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ABSTRACT

Wages and Productivity Growth in a Dynamic Monopoly*

This Paper studies the intertemporal problem of a monopolistic firm that
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approaches the rate of wage growth and eventually the firm reaches a steady
state where its unit labour cost remains constant over time. Otherwise, it will
gradually reduce its innovation effort over time and ultimately terminate
production. Productivity-dependent wage differentials do not affect productivity
growth in the steady state; they increase, however, the firm’s long-run
equilibrium cost level.
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NON-TECHNICAL SUMMARY

This Paper addresses the interaction between labour market conditions and
the innovative performance of firms. It studies the intertemporal problem of a
firm that engages in productivity-enhancing innovations to reduce its labour
costs. While the firm acts as a monopoly in the output market, it takes the
current competitive wage in the labour market as given. At each point in time,
the wage rate and the firm’s productivity determine its unit labour cost.
Through investments in process innovations it can raise labour productivity
and thus reduce its cost at subsequent dates. The firm thus faces a dynamic
optimization problem because innovation affects future labour costs and the
incentives for innovation depend on the evolution of these costs.

In our model it is the evolution of wages that stimulates productivity enhancing
innovations. Higher total labour costs create stronger incentives for process
innovations that raise the productivity of labour.  The innovative performance
of the firm thus depends on the growth of wages as it seeks to reduce its
labour cost by increasing labour productivity.

By formulating the firm’s innovation strategy as an infinite horizon optimization
programme we can study the long-run evolution of productivity growth when
the competitive wage increases at an exogenous rate.  As long as the firm’s
initial labour cost lies below some critical level, its rate of productivity growth
eventually approaches the rate of wage growth under the optimal innovation
policy. The firm then reaches a steady state where these two rates coincide so
that its unit labour cost remains constant over time. Interestingly, this steady
state is independent of the level of wages; it only depends on their growth
rate.

The findings in the present Paper complement our study in Bester and
Petrakis (CEPR Discussion Paper No. 2031, 1998) on the relation between
wages and productivity growth in a competitive industry with free entry and
exit. The properties of the steady state in the present monopoly model are
essentially equivalent to the competitive case. There is, however, an important
difference on the adjustment path towards the steady state: in the competitive
model the current rate of innovation always depends positively on the
industry's current unit labour cost. In contrast, in the monopoly model the
optimal innovation policy does not have this characteristic. Instead, the
highest rate of innovation occurs at some intermediate level of the firm's unit
labour cost. The reason is that low costs create little incentive for cost cutting.
The same happens also when costs are rather high, because then the firm’s
output is low and so the overall gains from innovation are small.

Our analysis also addresses the role of productivity-dependent wage
differentials. Such differentials have been investigated in a number of



empirical studies and may be explained, for example, by bargaining power on
the part of the firm’s workforce. A well known theoretical argument in this
context is that a positive relation between wages and productivity reduces the
firm’s incentive for innovations increasing productivity. The idea is that the firm
cannot realize the full gain from its investment in innovation when it anticipates
that its labour force will capture some share of the rents from technological
improvements.

Our dynamic analysis reveals that rent sharing has some quite different long-
run effects. Indeed, the firm’s steady state rate of innovation is independent of
the degree of rent sharing. This is so because in the steady state the rate of
productivity growth equals the rate of wage growth and the ratio of the firm’s
wage to the competitive wage remains constant over time. The higher the
degree of rent sharing, however, the higher the firm’s long-run equilibrium cost
level. Also, rent sharing decreases the critical value of the initial cost, above
which the firm cannot survive in the market in the long run.

One might extend our model by considering dynamic imperfectly competitive
markets.  In an intertemporal model where at each date firms compete on
prices or quantities it will be interesting to analyse how strategic interactions
between the firms affect productivity growth in the short run and in the long
run.  Stimulated by the work of Schumpeter, a large part of the literature on
R&D relates the pace of innovative activity to market structure.  An imperfect
competition version of our model could combine this approach with our cost–
push argument.
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1 Introduction

This paper studies the intertemporal problem of a firm that engages in pro-

ductivity enhancing innovations to reduce its labor costs. While the firm

acts as a monopoly in the output market, it takes the current competitive

wage in the labor market as given. At each point in time, the wage rate and

the firm’s productivity determine its unit labor cost. Through investments

in process innovations it can raise productivity and thus reduce its cost at

subsequent dates. This generates a dynamic optimization problem because

innovation affects future labor costs and the incentives for innovation depend

on the evolution of these costs.

We formulate this problem as an infinite horizon optimization programme.

In this way we can study the long–run evolution of productivity growth when

the competitive wage increases at an exogenous rate. It turns out that the

monopoly’s long–run behavior depends critically on the initial level of its

labor cost. If this level is too high, it will gradually reduce its innovation

effort over time. Ultimately its cost becomes too high to operate profitably

and so it will terminate production. The more interesting case prevails when

the initial cost lies below the critical level. In this case the rate of productivity

growth approaches the rate of wage growth under the optimal innovation

policy. Eventually, the firm reaches a steady state where these two rates

coincide so that its unit labor cost remains constant over time. Interestingly,

this steady state is independent of the level of wages; it only depends on

their growth rate. The level of wages determines only whether the optimal

policy tends towards the steady state or whether the firm will go extinct in

the long–run.

In our model it is the evolution of wages that stimulates productivity en-

hancing innovations at the firm level. Our cost push argument addresses the

interaction between labor market conditions and the innovative performance

of industries and countries. This interaction is the subject of a number of

empirical studies both at the macroeconomic (see e.g. Gordon (1987)) and

the microeconomic level (see e.g. Doms, Dunne and Troske (1997), Chennells

and Van Reenen (1997), Mohnen et. al. (1986) and Van Reenen (1996)). An
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important theoretical insight in this context is Grout’s (1984) analysis, who

argues that the firm’s labor force will capture some share of the rents from

technological improvements. This in turn will reduce the firm’s incentives to

innovate.1

We address the issue of rent sharing in Section 5, where we endogenize

the firm’s wage rate by introducing productivity dependent wage differen-

tials. These may reflect the employees’ bargaining power within the firm.

In contrast with Grout’s (1984) static model, our dynamic analysis reveals

that rent sharing has some quite different long–run effects. Indeed, the firm’s

steady state rate of innovation is independent of the degree of rent sharing.

This is so because in the steady state the rate of productivity growth equals

the rate of wage growth and the ratio of the firm’s wage to the competitive

wage remains constant over time. The higher the degree of rent sharing,

however, the higher is the firm’s long–run equilibrium cost level. Also, rent

sharing decreases the critical value of the initial cost, above which the firm

will eventually quit operating at some point in the future.

This paper complements our study in Bester and Petrakis (1998) of the

relation between wages and productivity growth in a competitive industry

with free entry and exit where the last period’s best technology is freely

available to any firm.2 Also in the competitive framework it is the growth

rate of wages that determines the industry’s long–run behavior. There are,

however, some important differences between the competitive case and the

present model. First, under perfect competition the individual firm does not

face a truly dynamic optimization problem to determine its optimal inno-

vation policy. This is so because free entry and exit, and free availability

of last period’s best technology imply that a firm’s future profits are zero,

independently of its innovation decision. Second, and more importantly, un-

der perfect competition the individual firm does not have to consider the

impact of its production cost on the output price. Therefore, there is a posi-

1Ulph and Ulph (1994) argue, however, that union bargaining power and innovative
investments may be positively related.

2An extension of our study towards a general equilibrium model is presented in Hellwig
and Irmen (1999).
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tive relation between the incentive for innovation and the current cost level.

This is no longer the case in the present monopoly model or, more generally,

under imperfect competition. Instead, under the optimal policy the relation

between R&D investment and current cost has an inverted U -shape: When

the monopoly’s cost are relatively low, there is little incentive to reduce these

costs even further. Also relatively high costs, however, reduce the gains from

cost reduction because of the low output associated with a high monopoly

price. As a result, the monopoly’s highest innovation effort occurs for some

intermediate level of labor costs and its adjustment path towards the steady

state may not be monotone.

This paper is organized as follows. Section 2 describes the firm’s infinite

horizon optimization problem. The steady state solutions of this problem

are derived in Section 3. Section 4 analyses the adjustment dynamics of

the optimal innovation policy. The impact of productivity dependent wage

differentials is studied in Section 5. Section 6 presents conclusions. All proofs

are relegated to the Appendix in Section 7.

2 The Model

Our model depicts the evolution of labor productivity in a dynamic monopoly.

Time is discrete and at each date t = 0, 1, 2..., the monopolist employs labor

in combination with other inputs to produce a single good. Also, he engages

in process innovation to increase labor productivity. His innovation behavior

at date t determines his technology at the subsequent date. The incentive

for reducing labor costs through productivity enhancing innovations depends

on the intertemporal path of wages. We first analyse the evolution of pro-

ductivity under the assumption that the wage rate is exogenous and that the

monopolist takes the going rate as given. Later, in Section 5 we consider the

possibility of productivity dependent wage differentials, which may reflect

the employees’ bargaining power within the firm.

More formally, the model is specified as follows. At each date the monop-

olist faces the inverse demand function P (x) and so his revenue is R(x) ≡
P (x)x. To produce x units of output at date t, he has to invest the amount
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C(x) in inputs other than labor. The required labor input is x/at, where at

is the firm’s labor productivity at date t.

The firm can engage in labor productivity enhancing process innovation.

We assume that it can increase current productivity by the factor (1 + q) by

spending the amount K(q). Thus, if at describes the technology available at

date t, labor productivity at t + 1 becomes

at+1 = (1 + qt)at (1)

if the amount K(qt) is spent on innovations. Let K(0) = 0, K ′(0) = 0, K ′(∞)

= ∞ and K ′(q) > 0, K ′′(q) > 0 for all q > 0. The initial level of productivity

a0 = ā0 is exogenous.

The exogenous wage rate wt grows at the rate γ > 0 so that wt+1 = (1 +

γ)wt, with w0 = w̄0 > 0. One possible interpretation is that γ represents the

average growth rate of labor productivity in the entire economy. Therefore,

also wages grow at the rate γ in the equilibrium of the economy - wide labor

market. Since the firm under consideration constitutes only a small part of

the whole economy, its impact on the equilibrium wage rate is negligible.

Let ct ≡ wt/at. Then, after investing K(q) at date t, the firm’s labor cost

per unit of output at the next date is

ct+1 =
1 + γ

1 + q
ct. (2)

The firm’s sales profit Π depends on its unit labor cost according to

Π(c) ≡ max
x

R(x)− C(x)− c x. (3)

We assume that R(x) − C(x) is strictly concave and R(0) ≥ C(0), R′(0) >

C ′(0) and R′(∞) < C ′(∞). Therefore, the profit maximizing output x∗(c)

is uniquely determined and continuous in c. Moreover, x∗(c) positive and

strictly decreasing in c as long as c is not too large. Notice that, by the

envelope theorem, we have Π′(c) = −x∗(c).

For our analysis the shape of the function −Π′(c) c = x∗(c) c is crucial.

To guarantee that this function is well–behaved we make the following as-

sumption:
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Assumption 1 [R′(x)−C ′(x)]x is strictly quasi–concave whenever P (x) > 0.

Moreover, [R′(x)− C ′(x)]x → 0 as x → 0.

This assumption is satisfied for standard cost and demand functions: For

instance, R′(x) x is strictly concave if P (x) is linear or if it is iso–elastic

with a price elasticity of demand larger than unity. In addition, −C ′(x) x is

concave if C(x) = k xω with k > 0 and ω ≥ 1. Furthermore, also the second

part of Assumption 1 is satisfied by these demand and cost functions.

Lemma 1 There is a cm > 0 such that −Π′(c)c is increasing in c if c < cm. If

c > cm and Π(c) > 0, then −Π′(c)c is decreasing in c. Moreover, −Π′(0) < ∞
and −Π′(c)c → 0 for c →∞.

The monopolist discounts future payoffs by the factor 0 < δ < 1. We

assume that

−δ Π′ (cm(1 + γ)) cm > K ′(γ). (4)

For a given discount factor δ, this condition is satisfied if the growth rate γ of

wages is sufficiently small. As we show in the proof of Proposition 1 below,

this assumption ensures that for values of c in the neighborhood of cm the

monopolist chooses an innovation rate q > γ.

Example In what follows we illustrate our analysis by the following specifi-

cation of our model. Let

P (x) = A− x, C(x) = x2, K(q) = q2. (5)

For A > c, we then have

Π(c) =
(A− c)2

8
, Π′(c) = −A− c

4
. (6)

Thus condition (4) is satisfied if

δ >
32 γ

A2(1− γ)
. (7)

because −Π′(c)c attains its maximum at cm = A/2. ♦
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We can now state the monopolist’s intertemporal problem of choosing an

optimal innovation strategy. He solves

max
ct,qt

∞∑
t=0

δt[Π(ct)−K(qt)] (8)

subject to

ct+1 =
1 + γ

1 + qt

ct, c0 = c̄0. (9)

The solution of this problem determines an optimal trajectory {c∗t , q∗t }∞t=0. We

can view (8) as an optimal control problem. This has a single state variable

c, a single control q, an infinite horizon and is autonomous. Therefore, the

optimal innovation policy may also be described by a function q∗(c) with the

interpretation that the monopolist optimally chooses q∗t = q∗(ct) when his

unit labor cost at t equals ct.

3 Steady States

To derive the optimal innovation policy q∗(·) we employ the technique of

dynamic programming. Let V (c) denote the value function associated with

problem (8). Thus, at date t the monopolist’s present value of profits under

the optimal policy is V (ct) when his current unit cost is ct. The Bellman

equation for problem (8) is

V (c) = Π(c)−K(q∗(c)) + δV

(
c

1 + γ

1 + q∗(c)

)
(10)

= max
q

Π(c)−K(q) + δV

(
c
1 + γ

1 + q

)
.

We assume that V (·) is continuously differentiable. The optimal innovation

policy q∗(·) then necessarily satisfies the first order condition

−δ V ′
(
c

1 + γ

1 + q∗(c)

)
(1 + γ)c

1 + q∗(c)
= (1 + q∗(c))K ′(q∗(c)). (11)

By the envelope theorem we obtain from (10) that

V ′(c) = Π′(c) + δ V ′
(
c

1 + γ

1 + q∗(c)

)
1 + γ

1 + q∗(c)
. (12)
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In what follows we characterize the optimal policy q∗(·) by examining the

implications of conditions (11) and (12).

The optimal innovation policy determines the dynamic path of the mo-

nopolist’s wage cost according to

c∗t+1 =
1 + γ

1 + q∗(c∗t )
c∗t . (13)

We first look at the possible steady state values of c∗t . These values are the

candidates for the long–run level of the firm’s wage–productivity ratio. In a

steady state, c∗t is stationary over time and so c∗t = ĉ for all t. Obviously, (13)

implies that ĉI = 0 always constitutes a steady state for the evolution of c∗t .

In this steady state the firm requires no labor input and so its optimal policy

trivially satisfies q∗(ĉI) = 0. More relevant are the steady states in which ĉ

is positive. By (13) this requires q∗(ĉ) = γ. In such a steady state, the firm

matches the growth rate of wages by the rate of productivity growth so that

its labor cost per unit of output remains constant.

For q∗(ĉ) = γ, condition (12) becomes V ′(ĉ) = Π′(ĉ)/(1 − δ) so that by

(11)

− δ

1− δ
Π′(ĉ)ĉ = K ′(γ)(1 + γ). (14)

By Lemma 1 and (4) this equation has exactly two solutions, ĉII and ĉIII .

Moreover, 0 < ĉII < cm < ĉIII .

It is easy to see how the values ĉII and ĉIII change with the parameters

of the model. Since Π(c) is independent of δ and γ and K ′′ > 0, by Lemma

1 and (14), we observe that ĉII increases with growth rate of wages and

decreases with the monopolist’s discount factor, while ĉIII decreases with γ

and increases with δ.

Example For the specification in (5) we have cm = A/2 and (14) has the

two solutions

ĉII =
A

2
−

√
δ A2 − 32γ(1 + γ)(1− δ)

2
√

δ
, (15)

ĉIII =
A

2
+

√
δ A2 − 32γ(1 + γ)(1− δ)

2
√

δ
,
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provided δ satisfies (7). We can interpret A as a measure of market size.

Thus ĉII increases with growth rate of wages and decreases with the market

size and the discount factor, while ĉIII decreases with γ and increases with

A and δ. ♦
We now prove that c ∈ {ĉII , ĉIII} implies q∗(c) = γ to establish the

following result:

Proposition 1 The optimal policy satisfies q∗(c) = γ if and only if c ∈
{ĉII , ĉIII}.

Interestingly, there are two steady state values for the firm’s wage–produc-

tivity ratio where the monopolist has the same incentive to spend on labor

productivity enhancing innovation. The intuition is as follows. Obviously,

the firm has a stronger direct incentive to invest in productivity enhancing

activities at the steady state ĉIII where the unit labor costs are higher. Note,

however, that at ĉIII the monopolist produces a lower output than at the low

wage–productivity steady state ĉII , i.e. x∗(ĉII) > x∗(ĉIII). Hence, any given

unit labor cost savings apply to a larger output at the low wage–productivity

steady state. Therefore, the monopolist has a stronger indirect incentive to

invest in productivity enhancing activities at the steady state ĉII . This latter

output effect counterbalances the direct effect, and the monopolist has the

same incentive for innovation in the two steady states ĉII and ĉIII .

4 Innovation Dynamics

In the foregoing section we have shown that the trajectory {c∗t , q∗t }∞t=0 has

three steady states, in which c∗t and q∗t remain constant over time. Typically,

however, the initial value c̄0 of the monopolist’s wage–productivity ratio will

only accidentally coincide with one of the three steady state values, ĉI , ĉII

and ĉIII . In general c∗t will evolve over time until it possibly reaches one of

the steady states. From the theory of dynamic optimization it is well-known

that the optimal path of c∗t is monotone, i.e. the sign of c∗t+1− c∗t is the same

for all t (see e.g. Kamien and Schwartz (1991, p. 179)).
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Figure 1: The Optimal Innovation Policy

We first consider the optimal policy q∗(c) for values of c in the interval

(ĉII , ĉIII). It turns out that for this intermediate range the monopolist has

a strong incentive for cost reductions:

Proposition 2 The optimal policy satisfies q∗(c) > γ for all c ∈ (ĉII , ĉIII).

Within the range c ∈ (ĉII , ĉIII), the monopoly chooses an innovation

rate that exceeds the growth rate of wages. This means that c∗t decreases

monotonically over time when the initial value c̄0 happens to lie between ĉII

and ĉIII . For intermediate values of wage–productivity ratio, the monopolist

has a strong incentive to invest in labor productivity enhancing activities.

Not only its unit labor cost is not too low so that the direct innovation

incentive is strong. But also the firm’s output is high enough to induce a

strong indirect incentive to invest in cost reduction. In summary, both the

direct effect and the output effect are rather strong for intermediate values

of c.

For values of c for which Proposition 2 does not apply, wages will grow

faster than productivity under the optimal policy:

Proposition 3 The optimal policy satisfies q∗(c) < γ for all c /∈ [ĉII , ĉIII ].
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Figure 1 summarizes our results. For any starting point c̄0 in the range

(0, ĉII), the firm’s wage–productivity ratio c∗t ultimately approaches ĉII . On

the optimal path c∗t increases monotonically over time because for each t one

has q∗(c∗t ) < γ. Also when c̄0 is in the interval (ĉII , ĉIII), c∗t approaches ĉII

in the long–run. On such a path, however, c∗t decreases over time because

q∗(c∗t ) > γ. If c̄0 exceeds the critical value ĉIII , the firm will become eventually

extinct under the optimal policy, which satisfies q∗(c∗t ) < γ. On this path, the

monopoly’s labor cost increases over time and so its output decreases until

it ultimately equals zero.

Unless c̄0 > ĉIII , the rate of productivity growth converges to the rate of

wage growth. The long–run behavior of the monopoly’s innovation strategy

is thus independent of its initial productivity ā0 and the level of the wage rate

w̄0. It is not the level of wages but the growth rate of wages that eventually

determines the monopoly’s innovation behavior and its wage–productivity

ratio in the steady state ĉII . In this steady state, also the firm’s output

x∗(ĉII) and its price P (x∗(ĉII)) are constant and do not depend on the wage

level. This level, however, has a profound effect on the long–run level of

employment: As ĉII is constant, a one percent increase in w̄0 raises the long–

run level of labor productivity by one percent. Since the steady state output

x∗(ĉII) is not affected, employment falls by one percent. In other words,

the monopoly’s long–run elasticity of labor demand with respect to the wage

level equals minus unity.

Recall that the higher the exogenous growth rate of wages γ is, the higher

is the steady state value of wage–productivity ratio ĉII and the lower is the

steady state value ĉIII . Therefore, as γ increases, the range of parameters

for which the firm will become eventually extinct becomes larger. Moreover,

for the rest of the parameter values, the higher the growth rate of wages

γ is, the higher is the monopolist’s long–run wage–productivity ratio ĉII .

The monopolist will thus face a higher unit cost of labor in the long–run in

economies where wages grow faster. The monopolist’s output will then be

lower and his price higher in the long–run. Further, as labor productivity will

increase faster in the steady state, the monopolist’s demand for labor will

decrease faster in the long–run. Similarly, the firm’s adjustment behavior
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depends on its discount factor δ and the size of the market: If demand is

relatively weak or the discount factor relatively high, it is more likely that the

firm eventually becomes extinct. Also, it faces a higher wage–productivity

ratio in the long–run if it is optimal to stay in the market forever.

5 Productivity Dependent Wages

Our analysis has so far considered a monopoly that pays the competitive

wage rate to its labor force. It is often argued, however, that there is some

sharing of the rents from innovation between workers and firms. For instance,

if wage determination is the result of bargaining between a firm and a union,

the wage will be positively related to the firm’s productivity.3

To investigate the impact of productivity dependent wages on the mo-

nopoly’s optimal innovation strategy, we now consider the case where the

firm specific wage wt depends on the competitive wage w̃t and current labor

productivity at according to

wt = α w̃t + β at. (16)

We assume α > 0, β > 0 and β/(1 − α) ≥ w̃t/at so that wt ≥ w̃t. The

factor β reflects the extent to which the employees benefit from the firm’s

productivity. In a wage bargaining model, it is positively related to the

union’s bargaining power.

Example In the right–to–manage model of wage bargaining the firm chooses

the output x∗(ct) after the wage rate wt has been determined. Therefore

its employment equals x∗(wt/at)/at. The union’s payoff at date t may be

specified as U(wt) = (wt − w̃t)x
∗(wt/at)/at. Suppose that at each date the

firm and the union bargain about the current wage so that wt is determined

by the generalized Nash bargaining solution. Then wt maximizes

Π (wt/at)
1−r U (wt)

r , (17)

3See e.g. Grout (1984). For a survey of wage bargaining models with trade unions see
e.g. Booth (1995), Ulph and Ulph (1990), Layard et al. (1991). An empirical analysis
can be found in Van Reenen (1996).
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where r ∈ (0, 1] indicates the union’s bargaining power. For the specification

in (5) one gets

wt =
2− r

2
w̃t +

A r

2
at, (18)

which is of the same form as equation (16). ♦
The monopoly’s wage–productivity ratio at date t equals

ct = α
w̃t

at

+ β. (19)

As before, we assume that the competitive wage grows at the rate γ so that

w̃t+1 = (1 + γ)w̃t. If at date t the firm increases future labor productivity by

the factor qt, its labor cost per unit of output at the subsequent date is

ct+1 = α
w̃t(1 + γ)

at(1 + qt)
+ β, (20)

By combining (19) and (20) it becomes apparent that the factor β affects the

evolution of ct according to

ct+1 = [ct − β]
1 + γ

1 + qt

+ β. (21)

Ceteris paribus, ct+1 increases with β if qt > γ. This is so because the firm’s

workforce captures some share of the gains from cost reduction. Conversely,

the available rents decrease if qt < γ because then ct+1 > ct. In this case, ct+1

and β are negatively related.

When wages depend on the firm’s productivity, the monopoly’s innovation

behavior takes into account the effect of productivity changes on its wage

cost. Thus equation (21) replaces constraint (9) in the monopoly’s problem

(8). As in the previous analysis of this problem, the critical steady states of

the state variable c are those where q∗(ĉ) = γ so that c∗t+1 = c∗t if c∗t = ĉ.

Analogously to equations (11) and (12), it is straightforward to show that

such a ĉ must satisfy

−δ V ′(ĉ)[ĉ− β] = (1 + γ)K ′(γ), V ′(ĉ) = Π′(ĉ) + δ V ′(ĉ). (22)
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Combining these conditions yields

− δ

1− δ
Π′(ĉ)[ĉ− β] = K ′(γ)(1 + γ). (23)

Similarly to (14), for β not too large and γ sufficiently small this equation has

exactly two solutions, ĉII(β) and ĉIII(β). Clearly, for β = 0 these solutions

coincide with the state states ĉII and ĉIII in the foregoing analysis.

Example For the specification in (5) we have

ĉII(β) =
A + β

2
−

√
δ (A− β)2 − 32γ(1 + γ)(1− δ)

2
√

δ
, (24)

ĉIII(β) =
A + β

2
+

√
δ (A− β)2 − 32γ(1 + γ)(1− δ)

2
√

δ
,

are the two solutions of equation (23). ♦
By Lemma 1 we get immediately the following result:

Proposition 4 The steady state value ĉII(β) is increasing in β, and the

steady state value ĉIII(β) is decreasing in β.

Proposition 4 describes the impact of β on the firm’s long–run behav-

ior. The properties of the optimal policy q∗(c) are analogous to the re-

sults in Propositions 2 and 3: In the interval (ĉII(β), ĉIII(β)) it is the case

that q∗(c) > γ while q∗(c) < γ for all values of c /∈ [ĉII(β), ĉIII(β)]. On

the adjustment path, the dependence of wages on productivity tends to re-

duce the firm’s investment in cost reduction: Since the length of the interval

(ĉII(β), ĉII(β)) decreases with β, this factor is negatively related to the range

of c–values where q∗(c) > γ. The intuition is simply that sharing the pro-

ductivity gains with its employees reduces the firm’s innovation incentive.

By the same argument, ĉIII(β) < ĉIII so that productivity dependent wages

reduce the range of initial values c̄0 that allow the firm to survive in the

long–run.

If, however, c̄0 < ĉIII(β), the optimal trajectory {c∗t , q∗t }∞t=0 converges

towards (ĉII(β), γ). In this case, rent sharing between the monopoly and its
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labor force does not affect the long–run rate of productivity growth and the

long–run innovation effort K(γ). On the optimal path, the firm specific wage

w eventually grows at the same rate as the competitive wage w̃ and so the

relative wage differential w/w̃ remains constant over time. Because of this

differential, the monopoly’s long–run labor cost ĉII(β) is positively related

to the factor β. Since Π′(c) < 0, its profit in the steady state ĉII(β) depends

negatively on β.

Consider, for instance, a unionized firm where bargaining between the

monopolist and the union determines the wage rate. Our analysis then pre-

dicts the following: First, long–run productivity growth does not depend on

the union’s bargaining power; it is simply determined by the growth rate of

the competitive wage. Second, as the union’s power increases, the critical

value of the initial wage for which the monopolist is able to survive in the

market is lowered. Finally, as the union’s claims over productivity rents in-

crease, the monopolist’s long–run unit labor cost increases, and output and

profits decrease. Hence, due to the presence of the union, the firm is more

likely to become unprofitable over time and to leave the market. Moreover,

even when it remains profitable, its long–run unit labor costs are higher and

its output is lower than in a non–unionized firm.

6 Conclusions

Modern industrialized countries are characterized by rapid technical progress

accompanied with substantial increases in real wages. We have shown that,

in a dynamic monopolistic industry, the firm optimally invests each period

in productivity enhancing innovations to counterbalance increasing wages.

Our analysis presents a dynamic cost–push argument of productivity growth.

Higher current labor costs create stronger incentives for process innovations

that raise the productivity of labor in future periods. If the level of wages is

too high, the monopolist is unable to survive in the market in the long–run.

It will gradually reduce its innovation effort over time and ultimately will exit

the market. If, however, the wage level is sufficiently low, the monopolist’s

rate of productivity growth monotonically approaches the growth rate of
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wages and eventually the firm reaches a steady state where its unit cost

of labor remains constant over time. Interestingly, long–run productivity

growth only depends on the growth rate of wages and is thus independent of

the initial level of wages. The latter only determines whether the monopolist

will be able to survive, or not, in the market. While the monopolist’s unit

labor cost as well as its output in the long–run depend only on the growth

rate of wages, the long–run levels of labor productivity and employment are

determined by the initial level of wages.

We have also analyzed the case where the rents stemming from productiv-

ity enhancing innovations are shared between the monopolist and its workers.

Surprisingly, also in this case the long–run productivity growth only depends

on the growth rate of wages and is independent of the share of profits over

which the workers have claims (measured e.g. by the union’s power). Hence,

unionization does not influence long–run productivity growth, despite the

fact that it depresses the short–run incentives for innovation. The union’s

bargaining power, however, determines the monopolist’s long–run unit cost

of labor as well as its likelihood of survival in the market. When union power

is high, the monopolist can survive in the market only if the initial level of

wages is low enough. If, however, the monopolist’s optimal policy is to stay

in the market forever, then its long–run unit cost of labor is the higher, the

higher the union’s power is.

Our model could be extended to consider dynamic imperfectly competi-

tive markets. In an intertemporal model where at each date firms compete

in prices or quantities it will be interesting to analyze how strategic interac-

tions between the firms affect productivity growth in the short–run and in

the long–run. Stimulated by the work of Schumpeter (1947), a large part

of the literature on R&D relates the pace of innovative activity to market

structure. An imperfect competition version of our model could combine this

approach with our cost-push argument.
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7 Appendix

This appendix contains the proof of Lemma 1 and Propositions 1 – 3.

Proof of Lemma 1: When the optimal output x∗(c) is positive, the first

order condition is R′(x∗)− C ′(x∗) = c. Therefore

−Π′(c)c = x∗(c) c = [R′(x∗(c))− C ′(x∗(c))]x∗(c). (25)

Since x∗(c) < ∞, one has −Π′(0) = x∗(0) < ∞. For c →∞ one has x∗(c) →
0. Therefore, the second part of Assumption 1 and (25) imply that −Π′(c)c →
0 for c →∞.

For c sufficiently small x∗(c) > 0 and so −Π′(c)c > 0. Since −Π′(c)c → 0

for c → 0 and for c → ∞, the function −Π′(c)c attains a maximum for

some 0 < cm < ∞. Since x∗(c) is strictly decreasing, Assumption 1 and (25)

imply that cm is unique and that −Π′(c)c is increasing in c for c < cm and

decreasing in c for c > cm as long as Π(c) > 0. Q.E.D.

Proof of Proposition 1: Since we have already shown that q∗(c) = γ

implies c ∈ {ĉII , ĉIII}, it remains to show that the equation q∗(c) = γ has

two solutions ĉII and ĉIII . Notice that combining (11) and (12) yields

V ′(c)c = Π′(c)c−K ′(q∗(c))(1 + q∗(c)) (26)

for all c. Since K ′′ > 0, this equation has a unique solution q∗(c) for all c.

Moreover, by continuity of V ′(·) and Π′(·) the optimal policy q∗(·) is contin-

uous.

We first show that q∗(cm) > γ. Note that by (26) we have −V ′(c)c ≥
−Π′(c)c for all c. Suppose q∗(cm) ≤ γ. Then this together with (11) implies

−δ Π′
(
cm 1 + γ

1 + q∗(cm)

)
(1 + γ)cm

1 + q∗(cm)
≤ (27)

−δ V ′
(
cm 1 + γ

1 + q∗(cm)

)
(1 + γ)cm

1 + q∗(cm)
=

(1 + q∗(cm))K ′(q∗(cm)) ≤ (1 + γ)K ′(γ).

As q∗(cm) increases from 0 to γ, the term [(1 + γ)cm]/[1 + q∗(cm)] decreases

from cm(1+γ) to cm. By Lemma 1, −Π′(c)c is decreasing in c over the interval
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[cm, cm(1 + γ)]. Accordingly, the first term (27) is increasing in q∗(cm) over

the interval [0, γ] and so it follows from q∗(cm) ≤ γ that

−Π′
(
cm 1 + γ

1 + q∗(cm)

)
(1 + γ)cm

1 + q∗(cm)
≥ −Π′ (cm(1 + γ)) (1 + γ) cm. (28)

This in combination with (27) yields

−δ Π′ (cm(1 + γ)) (1 + γ) cm ≤ (1 + γ)K ′(γ), (29)

a contradiction to assumption 4. This proves that q∗(cm) > γ.

Next we show that q∗(c̄) < γ for some c̄ > cm. Suppose the contrary.

Then q∗(c) ≥ γ and so by (10)

V (c) ≤ Π(c)−K(γ) + δV

(
c

1 + γ

1 + q∗(c)

)
(30)

for all c sufficiently large. Note that Π(c) → 0 as c →∞. Moreover, we have

q∗(c) < ∞ for all c, because K(∞) = ∞. Therefore, (30) implies

limc→∞V (c) ≤ −K(γ)

1− δ
< 0, (31)

a contradiction. This proves that q∗(c̄) < γ for some c̄ > cm.

Since q∗(0) = 0, q∗(cm) > γ and q∗(c̄) < γ for some c̄ > cm, continuity

of q∗(·) implies that there is a ĉII ∈ (0, cm) such that q∗(ĉII) = γ and a

ĉIII > cm such that q∗(ĉIII) = γ. Q.E.D.

Proof of Proposition 2: Note that the sign of q∗(c) − γ cannot change

over some interval [c′, c′′] if this interval does not contain a steady state.

Otherwise, one would obtain a contradiction to the fact that the optimal

trajectory c∗t is monotone. By Proposition 1, therefore, the sign of q∗(c)− γ

is constant over the interval c ∈ (ĉII , ĉIII). The proof of Proposition 1 shows

that q∗(cm) > γ. Since cm ∈ (ĉII , ĉIII), this proves that q∗(c) > γ for all

c ∈ (ĉII , ĉIII). Q.E.D.

Proof of Proposition 3: By the same argument as in the proof of Propo-

sition 2, the sign of q∗(c) − γ cannot change over the interval c ∈ [0, ĉII)

or the interval (ĉIII ,∞). Therefore it is sufficient to show that each interval
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contains a c′ such that q∗(c′) < γ. Clearly, this is the case for the interval

[0, ĉII) because q∗(0) = 0.

Now consider the interval (ĉIII ,∞). The proof of Proposition 1 shows

that q∗(c̄) < γ for some c̄ > cm. Since Proposition 2 shows that q∗(c) > γ

for all c ∈ (ĉII , ĉIII), it must be the case that c̄ > ĉIII . Therefore also the

interval (ĉIII ,∞) contains a c′ such that q∗(c′) < γ. Q.E.D.
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