
DISCUSSION PAPER SERIES

�����

������������

Available online at: www.cepr.org/pubs/dps/DP2762.asp

www.ssrn.com/xxx/xxx/xxx

No. 2762

NEW EXTREME-VALUE
DEPENDENCE MEASURES AND

FINANCE APPLICATIONS

Ser-Huang Poon, Michael Rockinger
and Jonathan Tawn

  FINANCIAL ECONOMICS



ISSN 0265-8003

NEW EXTREME-VALUE
DEPENDENCE MEASURES AND

 FINANCE APPLICATIONS

Ser-Huang Poon, University of Strathclyde
Michael Rockinger, Hautes Études Commerciales, Jouy-en-Jousas and CEPR

Jonathan Tawn, Lancaster University

Discussion Paper No. 2762
April 2001

Centre for Economic Policy Research
90–98 Goswell Rd, London EC1V 7RR, UK

Tel: (44 20) 7878 2900, Fax: (44 20) 7878 2999
Email: cepr@cepr.org, Website: www.cepr.org

This Discussion Paper is issued under the auspices of the Centre’s research
programme in Financial Economics. Any opinions expressed here are
those of the author(s) and not those of the Centre for Economic Policy
Research. Research disseminated by CEPR may include views on policy, but
the Centre itself takes no institutional policy positions.

The Centre for Economic Policy Research was established in 1983 as a
private educational charity, to promote independent analysis and public
discussion of open economies and the relations among them. It is pluralist
and non-partisan, bringing economic research to bear on the analysis of
medium- and long-run policy questions. Institutional (core) finance for the
Centre has been provided through major grants from the Economic and
Social Research Council, under which an ESRC Resource Centre operates
within CEPR; the Esmée Fairbairn Charitable Trust; and the Bank of
England. These organizations do not give prior review to the Centre’s
publications, nor do they necessarily endorse the views expressed therein.

These Discussion Papers often represent preliminary or incomplete work,
circulated to encourage discussion and comment. Citation and use of such a
Paper should take account of its provisional character.

Copyright: Ser-Huang Poon, Michael Rockinger and Jonathan Tawn



CEPR Discussion Paper No. 2762

April 2001

ABSTRACT

New Extreme-Value Dependence Measures and Finance
Applications*

In the finance literature, cross-sectional dependence in extreme returns of
risky assets is often modelled implicitly assuming an asymptotically dependent
structure. If the true dependence structure is asymptotically independent then
existing finance models will lead to over-estimation of the risk of simultaneous
extreme events. We provide simple techniques for deciding between these
dependence classes and for quantifying the degree of dependence in each
class. Examples based on daily stock market returns show that there is strong
evidence in favour of asymptotically independent models for dependence in
extremal stock market returns, and that most of the extremal dependence is
due to heteroskedasticity in stock returns processes.
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NON-TECHNICAL SUMMARY

Estimating dependence between risky asset returns is the cornerstone of
portfolio theory and many other finance applications such as hedging, credit
spread analysis, valuation of exotic option written on more than one asset,
and risk management in general. Unfortunately, the conventional dependence
measure, Pearson correlation, is constructed as an average of deviations from
the mean. As a consequence, the weight given to extreme realizations is the
same as for all of the other observations in the sample. If the dependence
characteristics for these extreme realizations differs from all others in the
sample, the conclusions drawn from such measures could result in a financial
institution risking bankruptcy. This suggests that correlation is not a good
measure of dependency in the case where extreme realizations are important.

As an alternative to the traditional approach, it is possible to draw on statistical
developments in extreme value theory (evt). Even though earlier applications
of these techniques are widespread in the engineering literature, only more
recently has evt been brought to finance. While the number of univariate
contributions to finance increases steadily, multivariate finance applications
are also beginning to appear either to explore the dependency of stock market
returns or to derive directly the Value at Risk of a position.

In this Paper we draw attention to a pitfall that arises in the estimation of
cross-sectional dependence among extreme returns and provide a remedy for
this. The pitfall comes from the fact that there are two classes of extreme
value dependence, asymptotic dependence and asymptotic independence, for
which the characteristics of events behave quite differently as the events
become more extreme. Both forms of extremal dependence permit
dependence between moderately large values of each variable, but the very
largest values from each variable can occur together only when the variables
exhibit asymptotic dependence. This type of behaviour may be detected
simply by considering a scatterplot of joint realizations of stock market returns.
For instance, for the US-UK pair, one notices that the number of times of
jointly exceeding a high threshold decreases quickly whereas it does not for
the German-French pair. This suggests that the US-UK pair is asymptotically
independent whereas the German-French pair is asymptotically dependent. It
should be emphasized that even though the US-UK pair is asymptotically
independent, its Pearson correlation is significantly different from zero. As a
consequence, these returns are not independent in the usual sense.

The conventional multivariate extreme value theory has emphasized the
asymptotically dependent class, resulting in its wide use in all current finance
applications. If the series are truly asymptotically independent, such an
approach will result in the over-estimation of extreme value dependence, and
consequently of the financial risk. The degree of this over-estimation depends
on the degree of asymptotic independence. Despite this potential for bias, the



case for asymptotically independent models has so far been omitted in the
finance literature.

In this Paper, we provide techniques for distinguishing between asymptotically
dependent and asymptotically independent variables and for quantifying the
degree of dependence for the appropriate dependence class. We introduce
two extremal dependence measures, which require no knowledge of the
distribution of stock returns to measure the degree of asymptotic dependence
and asymptotic independence respectively. We also develop a test strategy,
whereby one first investigates if given pairs of series are asymptotically
independent. If the series are asymptotically independent then the test stops.
If the first test rejects asymptotic independence then we measure the degree
of asymptotic dependency with a second measure.

In an empirical study, using daily returns on five stock indices (S&P, FTSE,
DAX, CAC and Nikkei), over a 31.5-year period from 26th December 1968 to
31st May 2000, we find left-tail dependence to be usually stronger than right-
tail dependence. In addition, we demonstrate that most of these stock index
returns do not exhibit asymptotic dependence, suggesting that much of the
extreme value dependence reported in previous studies is likely to be over-
estimated. Using an asymmetric version of a GARCH(1,1) filter, we find that
much, but not all, of the extreme value dependence is caused by changing
stock market volatility.



New Extreme-Value Dependence Measures

and Finance Applications

1 Introduction

Estimating dependence between risky asset returns is the cornerstone of portfolio theory

and many other finance applications such as hedging, credit spread analysis, valuation

of exotic option written on more than one asset, and risk management in general. Un-

fortunately, the conventional dependence measure, Pearson correlation, is constructed as

an average of deviations from the mean. As a consequence, the weight given to extreme

realizations is the same as for all of the other observations in the sample. If the depen-

dence characteristics for these extreme realizations differs from all others in the sample

the conclusions drawn from such measures could result in a financial institution risking

bankruptcy. This suggests that correlation is not a good measure of dependency in the

case where extreme realizations are important.

As an alternative to the traditional approach, it is possible to draw on statistical devel-

opments in extreme value theory (evt). Even though earlier applications of this field are

widespread in the engineering literature, only more recently, has evt been brought to fi-

nance. Most of the applications are univariate. Jansen and de Vries (1991) showed that the

crash of 19th October 1987 may not be an isolated event. Loretan and Phillips (1994) used

evt to study the existence of moments of financial returns and Longin (1996) who showed

that the tails of stock market returns belong to the Fréchet class. Embrechts, Klüppelberg,

and Mikosch (1997) provide a summary of general evt results and comprehensive refer-

ences. Diebold, Schuerman and Stroughair (1998) sketch a number of pitfalls associated

with the application of evt techniques to financial data. They emphasize the role of small
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samples and the dependency of financial data, especially considering volatility.1 While the

number of univariate contributions increases steadily, multivariate finance applications are

also beginning to appear. Longin and Solnik (2000) explore the use of multivariate ex-

treme value methods for stock market returns, which Longin (2000) uses to demonstrate

how VaR of a position can be derived. Stariça (2000) finds a high level of dependence

between the extreme movements of most of the currencies in the EU. Marsh and Wagner

(2000) find extremal dependence between stock returns and trading volume among equity

markets. Hartmann, Straetmans and de Vries (2000) find co-crashes between stock and

bond markets and some evidence of extreme cross-border linkages.

We draw attention to a pitfall that arises in the estimation of cross-sectional dependence

among extreme returns and provide a remedy for this. The problems arise from the fact that

there are two classes of extreme value dependence, asymptotic dependence and asymptotic

independence, for which the characteristics of events behave quite differently as the events

become more extreme. Both forms of extremal dependence permit dependence between

moderately large values of each variable, but the very largest values from each variable

can occur together only when the variables exhibit asymptotic dependence. To illustrate

this, Figure 1 presents scatter-plots of the most recent 1,000 daily stock market returns in

the US against those in the UK, and those of Germany against France. The dependence

for the German-French stock market returns is persistent for both positive and negative

extremes, which is indicative of the variables being asymptotically dependent. In contrast,

the extremal dependence between US and UK stock market returns is much weaker although

the largest values in each tail for one variable coincide with moderately large values of the

same sign for the other variable, suggesting the variables are asymptotically independent

but not exactly independent.

The conventional multivariate extreme value theory has emphasized the asymptotically

dependent class resulting in its wide use in all the finance applications listed above. If

the series are truly asymptotically independent, such an approach will result in the over-

1There exist some contributions, such as Harvey and Siddique (1999) or Rockinger and Jondeau (2001)

where asset prices get modeled within a GARCH framework but where a conditional distribution is chosen

to accomodate conditional skewness and kurtosis. This approach may be viewed as an alternative to evt.
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estimation of extreme value dependence, and consequently of the financial risk. The degree

of this over-estimation depends on the degree of asymptotic independence. Despite this

potential for bias, the case for asymptotically independent models has so far been omitted

in the finance literature.

In this paper, we provide techniques for distinguishing between asymptotically depen-

dent and asymptotically independent variables and for quantifying the degree of dependence

for the appropriate dependence class. We introduce two extremal dependence measures,

χ and χ, that require no knowledge of the distribution of stock returns to measure the

degree of asymptotic dependence and asymptotic independence respectively. Only when

χ suggests the variables are asymptotically dependent is the measure χ a correct measure

of asymptotic dependence. For the data in Figure 1, we show how these two measures

quantify the empirical conclusions above.

More generally, using daily returns on five stock indices (viz. S&P, FTSE, DAX, CAC

and Nikkei), over a 31.5-year period from 26th December 1968 to 31st May 2000, we

find left-tail dependence to be usually stronger than right-tail dependence. This result

corresponds to recent findings in Longin and Solnik (2000). In addition, we demonstrate

that most of these stock index returns do not exhibit asymptotic dependence, suggesting

that much of the extreme value dependence reported in previous studies is likely to be

over-estimated. Using an asymmetric version of a GARCH(1,1) filter, we find that much,

but not all, of the extreme value dependence is caused by changing stock market volatility.

The remaining sections are organized as follows: Section 2 briefly describes univari-

ate extreme value theory and recent developments in the measurement of dependence in

multivariate extreme values. Section 3 describes the empirical analyses, which include a

description of the data sources and a report of empirical findings. Section 4 provides a brief

discussion on how the concepts underpinning the measures for extreme value dependence

can be extended into useful portfolio management tools. Section 5 concludes.
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2 Extreme Value Theory and Extremal Dependence

By their nature, data on extreme values are relatively scarce, and from this rather uncertain

basis we often need to extrapolate to rarer events than those observed. Extreme value

theory is a rigorous and broad mathematical limit theory which provides an asymptotic

justification for modeling and extrapolating extreme values. For assessing the financial risk

of a portfolio, the complete joint distribution of the various assets during periods of great

turmoil needs to be estimated. This involves estimating the marginal distributions and

the dependence structure. We will focus on the dependence estimation in the bivariate

context, though the ideas and techniques extend naturally to higher dimensions. First

we describe briefly univariate extreme value methods as they are used both to determine

the marginal distributions and as they provide the inference techniques for the dependence

measures.

2.1 Univariate Methods

There is a long history, and a large associated literature, on probability characterizations

and statistical models for univariate extremes. The numerous approaches by which extreme

values may be statistically modelled separate into two forms: methods for maxima over

fixed intervals and methods for exceedances over high thresholds. We outline the funda-

mental aspects of each method. Further details can be found in Embrechts, Klüppelberg

and Mikosch (1997) and Reiss and Thomas (1997).

The limit theory for the maximum of a sample of n independent and identically dis-

tributed random variables is based on a location-scale normalization of the maximum so

that its distribution is non-degenerate as n ! 1. Provided a non-degenerate limit can

be achieved, it follows that, whatever the distribution of the original variables, the limiting

distribution of the maximum has a small set of possible distributions, namely the Gumbel,

the Fréchet or the negative Weibull distributions. The generalized extreme value distri-

bution (GEV) is a unifying model that encompasses these three types of extreme value

distributions. The GEV has three parameters, µ, σ and ξ, denoting the location, scale

and shape parameters respectively. The shape parameter, ξ, also called the tail index,
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determines the three extreme value types.2 For example, if the original variables follow a

normal distribution then a Gumbel distribution will result for the maximum. Similarly,

the Fréchet (negative Weibull) distributions arise as the distribution of the maximum for

variables with heavier (lighter) tails than the normal distribution. There is now a grow-

ing consensus that many financial series have heavy tails (see for example, Loretan and

Phillips, 1994), so the Fréchet distribution is to be expected.

When observations on all exceedances of a high threshold are available then using simply

the fixed interval maximum values is inefficient as it may exclude large observations from

the analysis. The appropriate limit theory in this context is one based on a point process

result of Pickands (1971), which has been advocated for statistical modeling by Smith

(1989). The limit result suggests modeling exceedances of a high threshold by a non-

homogeneous Poisson process. A consequence of this model is that the excess values over

the threshold follow the generalized Pareto distribution (GPD) and that maximum values

are modelled by the generalized extreme value distribution, both distributions having a

common shape parameter ξ. The GPD model, advocated by Pickands (1975) and Davison

and Smith (1990), provides a flexible family of tail behaviors, with ξ = 0 corresponding to

the exponential distribution. A key modeling aspect with threshold methods is the selection

of the threshold. A number of diagnostic techniques exist for threshold selection, including

a bootstrap method which produces an optimal value under certain criteria (Danielsson

and de Vries, 1997). The critical aspect of threshold selection is that inference conclusions

should be insensitive to increases in threshold above a suitable level.

For the subsequent dependence measures we introduce a special example of threshold

modeling linked to the generalized Pareto distribution for the case where ξ > 0, i.e. Fréchet

tailed. In this case the tail of the variable Z above a high threshold u can be approximated

as

Pr(Z > z) =
L(z)

z1/ξ
for z > u, (1)

2Specifically, when » takes negative values, positive values or the value 0, the GEV distribution becomes

the negative Weibull, the Fréchet and the Gumbel distributions respectively.
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where L(z) is a slowly varying function of z (see Embrechts (1997), page 325). Treating

the slowly varying function as a constant for all z > u, i.e. L(z) = c, and under the

assumption of independent observations the maximum likelihood estimators for ξ, known

as Hill’s estimator (Hill, 1975), and c are

ξ̂ =
1

nu

nuX
j=1

log

³
z(j)

u

´
, (2)

ĉ =
nu

n
u
1/ξ̂

, (3)

where z(1), . . . , z(nu) are the nu observations of variable Z that exceed u.

The above discussion applies to independent variables. When the variables are depen-

dent, the statistical approaches for analyzing maxima are unchanged as the limit distribu-

tion of the maximum is also a generalized extreme value distribution. Unlike the maximum

over interval method, temporal dependence due to the use of threshold method adds some

complications. One approach is to ignore the dependence and apply the methods as if the

data were independent. This approach leads to unbiased estimators but with standard

errors that are too small.3 But many finance applications have directly assumed temporal

independence and omitted the well documented volatility dependence.

2.2 Measuring Extreme Value Dependence

Much effort has been made to extend univariate extreme value theory for applications

in a multivariate context. In almost all multivariate studies, it is helpful to remove the

influence of marginal aspects first by transforming the original variables to a common

marginal distribution. After such a transformation, differences in distributions are purely

due to dependence aspects. Hence, our dependence measures, unlike the correlation, are

no longer influenced by the form of the marginal distribution.4 In this spirit, we transform

the bivariate returns (X,Y ) to unit Fréchet marginals (S, T ) using the transformation

S = ¡1/ logFX(X) and T = ¡1/ logFY (Y ), (4)
3Two approaches are used to overcome this problem: declustering of the exceedances of the threshold

to produce approximately independent data (see Davison and Smith, 1990); or using robust methods for

standard error evaluation based on estimating equations (see Coles and Walshaw, 1994).
4For a further discussion of this issue, see Embrechts, McNeil and Strautman (1999).
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where FX and FY are the respective marginal distribution functions for X and Y . Conse-

quently, Pr(S > s) = Pr(T > s) » s−1 as s!1, and (S, T ) possess the same dependence

structure as (X,Y ). In practice, the values of FX and FY that are used in the transforma-

tion (4) are obtained using the empirical distribution functions of the separate variables.

2.2.1 The conventional approach

To understand extremal dependence, one must first appreciate that the form and degree

of such dependence determine the chance of obtaining large values of both variables. As

variables S and T are on a common scale then events of the form fS > sg and fT > sg,

for large values of s, correspond to equally extreme events for each variable. As all such

probabilities will tend to zero as s!1 it is natural to consider conditional probabilities

of one variable given that the other is extreme. Specifically, consider the behaviour of

Pr(T > s jS > s) for large s. If (S, T ) are perfectly dependent then Pr(T > s jS > s) = 1.

In contrast, if (S,T ) are exactly independent then Pr(T > s jS > s) = Pr(T > s), which

tends to 0 as s!1. Defining

χ = lim
s→∞

Pr(T > s jS > s), (5)

where 0 	 χ 	 1, we have that variables are termed asymptotically dependent if χ > 0 and

asymptotically independent if χ = 0. Clearly χ measures the degree of dependence that

is persistent into the limit. An example of a non-trivial asymptotically dependent joint

distribution is the logistic model in the bivariate extreme value family, see Tawn (1988)

and Longin and Solnik (2000), which for unit Fréchet margins has

Pr(S 	 s, T 	 t) = expf¡(s−1/α + t
−1/α)αg (6)

with 0 < α 	 1. When α = 1 then the variables are exactly independent and χ = 0.

When α < 1 then χ = 2 ¡ 2α, so the variables are asymptotically dependent to a degree

depending on α. Generally, when χ = 0 the two random variables are not necessarily

exactly independent. For example, if the dependence structure is that of a bivariate normal

random variable with any value for the correlation coefficient less than one, then χ = 0

(Sibuya, 1960).
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When exact independence is rejected, the traditional multivariate extreme value meth-

ods,5 assume Pr(T > s jS > s) = χ > 0 for all large s. If the true distribution of the

variables is asymptotically independent, the use of the traditional multivariate extreme

value methods will over-estimate Pr(S > s,T > s) and all other probabilities of joint ex-

treme events since Pr(T > s jS > s) ! 0 as s ! 1. The degree of bias will depend on

the difference between the estimated χ and the true value of Pr(T > s jS > s), which is

determined by the value of s and the rate at which Pr(T > s jS > s)! 0 as s!1.

2.2.2 An alternative measure of dependence

More recently, Ledford and Tawn (1996, 1997), Bruun and Tawn (1998), Bortot and Tawn

(1998) have provided a range of extremal dependence models, derived from a different form

of multivariate limit theory, that describe dependence but have χ = 0. Although the ran-

dom variables are asymptotically independent in this case, different degrees of dependence

are attainable at finite levels of s. Two simple extremal dependence measures were devel-

oped by Coles et al. (1999) for identifying the form and the associated degree of dependence

for the two types of extremal dependence. One of these measures is χ, which provides the

degree of asymptotic dependence if the variables are asymptotically dependent. For all

asymptotically independent variables χ = 0, so χ cannot provide a measure of the degree

of asymptotic independence. Coles et al. (1999) suggest that χ, defined by

χ = lim
s→∞

2 logPr(S > s)

logPr(S > s, T > s)
¡ 1, (7)

where ¡1 < χ 	 1, is an appropriate measure of asymptotic independence as it gives the

rate that Pr(T > s jS > s) ! 0. Values of χ > 0, χ = 0 and χ < 0 loosely correspond

respectively to when (S, T ) are positively associated in the extremes, exactly independent,

and negatively associated. For the bivariate normal dependence structure χ is equal to the

correlation coefficient, which aids in interpreting the value of χ. For other examples see

Heffernan (2000).

The pair of dependence measures (χ,χ) together provide all the necessary information

to characterise the form and degree of extremal dependence. For asymptotically depen-
5See for example, de Haan (1985), de Haan and de Ronde (1998) and Coles and Tawn (1991, 1994).
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dent variables χ = 1 with the degree of dependence given by χ > 0. For asymptotically

independent variables χ = 0 with the degree of dependence given by χ. It is important

to test if χ = 1 first before drawing conclusions about asymptotic dependence based on

estimates of χ.

2.3 χ and χ : Estimation and Statistical Inference

To estimate χ and χ, we use results in Ledford and Tawn (1996, 1997, 1998), where it was

established that under weak conditions

Pr(S > s,T > s) = L(s)s−1/η as s!1, (8)

where 0 < η 	 1 is a constant and L(s) is a slowly varying function. From this represen-

tation it follows that

χ = 2η ¡ 1 (9)

and that if χ = 1, corresponding to η = 1, then χ = lims→∞ L(s). Thus estimating η and

lim
s→∞

L(s) provide the basis for estimating χ and χ.6

Inference follows using univariate extreme value techniques by identifying that if Z =

min(S, T ) then

Pr(Z > z) = Prfmin(S, T ) > zg

= Pr(S > z, T > z)

= L(z)z−1/η

= dz−1/η for z > u, (10)

for some high threshold u. From this representation and the univariate tail form (1), it can

be seen that η is the tail index of the univariate variable Z, and so can be easily estimated

6There is the possibility that ´ = 1 and L(s)! 0 as s!1 leading to asymptotic independence. This

boundary case cannot be identified from data as the slowly varying function cannot be identified other

than as a constant, and mis-specification of the dependence structure in this situation is unlikely to be

important. Thus, we focus on inference for ´ and lims!1 L(s), treating the slowly varying function as

constant over some threshold u, i.e. L(s) = d for s > u.
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using the Hill estimator from equation (2), truncated to the interval (0,1], and that d

is the associated scale parameter which can be estimated by equation (3). The following

development is based on the assumption of independent observations on Z. From this

formulation we obtain our estimator for χ to be

χ̂ =
2

nu

Ã
nuX
j=1

log

³
z(j)

u

´!
¡ 1

Var(χ̂) = (χ̂+ 1)2/nu,

with the notation as in equations (2) and (3). If bχ is significantly less than 1 (i.e. if

bχ + 1.96
q

Var(bχ) < 1) then we infer the variables to be asymptotically independent and

take χ = 0. Only if there is no significant evidence to reject χ = 1 do we estimate χ, which

we do under the assumption that χ = η = 1. Using the maximum likelihood estimator

given by (3), under the constraint bχ = 1, our estimator of χ is

bχ =
unu

n
,

Var(bχ) =
u2nu(n¡ nu)

n
3

.

Furthermore, we can assess whether the variables have a joint tail which decays with the

same form as for exact independence by testing if bχ is significantly different from 0.

3 Empirical Analyses

Our data consists of closing stock index levels of S&P 500 from the US, FTSE 100 from

the UK, DAX 30 from Germany, CAC 40 from France, and Nikkei 225 from Japan. Our

sample period spans from 26th December 1968 to 31st May 2000 giving rise to 8,200 daily

return observations for each series. Three of the indices (viz. S&P, FTSE and CAC)

were created by grafting two returns series from the same country. For example, the UK

returns are represented by the FT All Shares returns before 1st January 1980 and FTSE

returns after that date. Daily index returns are generated by taking first differences of

the logarithmic indices. Although some of the returns series do not include the dividend

distribution, as dividends do not generate extreme movements this is not a problem for our

analysis.
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It has been widely documented elsewhere that the US market has, by far, the greatest

influence on all the other stock markets (see, for example, Martens and Poon (2001)). The

US market is also the latest to close on any particular day among the five stock markets in

our sample. This means that any extreme movements in the US stock market are likely to

impact on the other stock markets’ on the following day. Hence, in the following analyses,

we use previous day US returns whenever the returns pair involves S&P returns.

3.1 Descriptive statistics

Table 1 presents some summary statistics for the five stock index returns. Panel A presents

the mean, variance, skewness and excess kurtosis, evaluated using generalized method of

moments to ensure robustness to heteroskedasticity.7 The average mean returns for all five

returns is 0.033% (or 8.5% per annum) excluding dividends. All series have a significant

negative skewness which implies that extreme negative returns are a dominant feature for

all five indices. Kurtosis is significantly greater than three for all series, except the case of

S&P returns in the US, which suggests Fréchet type tails. An Engle test (not reported) for

heteroskedasticity shows significant first lag autocorrelation among the squared returns.

To disentangle variations in volatility, known to generate excess kurtosis, from extreme

returns, we consider also a filtered version of stock returns. The filter we used is an

asymmetric version of the GARCH(1,1) model, see Zakoian (1994), which is based on the

model that the return Rt at time t follows a normal distribution with mean ω and standard

deviation
p
ht, where

Rt = ω +

p
htZt

ht = α0 + α
+
Z
2

t−1
ht−1DZt−1≥0 + α

−
Z

2

t−1
ht−1DZt−1<0

+ βht−1,

where α0, α
+, α− and β are parameters, and DE is the indicator function that event E

occurs. Using estimated values of these parameters the filtered series of Zt values is derived.

The second panel of Table 1 presents the Hill index for both left and right tails of

the unfiltered and filtered univariate data series. There are approximately 2% of the

7We achieve this using the methodology developed by Richardson and Smith (1993).
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8,200 returns observations falling into the tail region for each variable when the method of

Danielsson and de Vries (1997) is used for threshold selection. All the tail indices reported

in Table 1 are significantly greater than zero. The GARCH filter reduces the tail index by

18% on average for the left tail, and by 25% on average for the right tail, indicating that

heteroskedasticity is a contributing factor to extreme price movements.

3.2 Results on Extremal Dependence

Throughout this section we report our analyses based on the crude assumption of temporal

independence of the data. In footnote 3, approaches which account for temporal depen-

dence were discussed. But, given that previous extremal dependence studies in finance

(see Introduction) have exclusively ignored this aspect, and that our analysis is largely ex-

ploratory, we do not see this assumption as restrictive. Moreover, we argue that although

the assumption of iid (identical and independent distribution) is questionable for the unfil-

tered returns, there are reasonable grounds to believe that temporal independence cannot

be rejected for filtered returns series. This is because the filtered returns have revealed

no autocorrelations in the first and second moments and we did not detect any pattern

of clustering in time of extremes in each separate filtered returns series. Nevertheless, in

drawing conclusions we are cautious that the standard errors we present are likely to be

too small, particularly for the unfiltered series.

Estimates of χ, for selected pairs of stock index returns, are reported in Table 2 for three

non-overlapping sub-periods. Each sub-period is over ten years with the world market crash

taking place in sub-period 2 and the integration of the European Union evolving throughout

sub-period 3. Note that ¡1 < χ � 1 from equation (7), but our estimator based on the

Hill’s estimator (2) is not constrained to ensure the upper bound is satisfied. Here, we

present unconstrained estimates of χ.

The table presents estimates corresponding to different extremal dependence aspects

of the series, enabling identification of: (i) differences between left-tail dependence and

right-tail dependence, (ii) the influence of heteroskedasticity, and (iii) the difference be-

tween dependence among European countries and between Europe and the US or Japan.
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Table 2 also presents the correlation coefficients for selected returns pairs. All the corre-

lation coefficients are significantly positive and appeared to have increased through time,

especially among the European countries. The correlation for the filtered series is slightly

weaker, but is still statistically significant. The higher correlation for the unfiltered returns

in contrast to that for the filtered returns reflects a widespread dependency among stock

market volatilities.

In most cases the estimates in Table 2 of χ are both significantly greater than 0 and

significantly less than 1. From the interpretation of χ in Section 2.2, this implies that there

is significant dependence between large values of the paired series but that the very largest

values do not occur concurrently. Thus, most of the pairs are asymptotically independent,

which means that they are not well described by existing methods in finance.

A number of features of the form of the extremal dependence become clear by studying

the estimates in Table 2. For all pairs, whether filtered or not, estimated values of χ

are larger for left tails than for right tails, which implies that inter-series dependence for

extreme returns is stronger among the left tails than that among the right tails8. Similarly,

for all series, the χ estimates are larger for unfiltered than filtered series, indicating that

volatility is a major contributing factor to the between-series extremal dependence.

There is evidence of complex non-stationarity in the extremal dependence with a general

increase over time in the χ estimates for the left tail in the raw series but stability over

time period for the corresponding estimates for the filtered data. The same pattern is

found for the right tail amongst the European markets. This suggests that the increased

dependence is due to an increase in volatility linkage instead of contemporaneous extreme

returns realisations. This is an important finding indicating that, to successfully model the

dependence of the extreme values in these data, it is necessary to incorporate the changing

pattern of volatility.

Estimates of χ for pairs where asymptotic dependence cannot be rejected are given in

Table 3. This corresponds to only 15 of the 84 pairs, indicating that the assumption of

asymptotic dependence is inappropriate in most cases. In Section 4 we assess how important

8Similar findings were reported in Ang and Chen (2000), Longin and Solnik (2000) and Martens and

Poon (2001).
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this error is by obtaining an approximation to the bias in a portfolio risk assessment that

is incurred by falsely assuming asymptotic dependence. Of the cases where asymptotic

dependence is not inappropriate, almost all correspond to the unfiltered series, with the

most consistent pattern of estimates being for the left tails within European markets in the

last decade. This provides a considerable strengthening to the understanding provided by

correlation coefficients.

The thresholds used for the above analyses were each determined using the method of

Danielsson and de Vries (1997). The percentage of observations that exceed the threshold

varies a great deal between returns pairs, but remains very stable for each returns pair and

across the three sub-periods. For example, the percentages of observations falling into the

left tail of German-French unfiltered returns distribution in sub-periods 1, 2 and 3 are 6%,

6% and 5% respectively. The corresponding figures for US-UK filtered returns are 21%,

22% and 22% for the right tail.

4 Implications of asymptotic independence for port-

folio risk assessment

So far we have shown how to characterise extremal dependence and measure its associated

degree in stock returns. For both forms of extremal dependence, the measures introduced

are based on evaluation of the properties of the joint distribution function at equal proba-

bility marginal quantiles. To use these measures to characterise extremes of a portfolio, i.e.,

of a linear combination of assets, the full joint distribution function needs to be estimated

in the tail region. For the case where returns are asymptotically dependent or exactly inde-

pendent such methods exist, see Coles and Tawn (1994) and de Haan and de Ronde (1998),

but for asymptotically independent returns equivalent methods are still being developed.9

In this paper, we focus on estimating portfolio risk. Again, the emphasis here is that if

the portfolio risk is estimated based on the assumption of asymptotic dependence when the

9Different approaches are considered in Ledford and Tawn (1997), Bruun and Tawn (1998), Bortot et

al. (2000), Coles et al. (1999), and Heffernan and Tawn (2000).
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returns are asymptotically independent variables, then portfolio risk will be over-estimated.

Here, we follow the Ledford and Tawn (1997) approach for handling asymptotic indepen-

dence to develop a method for providing bounds on the portfolio risk, which are relatively

tight if the variables are asymptotically dependent, but for asymptotically independent

variables the bounds differ, with the lower bound being the more likely to provide a better

approximation in many cases.

To illustrate the estimation of bounds on portfolio risk we focus on the bivariate case.

Define (X,Y ) to be two returns. In a portfolio risk management context, one would seek

a convex combination of these returns, i.e., aX + (1 ¡ a)Y for 0 < a < 1, such that the

probability of the combination exceeding a high threshold, k, is minimized over a. The key

stage of this process is the evaluation of the probability for a given a. This is the aspect

we focus on, estimating

PrfaX + (1¡ a)Y > kg

for fixed a and k, with k large. For any (x, y), where y = (k ¡ ax)/(1¡ a), we obtain

Pr(X > x, Y > y) � Pr(aX + (1¡ a)Y > k) � 1¡ Pr(X < x,Y < y). (11)

Generally, these bounds will be uninformative, however the point (x, y) can be selected to

minimize the errors for each bound simultaneously. The appropriate (x, y) point is the one

with the largest joint density, which generally occurs when x and y are at equal marginal

quantile values, i.e., we seek (x, y) with y = (k ¡ ax)/(1¡ a) and

Pr(X > x) = Pr(Y > y). (12)

Define this point by (x0, y0). To evaluate (x0, y0) we need a model for the marginal distri-

bution tail form. From Section 2.1 the univariate tail model (1) is appropriate for finance

data, with different parameters cX , ξX and cY , ξY for each margin. Thus, equation (12)

corresponds to

y0 = (cY /cX)
ξ
Y x

ξ
Y
/ξ
X

0
.

It follows that

Pr(X > x0, Y > y0) = Pr(S > s0, T > s0)

1 ¡ Pr(X < x,Y < y) = 2Pr(X > x0)¡Pr(S > s0, T > s0),
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where (S, T ) have unit Fréchet marginal distributions and s0 ¼ 1/Pr(X > x0) = xξX
0
/cx =

y
ξ
Y

0
/cY . Then the bounds (11) become

Pr(X > x0)Pr(T > s0 jS > s0) � Pr(aX + (1¡ a)Y > k)

� Pr(X > x0)f2 ¡Pr(T > s0 jS > s0)g,

so from expressions (8) and (10)

ds
−(1−χ)/(1+χ)
0 � Pr(aX + (1 ¡ a)Y > k)/Pr(X > x0) � 2 ¡ ds

−(1−χ)/(1+χ)
0 . (13)

Using estimators of the marginal tail parameters and estimators of the extremal dependence

structure characteristics, χ and d, these bounds can be evaluated. Together with the

estimate of Pr(X > x0) these bounds provide the required bounds on Pr(aX+(1¡a)Y > k).

If the variables are asymptotically dependent, so χ = 1 and d = χ, then as k ! 1 the

bounds on Pr(aX + (1 ¡ a)Y > k)/Pr(X > x0) converge to χ and 2 ¡ χ so are very

tight. For asymptotically independent variables these limits for the bounds are 0 and

2 respectively. However, the rate of approach to these limits depends on the degree of

asymptotic independence, χ. Typically, for finite k, the lower bound in (13) provides a

much closer approximation to the truth than the upper bound, this is as the probability

excluded in the calculation of the bound relates to a more extreme region than that included

in the upper bound.

Figure 2 presents the upper and lower bounds of the portfolio risk, Pr(aX+(1¡a)Y >

k), calculated based on equation (13) for two country pairs, viz. US vs. UK and Germany

vs. France, using left tail parameter estimates for the most recent subperiod unfiltered

returns. We assume in each portfolio that, the weights for the first and second assets are

0.25 and 0.75 respectively. The daily percentage loss, k, is selected such that it is always

greater than the individual univariate extreme value thresholds obtained through bootstrap

estimation as mentioned in Section 2.1.

As one would expect when the daily percentage loss, k, increases, the logarithmic ex-

pected waiting time between such losses in Figure 2 increases, and the band between the

upper and lower bounds widens. We observed previously from Table 2 that asymptotic

dependence cannot be rejected for both US-UK and German-French returns pairs. Table
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3 shows that the degree of dependence between German and French returns (χ = 0.476) is

about twice as strong as that between US and UK returns (χ = 0.275). This corresponds

to the wider band between upper and lower bounds of the US-UK portfolio compared with

that of the German-French portfolio. If we translate the probability of portfolio risk into

waiting time of threshold exceedance, the probability of the US-UK portfolio having a one-

day loss equal to or exceeding 3.25% ranges between 5 months and 4 years. The estimated

waiting time for the equivalent loss for the German-French portfolio is much tighter and

ranges between 2 and 7 months. This reinforces the observation made earlier that for

portfolio extreme risk diversification, the stock combination, US and UK, is more effective

than the German-French stock combination.

5 Conclusion

In this paper, we introduce two measures for extreme value dependency to applications

in finance and demonstrate their use in portfolio risk management. The introduction of

a set of dependence measures that characterises all classes of extreme value dependency

is an important development. These new tools have allowed us to document, for the first

time, the widespread asymptotic independence among stock market returns; a phenomenon

that has so far been overlooked in the finance literature. The omission of asymptotic

independence models has led to over-estimation of portfolio risk. We have shown here

that such an over-statement can be quite substantial.

Other empirical findings include a confirmation that extreme value dependence is much

stronger in bear markets than in bull markets, and that much (but not all) of the extreme

value dependency is due to correlated conditional volatility. In general, the correlation

between volatilities has increased over time to produce asymptotically dependent stock

markets within Europe and strong, but still asymptotically independent stock markets be-

tween Europe (UK, Germany and France), North America (US) and Asia (Japan). Future

research could explore the extreme value dependencies across a larger set of stock markets

and that across different financial markets and asset classes.

An accurate measurement of asset-returns behaviour during extreme period is useful in
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many important finance applications. With the new dependency measures, the dynamic

of conditional correlation can be better understood. Further work could investigate the

hedging efficiency gain and option pricing improvement with a model for conditional cor-

relation that captures the characteristics observed here. The modeling of portfolio joint

tail distribution would require detailed calibration of individual tail distributions and as-

set extreme value dependency. Ongoing research in this area should provide better tools

for portfolio management and risk diversification. Future research to identify exogenous

and leading relationships and economic conditions will also help us narrow the confidence

intervals when we make statements about the probability of extreme value occurrence.
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Figure 1
Scatter plot of 1,000 pairs of daily returns on selected stock market indices

for the period 19 December 1995 to 31 May 2000
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Figure 2
Bounds on Portfolio Risk Estimated for Subperiod 3

from 11 December 1989 to 31 May 2000

Note:
Portfolio weights for first and second assets are 0.25 and 0.75 respectively.
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Table 1.  
Summary statistics and tail indices for stock market returns  

over the period 27 December 1968 to 31 May 2000 

 

 US UK Germany France Japan 

Mean 0.032 0.035 0.031 0.039 0.028 

Std Deviation 0.953 1.042 1.082 1.055 1.092 

Skewness -1.79 -0.31 -0.55 -0.61 -0.16 

Excess 
Kurtosis 

45.11 9.41 9.67 10.17 15.17 

Tail index for daily stock index returns 

Left Tail 0.30 0.30 0.32 0.31 0.32 
 (0.021) (0.025) (0.025) (0.025) (0.026) 

Right Tail 0.26 0.32 0.30 0.27 0.36 
 (0.021) (0.021) (0.025) (0.020) (0.029) 

Tail index for daily return residuals from the asymmetric GARCH(1,1) model 

Left Tail 0.25 0.23 0.25 0.27 0.28 
 (0.018) (0.017) (0.017) (0.018) (0.020) 

Right Tail 0.19 0.20 0.22 0.22 0.31 
 (0.016) (0.015) (0.015) (0.017) (0.020) 

Notes: 
1. The stock market indices are S&P 500 (for the US), FTSE 100 (for the UK), DAX 30 (for 

Germany), CAC 40 (for France) and Nikkei 225 (for Japan).  There are 8,200 
observations in each returns series, and the returns are defined as log differences of stock 
index. 

2. Mean, standard deviation, skewness and kurtosis are computed based on the generalised 
method of moments using a weighting matrix correcting for possible first order 
autocorrelation.  Hence, they are robust against heteroskedasticity and serial correlation. 

3. Standard errors are in parentheses. 



Table 2. 
Measures of extreme tail independency, χ  

for selected daily stock market return pairs over three sub-periods 
 

 Unfiltered Raw Data  Filtered Residuals 
 
Subperiod 1: 27 December 1968 – 19 June 1979 (2,733 observations) 
  Left tail Right tail   Left tail Right tail 
 ρ  χ  s.e. χ  s.e.  ρ  χ  s.e. χ  s.e. 
US-UK 0.220 0.472 0.118 0.601 0.170  0.213 0.444 0.082 0.362 0.056 
US-GER 0.211 0.820 0.185 0.355 0.098  0.186 0.514 0.060 0.281 0.051 
US-FRA 0.261 0.381 0.109 0.683 0.238  0.227 0.447 0.074 0.266 0.064 
US-JAP 0.116 0.333 0.104 0.368 0.095  0.114 0.418 0.060 0.314 0.104 
UK-GER 0.102 0.332 0.097 0.299 0.089  0.080 0.746 0.153 0.105 0.101 
UK-FRA 0.141 0.502 0.125 0.344 0.092  0.126 0.598 0.068 0.393 0.055 
GER-FRA 0.163 0.438 0.111 0.183 0.127  0.167 0.616 0.072 0.272 0.089 

Subperiod 2: 20 June 1979 – 8 December 1989 (2,733 observations) 
  Left tail Right tail   Left tail Right tail 
 ρ  χ  s.e. χ  s.e.  ρ  χ  s.e. χ  s.e. 
US-UK 0.347 0.800 0.243 0.765 0.156  0.302 0.451 0.081 0.361 0.056 
US-GER 0.319 0.688 0.116 0.442 0.106  0.366 0.513 0.059 0.256 0.057 
US-FRA 0.257 0.568 0.107 0.272 0.081  0.341 0.469 0.066 0.271 0.064 
US-JAP 0.407 0.626 0.111 0.764 0.193  0.290 0.411 0.061 0.324 0.103 
UK-GER 0.345 0.658 0.114 0.591 0.173  0.273 0.766 0.159 0.089 0.103 
UK-FRA 0.287 0.845 0.234 0.449 0.102  0.249 0.605 0.069 0.398 0.056 
GER-FRA 0.358 0.809 0.140 0.518 0.104  0.259 0.616 0.072 0.271 0.086 

Subperiod 3: 11 December 1989 – 31 May 2000 (2,733 observations) 
  Left tail Right tail   Left tail Right tail 
 ρ  χ  s.e. χ  s.e.  ρ  χ  s.e. χ  s.e. 
US-UK 0.311 0.724 0.177 0.462 0.119  0.292 0.426 0.070 0.354 0.055 
US-GER 0.361 0.593 0.110 0.452 0.099  0.353 0.513 0.059 0.254 0.058 
US-FRA 0.275 0.575 0.109 0.345 0.123  0.266 0.473 0.066 0.279 0.065 
US-JAP 0.264 0.482 0.118 0.493 0.114  0.260 0.411 0.061 0.312 0.101 
UK-GER 0.570 1.043 0.166 0.850 0.142  0.510 0.770 0.160 0.089 0.103 
UK-FRA 0.670 0.824 0.167 0.711 0.136  0.648 0.601 0.069 0.390 0.056 
GER-FRA 0.664 1.023 0.177 0.913 0.156  0.611 0.616 0.072 0.270 0.087 

 
Notes: 
1. The stock market indices are S&P 500 (for the US), FTSE 100 (for the UK), DAX 30 (for 

Germany), CAC 40 (for France) and Nikkei 225 (for Japan). 
2. ρ  is the correlation coefficient calculated using all observations in the subperiod. 
3. χ  is computed  based on tail index estimation on Frechet transformed margins of daily co-

exceedances of stock market returns pair. 
4. The filter used is an asymmetric version of univariate GARCH,  
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where tR  is the stock return at time t, 0α , +α , −α  and β  are parameters, and ED  is the 
indicator function that event E occurs. 



Table 3. 
Measures of extreme tail dependency, χ , based on tail index estimation  

on Frechet transformed margins of co-exceedances 
constructed from daily stock market return pairs over three sub-periods 

 

 Unfiltered Raw Data  Filtered Residuals 

 

Subperiod 1: 27 December 1968 – 19 June 1979 (2,733 observations) 
  Left tail Right tail   Left tail Right tail 
  χ  s.e. χ  s.e   χ  s.e χ  s.e 
US-GER  0.239 0.024         
US-FRA    0.173 0.025       
UK-GER        0.206 0.018   

 

Subperiod 2: 20 June 1979 – 8 December 1989 (2,733 observations) 
  Left tail Right tail   Left tail Right tail 
  χ  s.e. χ  s.e   χ  s.e χ  s.e 
US-UK  0.195 0.026 0.257 0.022       
US-JAP    0.238 0.026       
UK-GER        0.203 0.018   
UK-FRA  0.222 0.028         
GER-FRA  0.309 0.023         

 

Subperiod 3: 11 December 1989 – 31 May 2000 (2,733 observations) 
  Left tail Right tail   Left tail Right tail 
  χ  s.e. χ  s.e   χ  s.e χ  s.e 
US-UK  0.275 0.028         
UK-GER  0.421 0.033 0.361 0.027   0.203 0.018   
GER-FRA  0.476 0.041 0.413 0.033       

 
Notes: 
1. The stock market indices are S&P 500 (for the US), FTSE 100 (for the UK), DAX 30 (for Germany), 

CAC 40 (for France) and Nikkei 225 (for Japan). 
2. χ  is computed  based on tail index estimation on Frechet transformed margins of daily co-

exceedances of stock market returns pair, and the assumption that χ  estimated for Table 2 is equal 
to 1. 

3. The filter used is an asymmetric version of univariate GARCH,  

,ttt ZhR += ω   101
2

101
2
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−
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where tR  is the stock return at time t, 0α , +α , −α  and β  are parameters, and ED  is the indicator 
function that event E occurs. 


