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ABSTRACT

Job Matching, Social Network and Word-of-Mouth Communication*

In our model, workers are embedded within a network of social relationships
and can communicate by word of mouth. They can find a job either through
formal agencies or through informal networks of contacts (word-of-mouth
communication). From this micro scenario, we derive an aggregate matching
function that has the standard properties but fails to be homogenous of degree
one. The latter is due to negative externalities generated by indirect
acquaintances (contacts of contacts) that slow down word-of-mouth
information transmission, especially in dense networks. We then show that
there exists a unique labour market equilibrium and that, because of these
negative externalities, the equilibrium unemployment rate increases with the
network size in dense networks.

JEL Classification: D83, J64
Keywords: job search, microfoundation of the matching function, personal
communication, social network

Antoni Calvó-Armengol
Universidad Carlos III de Madrid
Departamento Economia
Edificio Lopez Aranguren
C./Madrid Getafe ( Madrid)
SPAIN
Tel: (34 91) 624 5739
Fax: (34 91) 624 9875
Email: ancalvo@eco.uc3m.es

For further Discussion Papers by this author see:
www.cepr.org/pubs/new-dps/dplist.asp?authorid=152982

Yves Zenou
Department of Economics
University of Southampton
Southampton SO17 1BJ
UK
Tel: (44 23) 8059 3264
Fax: (44 23) 8059 3858
Email: yz@soton.ac.uk

For further Discussion Papers by this author see:
www.cepr.org/pubs/new-dps/dplist.asp?authorid=126027

* Part of this work was written while the first author was visiting the University
of Southampton and the second author Universidad Carlos III, whose
hospitality is gratefully acknowledged. We would also like to thank the seminar
participants at Queen Mary’s College, the Education and Employment
Economics Group Annual Conference, Adriana Kugler, Alan Manning and
Marek Pycia.

Submitted 21 March 2001



NON-TECHNICAL SUMMARY

It is well documented that resorting to word of mouth and newspaper
advertisements are two major job search methods that are used by workers.
Sociologists and labour economists have both produced a broad empirical
literature on labour market networks. In fact, the pervasiveness of social
networks and their relative effectiveness varies with the social group
considered. For instance, Holzer (1988) shows that among 16–23 year old
workers who reported job acceptance, 66% used informal search channels
(30% direct application without referral and 36% friends/relatives), while only
11% use state agencies and 10% newspapers. More recently, Topa (2001)
argues that the observed spatial distribution of unemployment in Chicago is
consistent with a model of local interactions and information spillovers, and
may thus be generated by agent’s reliance on informal methods of job search
such as networks of personal contacts.

In our framework, the bulk of information about jobs can be obtained through
employed friends and employment agencies (or newspapers). In other words,
there are two ways of learning about jobs: either employed workers hear
about the job in the workplace and transmit this information to all their
unemployed friends, or the directly unemployed read about job opportunities
in the newspapers or in the local employment agency.

In this context, the aim of this Paper is twofold. First, we provide an explicit
micro scenario in which finding a job depends both on formal and informal
methods. According to this scenario, a social network links workers to each
other, the members of this network can communicate through word of mouth
and agents rely partly on friends to gather information about employment
opportunities. Second, we establish a relationship between the network of
personal contacts, the information transmission protocol and the aggregate
job matching process. Our analysis of a labour market based on search and
an explicit social network structure sheds light on the social dimension of job
matching.

In our model, individuals are not isolated one way or another. Rather, they are
embedded within a network of social relationships. We represent this social
network with an undirected graph where nodes stand for the agents and a link
between two nodes means that the corresponding agents can communicate
directly. For most of the analysis, we focus on symmetric social networks
where all agents have the same number of direct acquaintances. We refer to
this number as the network size. Given a network of contacts, information
about employment opportunities can be transmitted between any two direct
neighbours through word-of-mouth communication. More precisely, when a
job is available in the economy, workers can match with such a vacancy using
either formal or informal methods. When an unemployed worker hears directly
from a vacancy, we assume that they take the job, and this is considered as a



formal method (since the social network plays no role). If on the contrary the
worker hearing directly from a vacancy is currently employed, we assume that
they transmit this information to their direct unemployed neighbours.
Unemployed workers getting a job with the help of their local social network –
as described above – rely on informal methods of job search.

We first show that the relationship between network structure (namely size)
and job finding is not as straightforward as is commonly viewed. Indeed, in the
standard social network literature (especially in sociology), more contacts are
thought to be an advantage since they are more network members who can
potentially broker job vacancies and job seekers. We show that this result
depends crucially on the size of the network. Indeed, in our model direct
neighbours are beneficial whereas indirect neighbours are detrimental. More
direct contacts provide job seekers with a higher probability of receiving
information about job openings and the unemployed prefer a large set of direct
acquaintances to broaden their potential employment channels. But the better
a worker is connected, the higher the number of unemployed direct
neighbours that can potentially benefit from the information the worker holds
about available jobs. As a result, the unemployed prefer a small set of indirect
acquaintances to release the constraints of information sharing with a
potentially bigger set of information recipients. In other words, indirect
neighbours generate a negative externality over their direct set of
acquaintances. We show that increasing the network size has a positive
impact on the individual’s probability of finding a job through friends in sparse
social networks. On the contrary, increasing the network size in dense
networks slows down word-of-mouth information transmission

We then obtain a well defined aggregate matching function that gives the
number of job matches per unit of time. This endogenous matching function is
derived from an explicit micro scenario where the structure of personal
contacts and the job information transmission process is spelled out in detail.
Our framework can be seen as an extension of the standard urn–ball model,
where firms play the role of urns, workers play the role of balls, and balls
(workers) are randomly placed in urns (firms). This random placing is because
of a coordination failure; not all pairs are matched exactly. Rather, this
uncoordinated process yields to overcrowding in some jobs and no
applications to others. Such coordination failures are the sources of frictions
captured by the matching function. In our context, the network of personal
contacts allows for a (partial) replacement of redundant jobs thus reducing
coordination failures and alleviating matching frictions, whose intensity is now
related explicitly to network size. The link between the matching function and
the network size is precisely the key element of our model.

This matching function is increasing and strictly concave in both the
unemployment and the vacancy rates but fails to exhibit constant returns to
scale. The latter means that, if social networks and word-of-mouth
communications are integrated in the job search process, then the matching



function is more likely not to be homogeneous of degree one. There is a huge
body of empirical work to assess whether this property of the matching
function is encountered in real life labour markets. Even if the results lean
towards constant returns to scale, they are very much controversial and most
of these empirical studies do not include informal methods in finding a job. By
taking into account these methods, it would be interesting to see if the results
would be altered in such a way that the matching function would fail to exhibit
constant returns to scale.

With this matching function, we can fully characterize the labour market
equilibrium whose existence and uniqueness is established. We show that the
resulting equilibrium unemployment rate decreases with the network size in
sparse networks while it increases when the pattern of links is dense. In other
words, social networks increase frictions in the labour market for dense
networks whereas they reduce them for sparse networks.



1 Introduction
Individuals seeking for jobs read newspapers, go to employment agencies,
browse in the web and mobilize their local networks of friends and relatives.
Although underestimated by the bulk of the search and matching literature,
personal contacts often play a prominent role in matching job-seekers with
vacancies. Empirical evidence suggests indeed that about half of all jobs are
…lled through contacts.1 Networks of personal contacts mediate employment
opportunities which ‡ow through word-of-mouth and, in many cases, con-
stitute a valid alternative source of employment information to more formal
methods.
The aim of this paper is twofold. First, we provide an explicit micro sce-

nario in which …nding a job depends both on formal and informal methods.
According to this scenario, workers are linked to each other by a social net-
work, the members of this network can communicate through word-of-mouth
and agents partly rely on friends to gather information about employment
opportunities. Second, we establish a relationship between the network of
personal contacts, the information transmission protocol and the aggregate
job matching process. Our analysis of a labor market based on search and
an explicit social network structure sheds light on the social dimension of job
matching.
In our model, individuals are not isolated one with respect to the other.

Rather, they are embedded within a network of social relationships. We rep-
resent this social network by an undirected graph where nodes stand for the
agents and a link between two nodes means that the corresponding agents
can communicate directly. For most of the analysis, we focus on symmetric
social networks where all agents have the same number of direct acquain-
tances. We refer to this number as the network size. Given a network of
contacts, information about employment opportunities can be transmitted

1Sociologists and labor economists have produced a broad empirical literature on labor
market networks. In fact, the pervasiveness of social networks and their relative e¤ec-
tiveness varies with the social group considered. For instance, Holzer (1988) shows that
among 16-23 years old workers who reported job acceptance, 66% used informal search
channels (30% direct application without referral and 36% friends/relatives), while only
11% use state agencies and 10% newspapers. See also Corcoran et al. (1980) and Gra-
novetter (1995). More recently, Topa (2001) argues that the observed spatial distribution
of unemployment in Chicago is consistent with a model of local interactions and informa-
tion spillovers, and may thus be generated by agent’s reliance in informal methods of job
search such as networks of personal contacts.
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between any two direct neighbors through word-of-mouth communication.
More precisely, when a job is available in the economy, workers can match
with such a vacancy using either formal or informal methods. When an un-
employed worker hears directly from a vacancy, we assume that s/he takes
the job, and this is considered as a formal method (since the social network
plays no role). If on the contrary the worker hearing directly from a va-
cancy is currently employed, we assume that s/he transmits this information
to her/his direct unemployed neighbors. Unemployed workers getting a job
with the help of their local social network ¡as described above¡ rely on
informal methods of job search.
We …rst show that the relationship between network structure (namely

size) and job-…nding is not as straightforward as it is commonly viewed. In-
deed, in the standard social network literature (especially in sociology), more
contacts are thought to be an advantage since they are more network mem-
bers who can potentially broker job vacancies and job seekers. We show that
this result crucially depends on the size of the network. Indeed, in a sym-
metric social network, each individual worker can receive information from
her/his direct neighbors. However, each of her/his neighbors also has a di-
rect set of acquaintances ¡indirect neighbors from the viewpoint of the …rst
worker¡ that may bene…t from this information. In our model direct neigh-
bors are bene…cial whereas indirect neighbors are detrimental. More direct
contacts provide job seekers with a higher probability of receiving information
about job openings and the unemployed prefer a large set of direct acquain-
tances to broaden their potential employment channels. But the better a
worker is connected, the higher the number of unemployed direct neighbors
that can potentially bene…t from the information s/he holds about available
jobs. As a result, the unemployed prefer a small set of indirect acquaintances
to release the constraints of information sharing with a potentially bigger set
of information recipients. In other words, indirect neighbors generate a neg-
ative externality over their direct set of acquaintances. We show that rising
the network size has a positive impact on the individual probability to …nd
a job through friends in sparse social networks. On the contrary, increasing
the network size in dense networks slows down word-of-mouth information
transmission
We then obtain a well-de…ned aggregate matching function which gives

the number of job matches per unit of time. This endogenous matching
function is derived from an explicit micro scenario where the structure of
personal contacts and the job information transmission process is spelled
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out in detail. The corresponding reduced form is expressed in terms of the
unemployed worker and vacant …rm pools, and the social network under-
lying players talks. Contrarily to previous contributions also providing for
micro foundations for matching functions, the expression obtained here is
neither an exponential nor a min one. This matching function is increasing
and strictly concave in both the unemployment and the vacancy rates. More-
over, the (extension of the standard) matching function we provide clearly
relates job matching to individual social embeddedness and captures complex
spillovers within social networks of interrelated personal contacts. In partic-
ular, we …nd a non-monotonic relationship between network size and the rate
at which matches occur. With this matching function in hand, we can fully
characterize the labor market equilibrium whose existence and uniqueness
is established. We show that the resulting equilibrium unemployment rate
decreases with the network size in sparse networks while it increases when
the pattern of links is dense.
There have been several attempts to …nd a micro foundation of the stan-

dard macroeconomic matching function. The most popular reduced form is
the exponential matching function that was …rst employed by Butters (1977)
to model contacts between buyers and sellers in commodity markets.2 More
recently, Lagos (2000) has proposed an alternative micro approach by deriv-
ing an aggregate matching function which takes the form of a min function.
Our micro foundation of the matching function based on word-of-mouth com-
munication gives insights on the relationship between job search, job match-
ing and social network. In fact, there have been few theoretical attempts to
model this link. Notable exceptions include Diamond (1981), Montgomery
(1991, 1992), Mortensen and Vishwanath (1994) and Kugler (2000) that
contribute to the theoretical literature on equilibrium wage determination
in search markets. However, in all these approaches, the modelling of the
social network is quite shallow. To our knowledge, the …rst paper to explic-

2This matching function owes its origin to the well-known and extensively analysed urn-
ball model in probability theory. According to this model, the labor market is visualized
as ‘urns’ (vacancies) to be …lled by ‘balls’ (workers). Because of a coordination failure
inherent to any random placing of the balls in the urns, matching is not perfect and one
can interpret the resulting mismatches in terms of labor market frictions. In most cases,
the system steady state can be approximated by an exponential-type matching function
as the population becomes large. See for instance Hall (1979), Pissarides (1979), Peters
(1991), Blanchard and Diamond (1994), Burdett, Shi and Wright (2001), Smith and Zenou
(2001).
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itly model the structure of social contacts by an undirected network in a
labor market context is Boorman (1975).3 Following this early contribution,
Calvó-Armengol (2001) develops a model specifying at the individual level
both the decision to establish or to maintain social ties with other agents,
and the process by which information about jobs is obtained and transmit-
ted. The analysis focuses on the impact that an endogenous determination of
job contact networks has on the e¤ectiveness of information transmission and
on the aggregate unemployment level. On the contrary, the present paper
builds an aggregate matching function stemming from an explicit network
structure, and determines the impact a partial reliance on social networks as
a method of job search has on labor market outcomes.
The remaining of the paper is as follows. The next section describes the

social network, the labor market and the information transmission protocol
within this network. Section 3 derives the aggregate matching function and
examines its main properties. The characterization, the existence and the
uniqueness of the labor market equilibrium is established in section 4. Section
5 concludes and all the proofs are presented in Appendix.

2 Social Network and Word-of-Mouth Com-
munication

Social networks are links and associations between people of a common ilk.
These can be friends, acquaintances and colleagues. Networks are evident be-
tween family members, but are also established between friends and neigh-
borhood residents. In this section, we model the social network between
people by means of graph theory.

2.1 The social network

We consider a …nite population of workers N = f1; :::; ng. In our model,
individuals are not isolated one with respect to the other. Rather, they
are embedded within a network of social relationships. More precisely, each

3A recent and growing literature stresses the role of networks in explaining a wide range
of economic phenomema among which labor markets are just an example. See for instance
Jackson and Wolinsky (1996), Bala and Goyal (2000) and the references therein. For a
previous model of word-of-mouth communication see for instance Ellison and Fudenberg
(1995).

5



worker i is in direct contact with a group of workers (her/his set of friends
or relatives) and we assume that each pair of directly connected workers can
communicate with each other through word-of-mouth. A direct link between
two individuals i and j is denoted by ij. The collection of all existing links
constitutes the prevailing social network of personal relationships denoted by
g. Such a social network is modelled as an undirected graph in which binary
relationships are symmetric that is, whenever i is connected to j according
to g (ij 2 g), then j is also connected to i according to g (ji 2 g).
Given a social network g, we denote byNi(g) the set of all direct neighbors

of worker i. Formally, Ni(g) = fj 2 Nnfig : ij 2 gg. We also denote by ni(g)
the cardinal of the set Ni(g) that is, the number of direct neighbors of i with
whom s/he can directly communicate. For example, Figure 1a corresponds
to a star-shaped graph in which worker 1 can communicate with every other
individual in the economy whereas workers 2 to n = 6 can directly communi-
cate only with worker 1. Figure 1b illustrates the case of the complete graph
where every worker can directly communicate with everybody.
An interesting case to be considered is when all workers have the same

number of direct neighbors that is, ni(g) = s for all i 2 N . Such a graph
is called a symmetric graph and s is the size of the corresponding social
network. The complete graph described in Figure 1b is a particular case of
a symmetric network where s = n¡ 1 = 5.

[Insert F igures 1a and 1b here]

2.2 The labor market

The labor market environment is as follows. Time is discrete and continues
forever. At any point in time, each of the n workers is either employed or
unemployed. At period t, the unemployment pool is denoted by Ut and the
corresponding unemployment rate by ut = Ut=n. There are also Vt vacancies
to be …lled and each worker directly hears of a vacancy with probability
vt = Vt=n. We refer to vt as the job arrival rate or the vacancy rate. Each
employer posts a vacancy by advertising this job both in employment agencies
(and/or national newspapers) and to her/his current workers.
At each period, currently employed workers lose their jobs with some

probability ±. This process is taken to depend only on the general state of the
economy and hence is treated as exogenous to the labor market. The timing
of the model is as follows. At the end of period t, the unemployment and
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employment rates are respectively equal to ut and 1¡ut. At the beginning of
period t + 1, there is a technological shock and employed workers lose their
jobs with the breakdown probability ±. The resulting employment rate is
(1¡±)(1¡ut). Then, Vt+1 vacancies are posted and jobs are …lled according to
the procedure described below. At the end of period t+1, the unemployment
and employment rates are respectively equal to ut+1 and 1¡ut+1. And so on.
From now on, and for notational simplicity, we omit the subscript t when no
confusion is possible.

2.3 Word-of-mouth information transmission

At each period, and once the technological shock has occurred, any worker
(employed or unemployed) directly hears of a vacant job with probability
v = V=n. Recall that jobs are systematically posted both through employ-
ment agencies (or newspapers) and within …rms. Hence, the probability that
a worker directly hears of a job (i.e. through the employment agency for the
unemployed or from the employer her/himself for the employed) is always
equal to v irrespective of the current employment status. There are now two
cases to be considered. First, the directly informed worker is unemployed.
Then, s/he takes this job immediately. This means that this worker has found
the job through an employment agency (or an ad in the newspapers) and,
consequently, does not rely on her/his social network to be reemployed. Sec-
ond, the directly informed worker is employed, meaning that s/he has been
directly informed by her/his current employer. Obviously, this worker does
not need this job and transmits this information to one of her/his direct un-
employed neighbors, if any. We assume that unemployed workers are treated
on an equal footing, which means that all unemployed direct neighbors have
the same probability to be informed.
Observe that, according to this information transmission protocol, job

information can only ‡ow through word-of-mouth from an employed to an
unemployed worker that is, between workers with di¤erent employment sta-
tus. Indeed, vacancies are assumed to be posted for one period which co-
incides with the time required to transmit information to direct neighbors.
Therefore, if the informed worker is both employed and does not have any un-
employed worker in her/his direct vicinity, the job slot is lost. Similarly, if an
unemployed worker hears of two (or more) vacancies through word-of-mouth
from two (or more) direct employed neighbors, we assume that s/he selects
one job randomly, the other job(s) being lost. Finally, one (or more) job(s)
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is (are) also lost when an unemployed worker hears of jobs both directly and
through friends.
Assuming that job information cannot be relayed further away than the

direct neighborhood of the initially informed employed worker is not com-
pletely at odds with empirical …ndings. Indeed, Granovetter (1995) shows
that information transmission with no relay (as assumed here) accounts for
39.1% of the jobs found through contacts (p. 57). To keep things tractable,
we maintain this simplifying assumption throughout and, in section 2.5, we
discuss how our results are robust to generalizations of this information trans-
mission protocol.

2.4 Finding a job through contacts

In our model, workers partly rely on friends to gather information about
potential jobs. Denote by µ ´ (1 ¡ ±)(1 ¡ u) the individual probability
of remaining employed after the technological shock and before vacancies
are posted for the current period. Conditional on being unemployed and
not hearing directly of a vacancy, the individual probability of …nding a job
through contacts for worker i depends on the prevailing social network g and
is given by:

Pi(g; u; v) = 1¡ ¦
j2Ni(g)

"
1¡ vµ 1¡ µnj(g)

(1¡ µ)nj (g)
#

(1)

The explanation for this result is the following. Fix a worker j 2 Ni (g)
in the direct neighborhood of player i. Then, vµ is the probability of this
particular neighbor j knowing of a job opportunity (probability v) and not
needing it (probability µ). This employed and informed neighbor j transmits
this available job information to her/his direct neighbor i with probability
1¡µnj (g)
(1¡µ)nj(g) . Indeed, the probability of i being the unemployed worker selected
among all the unemployed neighbors of j to be told about the existing va-
cancy can be decomposed as follows:

1¡ µnj(g)
(1¡ µ)nj (g) = µ

nj(g)¡1+
nj(g)¡1X
k=1

Ã
nj (g)¡ 1

k

!
1

k + 1
µnj(g)¡k¡1(1¡ µ)k

According to this expression, worker i is the recipient of the job information
held by her/his employed neighbor j if either s/he the only unemployed
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neighbor of j (probability µnj(g)¡1) or s/he is the one selected among the
k+1 unemployed friends of j (probability 1

k+1
µnj(g)¡k¡1(1¡ µ)k). Therefore,

vµ 1¡µnj(g)
(1¡µ)nj(g) is the probability of player i …nding a job thanks to his direct

neighbor j 2 Ni (g), whereas with complementary probability 1¡vµ 1¡µnj (g)
(1¡µ)nj(g)

the employed direct neighbor j of player i does not prove useful to …nd a job.

Finally, ¦
j2Ni(g)

·
1¡ vµ 1¡µnj(g)

(1¡µ)nj(g)

¸
denotes the individual probability of worker

i not hearing of a vacancy through word-of-mouth communication from any
of her/his direct acquaintances.
In Figures 1a and 1b, we have calculated this probability Pi(g; u; v) for

a star-shaped graph and a complete graph. From Figure 1a, it is clear that
individual 1 has the highest probability to …nd a job through word-of-mouth
since s/he is connected to everybody whereas all the others have the same
probability since they are only connected to individual 1 (P1 > P2 = P3 =
P4 = P5 = P6). In Figure 1b, all individuals have the same number of direct
neighbors (symmetric graph), which implies that they all have the same
probability to …nd a job through contacts (P1 = P2 = P3 = P4 = P5 = P6).
Observe however that, in both cases, all individuals have the same probability
v to …nd a job through formal methods since this job-…nding process does
not depend on the social network.
From now on, we focus on symmetric social networks with uniform mix in

which all workers have both the same number of neighbors equal to s (sym-
metry) and the same number of employed and unemployed direct contacts
equal respectively to (1¡ u) s and us (uniform mix). We refer to s as the
network size. In a symmetric network of size s, the individual probability of
hearing of a job through word-of-mouth is then:

P (s; u; v) = 1¡
"
1¡ vµ 1¡ µs

(1¡ µ) s
#s

(2)

As stated above, Figure 1b depicts a particular example of a symmetric
social network when s = n¡ 1 = 5.

Proposition 1 The properties of P (s; u; v) are the following:

(i) P (¢; u; v) is increasing between 0 and s and decreasing between s and
n¡1, where s is the unique global maximum of P (¢; u; v). Also, P (¢; u; v)
is strictly concave on [0;K) for some K > s;
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(ii) P (s; ¢; v) is decreasing in u. Moreover, there exists some e± 2 [0; 1) such
that P (s; ¢; v) is strictly convex in u when ± ¸ e±;

(iii) P (s; u; ¢) is increasing and strictly concave in v.

The following comments are in order. First, …x u and v. The individual
probability P (¢; u; v) to …nd a job through word-of-mouth within the network
of social contacts exhibits diminishing marginal returns to network size s.4 In
other words, the marginal impact of adding a new connection to everybody
decreases with the total number of pairwise links in the society. Moreover,
P (¢; u; v) increases with s in sparse networks (s < s) while it decreases with
s in densely connected labor market networks (s > s). To understand this
result, observe that increasing the network size has both a (positive) direct
and (negative) indirect e¤ect. On one hand, rising the network size expands
the available direct connections to every worker. Workers become better con-
nected and, consequently, the potential job information they can bene…t from
increases. Indeed, the probability that at least one direct contact is informed
about a job opening is 1¡(1¡v)s % 1 as s! +1. On the other hand, rising
the network size also increases the potential number of unemployed workers
directly connected to an employed and informed worker. The information
held by every employed worker is now shared by a larger group of unem-
ployed workers. The individual probability of being randomly selected by an
employed direct friend as the information recipient is 1¡µs

(1¡µ)s & 0 as s! +1.
Therefore, every unemployed worker su¤ers from the information sharing con-
straints exerted by the unemployed indirectly connected to her/him. Stated
di¤erently, expanding one’s neighborhood has a negative impact on the cur-
rent direct friends as it reduces their (individual) probability to gather job
opportunities through social contacts. Workers relative locations thus create
a negative network externality for their direct vicinity. This indirect negative
e¤ect prevails in networks of large size as [1¡ (1¡ v)s]

h
1¡µs
(1¡µ)s

i
! 0 when

s! +1. Increasing the network size of dense networks (s > s) slows down
word-of-mouth information transmission.5 This result contradicts the com-
mon view that more contacts always yield positive e¤ects since more network
members can potentially reduce one’s chance to obtain a job.

4In fact, this is true only on a restricted domain [0;K) including the unique global
maximum s. However, observe that concavity holds on the whole domain where s is
allowed to vary whenever K ¸ n¡ 1.

5The threshold value s is uniquely determined by @P (s;u;v)
@s = 0.
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Second, when the unemployment rate u increases, two e¤ects are in order:
(i) the likelihood that a worker, who is directly informed of a vacancy through
formal channels (arrival rate v), is unemployed increases, and also (ii) the
number of unemployed directly connected to every informed and employed
worker rises. This implies that u and P (s; ¢; v) are negatively correlated. To
understand the positive impact of the vacancy rate v on the individual prob-
ability of …nding a job through friends P (s; u; ¢) a similar intuition applies.

2.5 Generalizing the communication protocol

So far, we have assumed that information about job opportunities can only
‡ow from employed workers to unemployed direct acquaintances. In par-
ticular, the informed worker cannot transmit any information to any other
employed friend that may then relay it to some unemployed direct contact,
if any. Hence, the rate at which employed workers hear of a job opportu-
nity is completely determined by the vacancy rate v and does not depend
on the network of social contacts g. As a consequence, one’s indirect neigh-
bors do not constitute a potential source of job information. Rather, they
are perceived as potential competitive information recipients. The resulting
information sharing constraints they exert on indirect neighbors generate the
negative externality arising in information transmission.
Suppose now that we relax this assumption and we allow for information

to be relayed through word-of-mouth from employed worker to employed
worker, with no restrictions whatsoever on the length of transmission. As-
sume, though, that relayed information is correctly transmitted with some
probability strictly less than one, to account, for instance, for forgetfulness.6

Now, the rate aj at which some employed worker j acquires job information
depends both on the vacancy rate v and on the network of contacts g and
thus can be written as aj (v; g). The individual probability of …nding a job
through contacts then becomes

Pi(g; u; v) = 1¡ ¦
j2Ni(g)

"
1¡ aj (v; g) µ 1¡ µnj(g)

(1¡ µ)nj (g)
#

Indeed, indirect connections do not only induce information sharing con-
straints but may now also constitute a valuable source of job information.

6Equivalently, we could assume that there is no forgetfulness at all but that the length
of job information transmission is …nite and arbitrarily …xed.
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Still, one can show that in dense enough networks, the negative e¤ect of
information sharing constraints outweighs the positive impact of possibly ac-
ceding a broader range of information channels. In other words, allowing for
information to ‡ow on the network of contacts along any path connecting
two workers does not alter the qualitative relationship between job matching
and social embeddedness stressed in this paper.7

3 The matching function
As stated above, unemployed workers …nd jobs from two di¤erent channels.
Either they …nd their job directly through formal methods ¡such as ad-
vertisement or employment agencies¡ with probability v, or they gather
information about jobs through informal methods ¡in our case, the net-
work of social contacts¡ with probability P (s; u; v). In this context, the job
acquisition rate or individual hiring probability of an unemployed worker is:

h(s; u; v) = v + (1¡ v)P (s; u; v) (3)

At each period of time, there are nu = U unemployed workers that …nd
a job with probability h(s; u; v). Since this probability is independent across
di¤erent individuals, the number of job matches taking place per unit of time
is just nuh(s; u; v). Therefore, the matching function for our labor market
where workers partly rely on personal contacts to …nd a job is given by:8;9

m(s; u; v) = u [v + (1¡ v)P (s; u; v)] (4)

7For more details on this issue, see Calvó-Armengol (2001). Note, however, that al-
lowing for information to ‡ow through word-of-mouth with no restrictions on the length
of transmission complicates sharply the analysis. Indeed, when relays are permitted, the
local topology of the network may play a role and has to be taken explicitly into account.

8To be more precise this matching function corresponds to the rate at which job matches
occur per unit of time. It su¢ces therefore to multiply m(s; u; v) by n to get the number
of matches per unit of time.

9It is easy to verify that the matching function for a general social network g, not
necessarily symmetric, is equal to:

m(g; u; v) = nu

"
v + (1¡ v) 1

n

X
i2N

Pi(g; u; v)

#

where Pi(g) is given by (1).
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We can thus express the aggregate rate at which job matches occur as
a function of the unemployed worker and vacant …rm pools, and the social
network underlying players talks. This endogenous matching function is de-
rived from an explicit micro scenario where the structure of personal contacts
and the job information transmission process is spelled out in detail. Con-
trary to previous contributions also providing micro foundations for matching
functions, the well-de…ned reduced function obtained here is neither an expo-
nential nor a min one. Moreover, the central role of the network of contacts
in matching job-seekers with vacancies is made explicit, and the link between
m(s; u; v) and the network size s is precisely the key element of our model.

Proposition 2 The properties of the matching function m(s; u; v) are the
following:

(i) m(¢; u; v) is increasing between 0 and s and decreasing between s and n¡
1, where s is the unique global maximum of P (¢; u; v). Also, m(¢; u; v)
is strictly concave on [0;K) for some K > s;

(ii) m(s; ¢; v) is increasing and strictly concave in u on [0; u] for some 0 <
u · 1;

(iii) m(s; u; ¢) is increasing and strictly concave in v.

We have the following comments. First, even though our matching func-
tion is quite di¤erent to the ones found in the literature, it has the same
natural properties: it is increasing and strictly concave in both u and v.10

Second, it is easily veri…ed that P (s; u; v) is not homogeneous of degree
one, implying in turn that the matching function m (s; u; v) also fails to ex-
hibit constant returns to scale (with respect to u and v). The intuition for
this result is as follows. Suppose …rst that the network size s is …xed. In-
creasing the vacancy rate from v to ¸v (where ¸ > 1) has a positive direct
impact on all workers in the population. By contrast, increasing the unem-
ployment rate by the same amount (from u to ¸u) has both a direct and
an indirect negative e¤ect. Indeed, the number of unemployed direct ac-
quaintances increases, thus reducing the value of such personal contacts as
job providers (direct negative e¤ect). Moreover, the number of unemployed
indirect acquaintances also increases, thus imposing a stronger information

10For u, this is true only on a restricted domain, i.e. on [0; u], where u is quite large.
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sharing constraint (indirect negative e¤ect). These two combined negative
e¤ects outweigh the positive direct e¤ect of additional vacancies. In order to
see that, let us write (2) as11

P (s; u; v) = 1¡
·
1¡ 1

s
vµ
³
1 + µ + ¢ ¢ ¢+ µs¡1

´¸s
where µ = (1¡ ±) (1¡ u). Therefore, increasing v has a positive linear im-
pact on 1

s
vµ
³
1 + µ + ¢ ¢ ¢+ µs¡1

´
whereas increasing u has both a negative

linear impact through µ of the same order and a magnifying negative impact
through the polynomial form

³
1 + µ + ¢ ¢ ¢+ µs¡1

´
. This result is at odds

with the standard hypothesis of a constant-return-to-scale aggregate match-
ing function made in the theoretical literature on job matching (Mortensen
and Pissarides, 1999 and Pissarides, 2000). It says that, if social networks
and word-of-mouth communications are integrated in the job-search process,
then the matching function is more likely not to be homogeneous of degree
one. Besides, there is a huge body of empirical work to assess whether this
property of the matching function is encountered in real-life labor markets.
Even if the results lean towards constant returns to scale, they are very much
controversial12 and most of these empirical studies do not include informal
methods in …nding a job. By taking into account these methods, it would
be interesting to see if the results would be altered in such a way that the
matching function would fail to exhibit constant returns to scale.
Third, there is a non-monotonic relationship between the job matching

rate and the network size. In fact, because the word-of-mouth communica-
tion plays a crucial role in our model, the workers and their direct set of
acquaintances impose an important externality to each other. This exter-
nality between workers and personal contacts implies that network size is
relevant in determining the rate at which unemployed …nd jobs. The non-
monotonic relationship is just a direct consequence of the ambiguous impact
network size has on the individual probability P (s; u; v) to …nd a job through
friends. Recall that network size has a positive impact on P (s; u; v) in sparse
networks, whereas is has a negative impact on P (s; u; v) dense ones.
Finally, we can deduce from (4) the following simple expression for the

11Simply note that (1¡ µs) = (1¡ µ) = 1 + µ + ¢ ¢ ¢+ µs¡1.
12See for instance Coles and Smith (1996), Petrongolo and Pissarides (2001) and the

references therein.
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individual probability f(s; u; v) for …rms to …ll a vacancy:

f(s; u; v) =
m (s; u; v)

v
= u

·
1¡

µ
1¡ 1

v

¶
P (s; u; v)

¸
(5)

Clearly, the properties of both the job-hiring rate h(s; u; v) and the job-
…lling rate f(s; u; v) as functions of the network size s are immediately de-
duced from that of P (s; u; v) namely, strictly concave in s, increasing between
0 and s and decreasing between s and n ¡ 1. Moreover, the job-hiring rate
h(s; u; v) is decreasing in u and increasing in v whereas the job-…lling rate
f(s; u; v) is increasing in u and decreasing in v.13 In other words, given a
vacancy rate v (and a network size s), when the number of unemployed in-
creases, it is more di¢cult to …nd a job but easier to …ll a vacancy. Similarly,
given an unemployment rate u (and a network size s), it becomes easier to
…nd a job but more di¢cult to …ll a vacancy as the number of vacancies
increases.14

4 The labor market equilibrium

4.1 Characterization of the equilibrium

Firms and workers are all identical. A …rm is a unit of production that can
either be …lled by a worker whose production is y units of output or be un…lled
and thus unproductive. We denote by ° the search cost for the …rm per unit
of time, by w the wage paid by the …rms when a match is realized and by r
the discount factor. We assume that the wage is exogenous. This is because
our focus is not on wage determination but rather on the communication
mechanisms through which job information is gathered and transmitted, the
network of personal contacts underlying such communication processes, and
their impact on labor market outcomes. In particular, one of the salient
features of our framework is to derive an explicit matching function from a
model of communication and networks (see Proposition 2).15 In section 4.3,

13See Lemmata 1 and 2 in the appendix.
14See Pissarides (2000) for a thorough account and description of such trading external-

ities. Note also that 1=h and 1=f can be interpreted as the mean duration respectively of
unemployment and of vacancies.
15There are papers that have explored the wage premium associated with the use of per-

sonal contacts in …nding a job. See for instance Montgomery (1991) and Kugler (2000) for
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we will however discuss how our model can take into account endogenous
wages.
At every period, matches between workers and …rms depend upon the

current network of social contacts of size s and the current state of the
economy given by the unemployment rate u and the vacancy rate v. We
focus on the steady state equilibrium.

De…nition 1 Given a network size s and the associated matching technol-
ogy m(s; ¢; ¢), a (steady-state) labor market equilibrium (u¤(s); v¤(s)) is de-
termined by a free-entry condition for …rms and a steady-state condition on
unemployment ‡ows.

At the steady state labor market equilibrium, every worker has s direct
acquaintances consisting of su¤ (s) unemployed and s (1¡ u¤ (s)) employed
contacts. We now characterize such a steady state equilibrium. We …rst
establish the free-entry condition and the resulting labor demand. At period
t, the intertemporal pro…t of a …lled job and of a vacancy are denoted re-
spectively by IF;t and IV;t. Recall that the job-…lling rate f is de…ned by (5).
Since time is discrete, we have the following standard Bellman equations:

IF;t = y ¡ w + 1

1 + r
[(1¡ ±)IF;t+1 + ± IV;t+1]

IV;t = ¡° + 1

1 + r
[(1¡ f)IV;t+1 + f IF;t+1]

In steady state, both IF;t = IF;t+1 = IF and IV;t = IV;t+1 = IV . Following
Pissarides (2000), we assume that …rms post vacancies up to a point where
IV = 0. We deduce from this free entry condition the following relation
between u and v:

m(s; u; v)

v
= °

r + ±

y ¡ w (6)

In other words, the value of a job is equal to the expected search cost, i.e.
the cost per unit of time multiplied by the average duration of search for
the …rm. This equation can be mapped in the plane (u; v) and is referred

analyses of this issue in an adverse selection setting, Mortensen and Vishwanath (1994) for
an equilibrium search models with wage posting and on-the-job search, and Montgomery
(1992) for a model with weak and strong ties.
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to as the labor demand curve. We then close the model by the following
steady-state condition on ‡ows:

m(s; u; v) = ±(1¡ u) (7)

As above, this equation can be mapped in the plane (u; v) and is referred
to as the Beveridge curve. The two equations (6) and (7) with two unknowns
u and v fully characterize the labor market equilibrium (u¤(s); v¤(s)) as a
function of the network size s.

Proposition 3 Suppose that °(r + ±)=(y ¡ w) > ±=(1 + ±). Then, for all
network size s, there exists a labor market equilibrium (u¤(s); v¤(s)). If °(r+
±)=(y ¡ w) is small enough, this equilibrium is unique.

Observe that the condition on the parameters °(r+±)=(y¡w) > ±=(1+±)
that guarantees the existence of the equilibrium is very likely to be satis…ed.
Indeed, we deduce from (6) that °(r + ±)=(y ¡ w) is equal to the job-…lling
rate f(s; u; v). A su¢cient condition for f(s; u; v) > ±=(1 + ±) to hold is
f(s; u; v) > ± that is, the job-…lling rate be higher than the job-destruction
rate, which is obviously true in most labor markets.

4.2 Social network and unemployment

We now investigate the di¤erent properties of the labor market equilibrium
and focus on the relationship between the equilibrium unemployment rate
u¤(s) and the size of the social network s. We assume from now on that the
conditions for uniqueness are met.

Proposition 4 The equilibrium unemployment rate u¤(s) decreases with s
when s < s, while it increases when s ¸ s.

Our matching function depends explicitly on the structure of personal
contacts and the labor market equilibrium captures the in‡uence of the fric-
tions due to workers social embeddedness on market outcomes. In particular,
we know from propositions 1 and 2 that in a sparse network (s < s) , both
the individual probability P (¢; u; v) to …nd a job through word-of-mouth and
the matching function increase with the network size s. We deduce from the
free entry condition (6) that, holding the arrival rate v …xed, unemployment
decreases. The Beveridge curve (7) then implies that unemployment must
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also decrease to equalize ‡ows out with ‡ows in. Since the two e¤ects have
the same sign, u¤(s) decreases with s. When the social network of contacts is
dense (s ¸ s), the opposite result holds since negative network externalities
prevail in networks of large size and both P (¢; u; v) and m(¢; u; v) decrease
with s.

[Insert F igures 2a and 2b here]

The impact of the network size s on the equilibrium vacancy rate v¤(s) is
ambiguous both when the network is sparse (s < s) or dense (s ¸ s). Indeed,
two opposite e¤ects are now in place. On one hand, increasing the size of
a sparse network improves the transmission of information through word-of-
mouth communication. As a result, matches are more frequent and we deduce
from the free entry condition (6) that more vacancies are posted. In other
words, v¤(s) and s are positively correlated. On the other hand, rising the
size of a sparse network by creating additional direct connections increases
the number of matches between workers and …rms. We then deduce from the
Beveridge curve (7), that vacancies decrease in order to guarantee that the
‡ows out of unemployment are still equal to the ‡ows into unemployment.
Therefore, v¤(s) and s are negatively correlated. When the network is dense,
this ambiguity remains and is sustained by the opposite intuition: v¤(s) and s
are both negatively and positively correlated due to (6) and (7) respectively.

4.3 Endogenous wages

So far, we have assumed that wages were exogenous so that employed workers
systematically transmit information about job opportunities to their unem-
ployed friends. One may argue that, if wages were endogenous and negotiated
between workers and …rms, the employed could exploit a job o¤er to increase
their bargaining power and thus their wages. In this case, it would not always
be optimal for employed workers to communicate job o¤ers to their unem-
ployed neighbors. In fact, it is easy to see that currently employed workers
who had never been o¤ered an outside job would always use any available
outside opportunity to increase their wages. It should be clear that after
some …nite iterations of such negotiations, these workers would obtain the
highest possible wage.16 This implies that all employed workers who have
16For instance, if there is Bertrand competition between two employers (the current and

the outside ones), the employed worker who has the two o¤ers obtains all the surplus and
therefore gets straightaway the highest possible wage.
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been working for a …xed number of periods (greater or equal than two) in the
same …rm and have exploited all possible wage negotiations, always trans-
mit additional job information to her/his unemployed friends. Formally, the
individual probability of …nding a job through contacts for any unemployed
worker within a symmetric network of size s can now be written as:

P (s; u; kv) = 1¡
"
1¡ kvµ 1¡ µs

(1¡ µ) s
#s

where k < 1, and the corresponding matching function is given by:

m(s; u; v) = u [v + (1¡ v)P (s; u; kv)]

In words, compared to the case of exogenous wages, the unemployed workers
have less chances to hear from a vacancy from their employed direct friends
(kv < v) because the latter can now use job o¤ers to increase their wages.
Observe that k is endogenous and determined by the labor market equilib-
rium, and represents the reduction in available job information sources.
In this context, a wage distribution endogenously emerges in equilibrium.

Indeed, apart of the unemployment bene…t received by the unemployed, em-
ployed workers earn di¤erent wages depending on their work history (in terms
of outside o¤ers and thus negotiations). The lowest wage is received when
they leave unemployment and start working in a …rm whereas in the highest
wage they obtain all the surplus because they have exhausted all possible ne-
gotiations. Even if this extension enriches the working of the labor market,
it leads to a much more complicated analysis without altering the qualitative
features of our framework. Indeed, the closed-form expression of our micro-
founded matching function remains similar. More importantly, the frictions
induced by the social network explicitly characterized in terms of information
sharing constraints still hold.

5 Conclusion
In recent years, a growing literature consisting both of empirical work and
theoretical contributions has stressed the prominence of social networks in
explaining a wide range of economic phenomena. In particular, the prevalent
social contacts strongly determine, or at least in‡uence, economic success of
individuals in a labor market context.
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In this paper, we have analyzed the matching between unemployed work-
ers and vacant jobs in a social network context. More precisely, each indi-
vidual, who is embedded within a network of social relationships, can …nd a
job either through formal methods (employment agencies or advertisements)
or through informal networks (word-of-mouth communication). From this
micro scenario, we …rst derive an aggregate matching function that has the
standard properties but fails to be homogenous of degree one. This is because
there is a non-monotonic relationship between the size of the social network
and the probability to …nd a job: increasing the size of sparse networks is
bene…cial to workers whereas it is detrimental in dense networks. Indeed,
increasing the network size of dense networks slows down word-of-mouth in-
formation transmission and creates negative network externalities. We then
close the model by introducing the behavior of …rms and show that there
exists a unique labor market equilibrium under mild conditions on the para-
meters of the economy. Finally, and because of the previous result, we show
that the equilibrium unemployment rate decreases with the network size in
sparse networks while it increases in dense networks.
The results obtained in this paper are robust to generalizations of the

communication mechanism in the network of personal contacts. Also, al-
lowing for wages to be endogenously determined would not a¤ect our main
conclusions.
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A Appendix
Proof of Proposition 1.

Let q (s; µ) ´ µ(1¡µs)
s(1¡µ) . Then, P (s; u; v) = 1¡Q(s; u; v) where Q(s; u; v) =

[1¡ vq (s; µ)]s. The properties of P (¢) can thus be deduced from that of Q (¢)
established below:

(a) Q (s; u; ¢) is decreasing and strictly convex with respect to v. Indeed,
di¤erentiating once with respect to v gives: @Q

@v
= ¡sQ q

1¡vq < 0. Dif-

ferentiating twice we get @2Q
@v2

= ¡s@Q
@v

q
1¡vq ¡ sQ q2

(1¡vq)2 . Replacing
@Q
@v

by its expression above gives @
2Q
@v2

= s (s¡ 1)Q q2

(1¡vq)2 > 0.

(b) Q (s; ¢; v) is increasing with respect to u. Moreover, there exists e± 2
[0; 1) such that Q (s; ¢; v) is strictly concave with respect to u as long as
± ¸ e±. Indeed, simplifying by (1¡ µ) gives q (s; µ) = 1

s
(µ + ¢ ¢ ¢+ µs).

Hence, q (s; ¢) is increasing with respect to µ, implying that Q (s; u; v) =
[1¡ vq (s; 1¡ u)]s is increasing with respect to u. From µ = (1¡ ±) (1¡ u)
we deduce that @2Q

@u2
= (1¡ ±)2 £ @2

@µ2
[1¡ vq (s; µ)]s. Di¤erentiating

twice gives

@2

@µ2
[1¡ vq]s = ¡vs [1¡ vq]s¡2

·
(1¡ vq) @2q

@µ2
¡ v (s¡ 1)

³
@q
@µ

´2¸
Hence, @

2Q
@u2

< 0 is equivalent to (1¡ vq) @2q
@µ2
¡v (s¡ 1)

³
@q
@µ

´2
> 0 where8>><>>:

q (s; µ) = 1
s
(µ + ¢ ¢ ¢+ µs)

@q
@µ
= 1

s

³
1 + ¢ ¢ ¢+ sµs¡1

´
@2q
@µ2
= 1

s

³
2 + ¢ ¢ ¢+ s (s¡ 1) µs¡2

´
At µ = 0 we have: q (s; µ) = 0, @q

@µ
jµ=0= 1

s
and @2q

@µ2
jµ=0= 2

s
. Therefore,

@2Q
@u2

jµ=0< 0 is equivalent to 2s > v (s¡ 1) which is true. Denote by eµ
the smallest positive root of the polynomial R in µ of degree 2 (s¡ 1)
given by: R (µ) ´ (1¡ vq) @2q

@µ2
¡ v (s¡ 1)

³
@q
@µ

´2
. If R (µ) > 0 for all

µ > 0 we set eµ = +1 by de…nition. From R (0) > 0 and by continuity,
we deduce that R (µ) > 0 on

h
0; eµ´. Let e± = 1 ¡ min

neµ; 1o. Then,
R (µ) > 0 on

h
0; 1¡ e±´ implying that @2Q

@u2
< 0 for all u 2 [0; 1] that is,

Q (s; ¢; v) strictly concave with respect to u, as long as ± ¸ e±.
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(c) Q (¢; u; v) is decreasing in [0; s] and increasing on [s;+1). Moreover, is
strictly convex on [0; K) for some K > s. We prove this result in four
steps.17 Fix u and v and let Á (s) = 1 ¡ vq (s; µ). Then, Q (s; u; v) =
[Á (s)]s from which we deduce that @Q

@s
= ©(s) £ Q where ©(s) =

lnÁ (s) + sÁ
0(s)
Á(s)

.

Step 1. We show that @Q
@s

¯̄̄
s=1

< 0 which is equivalent to proving

that ©(1) < 0. With some algebra, Á0 (s) = vµ
1¡µ

h
1¡µs
s2
+ ln µ µ

s

s

i
,

implying that 1
1¡vµ© (1) = vµ

³
1 + µ

1¡µ ln µ
´
+(1¡ vµ) ln (1¡ vµ).

Establishing that ©(1) < 0 is thus equivalent to showing that for
all µ 2 (0; 1), ½µ (v) < 0 on (0; 1), where ½µ (v) = vµ

³
1 + µ

1¡µ ln µ
´
+

(1¡ vµ) ln (1¡ vµ). Fix µ. Di¤erentiating twice gives ½0µ (v) =
µ2

1¡µ ln µ ¡ µ ln (1¡ vµ) and ½00µ (v) = µ2

1¡vµ > 0. Therefore, ½µ is
strictly convex, implying that ½0µ increases on (0; 1) with supre-
mum ½0µ (1) =

µ
1¡µ [µ ln µ ¡ (1¡ µ) ln (1¡ µ)]. It is straightfor-

ward to see that x 7! x lnx ¡ (1¡ x) ln (1¡ x) is worth 0 at
x = 0; 1

2
and 1, takes negative values on

³
0; 1

2

´
and positive val-

ues on
³
1
2
; 1
´
. Therefore, ½µ decreases on

³
0; 1

2

´
and increases

on
³
1
2
; 1
´
with supremum given by max f½µ (0) ; ½µ (1)g. We have

½µ (0) = 0 and ½µ (1) = µ
³
1 + µ

1¡µ ln µ
´
+(1¡ µ) ln (1¡ µ). If µ <

1
2
, µ ln µ < (1¡ µ) ln (1¡ µ) implying that ½µ (1) < 0. If µ > 1

2
,

µ ln µ > (1¡ µ) ln (1¡ µ), therefore ½µ (1) < µ
1¡µ (1¡ µ + ln µ). It

is easy to check that x 7! 1¡x+ln x is negative on (0; 1). Hence,
½µ (1) < 0. In both cases, sup

v2(0;1)
½µ = ½µ (0) = 0. Q.E.D.

Step 2. We show that Q (¢; u; v) increases towards its asymptotic
limit for high values of s. It is easy to check that ©(s) »

h
vµ

(1¡µ)s
i2

when s ! +1, implying that @Q
@s

> 0 for high values of s.
Therefore, Q (¢; u; v) increases towards its limit exp

³
¡ vµ
1¡µ

´
when

s! +1. Q.E.D.

Step 3. We show that @Q
@s

· 0 implies that @2Q
@s2

> 0. We
have @Q

@s
= © (s)Q. Therefore, @2Q

@s2
= ©0 (s)Q + ©(s) @Q

@s
=

17This proof follows closely that of Lemma 2 in Calvó-Armengol (2001).
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³
©0 (s) + [© (s)]2

´
Q. Therefore, ©0 > 0 implies that @2Q

@s2
. Sup-

pose on the contrary that ©0 · 0. We have Á (s) = 1¡vµ 1¡µs
(1¡µ)s !

1 and sÁ0 (s) = vµ
1¡µ

³
1¡µs
s
+ ln µ £ µs

´
! 0 when s ! +1.

Therefore, lim
s!+1 ©(s) = 0. Hence, ©0 · 0 implies that © > 0.

Reciprocally, © · 0 implies that ©0 > 0, which in turn implies
that @

2Q
@s2

> 0. But © · 0 is equivalent to @Q
@s
· 0. Hence, @Q

@s
· 0

implies that @
2Q
@s2

> 0. Q.E.D.

Step 4. We deduce from steps 1 and 2 that @Q
@s
= 0 for some

s 2 [1;+1). Therefore, from step 3, @2Q
@s2

¯̄̄
s=s

> 0. Therefore,
Q (¢; u; v) does not have any local maxima and there exists a
unique such point s, and Q (¢; u; v) reaches its global minimum at
s. Moreover, by continuity of @

2Q
@s2
, there exists some K > s such

that Q (¢; u; v) is strictly convex on [1; K). Q.E.D.

Proof of Proposition 2.

Recall that m (s; u; v) = u [v + (1¡ v)P (s; u; v)]. Therefore,

(a) the properties of the matching function m (¢; u; v) with respect to s are
deduced from that of P (¢; u; v) given in Proposition 1(ii).

(b) With some algebra and using Proposition 1 we get:(
@m(s;u;v)

@v
= u [1¡ P (s; u; v)] + u (1¡ v) @P (s;u;v)

@v
> 0

@2m(s;u;v)
@v2

= ¡2u@P (s;u;v)
@v

+ u (1¡ v) @2P (s;u;v)
@v2

< 0

proving that m (s; u; ¢) is increasing and concave with respect to v.
(c) With some algebra we get:(

@m(s;u;v)
@u

= v + (1¡ v) @
@u
[uP (s; u; v)]

@2m(s;u;v)
@u2

= (1¡ v) @2

@u2
[uP (s; u; v)]

Simplifying by (1¡ µ), we deduce from (2) that P (s; u; v) = 1 ¡h
1¡ v

s

³
µ + µ2 + ¢ ¢ ¢+ µs

´is
, where µ = (1¡ ±) (1¡ u). Fix v and s

and let R (u) ´ uP (s; u; v). Clearly, R (u) is a polynomial in u of
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degree 2s + 1, with roots 0 and 1 (that is, R (0) = R (1) = 0) and
strictly positive on (0; 1) (that is, R (u) > 0, 80 < u < 1). Therefore,
R0 (u) = u@P (s;u;v)

@u
+ P (s; u; v) is a polynomial of degree 2s that has a

unique root eu 2 (0; 1) corresponding to the global maximum of R on
[0; 1] : From R0 (u) continuous and R0 (0) = P (s; 0; v) > 0 we deduce
that R0 (u) > 0 on (0; eu) and that R00 (u) is negative locally aroundeu that is, R00 (u) < 0 on (eu¡ "; eu+ ") for some " > 0. We also de-
duce from R00 (u) = u@

2P (s;u;v)
@u2

+ 2@P (s;u;v)
@u

and Proposition 1(ii) that
R00 (0) = 2@P (s;u;v)

@u
ju=0< 0. If R00 (u) were to change sign on [0; eu],

by continuity of R00 and because both R00 (0) < 0 and R00 (u) < 0,
it would imply that R00 (u) had two distinct roots on (0; eu), which is
impossible because successive derivatives of polynomials have nested
roots, and R0 (u) has only one root on [0; 1]. Therefore, R00 (u) < 0
on [0; eu]. Let u = argmax fu 2 [0; 1] j R0 > 0 and R00 < 0 on [0; u]g.
Clearly, 0 < eu · u · 1.

Lemma 1 The hiring probability h (s; u; v) = m(s;u;v)
u

is decreasing and con-
vex in u and increasing and concave in v. The properties of h (¢; u; v) with
respect to s are the same than that of P (¢; u; v).
Proof. Recall that h (s; u; v) = v + (1¡ v)P (s; u; v). With some algebra
and using Proposition 1 we get:8>>>>><>>>>>:

@h(s;u;v)
@u

= (1¡ v) @P (s;u;v)
@u

< 0
@2h(s;u;v)

@u2
= (1¡ v) @2P (s;u;v)

@u2
> 0

@h(s;u;v)
@v

= 1¡ P (s; u; v) + (1¡ v) @P (s;u;v)
@v

> 0
@2h(s;u;v)

@v2
= ¡2@P (s;u;v)

@v
+ (1¡ v) @2P (s;u;v)

@v2
< 0

which completes the proof.

Lemma 2 The …lling probability f (s; u; v) = m(s;u;v)
v

is increasing in u and
decreasing in v. The properties of h (¢; u; v) with respect to s are the same
than that of P (¢; u; v).
Proof. Recall that f (s; u; v) = u

h
1¡

³
1¡ 1

v

´
P (s; u; v)

i
. With some alge-

bra and using Proposition 1 we get:8<:
@f(s;u;v)

@u
= f(s;u;v)

u
¡ u

³
1¡ 1

v

´
@P (s;u;v)

@u
> 0

@f(s;u;v)
@v

= ¡ u
v2
P (s; u; v)¡ u

³
1¡ 1

v

´
@P (s;u;v)

@v
< 0
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which completes the proof.

Proof of Proposition 3.

Fix the network size s. We …rst prove that along the Beveridge curve, u is
decreasing in v. Indeed, let (u; v) and (u0; v0) both satisfying (7) with v0 > v.
By de…nition, m (s; u; v) = ± (1¡ u) and m (s; u0; v0) = ± (1¡ u0). Suppose
that u0 ¸ u. Then,m (s; u0; v0) · m (s; u; v). But we deduce from Proposition
2 that m (s; u; v) < m (s; u; v0) · m (s; u0; v0) which yields to a contradiction.
Therefore, u0 < u. We now prove that along the curve in the plane (u; v)
obtained from the free entry condition (6), u is increasing in v. Indeed,

from the implicit function theorem we get: dv
du
= ¡

@(m=v)
@u

@(m=v)
@v

> 0 according to

Lemma 2. If a labor market equilibrium exists on [0; u] £ [0; 1] µ [0; 1]2,
it is thus unique. We now prove existence. At v = 1, m (s; u; 1) = u.
We deduce from (7) that

³
±
1+±
; 1
´
belongs to the Beveridge Curve and from

(6) that
³
° r+±
y¡w ; 1

´
satis…es the free entry condition (which requires that

° r+±
y¡w · 1). A necessary and su¢cient condition for an equilibrium to exist

is thus ° r+±
y¡w >

±
1+±
. Clearly, when ° r+±

y¡w · u, the equilibrium is unique.

Proof of Proposition 4.

Suppose …rst that s < s. Let (u; v) on the Beveridge Curve, thus satis-
fying (7), and let s0 such that s < s0 < s. We know from Proposition 2 that
m (s; u; ¢) increases with v and that m (s0; u; v) > m (s; u; v). Therefore, if we
keep u constant while increasing the network size from s to s0, the vacancy
rate adjusts by decreasing. As a result, the Beveridge Curve (that decreases
on the plane (u; v)) shifts downwards. Let now (u; v) satisfy (6). We know
from Lemma 2 that f (s; u; v) = m(s;u;v)

v
is an decreasing function of v and

that f (s0; u; v) > f (s; u; v). Therefore, the vacancy rate adjusts by increas-
ing and the curve associated to the free entry condition shifts upwards on
the plane (u; v). One can check geometrically that u¤ (s0) < u¤ (s). Suppose
now that s ¸ s and let s0 > s. Following a similar reasoning it is straight-
forward to see that the Beveridge Curve now shifts upwards while the free
entre condition curve shifts downwards, implying that u¤ (s0) > u¤ (s).
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P1 = 1 - [1-vθ]5

P2 = ...= P6 = vθ(1 - θ5)/5(1 - θ)

Figure 1a. Star centered on 1 (n = 6).

1

2 3 4 5 6

P1 = ...= P6 = 1 - [1 - vθ(1 - θ5)/5(1 - θ)]5

Figure 1b.Complete graph (n = 6).
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Figure 1: Two Examples of Networks
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Figure 2a. Sparse network(s < s). Figure 2b. Dense network(s > s).
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curve

Labor 
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Figure 2: Equilibrium Unemployment Level
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