

interest in trading who earn positive payoffs from their order submissions.

Our estimates of the distribution of liquidity demand reveal little evidence that conditioning

information changes the distribution of liquidity demand. Since the conditioning information helps

predict the distribution of order submissions, our estimates imply that changes in the trading

opportunities, rather than changes in liquidity demand drive much of the empirical variation in the

distribution of order submission strategies.

The next section of the paper provides a brief qualitative and quantitative description of the

Stockholm Stock Exchange. In section 3 we present the theoretical model, deriving its testable

restrictions. Section 4 contains an empirical implementation of the model and the final section

concludes. All proofs and regularity conditions for our econometric estimators are contained in the

Appendices.
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2 Description of the Market and the Data

This section describes the relevant institutional details about the Stockholm Stock Exchange for

the time period we study, December 1991 to March 1992, and some stylized facts of the data that

help motivate our subsequent analysis. During this time period, the Stockholm Stock Exchange

was a nonprofit organization, with a board of directors representing the listing firms, intermediaries

and the Swedish government. The Exchange was incorporated in 1993, and it merged with the OM

Group, a for–profit derivatives exchange in 1998.

In 1990 the Stockholm Stock Exchange completed the introduction of a computerized limit order

market. The computerized trading system SAX (Stockholm Automated Exchange) is very similar

to other electronic limit order markets, such as the Paris Bourse and the Toronto Stock Exchange.

In the Stockholm Stock Exchange, there are no floor traders, market makers or specialists with

special quoting obligations or trading privileges. The most important source of liquidity is the

queue of unfilled limit orders in the order book. Trading in this system is continuous from 10 A.M.

to 2:30 P.M. and the opening price at 10 A.M. is determined by a call auction. Investors submit

market or limit orders to the electronic limit order book through brokers.

All order prices are required to be multiples of a fixed minimum price unit, referred to as the

tick size. When prices are below 100 SKr, the tick size is 1/2 SKr and when prices exceed 100 SKr,

the tick size is 1 SKr. During the sample period $1 was roughly equal to 6.25 SKr. The order size

is must be an integer multiple of a round lot, with a typical round lot size of 100 shares.

Limit orders are stored in the centralized computer system and automatically executed as they

cross with incoming market orders. Thus, all trading in the limit book is between market and limit

orders. Limit orders in the order book are prioritized first by price and then by time of submission.

If an incoming market order is for a smaller quantity than that available at the best quote in the

book, then it will trade in full at a price equal to the best quote. If the market order cannot be

filled completely at the best quotes, it will walk up the book until it is either filled in full, or no

more limit orders remain. In the absence of designated market makers, it is possible for the limit

order book to be empty on one or both sides of the market. When this occurs, it is not possible
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for a market order to obtain immediate execution and so the market order is converted into a limit

order and added to the order book at a price one tick away from the current best quote. Similarly,

the remaining quantity of a large market order that exhausts the available liquidity in the book

before it is filled in full is converted to a limit order at the last trade price. A limit order can be

canceled at any time at no extra cost. Traders can also submit limit orders with only a portion

of the order quantity displayed in the order book. These orders are known as hidden orders. The

hidden part of a limit order has lower priority than all displayed limit orders at the same order

price in the limit order book.

Only exchange member firms can enter orders in the SAX system. A member firm trades both

as a broker on behalf of customers, and as a dealer on his own behalf.3 During the time period

we study there were a total of 24 exchange member firms. These firms include all major Swedish

banks as well as most brokerage firms that actively trade Swedish securities. The major Swedish

banks have extensive retail branch networks, and act as brokers for customers throughout Sweden.

We will refer to the member firms as brokers.

The brokers are directly connected to the SAX system. They observe in real time the total

order quantities available at each price level in the order book for a given stock. In addition they

observe, for every price level in the book, the codes for each of the brokers with outstanding orders.

This information is updated almost instantaneously after order submissions or cancellations. Short

delays of up to one minute may arise, for example, just after the opening, or just before the closing

of the market when activity levels tend to be high. Investors, who are not directly connected

to the SAX system, can obtain information about the five best bid and ask price levels, and the

corresponding order quantities through information vendors, such as Reuters or Telerate. Investors

can submit orders directly to the limit order book through exchange members.

Until January 1st, 1993, the Stockholm Stock Exchange was the only authorized marketplace

for equity trading in Sweden. Many of the listed companies were also cross listed on foreign

exchanges during this period. Trading in London on the international Stock Exchange Automated
3Commissions are negotiable. Commissions were around 0.5% depending on the level of service for this time

period. There is also a fixed exchange fee per order of less than one dollar.
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Quotation and in the U.S. on the National Association of Securities Dealers Automated Quotation

system accounted for a significant fraction of the turnover for many Swedish firms.4 Trading is not

completely automated since trades can be settled, subject to some quantity restrictions, outside

the electronic system either during normal trading hours or during after-hours trading.5

Our data set, provided by the Stockholm Stock Exchange, consists of order and trade records

obtained directly from the SAX system. The order records is a list of new order submissions, changes

in outstanding orders and order cancellations. The trade records list the actual transactions in the

market chronologically. The data set contain sufficient information to reconstruct individual order

histories. The sample period is the 59 trading days between December 3, 1991, and March 2, 1992.

We use the following procedure to construct the individual order histories from the order flow

and trade files. Each limit order submitted to the SAX system receives a unique tracking number,

and subsequent changes in the outstanding order quantity are recorded using the same tracking

number. We combine this information with data on transactions to determine whether a change

in the order quantity was due to a trade or a cancellation. This process allows us to reconstruct

complete transaction and cancellation histories for limit orders, and to reconstruct the order book

information available to the brokers and the traders in the marketplace at any point during our

sample period.

Our data set is very detailed, but there are some important limitations. First, we cannot

distinguish the trades that a broker makes on his own behalf from those he makes for his customers.

Second, the investors in our data set are essentially anonymous, since we can only identify the

broker submitting the order. Therefore, we cannot link orders submitted by the same investors

at different times, for example, as part of a dynamic order placement strategy. Third, we do not
4Trading abroad was particularly attractive due to the transaction tax levied on equity trades in Sweden. In 1991

the transaction tax was equal to 0.5%. The tax was abolished on December 1, 1991, before the start of our sample
period.

5For the most active stocks, a trade of 100-500 round lots can be settled outside the SAX system if the transaction
price is within the bid-ask spread. This rule allows brokers to cross customer orders in-house. Trades of more than
500 round lots can be settled at a price outside the bid-ask spread. These orders do not respect the priority rules
within the order book, nor do they interact with the orders in the book. All off–exchange trades arranged during
regular trading hours must be reported to the exchange within 5 minutes. This information is disseminated to market
participants. Trades made during after-hours trading must be reported to the exchange before the opening of the
market the following day.
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observe directly whether an order includes a hidden order quantity component or not. In our data

set we are able to infer ex post that an order must have involved some hidden quantities only if the

displayed proportion of the hidden order is executed in full. In these situations, we will observe a

subsequent order quantity increase with the same tracking number as the original order when the

hidden order quantity is added to the outstanding order quantity. In our sample, hidden orders

appear to be used very infrequently, at least for the orders that fully execute.

Limit orders typically are good until canceled and so the time that a limit order remains in the

order book is random. A censoring problem arises in our data since some orders submitted in our

sample remain outstanding at the end of our sample period. To minimize the effects of censoring

on our analysis, we do not use orders submitted during the last two days of our sample in our

subsequent empirical work. We follow each order in our sample for two trading days after it was

placed. Only 2.8% of the limit orders submitted by the traders remain in the system for more than

two trading days and 62.3% of these limit orders are eventually canceled. We also discard orders

submitted during the first three minutes of the trading day. This ensures that our data reflects only

continuous trading. These filtering rules leave us with 20,760 observations of individual market and

limit orders submitted to the SAX system.

Table 1 reports descriptive statistics on the daily trading activity for Ericsson. The tick size

varies between 1/2 SKr and 1 SKr since the price fluctuates below and above 100 SKr. The average

daily return for the stock is -0.22%, but due to positive overnight returns, the stock had a 10.05%

total return over the period we study. The standard deviation, maximum and minimum returns

indicate that the stock returns have been relatively volatile during this period.6 Thus, limit orders

submitted over this period can be subject large adverse price changes. There are 24 brokers that

trade shares in Ericsson over the sample period. Nine brokers have market shares of more than 5%

and the most active one has a market share of 11.3%. The third row of the table reports statistics

on the number of active brokers, defined as brokers who make at least one trade on a given day.
6For comparison, the standard deviation of daily returns on Ericsson cross-listed on the National Association for

Security Dealers Automated Quotation system is equal to 2.5% for the five year period 1989 to 1993, computed using
data from the Center for Research in Securities Prices. Using the same data source, we find a daily return standard
deviation of 3.1% over the sample period we study.
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On average, 19 different brokers trade the shares on any given day. Sorting the brokers by their

trading volume, the top 3 brokerage firms each transact 10% to 11% of the total trading volume in

Ericsson, and the next 7 brokerage firms each transact 5% to 9% of the total trading volume. The

numbers are almost identical for order submissions. Figure 1 provides the cumulative market share

of the dealers based on trading volume. The Herfindahl index based on trading volume is 691 and

the Herfindahl index based on order submissions is 641.7

The daily trading volume in the limit order system is reported on the fourth row. Corre-

sponding descriptive statistics are reported for orders crossed internally by brokers, block trades

during regular trading hours, after-hours trading, and the total trading volume, respectively, on

the following four rows. The 1991 annual report from the Stockholm Stock Exchange (Stockholms

Fondbörs Årsrapport (1991)) reports that during 1991, the turnover rate of the stock was 38%. All

our subsequent analysis concentrates of order submissions and trades in the electronic limit order

book.

Table 2 provides sample statistics on the order flow. The first row presents the number of

market and limit orders submitted. For both the buy and sell sides, most of the orders are market

orders, and there are more buy than sell orders. The second line of the table reports averages of

the fill ratios for different limit orders where the fill ratio measures the fraction of the limit order

quantity that was eventually traded. We consider a time horizon of two trading days, so that we

measure the fraction of the limit order quantity traded within two trading days. The fill ratio for

market orders is, by definition, equal to one, if sufficient liquidity is available. If the limit order

book is empty, then it is not possible to submit a market order of any size. This never occurs in

our data set. The fill ratios reported in the table show the unconditional trade–off between the

probability that the order transacts and the order price in the data, since the fill ratio for limit

orders drops monotonically the more favorable the submitted limit order price is. The final row of

the table gives estimates of the average time–to–fill for limit orders. These sample averages suggest

that, conditioning on the order being filled, more aggressively priced limit orders take longer to

fill than less aggressively priced limit orders. Given the stochastic movement in trading prices, the
7The Herfindahl index is computed as

∑
dealers(% market share of dealer)2.
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average time–to–fill suggests that aggressively priced limit orders are more exposed to changes in

the underlying value of the asset than less aggressively priced orders.

Table 3 gives summary statistics on the order quantities across eight order price categories.

The average order quantity across categories ranges from 15 to 36 round lots. We reject the null of

equal means across categories (chi-squared=486.30, 7 d.f., p-value < 0.001). We also reject the null

hypothesis that the average order quantity is the same for buy and sell orders (chi-squared=261.95,

1 d.f., p-value < 0.0001), the null hypothesis that all sell orders have the same average quantity

(chi-squared=33.16, 3 d.f., p-value < 0.001) and the null hypothesis that the buy orders all have

the same average quantity (chi-squared=124.57, 3 d.f., p-value < 0.001). For both buy and sell

orders, the highest order size is for limit orders at two ticks away from the quotes, and the lowest

order size is for the three tick away orders. On average, market orders are for smaller quantities

than limit orders.

The second column of Table 3 reports the standard deviation of the order quantity within

each price category. These numbers indicate a lot of variation in the order quantities submitted.

The third column reports the medians of the distribution, and the medians are uniformly smaller

than the means, indicating that the distribution is right-skewed. The final four columns give the

minimum, first and third quartiles and the maximum order quantity for each choice, providing

additional evidence on the skewness of the quantity distribution.

Table 4 contains information on the limit order book over our sample period. The first six

rows of the table provide information on the size of the order queue at the best 3 buy and sell

price quotes. The average market order size is roughly 20 round lots, so typically the quantities

at the best quotes equal about 9 incoming market orders. There is a large variation in the order

book quantities ranging from one to more than one thousand round lots. For an investor who

demands immediacy, the cumulative quantities available in the order book are more relevant than

the quantities offered at different price levels in the book. The seventh through the tenth rows of

the table provide the cumulative order quantity for the two and three best bid and ask quotes.

An empty limit order book does not occur in our sample and so the book can always satisfy an
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immediate demand for immediacy, provided it is not too large. In our sample, twelve orders walk

up the book, each going one tick beyond the best quote.

We provide information on the price quotes in the last six rows of the table. The median, the

first and third quartiles indicate that the three best price quotes on the bid and ask sides are spaced

one tick apart most of the time. Overall, the main characteristic of the limit order book is that the

order prices tend to cluster tightly around the midquote, and that the bid–ask spread is relatively

constant at one tick.

A limit order submitted to this market may be either fully or partially executed or canceled.

Figure 2 is a plot of the the sample survivor function for limit orders. This function is defined as the

probability that a limit order remains outstanding for t periods or more. In calculating the survivor

function, we account for partial executions by giving weight to each observation that equals the

proportion of the original order quantity executed or canceled at that time. A separate survivor

function is plotted for limit orders submitted between 10:00 A.M. and 11:00 A.M. (solid line), 11:00

A.M. and 1:00 P.M. (dashed line), and 1:00 P.M. through 2:30 P.M. (dash-dot line). Roughly one in

ten limit orders submitted between 1:00 P.M. and 2:30 P.M. survive for more than one hour, while

more than three out of ten limit order submitted during the first hour of trading do so. Overall,

only 4.26% of the limit orders last for more than one trading day, and the survivor fraction drops

to 2.84% for two trading days and to 1.65% for three trading days. The expected fill ratio drops

quickly as the time an order remains outstanding increases. A limit order remaining in the book

for more than one trading day has an expected fill ratio of 0.43 whereas an order remaining in the

book for three days has an expected fill ratio of only 0.28.

The bottom two plots in Figure 2 show the cumulative distribution function for order fill and

cancellation times. In calculating these sample distribution functions we use the same weighting

scheme described above to handle partial fills and cancellations. The distribution of the time–to–fill

indicates that for all limit orders, 90% of the fills occur within three hours after order submission.

It is evident from the plot of the distribution of order cancellations that many order cancellations

are made close to the end of the trading day.
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Biais, Hillion, and Spatt (1995) document that traders’ order submission decisions depend on

the order book in the Paris Bourse. In order to determine whether order placement decisions

depend on conditioning information in our data, we estimate two ordered probit models for the

choice between order types, one for buy orders and one for sell orders. Table 5 contains definitions

of the conditioning variables that we use. The estimated coefficients and associated standard errors

are reported on the two first rows of each panel of Table 6. We reject the null hypotheses that all

coefficients are jointly equal to zero for both the buy and sell model. Rows 3 through 6 of each

panel provide the marginal effects of a change in one of the explanatory variables on the different

choice probabilities, evaluated at the median values of the conditioning information. The marginal

effects suggest that these variables pick up systematic variation in the traders’ order placement

decisions.

Overall, our data shows that there is an unconditional trade–off between the limit order price,

the unconditional probability that the order executes within two days and the time it takes for the

limit order to be filled. The state of the limit order book changes empirically and this information

is useful at predicting the composition of the order flow. In the next section, we describe the

theoretical model of order submissions into the limit order book that we will use to interpret this

data.

3 Theoretical Model

We assume that at time t, one potential trader arrives in the market and, for a limit amount of

time, has the opportunity to receive some gains from trading the stock. We assume this window

of opportunity is determined by factors outside of this model, such as positions taken in other

stocks. Once a trader arrives in the market, he observes the limit order book and can decide to

enter an order into the system. An order can either be a market order or a limit order. Because

the trader observes the current limit order book when submitting his order, he can determine the

price that results in immediate execution, and we will refer to such an order as a market order.

We use the decision indicator variables ds
kt, for k = 0, 1, . . . ,K, db

lt for l = 0, 1, . . . ,L and denote
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the trader’s decision at time t. We let qt denote the size of the order submitted by the trader and

assume that qt is chosen exogenously to the order price. It is possible to consider quantity choice in

this environment, and in Appendix C, we characterize the optimal decision rule when both order

quantity and order price are choice variables. We assume that K < ∞ and that L < ∞ so that

the trader chooses from a finite set of order prices. If the trader submits a market sell order, then

ds
0t = 1, and the order price is equal to the best bid quote. If the trader submits a market buy

order, then db
0t = 1 and the order price equals the best ask quote. If ds

kt = 1, then the trader

submits a limit sell order at the price k ticks above the current best bid quote, correspondingly if

db
lt = 1, then the trader submits a limit buy order at the price l ticks below the current best ask

quote. If the trader does not submit any order at time t, then ds
kt = 0 for all k and db

lt = 0 for all l.

All traders are assumed to be risk neutral, and choose order submission strategies to maximize

their expected utility. At time t, we assume that a trader arrives with valuation vt per share for

the asset. We assume that once a trader enters an order, at a random time in the future the

investor’s surplus from the order will go to zero and that the investor will cancel the order when

the opportunity to receive a surplus disappears. The maximum life of the order is bounded with

probability one. Following Tauchen and Pitts (1983) and Foucault (1999), we decompose vt into

two components:

vt = yt + ut. (1)

The random variable yt represents the common value of the asset at time t; one interpretation is

that it is equal to the markets’ expectation of the liquidation value of security. The common value

is a stochastic process, and changes randomly over time as the market learns new information.

With this interpretation, yt is is a martingale relative to the market’s information information set.

That is,

∀t, yt = Et [yt′ ] , ∀t′ > t, (2)

where the subscript t refers to conditioning on the market’s information set at time t. Since yt is

stochastic, traders who enter into the market in the future will have an informational advantage

relative to current traders regarding the common value of the asset. In this way, limit orders are

13



exposed to adverse selection or the winner’s curse in our model.

We refer to the random variable ut as the private component of the trader’s valuation. The

private component of traders’ valuation is drawn independently and identically across traders from

the continuous distribution

Prob (ut ≤ u| Information at t) = Gt (u) , (3)

with continuous density gt(·). This distribution is conditional on information available at time t.

We interpret ut as a measure of the traders’ demand for immediacy or liquidity. Traders with

extreme values of ut have a high desire to trade the asset immediately, and traders with private

values close to zero have no particular reason to trade, unless the limit order book presents them

with profits from doing so. Once a trader enters the market, his private valuation does not vary

until the time that the order is canceled, while the common value portion of his valuation moves

stochastically as new information arrives. If a trader submits an order to buy or sell the asset, he

must pay a fixed cost of c per share. This cost is the same for all types of orders submitted.

Suppose that a trader with valuation v = y + u submits a buy order of size q, at a price pl, l

ticks away from the ask quote, so that db
l = 1. Here, we drop the t subscripts for brevity. Define

dQ̃τ as the number of shares of the order that transact τ periods from the time that the order is

submitted. If the surplus goes to zero τ ′ periods from the order entry time, then dQ̃τ = 0 for all

τ ≥ τ ′. We let T̄ < ∞ be the maximum possible life of the order.

The payoff that the trader receives from a purchase of dQ̃τ shares of the security in τ periods

at price pl is equal to

dQ̃τ (ỹτ + u− pl) = dQ̃τ (v − pl) + dQ̃τ (ỹτ − y) ,

where ỹτ is the common value of the security in τ periods. The term dQ̃τ (v − pl) is equal to

the payoff that a trade of size dQ̃τ would earn upon immediate execution at price pl. The term

dQ̃τ (ỹτ − y) is equal to the number of shares transacted in τ periods multiplied by the change in

the common value, and captures the winner’s curse to which the order is exposed. Including the
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cost of submitting the order, qc, the realized payoff from submitting the order is equal to:

U(pl, q,buy) =
T̄∑

τ=0

dQ̃τ (v − pl) +
T̄∑

τ=0

dQ̃τ (ỹτ − y)− qc. (4)

The expected payoff to the trader from submitting the order is equal to the expected value of

equation (4), conditional on the traders’ information when they enter the market,

Et [U(pl, q,buy)|v] = Et




T̄∑

τ=0

dQ̃τ (v − pl)

∣∣∣∣∣∣
q


 + Et




T̄∑

τ=0

dQ̃τ (ỹτ − y)

∣∣∣∣∣∣
q


− qc

= qEt




T̄∑

τ=0

(
dQ̃τ

q

)∣∣∣∣∣∣
q


 (v − pl) + qEt




T̄∑

τ=0

(
dQ̃τ

q

)
(ỹτ − y)

∣∣∣∣∣∣
q


− qc

= q ψb
lt(q) (v − pl) + q ξb

lt(q)− q c, (5)

where,

ψb
lt(q) ≡ Et




T̄∑

τ=0

(
dQ̃τ

q

)∣∣∣∣∣∣
q




is the expected fill ratio for the order, defined as the expected fraction of the order that eventually

transacts up to the maximum lifetime of the order, T̄ , conditional on the information that the

trader has at the time of submission and the order price chosen, pl. If the order is a market order,

then the expected fill ratio, ψb
0t(q), equals one by definition.

The first term in the trader’s expected payoff, q ψb
lt(q) (v − pl) , is equal to the expected number

or shares that will eventually transact multiplied by the current surplus per share for certain

execution of the order at price pl. This quantity measures the trade–off in the order submission

problem between the order price and the expected number of shares transacted.

The term,

ξb
lt(q) ≡ Et




T̄∑

τ=0

(
dQ̃τ

q

)
(ỹτ − y)

∣∣∣∣∣∣
q


 ,

is the winner’s curse associated with the order. This measures the covariance of changes in the

common value of the asset with the fraction of the order that transacts; it measures the risk of the

common value moving against the limit order when it transacts against an incoming market order.

The final term in the expected payoff, q c, is the cost of submitting the order. This cost is the same
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for all order prices, and is proportional to the order size. The expected payoff to a trader choosing

a sell order of size q at price pk is defined similarly.

The trader chooses the order submission strategy which maximizes his expected payoffs. Con-

ditional on the trader’s information set and the trader’s order quantity q, the trader chooses the

price of the order to submit to solve,

max
{ds

kt
∈{0,1}}K

k=0
,{db

lt
∈{0,1}}L

l=0

K∑

k=0

ds
ktEt [U(pk, q, sell)|v] +

L∑

l=0

db
ltEt [U(pl, q,buy)|v] , (6)

subject to the constraint that at most one price is chosen. Let d∗skt(v, q) and d∗blt (v, q) be the optimal

strategy. If the trader finds it optimal not to submit any order, then d∗skt(v, q) = 0 for k = 0, . . . ,K
and d∗blt (v, q) for l = 0, . . . ,L.

Lemma 1 provides an important monotonicity property of the optimal order submission strategy

for traders who enter the market with valuation v = y +u, who desire to trade q units of the asset,

and face a limit order book providing trading opportunities summarized by {ψs
kt(q), ξ

s
kt(q)}Kk=0 and

{ψb
lt(q), ξ

b
lt(q)}Ll=0. The result follows from a revealed preference argument.

Lemma 1 Suppose that a buyer with valuation v for q shares optimally submits a buy order at

price l ≥ 0 ticks below the ask quote, so that d∗blt (v, q) = 1.

1. A buyer with valuation v′ > v for q shares submit a buy order at a price l′ ticks below the ask

quote such that the expected fill ratio is higher at l′ than at l:

ψb
l′t(q) ≥ ψb

lt(q). (7)

2. If the expected fill ratios are strictly decreasing in the distance between the limit order price

and the best ask quote, i.e. l < l + 1 implies that ψb
lt(q) > ψb

l+1t(q), l = 0, . . . ,L− 1, then the

buyer with valuation v′ > v chooses a price weakly closer to the ask quote:

ψb
l′t(q) ≥ ψb

lt(q) and l′ ≤ l. (8)

Similar results hold on the sell side.

16



Given that the common value yt is fixed at time t, we can compare the order strategy of two

traders with the same yt, and different private values, ut. Buyers with higher values of ut submit

orders with higher expected fill ratios and higher prices. Conversely, the lower the buyers’ ut, the

lower the expected fill ratio chosen, and the lower the order price chosen. It is in this sense that

ut measures the trader’s demand for liquidity. A similar result holds on the sell side; sellers with

lower valuations choose order prices leading to higher expected fill ratios and lower prices.

Lemma 1 implies that we can partition the set of valuations into intervals in which all traders

whose valuations lie within that interval and who have the same order quantity submit orders at

the same price. The indifference valuations which define these intervals can be solved for explicitly.

Define functions θb
ll′t(q) as the valuation of a trader who is indifferent between submitting a buy

order order at price pl and a buy order at price pl′ , l′ > l,

θb
ll′t(q) = pl +

(pl − pl′) ψb
l′t(q) +

(
ξb
l′t(q)− ξb

lt(q)
)

ψb
lt(q)− ψb

l′t(q)
. (9)

Similarly, the valuation of a seller indifferent between submitting an order at prices pk and pk′ ,

k′ > k is given by

θs
kk′t(q) = pk − (pk′ − pk) ψs

k′t(q) + (ξs
kt(q)− ξs

k′t(q))
ψs

kt(q)− ψs
k′t(q)

. (10)

We refer to these functions as threshold valuations. The valuation of a trader who is indifferent

between submitting a limit sell order at price pk and not entering any order is given by

θs
k∅t(q) = pk −

(
ξkt(q) + c

ψs
kt(q)

)
, (11)

with a similar definition for θb
l∅t(q) on the buy side.

An implication of the monotonicity of the optimal order submission strategy is that the in-

difference valuations associated with prices that are chosen by the traders must be monotonically

increasing.

Lemma 2 Assume that the expected fill ratios are decreasing in the distance from the best quotes.

1. Let pl1 > pl2 > . . . > plL denote a set of buy prices ordered so that pl1 is equal to the best ask
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quote. If each of these prices is optimally chosen by some trader who trades q units at t, then

θb
l1l2t(q) > θb

l2l3t(q) > . . . > θb
lL−1lLt(q) > θb

lL∅t(q). (12)

A similar result holds on the sell side.

2. If the trader chooses to be a buyer or a seller of q units based on the trading opportunities

available in the limit order book, and the sell prices pki
, i = 1, . . . ,K and the buy prices plj ,

j = 1, . . . , L are optimal for some trader t submitting quantity q, then8

θb
l1l2t(q) > θb

l2l3t(q) > . . . > θb
lL∅t(q) > θs

kK∅t(q) > . . . > θs
k1k2t(q). (13)

Figure 3 provides an example where the thresholds on the buy side do not satisfy the monotonic-

ity restriction. Here, the winner’s curse for all buy limit orders is equal to zero, and the expected

fill ratios are

ψb
0(1) = 1 > ψb

1(1) = 0.7 > ψb
2(1) = 0.6,

where the order size is equal to one and we drop the t subscripts to reduce notational clutter. The

conditional fill ratios are monotonically decreasing in the distance from the market order. The

market order price is equal to 100, and the price tick is 1. The horizontal axis in the graph is the

valuation of the trade, and the vertical axis is the expected utility for submitting various orders.

The light solid line (—) is the expected utility of a trader submitting a market buy order, the

dashed (- - -) line is the expected utility from submitting a limit buy order at 99 and the dash-dot

line (-.-) is the expected utility from submitting a limit buy order at 98. The dark solid line is the

upper envelope of the expected utility for each choice, and a submitting a limit order at 99 is not

optimal for a trader with any possible valuation. The thresholds are given by

θb
01(1) = 100 +

(1)(0.7)
0.3

= 102.33,

θb
12(1) = 99 +

(1)(0.6)
0.1

= 105.00.

8Equation (13) holds if there is a set of traders who find it optimal not to submit any order. If instead all traders
find it optimal to submit an order, then the terms θb

lL∅t(q) and θs
kK∅t(q) in equation (13) are replaced by the valuation

of the trader who is indifferent between submitting a buy order at pb
lL

and a sell order at ps
kK

.
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In this example, θb
01(1) < θb

12(1), so that no trader finds it optimal to submit a limit order at

a price 99. This example show the restrictions that optimization imposes on the conditional fill

ratios: Observing a trader submitting limit order at 99 cannot be rationalized by the model. In

this case, our model would predict that traders either submit market orders, or limit orders at 98,

depending of their valuation. If a trader’s valuation is exceeds

θb
02(1) = 100 +

(2)(0.6)
0.4

= 103.00,

then a market order is optimal, and a limit order at 98 is optimal if the valuation is lower than

103.00.

In this example, there is a range of conditional fill ratios for which the model cannot rationalize

traders submitting a limit order at 99. Holding the fill ratio for a market order equal to one and

the fill ratio for a limit order at 98 equal to 0.6, a limit order at 99 can be rationalized if and only

if

θb
12(1) = 99 +

(1)(0.6)
ψb

1(1)− 0.6
< θb

01(1) = 100 +
(1)(ψb

1(1))
1− ψb

1(1)
. (14)

For fill ratios of a limit order at 99 satisfying 0.60 < ψb
1(1) < 0.75, the fill ratios are monotonically

decreasing in distance from the market order and inequality (14) is not satisfied, and if 0.75 <

ψb
1(1) < 1, then (14) holds. In the above example, the winner’s curse terms are all equal to zero,

but with non zero winner’s curse terms, inequality (14) is modified accordingly.

Let 0 = k1 < k2 < . . . < kK index prices that are optimal for some seller, let 0 = l1 < l2 < . . . <

lL index optimal prices for some buyer and assume that the buy versus sell decision is determined

by the trading opportunities in the limit order book. Then, the optimal decision rule is given by

d∗s0t (v, q) =

{
1, v ≤ θs

k1k2t(q),
0, else,

d∗skit(v, q) =

{
1, v ∈

(
θs
ki−1kit

(q), θs
kiki+1t(q)

]
, i = 2, . . . ,K − 1,

0, else,

d∗bljt(v, q) =

{
1, v ∈

(
θb
lj+1ljt(q), θ

b
lj lj−1t(q)

]
, j = 2, . . . , L− 1,

0, else,

d∗b0t(v, q) =

{
1, v ≥ θb

l1l2t(q),
0, else.

(15)

19



We now describe the implications of the optimal order placement strategy for the conditional

probability that different limit and market orders are observed. At time t, traders’ valuations are

given by vt = yt + ut, with ut ∼ Gt(·), where Gt(·) is a continuous distribution and yt is common

knowledge at time t. Using the optimal order placement strategy given above, the conditional

probability that we observe a market sell order at t is equal to

Pr (Market sell at t |Information at t) = Pr
(
vt ≤ θs

k1k2t(q)|Information at t
)

= Pr
(
yt + ut ≤ θs

k1k2t(q)
∣∣ Information at t

)

= Gt
(
θs
k1k2t(q)− yt

)
. (16)

Similarly, the probability that any particular limit sell order is submitted at t

Pr
(
d∗skit(v, q) = 1

∣∣∣ Information at t
)

= Gt(θs
kiki+1t(q)− yt)−Gt(θs

ki−1kit(q)− yt), (17)

with similar expressions for buy market and limit orders. If the direction of the trade does not de-

pend on the trading opportunities in the book, then the conditional choice probabilities in equations

(16) through (17) can be modified accordingly.

Figure 4 depicts the optimal order submission strategy for a state where traders find it optimal

to submit market and limit orders up to two ticks away from the bid and ask prices. Here, we

plot the trader’s private valuation for the asset, u, against the price chosen. The upper curve of

the plot gives the density of the distribution of private valuations, g(·). The thresholds minus the

common value, θs
kk′(q)−y and θb

ll′(q)−y partition the private valuations into intervals, and traders

within each interval make the same order choice. For example, a trader with a private valuation less

than θs
01(q)− y finds it optimal to submit a market sell order. A trader with a valuation between

θs
01(q) − y and θs

12(q) − y finds it optimal to submit a limit sell order at the price directly above

the bid quote in the limit order book and the mass of traders who submit a limit sell order at two

ticks above the bid quote is given by the area under the density of private valuations in the area

marked by diagonal lines in the plot. Traders with valuations equal to θs
2∅(q) − y are indifferent

between submitting a sell limit order at the 2nd highest price above the bid quote and not entering

any order. Similarly, traders with valuations equal to θb
2∅(q)− y are indifferent between submitting
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a limit buy order at the second highest limit price below the ask quote and not submitting any

order. Traders with valuations between θs
2∅(q)− y and θb

2∅(q)− y do not find it optimal to submit

an order.

To summarize, we have provided a characterization of the optimal order submission strategy

for a risk neutral trader who has one chance to submit an order of an exogenously determined

size. Using a revealed preference argument, we have shown that this decision problem implies

a monotonicity restriction on nonlinear functions of conditional fill ratios and the winner’s curse

associated with alternative limit and market orders. We have also shown how the solution to this

decision problem relates the distribution of valuations to the conditional probabilities of observing

different order choices. We now discuss some of the important assumptions in this model in more

detail.

In our model, traders evaluate each order entry decision individually. That is, in the trader’s

objective function, equation (4), the traders receive a surplus of zero if the order does not execute

within the traders’ window of opportunity. Consequently, the effects of any future order entry

decisions are ignored in making the current order entry decision. The monotonicity restriction in

Lemma 1 and a characterization of the optimal strategy similar to that in Lemma 2 still hold if

there is a fixed, nonzero continuation value when the order does not execute. In this case, the

indifference valuations in equations (10) through (11) must be adjusted for this continuation value.

The lemmas also apply to the overall probability of executing over the entire trading period in a

dynamic trading context, where cancellation and submission is possible. Our results do not apply

to each individual order submission if the trader can withdraw and resubmit orders. More generally,

we do not completely model traders’ incentives to cancel orders once they are entered into the order

book, but we can incorporate state dependent cancellation policies. For example, we can allow the

conditional probability of cancellation to depend on the distance between the order price and the

common value during the time that the order is in the limit book.

We analyze the order price choice of the trader, conditional on the order quantity. In Ap-

pendix C, we allow for endogenous order quantity, characterizing the optimal order price and
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quantity when traders choose order size based on trading profits. A natural way to model an in-

vestor’s demand for securities is to derive it from a portfolio choice problem, where the investor

chooses optimal holdings of the securities, subject to an intertemporal budget constraint. The so-

lution to this portfolio problem leads to the quantity choice of the trader, and would depend upon

the investor’s preferences, wealth, current asset holdings and the price of all available assets.

Bertsimas and Lo (1998) study the optimal dynamic order submission problem of an institu-

tional investor who desires to trade a fixed number of shares in a single asset over a predetermined

time period, facing an exogenous price impact function and a bid–ask spread. They show that to

minimize overall transactions costs, the optimal strategy is to split the total quantity over time.

Hall and Rust (1999) study the optimal trading strategy of an intermediary facing an exogenous

price and demand process subject to an inventory constraint. They solve for the optimal order

quantity of the intermediary, and show how it depends on the inventory level and the stochastic

processes followed by spot price and customer demands. Although Bertsimas and Lo (1998) and

Hall and Rust (1999) do not consider the choice between market and limit orders, their results

suggest that the trading opportunities offered in the limit order book would partially determine

order size choices. In this case, our assumption that quantity is exogenous to the price choice would

likely be incorrect. However, the trade–offs we model between the price submitted, the conditional

fill ratio and the winner’s curse would still be important for determining the choice between market

and limit orders in these environments.

Our model also abstracts from possible differences between the orders submitted by brokers for

individual investors and the orders submitted by the brokers themselves. We also ignore the effects

of the broker’s market power in our analysis. These choices are motivated by our data: We do not

observe the identity of the investors, and on average, there are 19 active brokers trading shares of

Ericsson each day, and the Herfindahl index for the dealers’ shares of order submissions is 641.

Finally, we assume that yt is common knowledge to all traders at time t. This assumption

can be relaxed. For example, a trader at time t may know that common value at time t′ 6= t.

In this case, the conditional expectations in equations (5) through (6) should be conditioned on
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the trader’s information and the results in Lemmas 1 and 2 still continue to hold with these new

definitions. The conditional choice probabilities is equations (16) through (17) need to be modified

to allow for the distribution of private information across the traders.

4 Empirical Implementation

The estimation and hypothesis tests undertaken here are based on a time series of decision indicators

for these orders submitted, the execution and cancellation histories for the orders and the order book

at the time of order submissions, constructed as in Section 2 above. We first provide our estimates

the common value, and then we show how we estimate the conditional fill ratios and conditional

winner’s curse risk terms to form estimates of the threshold valuations. We then describe and

implement tests of the theoretical monotonicity restrictions, concluding with our estimates of the

private value distributions.

In our model, the common value is a martingale relative to the market’s information set. This

implies that the common value has a unit root. In order to form an estimate of the common value,

we assume that there is a factor, ft, such that the common value is linear in this factor,

yt = Bft, (18)

and that the factor follows a non-stationary process. To estimate B, we assume that the bid quote

at time t, is cointegrated with the common value, so that

ps
0t = yt + εt

= Bff + εt, (19)

where ps
0t is the bid quote at time t and εt is a stationary process. This assumption implies that

we can use a cointegrating regression between ps
0 and the factor to estimate B. Engle and Granger

(1987) show that this estimator of B is super–consistent. Letting B̂ denote the estimate of B

obtained by the cointegrating regression, our estimate of the common value is

ŷt = B̂ft. (20)

23



We use minute-by-minute observations of the value of the OMX market index as our factor series.9

The OMX index is a value weighted index of the 30 most traded companies on the Stockholm

Stock Exchange. Table 7 provides the results from the cointegration analysis. The first column of

the first four rows of the table report the results from a Dickey–Fuller test for a unit root in the

bid quote, the ask quote, the midquote which is equal to the average of the bid and ask quotes,

and the value of the OMX index in our data. The test fails to reject the unit root null. The

final three columns report the results from estimating a cointegrating regression between the OMX

market index and the bid, the ask and the midquotes. The regression coefficient obtained in the

cointegrating regression is similar across the choice of dependent variable, the bid, the ask or the

midquote. The final row reports the Engle–Granger (1987) test for cointegration. These statistics

provide evidence that the bid, the ask and the midquotes are cointegrated with the OMX index.

We now turn to estimating the threshold valuations. These functions depend on the conditional

fill ratios and winner’s curse terms for each order, at each information set. To estimate the condi-

tional fill ratios and winner’s curse terms, we assume that the traders’ have rational expectations

about the conditional fill ratios and conditional winner’s curse for each order, and that their condi-

tioning information can be captured by a low dimensional set of state variables. We approximate

traders’ expectations using nonparametric regressions of the realized execution history of each of

the orders onto a set of state variables. In these nonparametric estimates, we condition on a vector

of 4 variables, denoted by Ωt and the order quantity, denoting the conditioning information by the

vector Xt = (qt, Ωt). Table 5 contains definitions of the conditioning variables and we now discuss

our choice of conditioning variables in detail.

We expect that the conditional fill ratio is lower for a limit order of a given size when the queue

of unfilled limit orders in the order book is longer. A lower expected fill ratio may also be associated

with a longer expected time until the order is filled. This would make the order relatively more

exposed to changes in the common value through the winner’s curse. We capture these effects by

conditioning on two measures of the length of the order book queue. We use the total number
9We have also experimented with including the US/SKr exchange rate and Swedish interest rates as factors. These

variables do not have much explanatory power in the cointegrating regressions.
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of shares offered in the order book within one tick and three ticks of the midquote, respectively.

These measures provide a rough characterization of the length of the order book queue near the

best quotes, as well as further away from the quotes. The order size itself is also likely to have a

similar effect. For example, we expect that on average, it will take a longer time for larger limit

order to be filled, holding everything else constant.

Trading activity in financial markets tends to be clustered in time. Engle and Russell (1998)

and Engle (2000) document that on the New York Stock Exchange, periods of high activity are

likely to be followed by periods of high activity and vice versa for slow periods. A limit order

submitted in a period of high activity may be more likely to be filled within a given time interval.

This effect may be counteracted if more traders submit limit orders to take advantage of the higher

expected fill ratios. We account for such interactions by conditioning on both the level of activity

and the length of the order book queue, measuring activity by trading volume over the previous

ten minutes.

Shifts in the conditional volatility of the common value directly affect the relative payoffs from

different limit order strategies via the winner’s curse. If the volatility is expected to be high, a

trader may rationally expect the winner’s curse to be greater. High trading activity tends to be is

associated with changes in the volatility of the security. By including both measures of volatility and

trading volume we capture how interactions between these measures affect trading opportunities.

We measure volatility by the standard deviation of the changes in the OMX market index over the

previous sixty minutes or the number of minutes elapsed since the market’s open. Our assumptions

for the common value series imply that the volatility of the index is perfectly correlated with the

volatility of the common value series.

The conditional fill ratios are computed as a nonparametric regression of realized fill ratios on

information known at the time of order submission. Define the variable

dQ̃s
kt+τ

q
(Xt) ,

equal to the fraction of the sell limit order that is transacted at time t + τ , that was submitted

at time t when the state variables were Xt at a price k ticks away from the market order. Let
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J
[
h−1

T (Xt′ −Xt)
]

be a kernel function where hT is the bandwidth associated with each argument.10

The nonparametric estimate of ψs
k(Xt) is computed using the kernel estimator,

ψ̂s
k(Xt) ≡

∑T
t′=1,t′ 6=t

(∑T̄
τ=1

dQs
kt′+τ

q (Xt′)
)

J
(
h−1

T (Xt′ −Xt)
)

∑T
t′=1,t′ 6=t J

(
h−1

T (Xt′ −Xt)
) , (21)

with a similar definition on the buy side. Given the empirical evidence in Figure 2 that almost all

limit orders remain in the limit order book for less than two days, we set the maximum life of the

order, T̄ in equation (21), equal to two days.

Our maintained assumption is that the conditional fill ratios are monotonically decreasing in

the distance between the limit price and the best quotes. To test the monotonicity of the fill ratios,

define

DF ≡ E
[
I(Xt ∈ X̄)

(
ψb

l1(Xt)− ψb
l2(Xt), . . . , ψs

k1
(Xt)− ψs

k2
(Xt)

)
⊗ z++

t

]
, (22)

where z++
t > 0 are functions of the vector Xt, and I(Xt ∈ X̄) is a trimming indicator for the

set X̄ in the interior of the support of Xt.11 Here, ki < ki+1 index prices chosen by the traders

with positive probability in our data. Monotonicity of the conditional fill ratios imply the null

hypothesis:

H0 : DF > 0.

To test this hypothesis, we form the vector

D̂F T =
1
T

T∑

t=1

{
I(Xt ∈ X̄)

(
ψ̂b

l1(Xt)− ψ̂b
l2(Xt), . . . , ψ̂s

k1
(Xt)− ψ̂s

k2
(Xt)

)
⊗ z++

t

}
. (23)

In Appendix B, we provide regularity conditions under which
√

T
(
D̂F T −DF

)
converges in dis-

tribution to a normal random variable, and we provide the asymptotic variance-covariance matrix.

Wolak (1989) derives a test statistic for a local test of H0:

MDF = min
{a|a≥0}

T (D̂F T − a)A−1(D̂F T − a)′, (24)

10We provide the required properties for J(·) and the bandwidth sequence in Appendix B.
11The trimming indicator is used to simplify the asymptotic distribution. See Ahn and Manski (1993) for details.
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and shows that under the null hypothesis, MDF converges in distribution to the weighted sum of

chi-squared variables,

Pr(MDF ≥ r) =
dim(MDF )∑

i=0

Pr[χ2
i ≥ r]w(dim(MDF ), dim(MDF )− i,A), (25)

where χ2
i is a chi–squared variable with i degrees of freedom, dim(MDF ) is the rank of the asymp-

totic variance covariance matrix and w(dim(MDF ), dim(MDF )− i,A), i = 0, . . . , dim(MDF ) are a

set of weights which depend on the asymptotic variance–covariance matrix. Wolak (1989) describes

a Monte Carlo method for calculating these weights.

Table 8 reports the results of the monotonicity tests of the conditional fill ratios. The test is

computed using the thresholds for the market and one tick away limit order, the one and two tick

away limit orders and the two and three tick away limit orders, for both the buy and sell sides.

Each row in the table reports the point estimates of the unconditional differences in fill ratios

multiplied by state variables, associated standard errors and p–values for the null of monotonicity

of the conditional fill ratios for different order choices.12 Each column corresponds to a different

state variable. The final row of the table reports the MDF test described above for each state

variable and all choices, and the final column of the table reports the test statistic across each

choice. All of the point estimates are strictly positive and none of these statistics reject the null

hypothesis of monotonicity of the conditional fill ratios. These tests provide no evidence against

monotonicity of the conditional fill ratios.

Applying our assumption that the common value is linear in the factor, equation (20), and the

assumption that Xt measures traders’ information,

ξs
k(Xt) ≡ E




T̄∑

τ=0

(
dQ̃s

kt+τ

q

)
(ỹt+τ − yt)

∣∣∣∣∣∣
Xt




= BE




T̄∑

τ=0

(
dQ̃s

kτ

q

)
∆̃τft

∣∣∣∣∣∣
Xt


 , (26)

12The standard errors are computed with 50 lags using the method described in Appendix B to capture the overlap
in the errors in the fill ratios between orders submitted at different times. The empirical results are robust to
changes in the lag length. The asymptotic p-values for the monotonicity tests are computed using 10,000 Monte
Carlo simulations.
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where ∆̃τft ≡ f̃t+τ − ft. Our estimate of the conditional expectation of the fraction filled times the

change in the factor is

Ê




T̄∑

τ=0

dQ̃k
t+τ

q
∆̃τft

∣∣∣∣∣∣
Xt


 ≡

∑T
t′=1,t′ 6=t

(∑T̄
τ=0

dQ̃k
t′+τ

q (Xt′)∆̃τft′

)
J

(
h−1

T (Xt′ −Xt)
)

∑T
t′=1,t′ 6=t J

(
h−1

T (Xt′ −Xt)
) . (27)

The estimate of the conditional winner’s curse, ξ̂s
k(Xt), is formed by substituting the estimate of B̂

from the cointegrating regression and the kernel estimator, (27) into equation (26) above.

We form estimates of the threshold valuations as

θ̂s
kk′(Xt) = pkt −

(pk′t − pkt) ψ̂s
k′(Xt) +

(
ξ̂s
k(Xt)− ξ̂s

k′(Xt)
)

ψ̂s
k(Xt)− ψ̂s

k′(Xt)
, (28)

where pkt is the k tick away price at time t. We form a similar estimator for the buy side. As long

as ψs
k(Xt) − ψs

k′(Xt) > 0, then θs
kk′(Xt) is a continuous function of the conditional fill ratios and

conditional winner’s curse terms, and so consistency of our estimators for the conditional fill ratios

and winners curse terms imply that θ̂s
kk′(Xt) is a consistent estimator

We use our estimators for the threshold valuations, equation (28), to form a test statistic for

the theoretical monotonicity restrictions in equations (12) and (13) of Lemma 2. These restrictions

are that if the conditional fill ratios are monotonically decreasing in the distance of the limit order

price from the best bid, then the thresholds must form a monotonic sequence.

In order to test the monotonicity hypothesis for the thresholds, we define

Dθ ≡ E
[
I(Xt ∈ X̄)

(
θb
l1l2(Xt)− θb

l2l3(Xt), . . . , θs
k2k3

(Xt)− θs
k1k2

(Xt)
)
⊗ z++

t

]
, (29)

where pli and pkj are prices chosen with strictly positive probability by the traders in our data.

The null hypothesis that the thresholds form a monotone sequence implies that

H0 : Dθ > 0.

To test this hypothesis, we form

D̂θT =
1
T

T∑

t=1

{
I(Xt ∈ X̄)

(
θ̂b
l1l2(Xt)− θ̂b

l2l3(Xt), . . . , θ̂s
k2k3

(Xt)− θ̂s
k1k2

(Xt)
)
⊗ z++

t

}
, (30)
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In Appendix B, we provide conditions under which
√

T
(
D̂θT −Dθ

)
converges in distribution to a

normal random variable and provide the asymptotic variance–covariance matrix. We form a similar

test statistic to MDF in equation (24) above to test the monotonicity hypothesis.

Table 9 reports estimates of the average threshold differences. The first panel reports the

average of the threshold differences multiplied by positive state variables, with associated asymp-

totic standard errors and p-values for the null that the differences are positive reported below each

estimate.13 Each column uses a different positive state variable, including a constant, the logarithm

of the size of the order, the depth at the best quotes, the depth at the second best quotes, lagged

trading volume and volatility of the common value. The final column reports the MDθ statistic

for each threshold difference for all the state variables jointly, with associated asymptotic p-values

reported in parenthesis.

The estimates of the threshold differences are positive for all buy orders, and the asymptotic

p-values do not reject the null hypothesis of monotonicity, both individually for each decision and

state variable, and jointly across all state variables. On the sell side, the point estimates of the

threshold differences between a three and two tick limit order and a two and one tick limit order,

E [(θs
23(Xt)− θs

12(Xt))⊗ z++] , is negative for all the state variables except the depth at the best

quotes. However, the test statistics do not reject the null hypothesis of monotonicity. The estimates

of the average threshold differences between a one and a two tick sell order, and a market sell and one

tick away limit order, E [(θs
12(Xt)− θs

01(Xt))⊗ z++] , sell are strictly positive, and fail to reject the

null hypothesis of monotonicity. The point estimates of the threshold difference associated with the

most aggressive buy order relative to the most aggressive sell order, E
[
(θb

23(Xt)− θs
23(Xt))⊗ z++

]
,

are negative when multiplied by all state variables. The univariate p-values and joint MDθ statistics

all reject the hypotheses that E
[
(θb

23(Xt)− θs
23(Xt))⊗ z++

]
> 0.

The bottom panel of the table reports the joint MDθ statistics for the buy side decisions, the

sell side decisions and the buy and sell side decisions together, with associated asymptotic p-values

reported below the coefficients. Considering the buy or sell sides separately, we do not test the
13The standard errors are computed as described in Appendix B using the Newey and West (1987) procedure with

50 lags and the asymptotic p-value for the MDθ statistic is computed using the simulation method given in Wolak
(1989) with 10,000 simulation trials.
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restriction that E
[
(θb

23(Xt)− θs
23(Xt))⊗ z++

]
> 0. We do not reject the null hypothesis that the

thresholds are monotone when we test the buy and sell sides separately. The final two rows of the

table test the monotonicity of all thresholds simultaneously, including the restrictions when the

traders chooses to be a buyer or a seller endogenously. We reject the monotonicity restriction using

these statistics. In Appendix C, we develop and implement tests of the monotonicity implications

of the traders’ choosing their order size solely based on the trading opportunities in the limit

order book. The tests are reported in Table C1, and they reject the monotonicity hypothesis of

endogenous quantity choice for the market versus limit order decision. Overall, Table 9 shows that

our data is consistent with the theoretical trade–offs we consider between market and limit orders,

conditional the order being a buy or a sell order. We do reject the hypothesis that the trading

opportunities in the limit order book are the only determinant of the decision to be a buyer or a

seller, as well as the hypothesis that trading opportunities solely drive the order sizes of the traders.

Table 10 reports unconditional averages of various estimated quantities from our model. The

first column of the table reports unconditional averages of the conditional fill ratios. For limit

orders, the average fill ratios are monotonically decreasing in the distance from the quotes. The

winner’s curse estimates in the second column reveal that, on average, more aggressive limit orders

face more severe adverse selection. The third column provides the expected value of the asset

conditional on execution. This is computed by dividing the conditional winner’s curse terms by

the conditional fill ratios, and the table contains the unconditional average of this measure. These

estimates imply that on average, executing more aggressive limit orders is associated with larger

changes in the common value than executing less aggressive limit orders.

The fourth column of the table reports the expected payoff per share received by traders with

a valuation equal to the indifference valuation associated with each order type. This is computed

by substituting our estimates of the indifference valuations, the conditional fill ratios, conditional

winner’s curse terms and the common value into equation (5), dividing by the order quantity and

computing the average of these estimates for various order choices. We do not subtract the order

entry cost of c per share in these computations. Traders submitting the limit order closest to the

ask for the buy side receive an expected payoff of between 0.33 SKr and 1.98 SKr per share, while
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sellers closest to the bid receive a surplus of between 0.10 SKr and 1.6 SKr per share. The average

payoff is decreasing in the distance from the best quotes, with traders submitting 3 tick away limit

buys receiving an average payoff of -0.046 SKr per share, and sellers receiving an average payoff of

0.11 SKr per share, with neither estimate statistically significantly different from zero. Given that

traders would not enter an order unless the expected payoffs adjusted for the order entry cost is

positive, these estimates imply that the average order entry cost per share for orders, c, is in the

range of 0 SKr to 0.11 SKr per share.

The final column of the table reports the average private value of the traders evaluated at

the thresholds associated with various orders adjusted for a day effect with 57 day dummies. On

average, buyers submitting market orders have private valuations more than 2.5 SKr per share

and sellers submitting market orders have private valuations less than -2 SKr per share. Using the

asymptotic standard errors, we reject the null hypothesis that that these averages are equal to zero.

Buyers submitting the most aggressive limit buy orders have private valuations on average of at least

-1.06 SKr per share and sellers choosing the most aggressive limit orders have private valuations

of less than 0.3 SKr per share. We do not reject the null hypothesis that the average private

valuations of the most aggressive sellers is equal to zero, and we reject the null hypothesis that

the average private valuations of the most aggressive buyers is different from zero. The theoretical

model implies that the average private values at the thresholds should be monotonically decreasing

as the order price decreases and so the averages in the fifth column of the table should be decreasing

as we move down the column. This monotonicity holds for the first three rows, the buy orders,

but the averages are not monotonically decreasing between the three tick sell order and the three

tick buy order. For the three tick sell order and below, the average private valuations again are

monotonically decreasing. These results are consistent with the monotonicity statistics in Table 9

discussed above.

From equations (16) and (17),

E

[
I∑

i=0

d∗ski
(v, Xt)

∣∣∣∣∣ Xt

]
= G

(
θs
kIkI+1

(Xt)− yt

∣∣∣ Xt

)
, I = 0, 1, . . . , K − 1, (31)

where k1 = 0 < ki+1 < . . . < kK index prices chosen by some seller at information set Xt. We
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observe the choices made by the sellers in our data, and using our consistent estimates of θ̂s
kiki+1

(Xt)

and the common value, equation (31) implies that a nonparametric regression of the sum of the

decision indicators onto the estimated thresholds minus the estimated common values provides

a consistent estimator of the private value distribution at the appropriate points. Although the

common value, yt is nonstationary, our assumption that the common value and the bid price are

cointegrated implies that θs
kiki+1

(Xt)−yt is stationary. We form a similar estimator of the valuation

distribution on the buy side.

Figure 5 plots the estimated cumulative distribution of the per share private valuations for the

buyers and sellers. The estimates are formed from a kernel regression of the cumulative choice

indicators onto the thresholds minus the common value as in equation (31).14 The valuation

distributions estimated using this procedure are plotted with a dashed line (- - -) for the buyers

and a dash–dot line (-.-) for the sellers in Figure 5. We estimate the sell distribution function over

the range of probabilities equal to approximately 0.25 to 0.95 for the sell side and approximately

0.05 through 0.65 for the buy side. Our estimates of the cumulative distributions depend on

the conditional choice probabilities observed in the data according to equation (31) and so the

estimated probability ranges reflect the conditional choice probabilities in the data. The overlap in

the valuation distributions on the buy and sell sides in Figure 5 are due to the non–monotonicities

in the thresholds between the buy and sell sides reported in Table 9. The range of the sell valuations

is between -4 SKr and +4 SKr, while for the buy side, the range is between -6 SKr and +2 SKr. On

the buy side, approximately 90% of the probability mass is for positive private valuations, while

for the sell side, approximately 90% of the mass of the private valuations is negative.

In order to investigate if the distribution of private values depends on conditioning information,

we compute the cumulative distribution functions of private values, conditional on the state vari-

ables used in the estimation of the thresholds. That is, for each of our state variables, we divide the

sample into two sub–samples, one sub-sample when the state variable is above its median, and the

other is when it is below its median. We then estimate equation (31) for each of the sub–samples,

using kernel regressions. The resulting cumulative distribution functions, conditional on order size
14We provide the kernel function and the bandwidths in Appendix B.
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are provided in Figure 6. Overall, the distributions do not vary much with order size. The buy side

distribution for large and small order sizes in Figure 6 shows that buyers with orders sizes above

the median tend to have relatively lower demand for immediacy than buyers with orders sizes below

the median. Figure 7 plots the cumulative distribution functions for buyers and sellers, conditional

on volatility above and below its median value. The distributions do not change appreciably for

changes in volatility. Similar, unreported, results are obtained conditioning on the other three state

variables. These estimates provide evidence that the distributions of private values, or demand for

immediacy, do not vary with the conditioning information. Since the results in Table 6 show that

our state variables are useful in predicting the composition of the order flow, our estimates of the

private value distributions imply that variation in the common value and the relative profitability

of market and limit orders drives variation in the distribution of order choices, rather than variation

in the traders’ demand for immediacy.

5 Conclusions

In this paper, we characterize the optimal order placement strategy for traders in a limit order

market, starting from the standard trade-offs between the order price, the probability of transacting,

and the winner’s curse. A revealed preference argument shows that the optimal order strategy is a

monotone function of a trader’s demand for liquidity. We develop and implement a semiparametric

test of this monotonicity property. We find no evidence against this monotonicity restriction when

we consider buyers and sellers individually. When we combine buyers and sellers, we do find

evidence against monotonicity. This is evidence that buyers and sellers consider the theoretical

trade–offs we model when making their order entry decisions, but that the traders’ decision to be

a buyer or a seller of the asset itself does not only depend on expected profits available in the limit

order book. Similarly, we document that the traders’ order quantity choices depend on factors

outside of the profits available in the limit order book.

We also document predictable variation in the order flow and use our estimates of the optimal

order submission strategy to estimate the distribution of the traders’ demand for immediacy. Our
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estimates reveal little evidence that these distributions depend on conditioning information, im-

plying that variation in the common value and the relative profitability of market and limit orders

drives much of the predictable variation in the distribution of order choices. Traders submitting

market buy orders have private valuations that on average equal 2.3% of the average asset price

and receive an average payoff that is at least 1.8% of the asset value. Traders submitting limit buy

orders the next price below the best ask quote have private valuations that are between 0.1% and

2.3% of the asset price and they earn an average payoff between 0.3% and 1.8% of the asset value.

Our empirical findings have two important implications for empirical studies that measure the

performance or payoff on different order placement strategies. First, they imply that the trading

opportunities available in the market influence traders’ order placement strategies. Second, limit

orders are submitted by traders who have an active interest in trading, that is, traders with a

non-zero demand for immediacy. Thus, in order to accurately measure the payoff on a given order

strategy it is crucial to account for the information that the traders have when they make their order

entry decisions, and to consider the valuations of these traders following a given order strategy.

These considerations are likely to be relevant for any market institutions that include a limit order

book in their design.

Glosten (1994) and Seppi (1997) derive equilibrium limit order books in environments where

limit orders are submitted by perfectly competitive traders with a zero liquidity demand, implying

that the marginal limit order earns zero expected profits. In our data, we cannot reject the null

hypothesis that the average payoff of the most aggressive limit order is zero. Traders submitting

the most aggressive buy limit orders have negative private valuations for the asset and traders

submitting aggressive sell orders have strictly positive private valuations for the asset. Traders

submitting less aggressive limit orders receive strictly positive average payoffs and the average

private valuations of these traders are non zero. On average, limit orders are submitted by traders

with an active interest in trading, who earn positive payoffs from their order submissions. Overall,

the results are consistent with the arguments in Glosten (2000) that limit orders need not be

submitted by marginal traders earning zero profits.
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We use the estimated order placement strategies together along with the observed order choices

to infer characteristics of the traders’ demand for immediacy. This provides an important building

block for welfare calculations. Glosten (2000) advocates the use of welfare calculations that account

for the preferences of all groups of traders to evaluate market institutions. We do not carry out

welfare calculations, but our results do provide some indication of how important it is to consider

all traders in calculating the efficiency of the trading mechanism. For example, traders submitting

buy limit orders close to the quotes on average have non zero private valuations and earn a pos-

itive payoff. Traditional measures of the efficiency of the trading mechanism such as the bid-ask

spread ignore this by implicitly assuming that traders submitting the limit orders have zero private

valuations.

Our model makes several strong assumptions: Traders evaluate each order entry decision in-

dividually, we do not model the incentives to cancel orders, we model the order price decision,

conditional on the size of the order and all traders agree on the common value at each point in

time. Nonetheless, we believe that our model is reasonable to apply to our data for several reasons.

First, the nature of the data makes it very difficult to determine the dynamic trading strategy

followed by traders, since we do not observe the identity of the retail investors in our data, and

the resubmissions after cancellations. Second, the basic trade–offs in our model will be important

in more elaborate dynamic environments. We test, and do not reject, the empirical restrictions

implied by our model. Although we reject the restrictions implied by endogenous quantity choice

in our data, there is little empirical evidence that the distributions of private valuations themselves

depend on the order size. Finally, our model can be modified to allow for private information. We

do not reject the model in its current form, and so this extension is left for future research.
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A Proofs

Proof of Lemma 1
Given d∗blt (v, q) = 1, for v

q
(
ψb

lt(q) (v − plt) + ξb
lt

)
− qc ≥ q

(
ψb

l′t(q) (v − pl′) + ξb
l′t(q)

)
− qc,

and for v′, d∗bl′t(v
′, q) = 1

q
(
ψb

l′t(q)
(
v′ − pl′

)
+ ξb

l′t(q)
)
− qc ≥ q

(
ψb

lt(q)
(
v′ − pl

)
+ ξb

lt(q)
)
− qc.

Multiplying the second inequality by −1, adding and rearranging yields:
(
ψb

lt(q)− ψb
l′t(q)

) (
v − v′

) ≥ 0, (A1)

Proving the first part. If the conditional fill ratio is monotone in distance from the ask, then
equation (A1) implies that l′ ≥ l. The proof for the sell side is symmetric.

Proof of Lemma 2
The first part of the lemma follows from the monotonicity of the optimal strategy established

in Lemma 1. To show the second part of the lemma, we show that if a trader with valuation v
submits a buy order, then for traders with valuations v′ > v, it is also optimal to submit a buy
order. Let k be an arbitrary sell order, and suppose that d∗blt (v, q) = 1. Then,

ψb
lt(q)

(
v′ − plt

)
+ ξb

lt(q)− qc > ψb
lt(q) (v − plt) + ξb

lt(q)− qc

≥ ψs
kt(q) (pkt − v)− ξs

kt(q)− qc

≥ ψs
kt(q)

(
pkt − v′

)− ξs
kt(q)− qc. (A2)

The first line follows because v′ > v and the second line follows because a trader with valuation
v finds submitting a buy order at l optimal and the third line follows because v′ > v. Symmetric
arguments hold on the sell side. Thus, there exists v ≥ v such that all traders with values v > v
find it optimal to submit buy orders and all trader with values below v find it optimal to submit
sell orders. Monotonicity of the associated thresholds follows from Lemma 1.

B Econometric Appendix

In this appendix, we briefly describe the asymptotic properties for the estimators used in the
monotonicity tests. We start with a general description of the estimators. Our dataset consists
of a sequence of state variables, Xt, the decision indicators, ds

kt, k = 0, ...,K, db
lt, l = 0, ..., L, the

realized fills for each order, and realized product of the fills times the changes in the factor for each
order. Let wt be the vector of variables whose conditional expectations we compute. We define the
conditional expectations functions

Cs
k(X) ≡ E[w|X, ds

k = 1] (B1)
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with a similar definition for Cb
l (X) and let C(X) ≡

(
Cs

1(X), Cs
2(X), . . . , Cb

2(X), Cb
1(X)

)
be the

vector of conditional expectations. The object to be estimated depends on the vector valued
function ρ(C(X), X). Define

% ≡ E
[
I(Xt ∈ X̄)ρ(C(Xt), Xt)

]
, (B2)

where I(Xt ∈ X̄) is a trimming indicator for the set X̄ in the interior of the support of Xt. Our
estimator for % is

%̂T ≡ 1
T

T∑

t=1

I(Xt ∈ X̄)ρ(Ĉ(Xt), Xt), (B3)

where Ĉ(Xt) is estimated using a nonparametric kernel regression.
For the tests described in the text, the vector of conditional expectations is equal to

C(Xt) ≡

ψs

1(Xt), E




T̄∑

τ=0

(
dQ̃s

1τ

q

)
∆̃τft

∣∣∣∣∣∣
Xt


 , . . . , ψb

1(Xt), . . .


 .

For testing monotonicity of the conditional fill ratios,

ρ(C(Xt), Xt) ≡
(

ψs
0(Xt)− ψs

1(Xt), . . . , ψs
K−1(Xt)− ψs

K(Xt),
ψb

0(Xt)− ψb
1(Xt), . . . , ψb

L−1(Xt)− ψb
L(Xt)

)
⊗ z++

t ,

where zt ∈ Xt. For testing monotonicity of the thresholds, we define the composite function

ρ(θ(C(Xt), Xt), Xt) ≡
(

θs
12(Xt)− θs

01(Xt), . . . , θs
K−1K(Xt)− θs

K−1K−2(Xt),
θb
LL−1(Xt)− θb

L−1L−2(Xt), . . . θb
01(Xt)− θb

12(Xt)

)
⊗ z++

t ,

where zt ∈ Xt, and

θ(C(Xt), Xt) ≡
(
θs
01(Xt;C(Xt)), . . . θb

01(Xt;C(Xt))
)

,

with

θs
01(Xt) = p0t −

(p0t − p1t) ψb
1t(Xt) +−BE

[∑T̄
τ=0

(
dQ̃s

1τ
q ∆̃τft

)∣∣∣∣ Xt

]

1− ψb
1t(Xt)

,

and so on.
For the quantity monotonicity tests in Appendix C,

ρ(C(Xt), Xt) ≡




E[Qb
1t+T̄ Hl(q∗lt)|Ωt]

E[H1(q∗
lt)|Ωt]

− E[Qb
l′t+T̄ H2(q∗

l′t)|Ωt]

E[H2(q∗
l′t)|Ωt]

, . . . ,

E[Qb
l′t+T̄ H1(q∗

l′t)|Ωt]

E[H1(q∗
l′t)|Ωt]

− E[Qb
l′′t+T̄ H2(q∗

l′′t)|Ωt]

E[H2(q∗
l′′t)|Ωt]

, . . .


⊗ z++

t ,

where Xt = (Ωt, qt), Qb
l′t+T̄ is the quantity of the order filled, H1(·), H2(·) are weighting functions,

z++
t is formed from element of Ωt and the vector of conditional expectations C(Xt) is defined

accordingly.
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Under the regularity conditions provided below, the results in Robinson (1989) and Ahn and
Manski (1993)15 imply that

√
T (%̂T − %) converges in distribution to a normal random vector with

covariance matrix defined below.

A1 The data, Xt, wt, d
s
kt, k = 0, . . . , K, db

lt, l = 0, . . . , L are absolutely regular and the β-mixing
coefficient is o(j−ν). For a definition of absolute regularity and the β-mixing coefficient, see
Robinson (1989). We also require that

sup
X∈X̄

‖ρ(C(X), X)‖ϕ < ∞,

where ν > 1 + 2
ϕ−2 .

A2 (a) There are M state variables. The distribution of the conditioning variables, Xt has
Lebesgue density π(·) which is bounded and at least M+1 times differentiable, with the
first M+1 derivatives bounded.

(b) The realized fill ratios and winner’s curse terms have bounded support.
(c) The conditional expectations Cs

k(X) and Cb
l (Xt) are M+1 times differentiable with

bounded derivatives.
(d) The conditional choice probabilities, αs

k(X) = Prob(ds
k = 1|X) is M+1 times differ-

entiable with bounded derivatives. A similar restriction holds on the buy side. The
function π(X)αs

k(X) satisfies the condition

inf
X∈X̄

π(X)αs
k(X) > 0

for k = 0, . . . , K, similarly for the buy side. In particular, this implies that the condi-
tional choice probability is strictly positive.

A3 (a) The partial derivatives satisfy

sup
Xt∈X̄

∥∥∥∥
∂ρ(C(Xt), Xt)

∂C(Xt)

∥∥∥∥ < ∞.

(b) There is an R < ∞ such that the cross partial derivatives satisfy

sup
Xt∈X̄

∥∥∥∥∥
∂2ρ(C(Xt), Xt)
∂C(Xt)∂C(Xt)′

∥∥∥∥∥ < R.

A4 Define the matrix of expected derivatives as

µ(X) ≡ E

[
∂ρ(C(X), X)

∂C(X)

∣∣∣∣ X
]
,

with generic element µij(X). These functions satisfy

µij(X)
αs

k(X)
< ∞,

and are M+1 times differentiable with bounded derivatives.
15Ahn and Manski (1993) consider an environment with i.i.d. data. The uniform consistency results from Collomb

and Härdle (1986) regarding the kernel estimators applied in Ahn and Manski (1993) continue to apply in our
time-series environment.
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A5 Define the vector of error terms εs
kt = ds

kt[wt − Cs
k(Xt)], with a similar definition for εb

lt

and define εt =
∑

k εs
kt +

∑
l ε

b
lt. There exists a positive semi-definite matrix C such that

supXt∈X̄ limJ→∞
∑LL

ll=−LL E[εt−llε
′
t+ll|Xt] < C.

A6 The estimator of the conditional expectations is

Ĉs
k(Xt) ≡

∑T
t′=1,t′ 6=t wt′d

s
kt′J

(
h−1

T (Xt′ −Xt)
)

∑T
t′=1,t′ 6=t J

(
h−1

T (Xt′ −Xt)
) .

(a) The bandwidth sequence is such that Th
2(M+1)
T → ∞, T 1−2κh2M

T → 0 as T → ∞ for
some κ > 0.

(b) The kernel function J(·) is bounded and symmetric around zero,
∫

J(z)dz = 1 and∫ |z|2(M+1)J(z)dz < ∞. There exists γ > 0 and c < ∞ such that J(·) satisfies the
Lipschitz condition that |J(z)− J(z′)| ≤ c|z − z′|γ for all z, z′ ∈ RM .

(c) The first M moments of J(·) are zero.

Define
ηt = ρ(C(Xt), Xt)− %,

and the vector

et ≡
(

εs
0t

αs
0(Xt)

, . . . ,
εs
Kt

αs
K(Xt)

,
εb
0t

αb
0(Xt)

, . . . ,
εb
Lt

αb
L(Xt)

)
.

Then,

A = lim
LL→∞

LL∑

ll=−LL

E
[
(ηt−ll + µ(Xt−ll)′et−ll)(ηt+ll + µ(Xt+ll)′et+ll)′

]
. (B4)

We estimate ηt with ρ(Ĉ(Xt), Xt)− %̂T , and et is formed using a second stage kernel estimator for
the conditional choice probabilities along with the residuals from the nonparametric estimators to
estimate the conditional expectations C(Xt). These residuals are then used in a Newey and West
(1987) procedure to form an estimator for A.

The conditional winner’s curse risk terms depend both on the expectation of changes in the
factors times executions, and on the factor loading are estimated with a cointegrating regression,
B. Since the thresholds are linear in these coefficients, the super–consistency of the cointegrating
regression implies that the asymptotic distribution is unaffected by pre–estimating B. See De Jong
(2001) for details.

In implementation, we use independent Gaussian product kernels for in forming estimates of
the conditional expectations, with bandwidths 4×1.06× σ̂(Xit)T

1
2×5+2 for the conditional fill ratios

and terms in the winner’s curse functions, and bandwidths 4×1.06× σ̂(Ωit)T
1

2×4+2 for the expected
quantities. Here, Xt = (X1t, . . . , X5t) and Ωt = (Ω1t, . . .Ω4t) are the conditioning variables, with
σ̂(Xit) and σ̂(Ωit) the associated sample standard deviations. For the monotonicity tests discussed
in the text, we trim the outer 5% of the observations according to

(Xt − X̄)cov(Xt)−1(Xt − X̄)′,

where cov(Xt) is the covariance matrix of the conditioning information and X̄ is the sample mean,
leaving us with 19,732 observations. For the quantity monotonicity test, we trim the outer 8%
according to a similar criteria, leaving us with 19,103 observations.

In estimating the kernel regressions for the distribution of liquidity using equation (31), we
use a univariate Gaussian kernel, with bandwidth equal to 2σ̂(θ̂)T 1/5, where T is the number of
observations and σ̂(θ̂) is the standard deviation of the estimated thresholds minus the common
value.
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C Endogenous Quantity Choice

This appendix allows for endogenous quantity choice, and derives and implements test of the
resulting implications. We will drop the t subscript in this appendix, to reduce notational clutter.
Suppose q is a chosen optimally , and let qψb

l (q) and qξb
l (q) denote the expected quantity transacted

and the total winner’s curse, if the trader with valuation v = y + u submits a buy order l ticks
above the bid price of size q. The expected utility from this choice is

U b
l (y + u, q) ≡ qψb

l (q) (y + u− pl) + qξb
l (q)− qc, (C1)

and the trader maximizes this expression by choosing (pl, q). Without loss of generality, we nor-
malize y = 0 for the remainder of this appendix.

For each price pl, define
q∗l (u) ≡ arg max

q
U b

l (u, q) ,

as the optimal quantity choice for a trader with valuation u, who is required to choose a price l
ticks away from the market. We assume that q∗l (u) is the uniquely defined interior solution.

The revealed preference arguments used in establishing the monotonicity of the conditional fill
ratios when quantity is exogenous to prices also apply when quantity choice is endogenous.

Lemma C1 If pl, q
∗
l maximizes equation (C1) for u and pl′ , q

∗
l′ maximizes equation (C1) for u′,

then (
q∗l ψ

b
l (q∗l )− q∗l′ψ

b
l′ (q

∗
l′)

) (
u− u′

) ≥ 0. (C2)

If u 6= u′ and pl, q∗l uniquely maximizes equation (C1) for u, then the inequality above is strict.

Proof: We prove the second part of the lemma since the first part is proved the same way. If
(pl, q

∗
l ) is uniquely optimal for u,

q∗l ψ
b
l (q∗l ) (u− pl) + q∗l ξ

b
l (q∗l )− q∗l c > q∗l′ψ

b
l′ (q

∗
l′) (u− pl′) + q∗l′ξ

b
l′ (q

∗
l′)− q∗l′c,

and since (pl′ , q
∗
l′) is optimal for u′,

q∗l′ψ
b
l (q∗l′)

(
u′ − pl′

)
+ q∗l′ξ

b
l′ (q

∗
l′)− q∗l′c ≥ q∗l ψ

b
l (q∗l )

(
u′ − pl

)
+ q∗l ξ

b
l (q∗l )− q∗l c.

The result follows from subtracting the second equation from the first and rearranging.

To derive a testable restriction on endogenous quantity choice, we make the following additional
regularity assumption.

Assumption C1 Suppose that pl, q
∗
l is optimal for u, and pl′ , q

∗
l′ is optimal for u′. Without loss

of generality, assume that
q∗l ψ

b
l (q∗l )− q∗l′ψ

b
l′ (q

∗
l′) ≥ 0.

Then, assume that [
q∗l (ü)ψb

l (q∗l (ü))− q∗l′(ü)ψb
l′ (q

∗
l′ (ü))

]
≥ 0, ∀ü. (C3)

This assumption says that prices can be ranked uniformly. Specifically, if the expected quantity
filled is higher for pl, q

∗
l than for pl′ , q

∗
l′ , then for any private valuation, the expected quantity

transacted when traders are constrained to price pl exceeds the expected quantity transacted when
traders are constrained to price pl′ .

The next lemma implies that when Assumption C1 holds, if pl is optimal for both traders with
private values u1 and u3, then pl is optimal for all u ∈ (u1, u3).
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Lemma C2 Let u1 > u2 > u3 be given and suppose that pl1 , q
∗
l1
(u1) is uniquely optimal for u1

with pl2 , q
∗
l2
(u2) and pl3 , q

∗
l3
(u3) optimal for u2 and u3 respectively. If pl1 6= pl2 and Assumption C1

holds, then pl1 6= pl3 .

Proof: From the envelope theorem, for an arbitrary price, pi and valuation,

∂

∂u
Ui (u, q∗i (u)) = q∗i (u)ψb

i (q∗i (u)) . (C4)

Since u1 > u2 > u3,

Ul3(u3, q
∗
l3(u3)) ≥ Ul2(u3, q

∗
l2(u3))

= Ul2

(
u2, q

∗
l2(u2)

)−
∫ u2

u3

∂

∂u
Ul2

(
u, q∗l2 (u)

)
du

≥ Ul1

(
u2, q

∗
l1 (u2)

)−
∫ u2

u3

∂

∂u
Ul2

(
u, q∗l2 (u)

)
du

= Ul1

(
u3, q

∗
l1(u3)

)
+

∫ u2

u3

∂

∂u
Ul1

(
u, q∗l1 (u)

)
du−

∫ u2

u3

∂

∂u
Ul2

(
u, q∗l2 (u)

)
du

= Ul1

(
u3, q

∗
l1 (u3)

)
+

∫ u2

u3

[
q∗l1(u)ψb

l1

(
q∗l1 (u)

)− q∗l2(u)ψb
l2

(
q∗l2 (u)

)]
du

> Ul1

(
u3, q

∗
l1 (u3)

)
.

The first line follows since pl3 , q
∗
l3
(u3) is optimal for the trader with valuation u3, the second line

follows from the fundamental theorem of calculus, the third line follows again from optimality, and
the fourth line follows from the fundamental theorem of calculus. The fifth line follows from the
envelope condition, equation (C4). Since u1 > u2, Lemma C1 implies that

q∗l1(u1)ψb
l1(q

∗
l1(u1)) > q∗l2(u2)ψb

l1(q
∗
l2(u2)),

and Assumption C1 implies that

q∗l1(u)ψb
l1(q

∗
l1(u)) > q∗l2(u)ψb

l1(q
∗
l2(u)), ∀u,

proving the result.

Lemma C2 implies that the threshold characterization for price choice continues to hold with
endogenous quantity choice under Assumption C1. That is, there is a set of thresholds, θb

lili+1
for

i = 0, 1, . . . L such that all traders with valuations u ∈ [θb
lili+1

, θb
li+1li+2

) will optimally choose the
same order price.

Lemma C3 Let u1, u2, u
′
1, u

′
2 be four valuations, and assume that traders with valuations u1 and

u2 find it optimal to pick price pl and a traders with valuations u′1 and u′2 find it optimal to pick
price pl′, where l′ > l. Then if assumption Assumption C1 holds,

[
q∗l (u1)ψb

l (q∗l (u1))− q∗l′(u
′
1)ψ

b
l′

(
q∗l′(u

′
1)

)] [
ψb

l (q∗l (u2)) q∗l (u2)− q∗l′(u
′
2)ψ

b
l′

(
q∗l′(u

′
2)

)] ≥ 0. (C5)

Suppose that the expected fill ratio is monotonically related to the distance from the ask quote and
q∗l (u1) = q∗l′(u

′
1) = q∗. Then ∀u such that pl is optimal and ∀u′ such that pl′ is optimal,

q∗l (u)ψb
l (q∗l (u))− q∗l′(u

′)ψb
l′

(
q∗l′(u

′)
)

> 0. (C6)
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Proof: By Lemma C1 and Lemma C2, u1, u2 and u′1, u′2 belong to non-overlapping intervals of the
real line, since the traders choose different order prices. This implies the first part of the lemma.
If u1 and u′1 optimally chose the same quantity, and the fill ratio is monotonically decreasing in
distance from the quote, then l′ > l implies that

q∗ψb
l (q∗) > q∗ψb

l′ (q
∗) ,

and substituting into equation (C5) proves the second part of the result.

Lemma C3 says that the expected quality filled for all traders optimally submitting an order
at one price is uniformly different from the expected quality filled for all traders optimally submit-
ting orders at an alternative price. The second part of the lemma says that if the fill ratios are
monotonically decreasing in the distance from the market price, and if there is any overlap in the
quantities submitted, then the expected quantity filled is higher the closer the order is to a market
order.

We are interested in using the implications of Lemma C3 to test for endogenous quantity choice
in our data. The next lemma shows that convex combinations of the expected quantity filled
conditional on the distance the limit price is from the spread must line up. We present the result
for the case where fill ratios decrease in the distance from the spread and there is some overlap in
the quantities across order choices

Lemma C4 Suppose that at each point in time there exists some qt such that pl, qt is optimal for
some u1t, and pl′ , qt is optimal for some u2t, and ψb

lt (qt) qt > ψb
l′t (qt) qt. Let Ut denote the set of

valuations who find pl optimal to time t and let U ′
t the set of valuations who find pl′ optimal at time

t. Then,

E

[∫

Ut

q∗l (u)ψb
lt (q∗l (u))hlt(q∗l (u))du−

∫

U ′t
q∗l′(u

′)ψb
lt

(
q∗l′(u

′)
)
hl′t(q∗l (u

′))du′
∣∣∣∣∣ Info at t

]
> 0, (C7)

where hlt(·) and hl′t(·) are such that hlt(·) > 0,
∫
U hlt(q∗lt(u))du = 1, similarly for hl′t(·).

Proof: From the previous lemma, ∀u ∈ Ult, ∀u′ ∈ Ul′t,
[
q∗l (u)ψb

lt (q∗l (u))− q∗l′(u
′)ψb

l′t
(
q∗l′(u

′)
)]

> 0. (C8)

Integrating over an the density hlt(·), for u and using the condition that
∫
U hlt(u)du = 1,

[∫

Ult

q∗l (u)ψb
lt (q∗l (u))hlt(u)du− q∗l′(u

′)ψb
l′t

(
q∗l′(u

′)
)]

> 0, (C9)

Integrating equation (C9) with respect to hl′t(·) and taking expectations yields the result.
We construct hit(u), i = 1, 2 empirically as follows. Let Hi (q) : R+ → R+ satisfy

E
[
Hi (q∗l (u))|Ωt, d

b∗
lt = 1

]
< ∞,

where we are are now conditioning on the state variables, Ωt. Define hit(u) as

hit (u) ≡ Hi (q∗lt(u)) g(u)
Et

[
Hit

(
q∗lt(u)

)∣∣ Ωt, db∗
lt = 1

] . (C10)
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To implement a test of restriction (C7), define

DQ ≡ E


I(Ωt ∈ Ω̄)




E[Qb
lt+T̄ H1(q∗lt)|Ωt]

E[H1(q∗
lt)|Ωt]

− E[Qb
l′t+T̄ H2(q∗

l′t)|Ωt]

E[H2(q∗
l′t)|Ωt]

, . . . ,

E[Qb
l′t+T̄ H1(q∗

l′t)|Ωt]

E[H1(q∗
l′t)|Ωt]

− E[Qb
l′′t+T̄ H2(q∗

l′′t)|Ωt]

E[H2(q∗
l′′t)|Ωt]

, . . .


⊗ z++

t


 , (C11)

where z++
t > 0 is a function of the information set Ωt, I(Ωt ∈ Ω̄) is a trimming indicator and Qb

lt+T̄
is the quantity of the order that is eventually filled, conditional on the price choice l. Equation
(C7) and the law of iterated expectations implies the null hypothesis

H0 : DQ > 0.

We use the techniques described in Appendix B to form an estimator for equation (C11), and
perform a version of the monotonicity test described in the text.

The results of the monotonicity test for quantity are in Table C1. Here, we use the weighting
functions

H1(q) ≡ 11−min(10, q)

and
H2(q) ≡ min(10, q).

H1(·) puts more weight on low quantities than on high quantities submitted and and H2(·) puts
relatively more weight on high quantities than on low quantities. The standard errors are computed
as described in Appendix B using the Newey and West (1987) procedure with 50 lags. Each column
uses a different positive state variable, including a constant, the depth at the best quotes, the depth
at the second best quotes, lagged trading volume and volatility of the common value. The final
column of the table reports the MDQ statistic for each threshold difference for all the state variables
jointly, with associated asymptotic p-values reported in parenthesis. The asymptotic p-values for
the MDQ statistics are computed using the simulation method given in Wolak (1989) with 10,000
simulation trials. The monotonicity test rejects the monotonicity restriction implied by endogenous
quantity choice for the decision between a one tick away limit order and a market order, for both
the buy and sell sides using all state variables. The test does not reject the monotonicity restriction
considering one versus two tick, and two versus three tick limit orders on both the buy and sell
sides, for all state variables. The monotonicity restriction is also rejected when considering all
decisions jointly, for all state variables.
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Table 1: Daily Trading Activity

Average Std.Dev. Min. Max.
Daily closing mid-quote 110.15 9.19 89.00 127.00
Daily open-to-close return (percent) -0.22 2.06 -5.29 4.12
Daily number of active brokers 19.28 2.28 14 23

Daily Trading Volume in millions of SKr
SAX system 38.77 19.53 11.58 114.88
Internal crosses 12.20 9.04 1.48 57.51
Block trades (10 A.M. -2:30 P.M. ) 0.39 0.92 0.00 5.45
After-hours (2:30 P.M. and later) 4.66 6.15 0.00 28.26
Total trading volume 56.02 29.52 13.06 201.28

Daily number of SAX orders (10:03 A.M.-2:30 P.M.)
All orders 364.23 141.13 128 733
Limit orders 212.18 77.58 73 408
Market orders 152.04 67.14 55 330

This table reports summary statistics on the daily trading activity of Ericsson. The daily open–to–
close returns are calculated using the mid-quotes. The number of active brokers for each trading
day is defined as the number of brokers who made at least one trade.

Table 2: Order Flow

Limit Buy Orders Market Limit Sell Market
ticks from best ask buy ticks from best bid sell
≥3 2 1 ≥3 2 1

Total number 893 992 4225 6031 563 800 3212 4044
of orders
Average 0.12 0.33 0.68 1.00 0.13 0.28 0.63 1.00
fill ratio (0.01) (0.01) (0.01) (0.01) (0.02) (0.01)
Average time–to–fill 172.33 73.94 24.55 170.95 84.21 18.31
(minutes) (14.86) (5.22) (0.94) (18.73) (7.92) (0.83)

This table reports descriptive statistics for the order flow in Ericsson. There are a total of 20,760
order submissions. The average size, fill ratio and time–to–fill with corresponding standard errors
are reported for eight order categories. The fill ratio is defined as the fraction of the originally
submitted limit order quantity that is traded within two trading days from the order submission.
Likewise the time–to–fill reflects the average time until a limit order is filled ignoring possible fills
that occur later than two trading days after the order was submitted.
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Table 3: Order Quantity

Quartiles
Average Std.Dev. Median Min. First Third Max.

Order Quantities in round lots (100’s of Shares)
Market buy 19.72 39.21 6.00 1.00 2.00 28.00 859.00
1 tick buy 25.14 37.60 10.00 1.00 2.00 50.00 500.00
2 tick buy 29.63 44.58 10.00 1.00 3.00 50.00 500.00
3 tick buy 14.65 32.28 4.00 1.00 1.00 13.00 400.00
3 tick sell 23.73 91.29 10.00 1.00 2.00 30.00 2000.00
2 tick sell 37.08 44.87 20.00 1.00 5.00 50.00 300.00
1 tick sell 36.08 49.48 20.00 1.00 5.00 50.00 500.00
Market sell 30.73 48.90 11.00 1.00 3.00 50.00 808.00

This table reports descriptive statistics for the order quantities submitted at different prices. A
limit buy order submitted at one tick below the current best ask quote is labeled as a 1 tick buy
order. Sell orders are categorized symmetrically relative to the best bid quote. There are a total of
20,760 order submissions used in the computations, and the units are in round lots, which consist
of 100 shares.

Table 4: Order Books

Quartiles
Average Std.Dev. Median Min. First Third Max.

Order Book Quantities in Round Lots (100’s of Shares)
3rd Ask 169.8 105.0 175.9 1.0 25.0 296.0 1061.1
2nd Ask 260.8 214.0 203.0 1.0 93.0 430.0 1161.0
1st Ask 200.9 147.0 194.1 1.0 44.0 325.0 1314.0
1st Bid 185.9 143.0 173.8 1.0 38.0 310.0 1504.2
2nd Bid 242.9 190.0 217.7 1.0 86.0 350.0 1504.2
3rd Bid 167.9 115.0 190.9 1.0 38.0 251.0 1355.2
Cumulative Order Book Quantities in round lots (100’s of Shares)
1st+2nd+3rd Ask 631.5 564.0 368.8 13.0 295.0 962.0 1935.6
1st+2nd Ask 461.7 401.0 294.9 2.0 205.3 694.0 1809.0
1st+2nd Bid 428.8 359.0 310.2 5.0 194.1 597.0 2176.9
1st+2nd+3rd Bid 596.8 505.5 396.0 15.0 296.0 804.0 2730.4
Distance between Order Book Quotes and the mid–quote in ticks
3rd Ask 2.68 2.50 0.56 2.50 2.50 2.50 9.50
2nd Ask 1.58 1.50 0.29 1.50 1.50 1.50 6.50
1st Ask 0.53 0.50 0.13 0.50 0.50 0.50 3.00
1st Bid -0.53 -0.50 0.13 -3.00 -0.50 -0.50 -0.50
2nd Bid -1.56 -1.50 0.30 -9.00 -1.50 -1.50 -1.50
3rd Bid -2.66 -2.50 0.68 -19.00 -2.50 -2.50 -2.50

Descriptive statistics for the order books. The statistics in the table are computed for each order
book observed in the market immediately prior to an order submission. There are a total of 20,760
observations.
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Table 5: Description of the Conditioning Variables

Variable Description
Order Quantity the logarithm of the size of the order submitted at t (qt)
Depth Measure 1 the logarithm of the total number of shares offered in

the order book within one tick of the mid-quote
Depth Measure 2 the logarithm of the total number of shares offered in

the order book within 3 ticks of the mid-quote
Trading Volume the logarithm of the cumulative number of shares

transacted during the time interval [t− 10 minutes, t)
Common Value Volatility the logarithm of one plus the standard deviation

of the OMX market index returns over the
minimum of 60 minutes and the number of minutes
since the open. The std.dev. is normalized by multiplying
by the square root of the number of minutes per trading day.

Table 6: Ordered Probit Analysis for Order Choices

Qty Depth1 Depth3 Volume Volatility
Buy Order Choices (N=12,141)

Coefficient -0.0424 0.0715 0.0505 0.0339 -0.0941
(0.0071) (0.0037) (0.0166) (0.0052) (0.0269)

∂Pr(market)/∂Xj -0.0169 0.0285 0.0202 0.0135 -0.0375
∂Pr(1 tick buy)/∂Xj 0.0071 -0.0119 -0.0084 -0.0056 0.0157
∂Pr(2 tick buy)/∂Xj 0.0042 -0.0071 -0.0051 -0.0034 0.0094
∂Pr(3 tick buy)/∂Xj 0.0056 -0.0094 -0.0067 -0.0045 0.0124

Sell Order Choices (N=8,619)
Coefficient 0.0194 -0.0840 0.1223 -0.0152 0.1762

(0.0086) (0.0047) (0.0292) (0.0061) (0.0326)
∂Pr(market)/∂Xj -0.0077 0.0334 -0.0486 0.0061 -0.0701
∂Pr(1 tick sell)/∂Xj 0.0031 -0.0136 0.0198 -0.0025 0.0285
∂Pr(2 tick sell)/∂Xj 0.0022 -0.0096 0.0140 -0.0017 0.0202
∂Pr(3 tick sell)/∂Xj 0.0024 -0.0102 0.0148 -0.0018 0.0213

Estimation results from an ordered probit model of order submissions for buy and sell orders.
The estimated coefficients and standard errors are reported on the first two rows of each panel.
A chi-squared test statistics for the null hypothesis that all coefficients are jointly equal to zero
rejects the null for both models: For buy orders, χ2(5) = 569.88, p-value=0.0000 and for sell orders,
χ2(5) = 386.09, p-value=0.0000. The last four rows of each panel report the marginal effects of a
change in one of the explanatory variable on the choice probabilities, evaluated at the mean values
of the conditioning information.
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Table 7: Cointegration Results for Common Value Estimation

Unit root test Cointegrating Regression
(lag length=10) Bid Quote Ask Quote Mid-Quote

Bid Quote -1.107
(0.712)

Ask Quote -1.081
(0.723)

Mid-Quote -1.084
(0.722)

OMX -0.888 0.3676371 0.362978 0.365308
(0.793) (0.000946) (0.000928) (0.000937)

R2 0.8791 0.8806 0.8800
Cointegration Test -3.671 -3.619 -3.619
(lag length=10) (<0.025) (<0.025) (<0.025)
Number of Observations 20,760

Estimation of common value series. The first column reports unit root tests for the time series of
best ask and bid quotes, the mid-quotes, and the OMX market index. All series are demeaned. The
unit root test is an augmented Dickey-Fuller t-test and p-values are reported below each t-statistic
in parenthesis. The OLS factor regressions results are reported for three different demeaned price
series: the best bid quote, the best ask quote, and the mid-quote series. The estimated coefficient
on the demeaned OMX market index is reported for each price series with the standard error in
parenthesis. The cointegration test is an augmented Engle-Granger test. P-values are reported
below the test statistics in parenthesis.
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Table 8: Test of Monotonicity of the Conditional Fill Ratios

Conditioning Variables
Constant Qty Depth1 Depth3 Volume Volatility MDF

market buy 0.3169 2.2381 3.2107 3.6707 2.9025 0.2065 0
- 1 tick buy (0.0140) (0.0982) (0.1475) (0.1640) (0.1293) (0.0120) –

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9813
1 tick buy 0.3569 2.4758 3.5872 4.1368 3.2755 0.2322 –
- 2 tick buy (0.0225) (0.1497) (0.2349) (0.2637) (0.2045) (0.0180) 0

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9851
2 tick buy 0.2079 1.3777 2.0194 2.3816 1.9200 0.1442 –
- 3 tick buy (0.0241) (0.1599) (0.2453) (0.2778) (0.2228) (0.0192) 0

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9833
2 tick sell 0.1141 0.7802 1.1307 1.3180 1.0643 0.0772 0
- 3 tick sell (0.0210) (0.1505) (0.2150) (0.2428) (0.2027) (0.0171) –

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9813
1 tick sell 0.4220 2.8414 4.2224 4.8811 3.8804 0.2759 0
- 2 tick sell (0.0197) (0.1395) (0.2065) (0.2299) (0.1839) (0.0167) –

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9854
market sell 0.3586 2.5461 3.6560 4.1570 3.2655 0.2266 0
- 1 tick sell (0.0142) (0.1035) (0.1489) (0.1658) (0.1284) (0.0112) –

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9845
Joint MDF Statistic

All choices 0 0 0 0 0 0 0
0.9824 0.9835 0.9828 0.9840 0.9838 0.9840 1.0000

This table reports the point estimates, asymptotic standard errors in parenthesis, inequality statis-
tics and p-values for average differences in the fill ratios across order choices multiplied by positive
state variables. The state variables are a constant, Qty: the logarithm of the order size, Depth1:
the logarithm of one plus the number of shares offered in the book within one tick of the mid-quote,
Depth3: the logarithm of one plus the number of shares offered in the book within 3 ticks of the
mid-quote, Volume: the logarithm of one plus the number of shares traded over the past 10 minutes,
Volatility: the logarithm of one plus an estimate of the volatility of the market index over the last
hour. We ensure that all state variables are strictly positive by replacing them with 0.00001 if they
are zero.
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Table 9: Monotonicity Tests of the Thresholds

Conditioning Variables Joint
Constant Qty Depth1 Depth3 Volume Volatility MDθ

E
[
(θb

01(Xt)− θb
12(Xt))⊗ z++

t

]
2.45 2.98 2.48 1.07 2.71 0.79 0

(0.16) (0.21) (0.29) (0.11) (0.25) (0.08) –
1.00 1.00 1.00 1.00 1.00 1.00 0.81

E
[
(θb

12(Xt)− θb
23(Xt))⊗ z++

t

]
1.17 1.42 1.10 0.51 1.42 0.37 0

(0.17) (0.20) (0.16) (0.10) (0.31) (0.07) –
1.00 1.00 1.00 1.00 1.00 1.00 0.79

E
[
(θb

23(Xt)− θs
23(Xt))⊗ z++

t

]
-1.37 -1.66 -1.15 -0.59 -1.64 -0.42 7.84

(0.50) (0.65) (0.64) (0.34) (0.70) (0.21) –
0.01 0.01 0.04 0.03 0.01 0.02 0.01

E
[
(θs

23(Xt)− θs
12(Xt))⊗ z++

t

]
-0.03 -0.043 0.10 -0.01 -0.01 -0.02 0.01

(0.55) (0.71) (0.68) (0.36) (0.75) (0.22) –
0.48 0.48 0.56 0.50 0.49 0.47 0.76

E
[
(θs

12(Xt)− θs
01(Xt))⊗ z++

t

]
2.39 2.90 2.86 1.08 2.65 0.77 0.00

(0.14) (0.19) (0.37) (0.09) (0.20) (0.07) –
1.00 1.00 1.00 1.00 1.00 1.00 0.83

Joint MDθ Statistic
Buy side 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.81 0.79 0.78 0.81 0.79 0.81 0.98
Sell side 0.00 0.00 0.00 0.00 0.00 0.01 0.01

0.78 0.80 0.77 0.81 0.81 0.75 0.98
Buy and 86.84 80.69 60.82 61.09 39.03 52.10 96.17
sell together 0.00 0.00 0.00 0.00 0.00 0.00 0.00

This table reports the point estimates, asymptotic standard errors in parenthesis, inequality statis-
tics and p-values for average differences in the thresholds across order choices multiplied by positive
state variables. The state variables are a constant, Qty: the logarithm of the order size, Depth1:
the logarithm of one plus the number of shares offered in the book within one tick of the mid-quote,
Depth3: the logarithm of one plus the number of shares offered in the book within 3 ticks of the
mid-quote, Volume: the logarithm of one plus the number of shares traded over the past 10 minutes,
Volatility: the logarithm of one plus an estimate of the volatility of the market index over the last
hour. We ensure that all state variables are strictly positive by replacing them with 0.00001 if they
are zero.
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Table 10: Unconditional Averages

Choice Fill Ratio Winner’s Curse E[∆y|transaction] Expected Utility Private Value
1 tick buy 0.680 0.008 0.012 1.976 2.561

(0.012) (0.022) (0.03) (0.119) (0.119)
2 tick buy 0.325 -0.111 -0.344 0.334 0.113

(0.019) (0.051) (0.205) (0.057) (0.083)
3 tick buy 0.11 -0.175 -1.477 -0.046 -1.062

(0.014) (0.078) (1.675) (0.044) (0.126)
3 tick sell 0.106 0.100 0.925 0.111 0.309

(0.015) (0.055) (0.088) (0.142) (0.451)
2 tick sell 0.226 0.139 0.618 0.104 0.342

(0.018) (0.058) (0.089) (0.061) (0.097)
1 tick sell 0.633 0.008 0.013 1.612 -2.047

(0.013) (0.019) (0.029) (0.096) (0.105)

This table reports unconditional averages of the conditional fill ratios, conditional winner’s curse
terms, the expected value of changes in the common value conditional upon execution, the expected
utility of a trader with a valuation equal to the threshold valuation, and the private valuation of
a trader equal to the threshold valuation. The average private values are adjusted with 57 daily
dummies. Asymptotic standard errors are reported in parenthesis, computed using 50 lags.
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Table C1: Monotonicity Test for Endogenous Quantity Choice

Conditioning Variables
Constant Depth1 Depth3 Volume Volatility MDQ

market buy -2.1977 -22.633 -25.452 -20.277 -1.4669 43.478
- 1 tick buy (0.36026) (3.6908) (4.2958) (3.7116) (0.22289) –

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1 tick buy 0.23944 2.4716 2.7776 2.2383 0.1596 0
- 2 tick buy (0.234) (2.4657) (2.7762) (2.0433) (0.16682) –

0.8469 0.84192 0.84147 0.86333 0.83065 0.9696
2 tick buy -0.58599 -6.0676 -6.8083 -5.4203 -0.38355 1.0633
- 3 tick buy (0.63728) (6.8904) (7.3568) (6.6418) (0.37196) –

0.17891 0.18927 0.17737 0.20722 0.15123 0.64566
2 tick sell -0.093693 -0.98649 -1.1007 -0.84441 -0.057292 0.047564
- 3 tick sell (0.4296) (4.6019) (5.0603) (4.2403) (0.32669) –

0.41368 0.41513 0.41391 0.42108 0.43039 0.93189
1 tick sell 0.15166 1.5924 1.7796 1.3606 0.085663 0
- 2 tick sell (0.35889) (3.694) (4.2404) (3.7398) (0.37632) –

0.6637 0.6668 0.66264 0.642 0.59004 0.9668
market sell -1.1197 -11.534 -12.971 -10.342 -0.75039 11.166
- 1 tick sell (0.33555) (3.5688) (3.9917) (3.2573) (0.25884) –

0.0004 0.0006 0.0006 0.0007 0.0019 0.0101
Joint MDQ Statistic

All choices 54.696 55.231 52.049 44.649 57.039 62.201
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

This table reports the point estimates, asymptotic standard errors in parenthesis, inequality statis-
tics and p-values for the quantity monotonicity test in equation (C11). The test is based on moment
conditions of the form:

E

[
I(Ωt ∈ Ω̄)

(
E[Qb

lt+T̄ H1(q∗lt)|Ωt]

E[H1(q∗
lt)|Ωt]

− E[Qb
l′t+T̄ H2(q∗

l′t)|Ωt]

E[H2(q∗
l′t)|Ωt]

)
⊗ z++

t

]
> 0,

where
H1(q) ≡ 11−min(10, q)

H2(q) ≡ min(10, q).

The state variables are a constant, Depth1: the logarithm of one plus the number of shares offered
in the book within one tick of the mid-quote, Depth3: the logarithm of one plus the number of
shares offered in the book within 3 ticks of the mid-quote, Volume: the logarithm of one plus the
number of shares traded over the past 10 minutes, Volatility: the logarithm of one plus an estimate
of the volatility of the market index over the last hour. We ensure that all state variables are
strictly positive by replacing them with 0.00001 if they are zero.
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Figure 1: Dealer market shares. The dashed line represents the cumulative market shares of the
dealers based on the total trading volume in our sample. The solid line plots the cumulative market
shares in the hypothetical situation where the dealers have equal market shares.
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Figure 2: The top graphs give the survivor function for limit orders. The middle and the bottom
graphs show the cumulative distribution functions for the order fill and cancellation times. All
three functions are computed for orders submitted between 10:03 A.M. and 11:00 A.M. (solid
line), 11:00 A.M. and 1:00 P.M. (dashed line ), and 1:00 P.M. – 2:30 P.M. (dash-dot line). There
are a total of 11,760 orders with 4448, 3945, and 3367 in the three sub-groups. The survivor and
distribution functions are calculated by assigning a weight to each observation that is proportional
to the fraction of the order quantity executed or canceled. Limit orders submitting during the last
two trading days in our sample or further than 5 SKr from the midquote are not used in these
calculations.

55



101 101.5 102 102.5 103 103.5 104 104.5 105 105.5 106

2

3

4

5

←θb
01

←θb
02

←θb
12

E
[U

(p
b l,q

,v
)]

v=y+u

E[U(pb
0
,q,v)]

               
E[U(pb

1
,q,v)]

               
E[U(pb

2
,q,v)]

               
max

l=01,2
(E[U(pb

l
,q,v)])

Figure 3: This figure provides an example where the thresholds do not satisfy the monotonicity
restriction, but where the expected fill ratios for limit orders are monotonically decreasing farther
away from the market price. The expected fill ratios are ψb

0(1) = 1, ψb
1(1) = 0.7, ψb

2(1) = 0.6, the
tick size is 1 SKr, the market price is 100 SKr and all the picking off risk terms are equal to zero.
We plot expected utility as a function of his valuation conditional on submitting a buy market
order (–), a limit buy order one tick below the ask quote (- -), and a limit buy order two ticks
below the ask quote (- .). The solid dark line is the upper envelope of the expected utility for each
choice.
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Figure 4: The graph illustrates how the probabilities of observing different order choices are deter-
mined in our model. There are two types of limit orders that a trader would consider submitting.
The threshold valuations are computed using equations (9) through (11). The probability of ob-
serving a given order choice is given by the area under the probability distribution function between
two adjacent threshold valuations. For example, the probability of observing a limit sell order at
two ticks from the best bid quote is given by the probability that the trader has a demand for
immediacy u that falls in the interval [θs

01− y,θ
s
12− y), which corresponds to the area with diagonal

lines in the graph.
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Figure 5: Nonparametric estimates of the cumulative distribution of demand for immediacy. The
estimates are based on kernel regression estimates of equation (31) for all buy and sell choices,
using a Gaussian kernel with bandwidth equal to 2σ̂(θ̂)(T )1/5, where we have T = 67, 194 buy
observations, T = 47, 424 sell observations, and σ̂(θ̂) is the standard deviation of the estimated
thresholds less the common value. The dashed line (- - - ) is the buyer liquidity demand distribution
and the dash dot line (-.-) is the seller liquidity demand distribution.
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Figure 6: Nonparametric estimates of the cumulative distribution of the demand for immediacy,
conditional on the order size. The estimates are based on a kernel regression estimate of equation
(31) using a Gaussian kernel with bandwidth equal to 2σ̂(θ̂)(T )1/5, where T is the number of
observations, and σ̂(θ̂) is standard deviation of the estimated thresholds less the common value.
The solid line (—) is buyers with order quantities above the median order size and the dashed line
(- - -) is buyers with order quantities below the median order size. The dotted line (. . .) is sellers
with order quantities larger than the median and the dash dot line (- . -) is sellers with order
quantities smaller than the median.
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Figure 7: Nonparametric estimates of the cumulative distribution of the demand for immediacy,
conditional on the volatility of the common value. The estimates are based on a kernel regression
estimate of equation (31) using a Gaussian kernel with bandwidth equal to 2σ̂(θ̂)(T )1/5, where T
is the number of observations, and σ̂(θ̂) standard deviation of the estimated thresholds less the
common value. The solid line (—) is buyers when volatility is above the median order size and
the dashed line (- - -) is buyers when common value volatility is below the median order size. The
dotted line (. . .) is sellers when common value volatility is larger than the median and the dash
dot line (- . -) is sellers when common value volatility is smaller than the median.
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