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ABSTRACT

Knowledge Spillovers at the World’s Technology Frontier*

Convergence in per capita income turns on whether technological knowledge
spillovers are global or local. Global spillovers favour convergence, while a
geographically limited scope of knowledge diffusion can lead to regional
clusters of countries with persistently different levels of income per capita.
This Paper estimates the importance of geographic distance for technology
diffusion, how this has changed over time, and whether international trade,
foreign direct investment and communication flows serve as important
channels of diffusion. The analysis is based on examining the productivity
effects of R&D expenditures in the world’s seven major industrialized
countries between 1970 and 1995. First, I find that the scope of technology
diffusion is severely limited by distance: the geographic half-life of technology,
the distance at which half of the technology has disappeared, is estimated to
be only 1,200 kilometres. Second, technological knowledge has become much
more global from the early 1970s to the 1990s. Third, I estimate that trade
patterns account for the majority of all differences in bilateral technology
diffusion, whereas foreign direct investment and language skills differences
contribute circa 15% each. Lastly, these three channels together account for
almost the entire localization effect that would otherwise be attributed to
geographic distance.
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NON-TECHNICAL SUMMARY

Convergence in per capita income depends on the degree of international
technology diffusion. Strong diffusion of technological knowledge favours
convergence, while the absence of it can lead to divergence if the domestic
rate of technological change varies across countries. A case in point is the
faster implementation of recent advances in information technology in the
United States compared to other countries. This has been cited as a major
reason why the United States’ lead in per capita income over Japan has
increased from 10% in 1990 to 20% by 1999. The scope of technology
diffusion also matters for income convergence among the world’s advanced
(‘North’) and less developed countries (‘South’). For instance, the issue is
widely discussed in the context of the ‘digital divide’ scenario – the widespread
fear that the internet might not lead to convergence, but instead to a further
polarization of per capita income in the world. This Paper examines the scope
of international technology diffusion by using data from the world’s seven
major industrialized countries – collectively referred to as the world’s
technology frontier – at the level of two-digit manufacturing industries during
the years 1970 to 1995.

International technology diffusion is analysed on a geographic basis. It is well
known, for instance, that foreign direct investment (FDI) patterns are affected
by spatial factors, and it is a stylized fact that the volume of bilateral trade
declines with distance. Because trade and FDI patterns might determine a
country’s access to embodied foreign technology in the form of advanced
intermediate goods, these mechanisms are both plausible channels of
technological diffusion. Disembodied technology diffusion in the form of direct
communication could be another major way of how technological knowledge
moves between countries, and while distance affects the likelihood of face-to-
face interactions, it matters much less for communication via telephone or
email. Rather, language and other cultural-historic factors play a relatively
larger role for communication flows than for trade or FDI. At this time,
however, relatively little is known on how geographic and other factors impact
technology diffusion among countries.

The empirical analysis first addresses the question of whether geographic
distance affects the degree of diffusion. In particular, do remotely located
countries have a smaller stock of technological knowledge at their disposal
than more centrally located countries? Second, we study whether this
relationship has changed over time. The analysis has major implications for
economic policies towards growth and innovation, because if technological
knowledge diffuses fully as well as quickly, such policies cannot raise a
country’s relative welfare. Third, it is examined whether trade, FDI and
communication matter as specific channels of technology diffusion. Going
beyond the analysis of distance is important, because economic policy might



be powerful in affecting trade, FDI or communication patterns, whereas it
cannot, at least literally, affect a country’s geographic location relative to other
countries.

The findings are as follows: first, geographic distance has a strongly limiting
effect on technology diffusion among these technology frontier countries. I find
that the distance after which half of the technological knowledge that
originates from the technology sending country has disappeared – the half-life
of technology in terms of distance – is between only 800 and 1,900 kilometres.
Second, the degree of localization of technology diffusion has declined
substantially, by at least two thirds, over the sample period. While these
estimates might to some extent overstate both the magnitude of the degree of
localization at the beginning of the sample period, as well as the speed at
which technology has become more global since the 1970s, the qualitative
findings are very robust.

Another question that is addressed is what explains the level and the changes
in the localization effect that are estimated. The channels of trade, FDI and
direct communication, proxied by data on language skills, are considered as
alternatives to distance above. It appears that a substantial portion of the
distance effect in technology diffusion, and maybe all of it, can be accounted
for by differences in trade, FDI, and communication links across countries. Out
of the three channels, I estimate that trade is most important, with about two-
thirds of the total diffusion effect, while differences in FDI and language skills
account for about one-sixth each.

While it is possible to account for a substantial part of the distance effect in
terms of trade, FDI and communication links, much less can be said at this
point on what has caused the decline in the degree of localization of
technology over the sample period. For instance, have transport costs for
goods declined dramatically over the period 1970–95, so that there is now
much more embodied technology diffusion through goods trade than existed
earlier? FDI might also be in part what is behind the decrease in localization of
technology, because the rate of growth of multinational activity has been
relatively high over the last two decades. And of course the recent
development of new communication technologies and the internet are strong
prima facie reasons of why technology might have become less localized. A
definitive answer in this regard, however, must await the greater availability of
relevant data. This will allow to better address the important question of what
are the main causes, and implications, of the recent decline in the localization
of technological knowledge.



Knowledge spillovers�the external beneÞts from the creation of technological knowledge that ac-

crue to parties other than the inventor�have a major impact on the extent of income convergence

across countries. Strong spillovers favor convergence, while weak spillovers can lead to divergence if

the domestic rate of technological change varies across countries. A case in point is the faster im-

plementation of recent advances in information technology in the United States (U.S.) compared to

other countries, which might be a major reason of why the U.S.�s lead in per capita income over Japan

has increased from 10% in 1990 to 20% by 1999. The scope of knowledge spillovers also matters for

income convergence among the world�s advanced and less developed countries (the �North� and the

�South�, respectively). For instance, the issue is widely discussed in the context of the �digital divide�

scenario�the widespread fear that the internet might not lead to convergence, but instead to a further

polarization of per capita income in the world.

This paper studies empirically knowledge spillovers among the seven major industrialized countries�

the world�s technology frontier�on a geographic basis.1 In particular, does the strength of knowledge

spillovers vary with geographic distance? If so, then remotely located countries may have a smaller

stock of technological knowledge at their disposal than more centrally located countries. I also exam-

ine whether knowledge has become more global over time by examining whether geographic distance

inßuences knowledge spillovers in the same way during the 1970s and the 1990s. This has major impli-

cations for national economic policies towards growth and innovation, because such policies are only

effective in raising a country�s relative welfare as long as technological knowledge does not spill over

fully as well as quickly. This paper also provides new evidence on the extent to which three widely

cited channels for knowledge spillovers�trade, foreign direct investment (FDI), and communication

ßows�are important. From a policy perspective, understanding the inßuence of channels other than

distance is important, because economic policy might be powerful in affecting trade, FDI, or commu-

1These countries�Canada, France, Germany, Italy, Japan, the United Kingdom (U.K.), and the U.S.�account for more
than 90% of the world�s R&D spending and are also by most other measures among the technologically most-advanced
in the world.
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nication patterns, whereas it cannot, at least literally, affect a country�s geographic location relative

to other countries.

The present study provides also an assessment of recent theories of growth in which knowledge

spillovers are crucial to explain sustained increases in income and growth performances that differ

across countries. Knowledge spillovers are central in Romer (1986, 1990), Lucas (1988), and Aghion

and Howitt (1992), and their scope is critical for the long-run distribution of incomes in the multi-

country models of Grossman and Helpman (1991), Lucas (1993), and Howitt (2000). Knowledge

spillovers are also important for recent models of regional and urban economics that explain patterns

of agglomeration and de-agglomeration (Krugman 1991, Fujita, Krugman and Venables 1999), because

the pecuniary trade externalities that these authors emphasize often go hand-in-hand with knowledge

spillovers.

This work is based on data for two- and three-digit manufacturing industries in Canada, France,

Germany, Italy, Japan, the United Kingdom (U.K.), and the U.S.�the so-called G-7 countries� during

the years of 1970 to 1995. It builds on a substantial amount of work showing that the link between

the research and development (R&D) spending in one industry and productivity in another can be

used to estimate knowledge spillovers (Griliches 1979, 1995, Scherer 1984).

The paper contributes to the existing empirical literature as follows. One set of papers estimates

the relative magnitude of knowledge spillovers within- and across countries (Jaffe, Trajtenberg, and

Henderson 1993, Irwin and Klenow 1994, and Eaton and Kortum 1999). I contribute to this in two

ways: Þrst, beyond the distinction of national versus international spillovers, I exploit cross-sectional

variation in the relative distance of countries to their partner countries. Second, this paper provides

estimates on the extent to which knowledge spillovers have become more global over time. Another

literature is trying to assess the importance of trade as a mechanism of international knowledge

spillovers (Coe and Helpman 1995, Keller 1998). In this regard, my contribution lies in considering

not only the trade, but also simultaneously the FDI and communication channels for knowledge
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spillovers, as well as unidentiÞed distance-related externalities.2 The paper is complementary to recent

estimates of localized externalities at the subnational level (Ciccone and Hall 1996, Ellison and Glaeser

1997, Hanson 2000, and Henderson 2001).3 My analysis also contributes to explaining differences in

production technologies across countries, which has been emphasized as an important factor for the

specialization of production across countries as well as international trade (Harrigan 1997 and Treßer

1995, respectively).

To anticipate the results, I Þnd that the scope of knowledge spillovers is severely limited by distance:

the geographic half-life of knowledge spillovers, the distance at which half of them have disappeared,

is estimated to be only 1,200 kilometers. However, between the early 1970s and the 1990s, knowledge

spillovers have become much more global. The results also suggest that trade, FDI, as well as direct

communication are among the channels through which knowledge spillovers operate, with trade being

the most important. Lastly, I estimate that these three channels together account for almost the entire

localization effect that would otherwise be attributed to geographic distance.

The remainder of the paper is as follows. The next section provides an overview of the data.

Important econometric issues raised by the estimations are addressed in Section Two. All estimation

results and the discussion of their economic signiÞcance can be found in Section Three. Section Four

concludes with a general assessment of the results and notes a number of issues that will have to be

addressed in the future.

1 Empirical setting

This section examines the data in some detail, providing a context that shows how R&D expenditures,

productivity, geography, as well as trade, FDI, and communication links in the sample vary.

2This differs also from Keller (2000), who studies knowledge spillover ßows to nine smaller countries.
3See also Redding and Venables (2001), who estimate geography effects with international data.

3



1.1 Major country and industry characteristics in terms of GDP and R&D

I use data on manufacturing industries in Canada, France, Germany, Italy, Japan, the U.K., and

the U.S. for the years 1970-1995. All countries are members of the Organization for Economic Co-

operation and Development (OECD), and the OECD STAN database is the primary source for the

data on inputs, outputs, and prices (OECD 1999a). Manufacturing industries in these seven countries

account for about 16% of world GDP and approximately two thirds of world GDP in manufacturing

in 1980. Moreover, these countries perform the majority of R&D expenditures in the world (source:

OECD 1998): ninety-four percent of all business enterprise R&D that is recorded in OECD statistics

are conducted in the G-7 countries.4

The analysis encompasses almost all of manufacturing, subdivided into twelve industries at the two-

to three-digit International Standard Industrial ClassiÞcation (ISIC) level.5 These are food, beverages

and tobacco (ISIC 31), textiles, apparel, and leather (ISIC 32), wood products and furniture (ISIC

33), paper and printing (ISIC 34), chemicals and drugs (ISIC 351+352), rubber and plastics (ISIC

355+356), non-metallic mineral products (ISIC 36), basic metals (ISIC 37), metal products (ISIC

381), non-electrical machinery and instruments (ISIC 382+385), electrical machinery (ISIC 383), and

transportation equipment (ISIC 384). Table 1 provides summary statistics on the relative size of the

countries and industries. The size of the countries varies substantially in terms of GDP. Canada�s share

of G-7 manufacturing is 3.15%, while the U.S. contributes 33.62%. By industry, food manufacturing

is largest in the G-7 countries, but also transportation equipment as well as non-electrical machinery

& instruments are industries that have a share of more than 10% in manufacturing. In terms of R&D,

country size varies even more, see the middle columns in Table 1. The U.S. conducts about forty

times as much R&D as Canada, and about four times as much as Germany. Japan spends about half

4The remainder of 6% is R&D in the Netherlands, Sweden, South Korea, and other countries. After the R&D
expenditures in non-OECD countries are taken into account, it is plausible to assume that the G-7 countries conduct at
least 90% of all business enterprise R&D in the world.

5Two industries have been dropped from the sample: ISIC 353+354, Petroleum and ReÞneries, because of less reliable
data, and ISIC 39, Other Manufacturing, because it includes rather different products across countries.
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as much on R&D as does the United States. Also in the industry dimension, R&D expenditures are

more concentrated than GDP is. Most of the R&D is done in chemicals, machinery, electronics, and

transportation, accounting for a total of almost 90% of all R&D in manufacturing.

The R&D expenditure ßows are transformed into stocks by using the perpetual inventory method.6

Table 1, on the right, shows that the average annual growth rates of R&D stocks vary substantially

by country, from a high of 11.82% for Germany to a low of 5.72% for the United Kingdom. Average

R&D stock growth for the U.S. has been 7.36% per year.

1.2 Geographic features of the sample

The geographic distance between countries is measured as the smallest arc tan distance between the

capital cities of the countries, as the crow ßies (source: Haveman 1998). Table 2.1 allows to distinguish

several groups of countries: the European G-7 countries, which are about 6,000 kilometers from the

U.S. and Canada and 9,500 kilometers from Japan, while the latter is about 10,500 kilometers from

Canada and the United States. In consequence, the countries� average distance to their six partner

countries varies substantially: for the four European countries, it is around 4,000 kilometers, for the

U.S. and Canada, it is about 6,000 kilometer, and for the relatively isolated Japan, it is close to 10,000

kilometers.

1.3 Bilateral trade and foreign direct investment patterns and data on language

skills

The data on bilateral language skills, FDI, and trade is shown in Tables 2.2 to 2.4. The source for

the bilateral import shares in Table 2.2 is the NBER�s Bilateral World Trade Database, see Feenstra,

Lipsey, and Bowen (1997). The FDI data come primarily from the OECD�s Activities of Foreign

Affiliates, OECD (1999c). Table 2.3 shows the share of employment of the outward FDI country in

6Details on the data sources and construction are described in an appendix that is available upon request.
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the total manufacturing employment of the host country. For instance, line 2 in Table 2.3 indicates

that German-owned multinationals account for 2.40% of manufacturing employment in France, while

the share of U.S.-owned multinationals in France is, with 4.72%, about twice as large.

A number of considerations suggest to use caution in interpreting the results based on these

numbers. First, mainly due to availability reasons, the data I use is at the aggregate, not at the

industry level. While this implies losing the industry detail, it also means that these variables are

employed on par with distance, which does not have an industry dimension either. Second, each set of

bilateral relations is only for one year that is relatively late in or after the sample period.7 This could

mean that simultaneity afflicts the estimation results, because, e.g., changes in productivity inßuence

the patterns of trade just as trade leads to embodied technology diffusion. However, the bilateral

patterns are slow-changing over time, and the fact that the values are for total manufacturing (in the

case of trade and FDI) or the country as a whole (in the case of language skills, see below) suggests

that simultaneity is unlikely to be a major problem.8

The data on language skills in Table 2.4 shows the share of the population in the spillover recipient

country that speaks the official language of the sender country. For instance, line 3 in Table 2.4

states that 41% of the population in Germany speaks English, while only 11% speaks French.9 Both

due to estimation of some of the data and for conceptual reasons, the inferences that can be made

based on the language skills results below are those associated with the highest level of uncertainty.

Conceptually, language knowledge in the population might be a poor indicator for the strength of

communication links fostering knowledge spillovers among Þrms in two- to three-digit manufacturing

industries. Moreover, bilateral language knowledge, for instance, the share of people in Italy that is

7For FDI and import patterns, this is the year 1991, while for language skill data, it is 1996/1998.
8 I have conÞrmed this by using trade data for years other than 1991, which leads to similar results.
9 In the case of Canada as a source for spillovers, I simplify by taking English as the sole official language. The data

for the European countries comes from EU (1999) and the data for Canada comes from StatCan (2000). The EU (1999)
survey asked the following question: �Which languages can you speak well enough to take part in a conversation, apart
from your mother tongue?�. To arrive at the estimates for language knowledge in the U.S. and Japan, I have used
information on foreign nationals in these countries, in particular for Japan from JG (2000). I have conÞrmed that the
results are not sensitive to employing other plausible values for these data series.
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able to speak German, might be of limited relevance for understanding disembodied bilateral diffusion

from Germany to Italy if communication is typically conducted in a third-country language, such as

English. However, the analysis in West, Edge, and Stokes (2000) suggests that language knowledge

in the population is correlated with business-relevant language skills. In addition, the evidence on

changes in language skills over time in EU (1999) and other evidence suggest that the degree of

coordination on one or a small number of languages is still limited. Overall, this suggests that this

data on language skills will be useful in studying the importance of communication ßows for bilateral

knowledge spillovers.

1.4 Multi-lateral total factor productivity indices

I will compare industry-level total factor productivity (TFP) for the seven countries in the sample.

Other recent work that has examined TFP indices for other purposes includes Harrigan (1997) and

Griffith, Redding, and Van Reenen (2000). TFP calculations require real, internationally comparable

data on outputs, inputs, and intermediate goods. The OECD STAN database contains estimates of

value added, labor, and capital inputs, which I have used to construct TFP indices. The intermediate

inputs data on which the value added series are based is not fully internationally comparable, which is

one important reason of why the TFP indices in this paper should be viewed as approximations to the

true TFP measures. I use the multi-lateral TFP index proposed by Caves, Christensen, and Diewert

(1982a), which is deÞned as

lnFcit =
¡
lnZcit − lnZit

¢− σ̄cit ¡lnLcit − lnLit¢− (1− σ̄cit) ¡lnKcit − lnKit¢ , ∀c, i, t, (1)

where c = 1, ..., C; i = 1, ..., I; t = 1, ..., T ; c indexes country, i indexes industry, and t is the subscript

for time. The variable Z is value-added, L is labor inputs, andK denotes capital inputs. Further, lnZit

is given by lnZit = 1
C

P
c lnZcit; correspondingly, lnLit =

1
C

P
c lnLcit and lnKit =

1
C

P
c lnKcit. The
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variable σ̄cit is an average of labor cost shares, σ̄cit = 1
2(αcit+ ᾱit), where αcit, ∀c, i, t, is the cost share

of labor, and ᾱit is its country average, ᾱit = 1
C

P
c αcit. This TFP index is superlative in the sense

that it is exact for the ßexible translog functional form. It is also transitive, so that the choice of the

base country does not matter. In equation (1), the reference point is the geometric average of the

seven countries.

The TFP index in equation (1) assumes that production is characterized by constant returns to

scale. Building on the work by Caves, Christensen, and Diewert (1982b) and Hall (1990), I have also

used cost-based instead of revenue-based factor shares to construct alternative TFP indices that are

appropriate in the presence of scale economies. This allows me to see whether the estimation results

are robust to deviations from the assumption of constant returns. Two other important character-

istics of the TFP data are: First, industry-speciÞc purchasing power parity- (PPP) exchange rate

estimates are used to convert the industry outputs into a common currency, because there is evidence

that PPP exchange rates vary substantially by industry (source: Pilat 1996). Second, I have adjusted

the OECD STAN data on labor inputs to take account for differences in annual hours worked across

countries, from OECD (1999b). This is important because annual hours worked in U.S. manufac-

turing, for example, were almost 40% higher than in certain European countries in some years over

the sample period. I have also corrected the physical capital inputs series to account for cyclical

determinants of factor demand. Figure 1 shows the adjusted and non-adjusted average productivity

levels for the U.S. (on top), Germany (middle), and Japan (bottom), relative to the G-7 mean for each

year. Without adjusting for differences in input usage, U.S. productivity would be increasingly over-

and German productivity increasingly under-estimated, while productivity in Japan would be over-

estimated throughout. Clearly, these differences would not be appropriately controlled for by using

time-invariant country Þxed-effects.
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1.4.1 Industry-level productivity and average productivity over time

There is a substantial amount of within-country heterogeneity across industries. For instance, a

country is frequently among the top performers in one industry while ranking near the bottom in

another industry. This suggests that studying productivity at the industry level might have important

advantages compared to an analysis at a more aggregate level. There are also differences of how

variation in with-in country productivity levels has changed over time. For instance, in the U.S., the

dispersion of productivity levels has fallen, whereas in Canada, the opposite has occurred. For the

G-7 countries as a whole, a picture of slightly converging within-country productivity levels emerges,

as indicated by the dashed line in Figure 2.

On average across industries, the U.S. has been the productivity leader throughout most of the sam-

ple period according to these estimates, even though the U.S.�s productivity advantage has generally

been shrinking over time.10 The solid line in Figure 2, which is more substantially downward-sloping,

shows the standard deviation of the seven country averages of productivity over time. Clearly, the

period of 1970-95 has been one of productivity convergence among the G-7 countries, albeit with

a noticeable reversal towards divergence since the year 1991. These Þndings are consistent with a

relatively high extent of knowledge spillovers among the countries at the world�s technology frontier.

However, if the trend towards productivity divergence after 1991 will be sustained, this could mean

that the number of countries at the world�s technology frontier will be smaller in the future than it is

today.11

10Canada started out in second place in 1970, but has lost ground since, especially to Italy and France. Relative
productivity in Germany was rising until about 1980 but fell subsequently, and by 1995 German productivity is approxi-
mately equal to the mean in the sample. In Japan and the U.K., productivity was below the sample average throughout
the sample period according to my estimates.
11One reason for this trend towards divergence is that the U.S. is increasing its productivity lead over the other

countries. It might be in part due to measurement issues, in particular the differential treatment of information technology
(IT) price indices (IT includes computers). IT equipment prices have fallen much more rapidly in the U.S. than in other
countries according to official numbers. This is largely due to the usage of hedonic price indices in the U.S., whereas
other sample countries continue to use non-hedonic price deßators; see Scarpetta, Bassanini, Pilat, and Schreyer (2000).
The extent to which this affects the estimation results below is limited, however, which is likely due to the Þxed effects
that are included in the speciÞcation; see Section Two below.
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To investigate this further I will now turn to the formal econometric analysis.

2 Estimation equation and econometric issues

Geographic factors might affect the magnitude of knowledge spillovers for various reasons. For in-

stance, according to many trade-and-growth models, technology moves across country borders when

intermediate goods embodying new knowledge are traded (Grossman and Helpman 1991, Rivera-Batiz

and Romer 1991). It is plausible to assume that it is easier to ship such intermediate goods to near-

by locations than to more remote locations, so that the scope for knowledge spillovers is related to

geographic distance.12 The equilibrium in these models typically relates productivity in an importing

country both to domestic R&D and to foreign R&D, conditional on bilateral distance. A speciÞcation

that captures this is

lnFcit = αci + αt + β ln

Scit +X
g 6=c

γSgit e
−δDcg

+ εcit, ∀c, i, t, (2)

where c = 1, ..., C indexes country, i = 1, ..., I is an index for industry, and t = 1, ..., T is the subscript

for time. The variable Fcit is the TFP level, Scit is country c�s R&D stock, and Dcg is the geographic

distance between countries c and g. The αci,αt,β, γ, and δ are parameters to be estimated, and εcit is an

error term with properties that I discuss below. The α�s are Þxed effects that control for unobserved

heterogeneity, the parameter β measures the effect of R&D on productivity, while γ captures the

relative effect from foreign R&D.13

The role of geographic distance is captured by the parameter δ, which I will refer to as the dis-

tance parameter. It is identiÞed from variation of the productivity effects of R&D in other countries

12This can be formalized by assuming that commodity trade entails transport costs that are increasing with geographic
distance (as in Samuelson 1954).
13The parameter β captures both �true� knowledge spillovers as well as measurement spillovers. The latter do not

constitute an externality, as they might be due only to price indices that do not perfectly adjust for product quality,
for example (see Griliches 1995 for a discussion). The estimates should therefore be treated as an upper bound for the
magnitude of true external effects.
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conditional on bilateral distance, and thus reveals whether there is a geographic dimension to interna-

tional knowledge spillovers. Denote the term Sg e
−δDcg as country c�s effective R&D from country g;

positive estimates of δ mean that variation in productivity levels can be better explained by assuming

that effective R&D from countries located relatively far away is smaller than that of other countries

located more closely. For positive values of γ (foreign R&D raises productivity), estimating δ > 0

suggests that the beneÞts from foreign knowledge creation are decreasing with geographic distance.

In contrast, δ < 0 would mean that distant countries beneÞt more from a given country�s R&D than

near-by countries.

I will also present results based on a distance class speciÞcation that does not incorporate the

exponential functional form. It is given by

lnFcit = αci + αt + β ln

Scit +X
g 6=c

γ (1 + ηIcg)Sgit

+ εcit, ∀c, i, t, (3)

where Icg = 0 if countries c and g are between 2, 000 and 7, 500 kilometers apart; Icg = 1 for distances

below 2, 000 kilometers, and Icg = −1 for distances above 7, 500 kilometers. The distance parameter η

identiÞes the higher (lower) effect of R&D among bilateral relationships of less than 2, 000 (more than

7, 500) kilometers, compared to the relative effect of foreign R&D of γ when Icg is equal to 0. Positive

estimates of η are consistent with fewer knowledge spillovers as bilateral distance increases. I will also

augment the speciÞcations (2) and (3) in simple ways to examine whether the distance parameters

δ and η have changed over time. This would suggest a more or less localized pool of technological

knowledge among the G-7 countries. Moreover, to analyze the speciÞc channels of trade, FDI, and

communication, I will modify equation (2 ) to include bilateral trade and FDI patterns as well as

language skills data in ways that are analogous to the distance variable.

Major estimation issues that need to be addressed are as follows. First, the relatively narrow

focus on the countries at the world�s technology frontier implies that the number of bilateral relations
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is small, with only C(C − 1) = 42, and half as many values for bilateral distance. Moreover, four

countries are located in Europe and two in North America, so that the qualitatively distinct ranges

that Dcg falls into is even more limited. This is part of what motivates the distance class analysis.

In contrast to distance, there is no symmetry in the import, FDI, and language skill patterns, but

generally, the relatively small sample of bilateral relations will likely affect the precision with which

the parameters can be estimated.

Another concern is that the error term εcit is not orthogonal to the regressors, because this would

lead to inconsistent estimates. The disturbances capture idiosyncratic factors that affect measured

productivity. Some could be industry-speciÞc, such as receiving strong inter-industry spillovers, and

others might be common to all industries in a given country, such as shocks affecting the national

business cycle. Generally, this calls for instrumental-variable estimation; however, good instruments

for the R&D variables are unavailable.14 Instead, I will rely on speciÞcation choices in order to

minimize the effects of simultaneity. First, a considerable amount of structure has been imposed in

constructing the TFP indices.15 Second, problems arising from the usage of common deßators should

not be a major problem, because the R&D Þgures are based on economy-wide deßators while the TFP

indices use industry-speciÞc price data. Third, the estimation equations include time Þxed effects

which control for shocks that affect the entire sample in a given year. I will also provide separate

estimates for the sample of low-R&D industries. Unlike transportation, chemicals, and machinery�the

industries that account for most of the R&D (see Table 1)�, the R&D expenditures of the eight low-

R&D industries are too small to signiÞcantly affect the economy-wide innovative activity. Therefore,

simultaneity problems�if present in the full sample�will be much-reduced in this case, and the extent

to which these estimates are similar to those obtained with the full sample will shed light on whether

simultaneity is likely to be a problem.

14See also Griliches and Mairesse (1998) who give an overview of a number of approaches whose main common goal it
is to identify production function parameters by avoiding simultaneity problems.
15Details are provided in an appendix that is available upon request.
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Lastly, country-by-industry Þxed effects control for time-invariant factors that generate a spurious

correlation between the regressors and the error term. These Þxed effects capture differences in

productivity levels which are due to factors other than R&D conditional on geographic, trade, FDI,

or language patterns. As an example, the composition of products within the two- to three-digit

industries of the sample might vary by country, and this could be correlated with distance. Then

an alternative to the geographically-limited-scope-of-knowledge-spillovers hypothesis is a technology

matching explanation: if the degree to which one country�s technology is suited to the needs of other

countries is inversely related to geographic distance, productivity in Japan, e.g.,�which is on average

further away from its G-7 partners than the other countries�could be relatively low just because

Japan�s G-7 partners generate technology that is a relatively poor match and thus unproductive in

Japan. Clearly, such differences in productivity would not exist because of a geographically limited

scope of knowledge spillovers. Analogous arguments can be made with respect to trade, FDI, and

communication links. Thus, the country-by-industry Þxed effects are important to avoid obtaining

inconsistent estimates and spurious results in the analysis that follows.16

3 Estimation results

3.1 Knowledge spillovers and geographic distance

The Þrst set of results addresses the question whether international knowledge spillovers are geo-

graphically localized or not (see Table 3). The dependent variable is the relative productivity level as

deÞned in equation (1). The regressors are Þxed effects for each year and for each country-by-industry

combination, the domestic R&D stock, and the R&D stocks of the partner countries interacted with

16Another concern is that the TFP variable might be stationary while the R&D stocks could be trending over time.
The theory of panel unit root and cointegration analysis that then would apply in the non-linear setting of this paper is
not fully developed to date. In that case, I would therefore rely primarily (and imperfectly) on the time Þxed effects αt
to address this issue. For an investigation of these time-series issues in the estimation of spillovers in linear regression
models, see Edmond (2000).
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bilateral distance as described above. The estimation method is non-linear least squares.17

In the Þrst result column, I estimate the exponential speciÞcation of equation (2) above. The

productivity effect from R&D, β, is estimated with β = 0.039.18 This number is in the range of

values suggested by comparable studies.19 The parameter γ, which measures the relative potency of

distance-adjusted foreign R&D, is estimated to be γ = 1.111, and the parameter δ, which determines

the extent to which foreign R&D is effective in determining productivity, is estimated at 0.147. This

estimate suggests that effective R&D (the term γSgit e
−δDcg) is falling with distance. In speciÞcation

(3.2), I allow for different R&D sender effects for the U.S., Japan, and Germany (the G-3-, or, the

three major R&D countries, with parameter γ2) on the one, and Canada, France, Italy, and the U.K.

(with parameter γ1) on the other hand. The G-3 technology sending effect appears to be somewhat

larger than that of the non-G-3 countries, but to constrain all γ�s to equal one, as in speciÞcation

(3.3), is actually marginally preferred according to Akaike�s Information Criterion.20

The distance parameter δ is estimated to be positive throughout. This Þnding is consistent with

the idea that technological knowledge is localized, because it implies that the R&D of countries that

are far away from a given country contributes less to its productivity than the R&D from near-by

countries. In speciÞcation (3.4), I estimate the distance class speciÞcation (3) to see whether this

result is robust. The parameter η is estimated to be positive, which conÞrms that the productivity

effects from foreign R&D are localized for the G-7 countries. Recall that the distance class breakpoints

are 2, 000 and 7, 500 kilometers. This means that η is identiÞed from the difference in R&D effects of

17 I have normalized the distance measure Dcg so that Dcg = 1 is equal to 341 kilometers, the shortest bilateral distance
in the sample (between Paris and London). This affects the size of the parameters, but not the size of the other statistics
discussed below.
18 I rely mainly on bootstrapped standard errors for inference. They seem to be preferred, and in any case, they are often

much larger than conventional asymptotic standard errors. The bootstrapped errors are heteroskedasticity-consistent
(through block-wise resampling for each country-by-industry combination) and relatively robust to serial correlation (by
resampling two consecutive errors at a time); see Andrews (1999) for references and further results. To be conservative, I
report asymptotic standard errors when they are clearly larger, which is sometimes the case especially for the parameter
γ. I have also examined whether spatial correlation remains in the residuals, without Þnding much evidence for it.
19For studies at this level of aggregation, Griliches (1995) reports typically estimates that are somewhat higher; however,

many of the earlier studies do not consider productivity relative to the sample mean, as I do here.
20Akaike�s Information Criterion (AIC) is deÞned as ln( e

0e
n
) + 2k/n, where e0e is the residual sum of squares, n is the

number of observations, and k is the number of estimated parameters. The table also reports the R2.
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the European G-7 countries in Europe and the U.S.-Canada effect (less than 2, 000 kilometers), versus

knowledge spillovers between North America and Europe (between 2, 000 and 7, 500 kilometers), versus

spillovers to and from Japan. Together with the estimate of γ, the estimate of η = 1.01 suggests that

the value of a foreign G-7 dollar of R&D per domestic dollar is on average seventy-four percent (i.e.,

γ(1 + η) = 0.74) below 2, 000 kilometers, it is roughly 37% (i.e., γ = 0.368) across the Atlantic, while

to and from Japan, the average value of a dollar of foreign R&D is essentially zero (i.e., γ(1− η) ≈ 0).

For the exponential functional form in columns (3.1) to (3.3), an interesting statistic to compute

is the half-life distance of knowledge spillovers, that is, the distance at which half of the R&D sent out

from a technology-producing country has disappeared. This value D∗ is calculated from 1
2S = S e

−δD∗
,

leading with δ = 0.147 from (3.1) to D∗ = 4.72, or about 1,600 kilometers. Another measure of the

strength of international knowledge spillovers in a given bilateral relation is the value of one foreign

dollar of R&D per one dollar of domestic R&D, equal to γ exp(−δDcg). This is shown for all bilateral

relations in Table 4a. For instance, according to the estimates in (3.2), the average value of a dollar

of U.S. R&D in Canada is 78% of the value of a domestic dollar of Canadian R&D, and a dollar

of German R&D in Italy has 64% of the domestic-R&D effect. Clearly, the distance effects implied

by these estimates are quite strong, suggesting in particular few spillovers to and from Japan. To

compare the results of the exponential and the distance class speciÞcations, I have computed the

average relative foreign R&D value within North America and Europe, respectively, and the average

relative foreign R&D value for bilateral relationships involving Japan. For the former, one obtains 67%

in the exponential speciÞcation, compared to 74% in the distance class speciÞcation, while the average

for relationships involving Japan is estimated to equal zero in both the exponential and distance class

speciÞcations. Thus, the two speciÞcations give broadly similar results. I now turn to analyzing the

robustness of these Þndings.
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3.2 Sensitivity analysis

The results of this analysis are reported in Table 5. I use the exponential functional form for the

results presented in columns one to three, while the distance class speciÞcation is employed for the

remaining columns four and Þve. In the Þrst speciÞcation only the eight low-R&D industries are

included. I estimate β at 0.025�signiÞcantly larger than zero at a 12% level�, down from 0.055 in the

full sample.21 The second column presents estimates when TFP indices are based on gross output

instead of value added, which is an alternative approximation to true productivity. The distance

parameter is estimated somewhat higher and the relative foreign R&D parameter is lower than before.

Using all-manufacturing PPP exchange rates instead of industry-speciÞc exchange rates leads also

to a stronger distance effect (δ = 0.273 in speciÞcation 5.3). The distance effect estimated with TFP

indices based on the assumption of increasing returns with a scale elasticity of 1.05 in (5.4) are similar

to the distance effect in the benchmark result of (3.4). Finally, when factor input data is not adjusted

for differences in input utilization, the R&D effect β is considerably higher than in the corresponding

speciÞcation with adjusted TFP data (compare (5.5) with (3.4)). This suggests that one picks up

a substantial amount of spurious correlation when cyclical effects that affect both input utilization

and R&D are not controlled for. Also here, though, one estimates a relatively large difference in the

strength of technology diffusion across distance (η = 0.716).

In unreported analysis, I have used other combinations of data samples and speciÞcations from

Table 3, as well as a number of other speciÞcations, such as lagged R&D. There is evidence that some

of the variation in productivity levels is explained only by the variables jointly.22 Overall though, I

estimate a robust and signiÞcant geographic localization effect for international knowledge spillovers.

In the exponential speciÞcation, the parameter β is about 0.03 to 0.07, varying in a reasonable way

21Because the industry R&D elasticity εi is related to the return to R&D, ρi by εi = ρi
Si
Fi
,∀i, if arbitrage equalizes

the return to R&D across industries (ρi = ρ,∀i), then εi varies with Si. This could explain the drop of the coefficient β
(which is positively related to εi) when the sample contains the relatively low-R&D industries only.
22 In the exponential speciÞcation, the bootstrap analysis reveals that the parameters β and δ are positively correlated,

for instance.
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across different samples and data constructions. The relative foreign R&D effects of the G-3 countries

might be somewhat larger than for the other four countries, but this adds relatively little in terms of

regression Þt. In the distance class speciÞcation, the parameter β is of similar magnitude, if somewhat

less precisely estimated, and the estimates of η lead to the same qualitative Þnding on the localization

of international knowledge spillovers. Quantitatively, the magnitude of the distance effect varies across

speciÞcations. For the exponential functional form, the estimates of δ range from 0.123 to 0.300, which

corresponds to half-life distances of about 800 to 1, 900 kilometers. In the distance class speciÞcation, η

varies from about 0.7 to 1.0, which corresponds to a 70% to 100% premium (discount, respectively) for

spillovers among countries that are below 2, 000 (above 7, 500, respectively) kilometers apart, relative

to spillovers between North America and Europe.

3.3 Knowledge spillovers over time

In this section I turn to changes in the magnitude of spillovers over time. The exponential speciÞcation

is extended to

lnFcit = αci + αt + β ln

Scit +X
g 6=c

γ
¡
1 + γtiIt

¢
Sgit e

−δ(1+δtiIt)Dcg

+ εcit,∀c, i, t. (4)

Here, It is an indicator variable that is equal to one for the years 1983 to 1995 and zero otherwise,

and there are two additional parameters, γti and δti. The former picks up any change in the overall

effect from foreign R&D, whereas the latter indicates whether the degree of localization of knowledge

spillovers has changed. Values of δti < 0 are consistent with technological knowledge becoming more

global over time. See Table 6 for the results.

In speciÞcation (6.1), the parameter γti is constrained to zero. Relative to speciÞcation (3.1), the

estimate of β is now somewhat higher. More importantly, the distance estimate increases from 0.147

to 0.490, while δti is estimated to equal δti = −1.188. These estimates suggest a distance parameter of
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0.490 for the subperiod 1970-82, and of 0.490× (1+ (−1.188)) = −0.092 for the subperiod of 1983-95.

With a standard error for δti of 0.222, the distance effect in the second subperiod could be equal to

zero, suggesting that geographic distance plays no role anymore by the end of the sample period. The

next column in Table 6 indicates that the Þnding of less localization is independent of the change in

the value of foreign R&D: γti is estimated to equal 0.072, not signiÞcantly different from zero, and the

estimate of δti remains by and large unchanged.

In the distance class speciÞcation, I estimate the parameter ηti in the expression η × (1 + ηtiIt),

analogously to δti. The point estimate of ηti in speciÞcation (6.3) is equal to −0.778, which suggests

that the strength of technology diffusion during the 1990s varied substantially less across classes than

it had during the early 1970s. In speciÞcation (6.4), the results for the exponential speciÞcation for

the sample of the eight relatively low R&D-intensive industries is shown. Relative to the value of

δ = 0.138 for the entire sample period (see 5.1), also δ here is higher for the years 1970-82, and lower

for the years 1983-95. In fact, one cannot reject the hypothesis that there is no distance effect during

the later subperiod, which conÞrms the patterns obtained for the entire sample.

Overall, these results suggest that international knowledge spillovers have become much less local-

ized over the sample period. In Figure 3, I show the total value of foreign G-7 country R&D received

by Japan, France, and Canada over time (based on 6.3). The Þgure highlights that the total value

of foreign R&D received by these countries has been converging sharply over time according to these

estimates: while Japan received essentially zero in the early 1970s and France a total of about four

dollars per dollar of domestic R&D, by the 1990s the value of the spillovers received by France was

only about 30% higher than the corresponding value that beneÞted Japan.

Can this Þnding explain the dynamics of the productivity distribution across G-7 countries that

emerges from Figure 2? As noted earlier, ceteris paribus one expects productivity convergence as

knowledge becomes more global in the world. The overall downward trend in the variation of average

productivity between 1970-95 is broadly consistent with that. The period of productivity divergence
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between 1990-95 is probably not being picked up by these over-time estimates yet as the subperiod

mid-points are the years 1976 and 1989. In general, however, one must use caution here, because the

link between the less-localization Þnding and convergence of productivity in Figure 2 is not a tight one.

The estimated decrease of localization is only an average effect after a substantial amount of unobserved

heterogeneity is controlled for, and as long as knowledge spillovers are not complete, immediate, as

well as universal, less localization need not go hand in hand with convergence of productivity.

The next section analyzes a number of speciÞc spillover mechanisms.

3.4 Beyond distance: trade, foreign direct investment, and communication as

channels for knowledge spillovers

Table 7 shows the results of examining these three mechanisms. I restrict myself to the exponential

speciÞcation and the TFP variable deÞned in (1) to keep the number of regression results relatively

low. The bilateral imports variableMcg, as well as the FDI variable Vcg and the language variable Bcg

are introduced analogously to distance. For instance,

lnFcit = αci + αt + β ln

Scit +X
g 6=c

Sgit e
τMcg

+ εcit, ∀c, i, t, (5)

is the imports speciÞcation, where τ is the parameter corresponding to the import share variable. A

positive value of τ is consistent with bilateral imports raising the extent of knowledge spillovers.

SpeciÞcation (7.1) shows the basic geographic-distance result for comparison (see (3.3) in Table

3), while the second speciÞcation in Table 7 is equation (5).23 The estimate of β changes relatively

little, while the value of τ is positive, equal to τ = 0.403.24 In speciÞcation (7.3), I use the FDI

23To facilitate the non-linear estimation, I have scaled the trade, FDI, and language shares as follows: Mcg is multiplied
by 102, Vcg by 103 and Bcg by 10.
24An estimate of τ larger than zero means that the relative effect from foreign R&D exceeds that from domestic R&D in

all bilateral relationships as long as γ is constrained to equal one. This is not very plausible, so I have also experimented
with estimating γ and τ jointly. As expected, γ then tends to be lower than one. However, freeing up the parameter
γ makes the speciÞcation less robust. Because the emphasis here is on estimating the parameter τ (as well as ψ and λ
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variable analogously and estimate the corresponding parameter at ψ = 0.377. Also the language

skills variable enters with a positive coefficient (speciÞcation 7.4). There is a major effect here on

the size of the R&D coefficient as well: β is estimated at 0.103, versus β = 0.055 in the distance

speciÞcation. These results suggest that each candidate channel might indeed be associated with

international knowledge spillovers. Notice that to the extent that the differences in empirical Þt

between the Þrst four regressions in Table 7 are signiÞcant, that of the distance speciÞcation is lowest,

followed by the FDI and the language skills speciÞcation, while the bilateral imports speciÞcation has

the best Þt.

It is important to consider more than one spillover channel at a time to learn about their relative

strength, even though this makes the results less robust due to collinearity among the spillover channels.

The following results are obtained: When distance is introduced together with the import shares in

the exponential expression�as in exp (−δDcg + τMcg)�, this reduces the estimate of τ by about two

thirds, from 0.403 in (7.2) to τ = 0.130 in (7.5). Thus, differences in import patterns account no better

for a substantial amount of variation in bilateral knowledge spillovers than differences in distance. In

equation (7.6), I include the FDI variable together with distance. This results in a much larger estimate

of β and a higher value of δ, while the FDI parameter ψ stays about the same relative to the FDI-only

speciÞcation (7.3).

SpeciÞcation (7.7) introduces distance together with the language skills variable. The coefficient on

the language variable remains positive, while the estimate of the distance parameter turns negative,

albeit not signiÞcantly different from zero.25 Equation (7.8) introduces import and FDI patterns

together with the language skills variable. All three variables enter with a positive coefficient. Finally,

below, plus comparing them), I give a high priority to robustness and have therefore kept the parameter γ constrained
to one. If one sets a lower value for γ or estimates the parameter, this does not lead to qualitatively different Þndings in
the comparison of τ , ψ, and λ; instead, it primarily affects the Þxed effects estimates.
25One explanation for this is that the language variable picks up a relatively strong effect from U.S. R&D in Canada,

plus an effect from U.S. R&D in Europe that is stronger than one would think on the basis of distance. Also, the
language variable appears to identify stronger spillover inßows in Japan from English-language countries than from
central European countries, all of which are roughly the same distance away from Japan.
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when I add the distance variable to this, the point estimate of δ is negative, while the other three

point estimates remain positive (speciÞcation 7.9). The Þt of the regression is marginally improved

through the inclusion of distance, but in contrast to the trade, FDI, and language parameters, δ is not

signiÞcantly different from zero.26

I now turn to the absolute magnitude of inward knowledge spillovers, as well as the breakdown of

the total effect by spillover channel (based on the estimates of speciÞcation 7.8). Let Γc be the sum

of the three effects for a given spillover recipient country, Γc ≡
P
g (τMcg + ψVcg + λBcg) ,∀c.27 Also,

denote by sc the share of the total effect by recipient country, sc ≡ Γc/Γ, where Γ ≡
P
c Γc. First,

the estimation results suggest that Canada beneÞts by far the most from foreign G-7 technological

knowledge, with a share of sCAN = 0.256. This is primarily the result of Canada�s links to the U.S.,

from which Canada imports a relatively high share, whose subsidiaries have a strong presence in

Canada, and the fact that in both countries, the English language is used. Canada is followed by the

U.K., and the U.S., with sUK = 0.154 and sUS = 0.151, respectively. France, Italy, and Germany are

next (sFRA = 0.137, sITA = 0.128, and sGER = 0.108), whereas Japan beneÞts least from foreign G-7

technology according to these estimates (sJP = 0.066).

For the analysis of the relative strength of the spillover mechanisms, let sτc be the share of the

total effect for country c due to the contribution of imports, sτc ≡
³P

g τMcg

´
/Γc, and let s

ψ
c and

sλc be the shares due to FDI and language skills, deÞned analogously. Also, let s
τ , sψ, and sλ be the

average shares for a given spillover channel across countries (for instance, sτ ≡ (Pc s
τ
c ) /C). I estimate

that the effect due to imports is highest on average, with sτ = 0.691, while the FDI and language

effects are equal to sψ = 0.148 and sλ = 0.161, respectively. This points to a relatively strong effect

26There might be important interactions between these channels for spillovers, for instance, the effect from language
skills could be higher, the greater is the bilateral geographic distance. In principle, one could test for this by including
an interaction variable, Dcg ×Bcg, and estimate an additional coefficient in the exponential term. In practice though, a
comprehensive analysis of interaction terms appears to stretch the possibilities of the data to some extent, so I do not
include it here. Note, however, that the non-linear speciÞcation picks up some interaction effects already as it is.
27This analysis of inward knowledge spillovers focuses on the term in the exponential part of

P
g Sge

τMcg+ψVcg+λBcg .
I do this for ease of interpretation, but it should be kept in mind that differences in effective R&D from abroad are also
due to differences in Sg as well as the interaction of Sg with the exponential term.
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due to embodied knowledge spillovers related to imports. At the same time, the other two channels

are far from being negligible. Figure 4 shows, for instance, that the absolute effect from inward FDI

in Canada exceeds that from imports in Japan. Moreover, the larger inward share of foreign-owned

subsidiaries in Canada versus the U.K. explains more than forty percent of the difference in total

inward technology diffusion between these two countries. Another indication of the importance of

FDI for inward knowledge spillovers comes from comparing the European countries: here, the U.K.

attracts the largest share of FDI, and 36.2% of the U.K. advantage over Germany in terms of total

inward knowledge spillovers is due to the U.K.�s higher level of inward FDI.

Language skills have the highest contribution to inward spillovers in the U.K. and the lowest in

Japan: 43.4% of the higher level of inward spillovers in the U.K. versus Japan can be attributed to

the higher share of the population in the U.K. that speaks the languages of the G-7 knowledge source

countries. Among the European countries, 76.8% of the higher level of spillover inßows in the U.K.

relative to Italy are due to differences in language skills. And if language skills in Germany would be

the same as the (generally lower) language skills in Italy, Germany would beneÞt about 6% less from

G-7 knowledge spillovers than it actually does.

Table 4b, which is also based on the results in (7.8), allows to compare the strength of bilateral

knowledge spillovers across different country pairs by showing the share of a sender country in a given

spillover recipient�s country total knowledge spillover inßows (the sum of trade, FDI, and language

channels; this is denoted as the TFL-based measure). For instance, 69% of the spillover ßows to

Canada originate from U.S. R&D, while the share of the U.K. in Canada is much lower, equal to 13%.

The estimates also suggest that the U.S. is the major source of all spillover inßows to Japan, with 63%.

Germany accounts for more than a third of the inßows into Italy and France, but for less than 20% of

the ßows to the United Kingdom. Table 4c illustrates how these estimates differ from estimates simply

based upon bilateral distance.28 For instance, the value of -34.12 in the second column of Table 4c

28 I have computed the distance-based shares underlying Table 4c from the inverse of the bilateral distances reported
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indicates that the importance of French R&D in the United Kingdom would be far overestimated by

using the distance-based instead of the TFL-based measure of knowledge spillovers. Put differently,

France appears to be much less important for the U.K. than one would assume based on France�s close

relative location.

It is not the case, however, that the importance of near-by countries is always estimated to be

higher with the distance-based measure. In particular, as a source of spillovers for Canada, the U.S.

is even more important according to the TFL-based measure than one would assume based on its

relatively close location to the U.S. (with a positive entry of 5.44, last column of Table 4c). The TFL-

based measure also gives a more plausible picture of the importance of Canada as a source of U.S.

knowledge spillover inßows than the distance-based measure, because the value of -27.94 suggests that

Canada�s location adjacent to the U.S. overestimates Canada�s importance for the United States. The

last row in Table 4c gives the average difference in sender country importance according to the TFL-

based and the distance-based measure. The value of 23.76 for the U.S. conÞrms the notion that the

U.S.�s importance as a source of spillovers for other G-7 countries would be underestimated if a simple

distance-based criterion would be used to predict the magnitude of bilateral knowledge spillovers.

4 Summary and discussion

This analysis of knowledge spillovers among the seven major industrialized countries has produced

a number of interesting results. First, geographic distance appears to have a strongly limiting effect

on the scope of knowledge spillovers. While the estimates vary somewhat depending on speciÞcation,

typically they imply a spillover half-life in terms of distance of 800 to 1,900 kilometers. Second, the

degree of localization for knowledge spillovers has substantially declined over the sample period. Again,

estimates vary somewhat, but it appears that the extent of localization has fallen by at least two thirds

in Table 2.1�giving a measure of closeness�, before forming the share of a bilateral relation in the closeness total for a
given country.
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from the 1970s to the 1990s. Third, I have presented a number of Þndings on the importance of trade,

FDI, and language skills for international knowledge spillovers, to which I turn below.

How does the Þnding on the geographic localization of knowledge spillovers compare with other

work? Irwin and Klenow (1994), in particular, estimate learning-by-doing spillovers in the semicon-

ductor industry during the years 1974-92. These authors cannot reject the hypothesis that national

and international knowledge spillovers are equal, or, put differently, that there is no localization of

knowledge spillovers. However, this difference in terms of results can at least in part be explained by

differences in what the two studies identify empirically.29 One reason for why my results might be

overstating the degree to which knowledge spillovers are geographically localized is the fact that my

analysis abstracts from the value of knowledge being heterogeneous. It is well-known from analyses

of the value of patents that their distribution is very skewed. Because the knowledge that spills over

Þrst is likely more valuable than the knowledge that spills over later, my analysis underestimates the

value of small stocks of knowledge spillovers relative to larger stocks. In particular, taking account of

heterogeneity might therefore raise knowledge spillovers to and from Japan. Caution is also needed

to interpret the results on how the scope of knowledge spillovers has changed over time. While there

are several mechanisms which seem to be plausible a priori, the dramatic magnitude that I estimate,

often eliminating the localization effect completely over only twenty-Þve years, suggests that it might

be overstated.

As data on a larger set of countries, especially outside Europe, becomes available, it will be possible

to re-examine the questions I have addressed. Moreover, it might be possible in the future to compute

29 Irwin and Klenow�s Þrm-level data allows the authors to distinguish the own-Þrm effect from that coming from
other domestic Þrms. At the same time, there is almost no variation in the bilateral distance to foreign sources of
spillovers in their study, because semiconductor producers were located predominantly in either the U.S. or Japan.
In contrast, my industry-level analysis cannot distinguish own-Þrm effects from other-domestic Þrm effects, but there
is considerable variation in the distance to foreign knowledge spillover sources. Because Irwin and Klenow estimate
that Þrms beneÞt much more from own learning than from outside-Þrm learning (domestically or internationally), their
results are not inconsistent with what I have presented above. Another important difference is that Irwin and Klenow
measure spillovers as the learning effects from cumulative production on market share, whereas I study the effects of
R&D investments on relative productivity. It would be interesting to integrate an analysis of learning-by-doing spillovers
with that of R&D spillovers in future work.
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productivity indices that consistently account for differences in human capital across countries and

industries. In terms of speciÞcation, I have focused on international within-industry effects, while

knowledge spillovers between industries�that is, across technology space�is likely to be important as

well. Further, the temporal dimension of knowledge spillovers has been collapsed into one point in

time in my analysis that focuses on contemporaneous effects.

For the time being, then, what explains the level and the change in the localization effect that

are estimated? I have considered the channels of trade, FDI, and direct communication, proxied by

data on language skills, as alternatives to distance above. Recall that the interpretation of these

Þndings requires caution for the reasons discussed in section 1.3. From this analysis, it appears that

a substantial portion of the inßuence of distance on the scope of knowledge spillovers, and may be

all of it, can be accounted for by differences in trade, FDI, and communication links across countries.

Out of the three channels, I estimate that trade is most important, with about two-thirds of the total

effect, while differences in FDI and communication ßows account for about one-sixth each.30 To the

extent that this Þnding is conÞrmed by future research, it provides important information for areas

where economic policy might be effective in attracting international knowledge spillovers. The results

on language skills are of particular interest because they seem to capture differences in the diffusion of

knowledge in a relatively direct way. Future work along these lines might consider other indicators of

direct communication such as telephone call volume or email traffic, possibly at a disaggregated level

and with a broader set of countries.

While it is possible to account for a substantial part of the distance effect in terms of trade, FDI,

and communication links, much less can be said at this point on what has caused the decline in the

degree of localization of knowledge spillovers over the sample period. Have transport costs for goods

declined dramatically over the period of 1970-95? Direct evidence on this is scarce. Research in

30Given the strong negative correlation of trade with distance, trade is more likely to pick up any remaining spurious
regional effect that the econometric speciÞcation does not control for than the other two mechanisms. This suggests that
the share of two-thirds is likely to be an upper bound for the relative importance of trade for knowledge spillovers.
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international trade using so-called gravity equations has frequently shown that the volume of trade

falls sharply with geographic distance, but whether this effect has become substantially weaker during

the sample period is not settled yet.31 Thus, it cannot be ruled out that the Þnding of less localization

for knowledge spillovers is related to the higher level of economic integration through trade that has

been observed in recent years. As for foreign direct investment, the rate of growth in multinational

activity over the last two decades has been even higher than the rate of growth of world trade, which

means that FDI might also be in part what is behind the decline in the localization of knowledge

spillovers. And of course the recent development of new communication technologies and the internet

are strong prima facie reasons of why knowledge might have become less localized. A deÞnitive answer

in this regard, however, must await the greater availability of relevant data, because to date, relatively

little is available on the extent to which FDI activity, communication ßows, and other channels for

knowledge spillovers have changed over time. This should allow to go further than this paper can

towards addressing the important question of what are the main causes, and implications, of the

recent decline in the degree to which international knowledge spillovers are localized.

31The estimate of the elasticity of trade with respect to distance is typically not substantially smaller for more recent
periods, but this appears to be due primarily to changes in the composition of goods trade that go unnoticed at the
relatively high levels of aggregation that are frequently analyzed.
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Table 1: Summary Statistics

Relative size in terms of Relative size in terms of 
Country Symbol GDP in sample* R&D in sample** R&D Stock Growth***

(%) (%) (%)

Canada CAN 3.15 1.44 9.15
France FRA 12.89 7.03 8.01
Germany GER 15.15 11.78 11.82
Italy ITA 11.67 3.31 11.30
Japan JP 14.36 23.53 9.83
United Kingdom UK 9.16 5.71 5.72
United States US 33.62 47.19 7.36

100.00 100.00

Relative size in terms of Relative size in terms of R&D Stock Growth***
Industry ISIC output in sample**** R&D in sample***** All countries

(%) (%) (%)

Food 31 14.66 1.90 9.17
Textiles 32 8.62 0.56 7.59
Wood 33 4.73 0.36 13.77
Paper 34 9.79 1.03 7.29
Chemicals 351/2 8.21 19.75 9.00
Rubber 355/6 3.39 1.70 7.69
Non-met. Miner. 36 4.75 1.04 8.02
Basic Metals 37 7.13 2.63 7.83
Metal Products 381 8.19 1.52 10.41
Machinery, Instr. 382/5 12.79 17.22 9.78
El. Machinery 383 7.00 24.63 9.33
Transportation 384 10.73 27.67 8.41

100.00 100.00

*Shares computed from value of total manufacturing production in 1980
**Shares computed from total manufacturing R&D in 1990
***Average annual growth of R&D stocks; R&D depreciation rate = 0.1
****Shares computed from value added in 1980; simple average across countries
*****Computed from R&D expenditures in 1990; simple average across countries



Table 2.1 Bilateral distance between capital cities (kilometers)

CAN FRA GER ITA JP UK US
CAN 5652 5857 6735 10327 5367 734
FRA 400 1108 9723 341 6169
GER 1066 9357 511 6406
ITA 9867 1434 7222
JP 9570 10910
UK 5904
US

Table 2.2 Bilateral trade shares*

Exporter
CAN FRA GER ITA JP UK US

Importer CAN 1.91 2.53 1.16 6.85 2.98 69.45
FRA 0.68 21.82 11.00 3.48 8.64 8.64
GER 0.68 11.09 9.79 5.90 7.49 6.75
ITA 0.62 14.62 22.37 2.38 6.52 5.69
JP 3.13 2.14 4.70 1.82 2.00 22.86
UK 1.53 9.75 16.02 5.63 5.56 11.87
US 20.05 2.76 5.13 2.40 18.92 3.98

Table 2.3 Bilateral foreign direct investment shares**

Outward FDI country
CAN FRA GER ITA JP UK US

FDI host CAN 1.86 2.49 0.49 1.93 5.94 16.27
country FRA 0.00 2.40 0.00 0.20 1.63 4.72

GER 0.09 0.45 0.17 0.21 0.31 3.09
ITA 0.12 2.20 1.20 0.23 0.73 2.90
JP 0.00 0.01 0.07 0.00 0.05 0.68
UK 1.05 1.09 0.72 0.00 1.10 7.26
US 1.63 1.09 1.35 0.13 1.69 2.94

Table 2.4 Patterns of bilateral language knowledge***

Spillover source country
CAN FRA GER ITA JP UK US

Spillover CAN 31.00 2.00 2.00 0.20 84.00 84.00
Recipient FRA 32.00 9.00 6.00 0.07 32.00 32.00

GER 41.00 11.00 2.00 0.06 41.00 41.00
ITA 27.00 19.00 3.00 0.03 27.00 27.00
JP 0.11 0.01 0.01 0.00 0.11 0.11
UK 100.00 14.00 5.00 1.00 0.20 100.00
US 100.00 1.11 2.10 1.03 0.22 100.00

*Share of total manufacturing imports; in percent; Year 1991; source: Feenstra et al. (1997).
**Share of foreign-owned subsidiary employment in total employment; in percent
Year 1991; source OECD (1999c) and own estimates
***Share of population in recipient country that speaks the official language of the sender country; in percent;
Year 1996/98; source: EU (1999), StatCan (2000), estimates based on JG (2000), and own estimates



Table 3: Knowledge spillovers and geographic distance∗

Exponential

distance

eq. (2)

(3.1)

Exponential

distance

w/ γ1, γ2

(3.2)

Exponential

distance

γ̄ = 1

(3.3)

Distance

classes

eq. (3)

(3.4)

β 0.039

(0.010)

0.046

(0.010)

0.055

(0.014)

0.048§

(0.016)

γ 1.111

(0.186)

0.368

(0.095)

γ1 0.992

(0.068)

γ2 1.197

(0.067)

δ 0.147

(0.045)

0.199

(0.028)

0.123§

(0.030)

η
1.010

(0.139)

n 2184 2184 2184 2184

R2 (%) 85.07 85.08 85.06 85.03

AIC -4.645 -4.648 -4.649 -4.644

*Dependent variable: multilateral TFP index, as deÞned in the text. Standard errors are in parentheses; β measures

the effect of domestic R&D, γ the relative effect from foreign R&D (γ1 for CAN, FRA, ITA, and for the UK, and

γ2 for US, JP, and GER), and δ as well as η determine the distance effect (δ > 0 and η > 0 are consistent with

distance-limited knowledge spillovers); n = number of observations, AIC = Akaike�s Information Criterion, as deÞned in

the text; § coefficient is only signiÞcantly different from zero at a 5% level.



Table 4a: Bilateral knowledge spillovers based on geographic distance *

Spillover Sender Recipient
CAN FRA GER ITA JP UK US Average

Spillover CAN 3.66 3.93 1.95 0.29 4.33 78.13 15.38
Recipient FRA 3.66 94.94 51.96 0.41 81.30 3.28 39.26

GER 3.25 78.55 53.25 0.51 73.62 2.85 35.34
ITA 1.95 51.96 64.36 0.38 42.96 1.77 27.23
JP 0.24 0.34 0.51 0.31 0.37 0.21 0.33
UK 4.33 81.30 88.98 42.96 0.45 3.82 36.97
US 64.64 2.71 2.85 1.47 0.21 3.16 12.51

Sender Av. 13.01 36.42 42.60 25.32 0.37 34.29 15.01 23.86

Table 4b: Relative importance of foreign spillover sources by recipient country, all channels **

Spillover Sender
CAN FRA GER ITA JP UK US Sum

Spillover CAN 5.21 4.27 1.41 6.57 13.49 69.06 100.00
Recipient FRA 4.95 33.51 14.89 4.84 18.12 23.68 100.00

GER 7.96 20.91 16.68 10.13 19.58 24.74 100.00
ITA 4.77 26.92 33.46 3.72 14.05 17.08 100.00
JP 8.30 5.70 12.70 4.82 5.48 63.00 100.00
UK 14.70 14.41 19.92 6.51 8.10 36.37 100.00
US 37.56 5.12 8.41 3.12 24.81 20.99 100.00

Sender Av. 13.04 13.04 18.71 7.91 9.69 15.28 38.99

Table 4c: Difference in importance of foreign spillover sources by trade, FDI, and language vs. distance ***

Spillover Sender
CAN FRA GER ITA JP UK US Sum

Spillover CAN -3.05 -3.70 -5.53 2.05 4.79 5.44 0.00
Recipient FRA 2.34 -3.35 1.58 3.32 -25.18 21.29 0.00

GER 5.03 -21.98 0.57 8.29 -13.98 22.06 0.00
ITA -0.30 -3.92 1.40 0.26 -9.78 12.35 0.00
JP -7.73 -11.33 -5.00 -11.96 -11.82 47.83 0.00
UK 11.62 -34.12 -12.41 -5.02 6.37 33.57 0.00
US -27.94 -2.68 0.90 -3.53 20.41 12.85 0.00

Sender Av. -2.83 -12.84 -3.69 -3.98 6.78 -7.19 23.76

* Value of $ 1 of foreign R&D relative to $ 1 of domestic R&D; in percent; based on specification (3.2)
** Share of knowledge sender country in total knowledge inflows of recipient country; in percent; based on (7.8)
*** Positive entries indicate that a sender country is more important for the recipient country according to its trade, FDI, 
and language links than according to its bilateral distance; vice versa for negative entries; in percentage points; based on (7.8)



Table 5: Sensitivity analysis∗

Low R&D

industries

(5.1)

Output-

based TFP

(5.2)

All-manufact.

PPP exch. rates

(5.3)

TFP based

on IRS

(5.4)

Unadjusted

TFP

(5.5)

β 0.025⊗

(0.016)

0.045

(0.011)

0.045

(0.011)

0.044§

(0.017)

0.067§

(0.018)

γ 0.737

(0.067)

0.618

(0.155)

0.437

(0.066)

δ 0.138

(0.079)

0.300

(0.100)

0.273

(0.021)

η 1.077

(0.086)

0.716

(0.067)

n 1456 2184 2184 2184 2184

R2 (%) 85.37 83.43 83.09 85.48 80.97

AIC -4.676 -4.565 -4.668 -4.608 -4.431

*Dependent variable: multilateral TFP index, as deÞned in the text. Standard errors are in parentheses; β measures

the effect of domestic R&D, γ the relative effect from foreign R&D, and δ as well as η determine the distance effects

(δ > 0 and η > 0 means greater geographic distance is associated with fewer spillovers); n = number of observations,

AIC = Akaike�s Information Criterion, as deÞned in the text; ⊗coefficient is signiÞcantly larger than zero at a 12% level;

§ coefficient is signiÞcantly different from zero only at a 5% level.



Table 6: The localization of knowledge spillovers over time∗

Exponential

w/ ∆ in

distance effect

(6.1)

Exponential

w/ ∆ in distance

and foreign effects

(6.2)

Distance class

w/ ∆ in

distance effect

(6.3)

Exponential w/ ∆ in

distance effect

Low R&D Industries

(6.4)

β 0.052

(0.010)

0.057

(0.010)

0.067

(0.012)

0.066

(0.013)

γ 1.127

(0.044)

1.104

(0.123)

0.498

(0.040)

δ 0.490

(0.091)

0.466

(0.073)

0.472

(0.069)

η 1.012

(0.124)

γti 0.072¢

(0.071)

δti −1.188

(0.222)

−1.193

(0.305)

−1.174

(0.304)

ηti −0.778

(0.079)

n 2184 2184 2184 1456

R2 (%) 86.65 86.70 85.35 86.75

AIC -4.752 -4.755 -4.666 -4.773

*Dependent variable: multilateral TFP index as deÞned in the text. Standard errors are in parentheses; β measures

the effect of domestic R&D, γ the relative effect from foreign R&D, and δ as well as η determine the distance effects

(δ > 0 and η > 0 says that greater distance is associated with a lower productivity effect). The parameters γti, δti,

and ηti estimate changes in the overall foreign (γti) and distance effects; n = number of observations, AIC = Akaike�s

Information Criterion, as deÞned in the text; ¢ not signiÞcantly different from zero at standard levels.



Table 7: Trade, FDI, and language skills as channels for knowledge spillovers∗

(7.1) (7.2) (7.3) (7.4) (7.5) (7.6) (7.7) (7.8) (7.9)

β 0.055

(0.014)

0.057

(0.011)

0.053

(0.018)

0.103

(0.018)

0.081

(0.010)

0.125

(0.012)

0.087

(0.014)

0.082

(0.011)

0.068

(0.028)

δ 0.123

(0.030)

0.191

(0.111)

0.232

(0.082)

−0.180¢

(0.073)

−0.124¢

(0.159)

τ 0.403

(0.031)

0.130

(0.006)

0.578

(0.064)

0.765

(0.230)

ψ 0.377

(0.027)

0.370

(0.046)

0.081

(0.017)

0.073

(0.014)

λ
0.390

(0.029)

0.662

(0.100)

0.574⊕

(0.183)

0.975⊕

(0.555)

AIC -4.649 -4.668 -4.661 -4.664 -4.678 -4.689 -4.685 -4.694 -4.697

*Dependent variable: multilateral TFP index, as deÞned in the text. Standard errors are in parentheses; β measures

the effect of domestic R&D, δ the distance effect (δ > 0 is consistent with localized spillovers), τ is the parameter on

the import shares, ψ is the parameter on the FDI shares, and λ is the language parameter. If trade, FDI, or language

facilitate knowledge spillovers, then τ , ψ, or λ, respectively, are expected to be greater than zero; 2184 observations, AIC

= Akaike�s Information Criterion, as deÞned in the text; ⊕ coefficient is only signiÞcant at the 10% level, ¢ coefficient

is not signiÞcantly different from zero at standard levels.



Figure 1

Comparing relative productivity with and without correcting for differences in input usage
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Figure 2

Productivity convergence or divergence: analysis within and between countries
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Figure 3
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Figure 4
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