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ABSTRACT

Quantity Discounts for Time-Varying Consumers*

When a monopolist asks consumers to choose a particular non-linear tariff
option, consumers do not completely know their type. Their valuations of the
good and/or optimal quantity purchases are only fully realized after the
optional tariff has been subscribed. In order to characterize the menu of
optimal non-linear tariffs when consumers’ demands are stochastic, I show
that the increasing hazard rate property of distributions is preserved under
convolution. This result, together with very weak assumptions on demand
(common to standard non-linear pricing), ensures that the continuum of
optional non-linear tariffs is characterized by quantity discounts. I test non-
parametrically the theoretical prerequisites of the model using data directly
linked to consumer types from the 1986 Kentucky Telephone Tariff
experiment. I show that the distribution of actual calls second order
stochastically dominates the distribution of expected calls, which fully supports
the suggested type-varying theoretical model. Finally, I analyse possible
welfare effects of the introduction of optional tariffs and their relative expected
profitability using the empirical distribution of consumer types in two local
exchanges with differentiated calling patterns. The evidence suggests that a
menu of optional two-part tariffs dominates any other pricing strategy.
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NON-TECHNICAL SUMMARY

Price discrimination may take multiple expressions. A common business
practice in many industries requires that consumers first sign up for a contract
that specifies some rates, fixed monthly payments, and perhaps some ‘free’
consumption allowance per month. This type of contract is currently very
common in the mobile phone industry.

Why are these tariffs so common? Why do firms generally find it profitable to
offer different tariff options to consumers? Do they make additional profits
because consumers cannot commit to future levels of consumption when they
subscribe to a particular tariff option?

The standard alternative is to offer consumers a single tariff that will determine
total payments depending on each customer’s own consumption and the
discounts included in the tariff. In the current practice in the mobile phone
industry, this is the option that does not require any further contract obligation.
Consumers are not required to pay a monthly fee, but per minute rates are by
far the most expensive alternative. Price discrimination makes use of all these
devices to extract the maximum possible amount of consumer surplus from
individuals with different intensity of preferences. Consumers have different
types depending on their willingness to pay for a good or service.

In this Paper I distinguish between ex ante and ex post type. The ex post type
determines the consumption level. Since consumers are not fully aware of
their future consumption when they sign up for a particular tariff option, I
assume that they have a prior (ex ante) type. Between the choice of the tariff
and the consumption decision any remaining individual uncertainty is
resolved, and thus the ex ante and ex post type differs by some type shock.

When firms decide to offer a single tariff to discriminate among consumers
they normally offer volume discounts on realized demand. This tariff takes into
account the distribution of the ex post types. Here, the choice of consumption
and the determination of payment are simultaneous. This tariff will be
characterized by quantity discounts under fairly general assumptions,
including that the distribution of ex post types should be increasing hazard
rate (IHR).

If the firm decides to offer tariff options, it screens consumers only with
respect to ex ante types. If these tariff options are two-part tariffs, consumers
keep the informational rents related to type shocks. If tariff options are non-
linear, however, firms introduce further incentives aimed at reducing these
informational rents.



This Paper offers a general solution for the ex post and ex ante non-linear
tariffs. It also shows that no additional assumption is needed for these tariffs to
be characterized by quantity discounts since IHR is preserved under
convolution. Finally, the Paper makes use of an exceptional data set that
includes direct instruments related to the types of consumers to validate the
theoretical prerequisites of the model, and to empirically evaluate the profit
and welfare implications of the introduction of optional tariffs.



1 Introduction

Consumers have to choose frequently among sets of class of services. For instance, tele-
phone customers have to choose among different long distance plans offered by competing
firms, or among different subscription contracts to the local telephone monopolist. Internet
access providers also allow choosing among different connection plans depending on the
expected usage of the network. Cable companies offer a variety of channel options for
monthly subscription at different rates and bundling discounts. Car rental rates depend on
the duration of the lease, mileage, and/or fuel option chosen. Public transportation systems
offer the possibility of advance purchase of passes of varied duration at different discount
rates depending on the expected usage of the system. Banks ask their customers to select
one among few checking and savings accounts depending on their average expected balance
and number of monthly checks drawn. Finally, health clubs charge different monthly rates
depending on registration fees related to the duration of the contract.

What do all these examples have in common? All these situations are characterized
by a two–stage decision process: first consumers decide which class of service they sign
up for, and later, once their demand needs are known with certainty, they decide how
much to buy from the firm, contingent on the rates of the tariff plan previously chosen.
Therefore, consumers are not signing a contingent contract, and they are not committing
to any particular purchase level in the future while the choice among alternatives does not
embody any attempt to minimize risk. Companies, either because of reputation, repeated
interaction with consumers, or legal restrictions, are not allowed to switch customers from
one class of service to a different one, neither to take advantage of customers consumption
decisions, or to favor them. Thus, firms can only profit from the stochastic dimension of
consumers’ demand through the design of the offered options.

But furthermore, most business applications of nonlinear pricing are characterized
by quantity discounts, i.e., unit price decreases with volume purchased by consumers. This
feature is particularly convenient for natural monopolists and firms with important fixed
costs. Charging a higher price per unit for the first units sold allows covering fixed costs,
while discounts increase efficiency as large customers are priced closer to marginal costs.
Fortunately, very general demand specifications and consumer taste distributions lead to
optimal nonlinear price schedules characterized by quantity discounts. At least since the
work of Maskin and Riley (1984), it is well known that quantity discounts are present if
the distribution of types is increasing hazard rate, if consumers utility function satisfies the
single–crossing property, and if some (not very restrictive) third derivatives of the utility
function have the appropriate sign. Thus, general concave pricing mechanisms lead to
quantity discounts. In fact, when the tariff function is concave, it can be implemented
using a menu or continuum of self–selecting two–part tariffs whose marginal charge is
decreasing with the volume purchased by the consumer [Faulhaber and Panzar (1977)].
An important result of the paper is to show that no additional assumptions on demand
need to be made, and that in fact it suffices to assume that each distribution of taste
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components are increasing hazard rate to ensure that the corresponding optional tariffs
are characterized by quantity discounts.

Why cannot the above examples be addressed with the existing nonlinear pricing
theory? The concept of self–selecting tariff has been incorrectly used as synonym of
optional tariffs. This is particularly true in many works dealing with pricing of telecommu-
nications services. A common mistake present in all the related empirical literature is to
neglect the existence of two stages and assume that consumers make purchases and choose
among class of services simultaneously.1 If this were the case, the only relevant information
for consumers to make that decision would be known at the time of consumption, and
therefore the “choice” of the corresponding self–selecting tariff plan would be exactly dual
to the usage decision. Obviously, within this framework, there is no possibility of an
ex–post “mistake” in the choice of the tariff plan.

A correct approach should explicitly account for this two–stage nature of the prob-
lem: consumers first choose the tariff plan that better suit their needs given their expecta-
tion on future consumption level or expected valuation of the good or service. Later, once
their needs or actual valuation are known, they decide how much to consume contingent
on their previous tariff choice. The difficulty of this approach is that individual consumers’
demands become stochastic since the expected consumption at the time of the tariff choice
need not necessarily coincide with the purchase in the second stage of this game. Individual
stochastic demands break the duality between consumption and choice of the corresponding
self–selecting tariff. Consumers who chose different tariffs in stage 1 may end up paying and
consuming the same at stage 2 if they receive demand shocks of opposite sign. Similarly,
the same consumption level at stage 2 could be purchased at different rates depending
on the disparate choice of tariffs of different consumers at stage 1. Thus, the optimal
nonlinear tariff is no longer the lower envelope of a set of self–selecting two–part tariffs,
and screening consumers becomes a more difficult task.

General treatments of nonlinear pricing when demand is stochastic are still not
available.2 This paper provides a characterization of the ex–ante nonlinear tariff (the
one that considers two–stage decision problem) and relates it to the standard ex–post
nonlinear tariff (where consumption and tariff choice are simultaneous). The key issue for
these two pricing problems to be properly defined is that the hazard rate properties of the
distributions of consumer types is preserved under convolution. This paper shows that
this is the case under very general conditions, and furthermore that there might be some
ordering of the hazard rates of the distributions used in each problem, ex–ante vs. ex–post
that leads to unambiguous ranking of markups for every purchase level possible.

1 See for instance Hobson and Spady (1988), Kling and van der Ploeg (1990), MacKie–Mason and
Lawson (1993), and Mitchel and Vogelsang (1991, §8).

2 Only recently this topic has attracted some attention, although few and incomplete attempts to
model optional tariffs have been carried out. See for instance Clay, Sibley, and Srinagesh (1992), Courty
and Li (2000), and Miravete (1996 and 2000b).
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In order to deal with the stochastic nature of consumer demand, the suggested
model assumes that consumers’ types have two components: the ex–ante type θ1, and the
type shock θ2. Together they define the ex–post type θ that drives purchase decisions.
The ex–ante type is always known by consumers, and it determines the choice of the class
of service. This type dimension is private information and defines something similar to
the average consumption level for each consumer (or expected valuation of the product).
Type shock θ2 represents deviations from the average consumption due to unpredictable
events (or unexpected changes in valuation due to any general or individual circumstances).
The type shock is different for each individual and remains private information to each
consumer. The monopolist will design each tariff option, and within each option the
corresponding quantity discounts, to maximize his expected profits given the information
set of consumers at each stage. The realization of θ1 critically conditions the choice among
tariffs, while the value of θ2 together with the tariff plan chosen determines the actual level
of usage in the second stage of the game. The paper studies first the design of optional
two–part tariffs that screen only with respect to θ1, and later the design of fully nonlinear
options that screen all components of consumer types separately.

This type–varying setup rises many side issues that are intentionally neglected in
the present paper to avoid unnecessary complexity and to limit the scope of the model in
dealing with the effects of stochastic demands. I state two explicit simplifying assumptions
here. First, the pricing game remains essentially static. Consumers first choose the optional
tariff, and later decide how much to consume. I do not consider repeated versions of this
game –as in Baron and Besanko (1984)– because it would require to model how informative
is θ1 with respect to θ, how are successive θ2’s correlated over time, and ultimately model
the updating of future usage expectations, θ1’s. The closed–loop equilibrium tariff options
of this richer model will be more difficult to characterize (if not impossible analytically),
and this added complexity will however not help answering whether optional tariffs could be
properly defined or not. Second, types remain single–dimensional. Thus, θ “moves around”
θ1 depending on the magnitude and sign of the type shock θ2 and the single–dimensional
definition of the ex–post type as a function of the ex–ante type and the shock. Additional
dimensions should only be considered if they address different attributes in the definition
of consumers’ utility functions, so that the monopolist can screen consumers different
taste dimensions simultaneously. Nevertheless, in this paper I assume that consumers
have heterogeneous preferences defined on just one single dimension.3 However, they have
different knowledge about their preferences at each stage of the game. Consumers have a
more or less intensive expected or actual valuation of the quantity consumed, but they do
not take into account any other quality characteristic of the product. Thus, the stochastic

3 The main result of the multidimensional screening literature is that type bunching is optimal due
to a conflict between participation constraints and second order incentive compatibility conditions [Rochet
and Choné (1998)]. My single–dimensional assumption helps focusing the analysis on the stochastic feature
of demand since multidimensional nonlinear pricing can only be solved explicitly for utility functions that
are radial symmetric in type dimensions [Armstrong (1996), Wilson (1993, §12–14)], where monotonicity
of the optimal tariff does not hold in general [Wilson (1995)]. Thus, within a multidimensional framework,
it would not be possible to isolate whether the lack of monotonicity is due to the violation of any sufficient
condition or to the interactions among multiple type dimensions.
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nature of the problem allows the monopolist to screen sequentially each component of the
ex–post type.

An area where optional tariffs are prevalent is telecommunications. It is commonly
reported in many telecommunications demand studies that telephone customers show a
biased, even irrational, preference for flat tariff options.4 I exploit the unique data of the
1986 Kentucky telephone tariff experiment to test the empirical implications and make
policy evaluations using the suggested type–varying model. The interesting feature of this
data set is that it includes direct observations of θ and θ1. Thus, I compute Anderson’s
(1996) nonparametric test of stochastic dominance to provide with evidence in favor of
the suggested type–varying model. The advantage of using instruments directly linked to
consumers’ tastes, is that the empirical analysis is not subject to the common identification
and misspecification of structural models dealing with asymmetric information issues.5

The paper is organized as follows. Section 2 presents the solution of the standard
nonlinear pricing problem when the monopolist offers a continuum of ex–post self–selecting
two–part tariffs, and studies whether they will be characterized by quantity discounts.
Section 3 introduces optional nonlinear pricing, first through a menu of optional two–part
tariffs, and later by means of nonlinear options. Section 4 proves that under very general
assumptions the increasing hazard rate property of the distribution of consumers’ private
information parameter is preserved under convolution, and thus shows that ex–post pricing
is well defined and generally characterized by quantity discounts when type components are
stochastically independent. Section 5 presents evidence in favor of the taste-varying model.
Section 6 analyzes whether the monopolist and/or consumers prefer ex–ante to ex–post
pricing, and empirically evaluates the welfare effects of the introduction of optional tariffs
by using the kernel distribution of the observed θ, θ1, and θ2 in two local exchanges of
Kentucky. Section 7 concludes.

2 Quantity Discounts in Nonlinear Pricing
This section briefly reviews the standard (ex–post) nonlinear pricing problem. I dis-
cuss the main assumptions of the pricing mechanism necessary to generate a separating
Perfect–Bayesian Nash Equilibrium for the static game of incomplete information played
by consumers and the monopolist. I also isolate sufficient constraints on demand and
distribution of consumer’s single–dimensional taste index so that screening of different

4 See Hobson and Spady (1988), Kridel, Lehman, and Weisman (1993), and Srinagesh (1992). Train,
Ben–Akiva, and Atherton (1989) use the same argument to explain the choice of tariff service to pay for
domestic electricity consumption while Train, McFadden, and Ben–Akiva (1987) report that telephone
customers switch options less frequently than expected from a pure cost minimization perspective. Using
the same data set than the present paper, Miravete (2000a) shows that the choice behavior of customers
of local telephone service learn very fast which tariff option is less expensive for their consumption profile.

5 Empirical models as those of Ivaldi and Martimort (1994), Miravete (2000b), and Wolak (1996)
identify the effects of asymmetric information through some structural restrictions and/or distribution
assumptions. It is then difficult to acknowledge whether the estimates actually isolate the effect of
asymmetry of information or those of the misspecification of the structural model.
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types of consumers is achieved by means of quantity discounts. In order to provide a
reference framework to compare the solution of the optional nonlinear pricing mechanism
given in Section 3, I develop the mechanism using consumer’s indirect instead of direct
utility function, and marginal tariffs instead of quantities as the monopolist’s control
variable.

I assume an environment where consumers’ preference heterogeneity is captured by
a single–dimensional index, θ. This taste indicator is private information for consumers
while the monopolist only knows the population distribution of such index, F (θ). Given
this informational constraint, the monopolist designs a fully nonlinear tariff to maximize
his expected profits given the distribution of θ, by extracting consumer surplus in a different
proportion depending on consumers’ purchase levels. Thus, consumers are given incentives
to self–select their purchase levels according to their preference intensity, θ. I need to
assume that F (θ) is increasing hazard rate (IHR) to ensure a separating equilibrium
and avoid bunching of types at any given consumption or marginal tariff levels [Maskin
and Riley (1984, §4)]. This property characterizes most common distributions used in
economics, and the assumption should not be considered restrictive.

Definition 1: If a univariate random variable θ has density f(θ) and distribution
function F (θ), then the hazard rate of either θ or F (θ) is the ratio: r(θ) = f(θ)/[1−F (θ)]
on {θ ∈ Θ : F (θ) < 1}. A univariate random variable θ or its cumulative distribution
function F (θ) are said to be increasing hazard rate if r′(θ) > 0 on {θ ∈ Θ : F (θ) < 1}.

Assumption 1: The ex–post preference index θ has a continuously differentiable
probability density function f(θ) ≥ 0 on Θ = [θ, θ] ⊆ <, such that the cumulative
distribution function given by:

F (θ) =

θ∫
θ

f(z)dz, (1)

is absolutely continuous. Furthermore while θ remains private information for each con-
sumer, F (θ) is common knowledge and IHR.

The monopolist sells a single product x at a marginal charge p. Consumers’ income
is taken as numeraire. In addition, and for simplicity, I assume that there are no income
effects for consumers or capacity constraints for the monopolist. If consumers demand
and F (θ) are properly behaved, the existence of quantity discounts is equivalent to the
concavity of the tariff, which is just the lower envelope of the menu of self–selecting two–
part tariffs. This equivalence results guarantees the duality between the choice of any
quantity under the nonlinear tariff and the unique corresponding choice of a marginal tariff
and a fixed fee characterizing a hypothetical self–selecting two–part tariff that leads to the
same consumption level. Thus, for analytical convenience, I will assume that consumers
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choose the pair {A(x), p(x)} instead of choosing x directly. The assumed indirect utility
function net of fixed fee payment A is:

V (p, A, θ) = v(p, θ)−A =

∞∫
p

x(z, θ)dz −A, (2)

so that Roy’s identity ensures that:

Vp(p, θ, A) = vp(p, θ) = −x(p, θ). (3)

In order to characterize the optimal nonlinear schedule, some structure has to be
imposed on the set of preferences as well as on the distribution of types. Focusing on
demand, in order to ensure the existence of a separating equilibrium, it is necessary that
consumers’ demands do not cross so that consumers can be ranked by their preference
intensity, θ. This is the well known single–crossing property (SCP).

Assumption 2: The indirect utility function is convex in price and increasing in
the taste parameter. Thus Vp(·) = −x(·) ≤ 0; Vpp(·) = −xp(·) > 0; and Vθ(·) > 0; which
implies vpθ(·) = −xθ(·) < 0 (SCP).

The incentive compatibility constraint (IC) ensures that each consumer type keeps
enough informational rents to consume according to their true preferences. Thus, when
choosing a particular two–part tariff each consumer chooses the one that maximizes her
utility given the tariff schedule offered by the monopolist. After making use of the Envelope
Theorem, the monopolist’s IC constraint becomes:

V ′(θ) = vθ(p(θ), θ). (4)

For simplicity, I will assume that all consumers are served by the monopolist. It therefore
suffices, because of monotonicity of the optimal marginal charge p̂(θ), to ensure that the
lowest valuation consumer θ participates in the market:6

V (θ) ≥ 0. (5)

Hence, given (4) − (5) a monopolist with marginal cost c maximizes the following profit
function:7

max
p(θ),V (θ)

∫
Θ

[A(θ) + (p(θ)− c) x(p(θ), θ)] dF (θ). (6)

The solution of this problem is a pair of functions {Â(θ), p̂(θ)} that relates each optimal
two–part tariff offered by the monopolist to each consumer type θ:

6 The proof of this standard result is ommited. Because of SCP and IC, the chosen p̂(θ) is
nonincreasing in θ, and it suffices that the IR constraint holds only at the lower bound of Θ.

7 Fixed cost is omitted to simplify the notation since it does not play any role in characterizing the
optimal tariff, neither it can be identified with the available data at the simulation stage.

– 6 –



p̂(θ) = c− 1
r(θ)

[
vpθ(p(θ), θ)
vpp(p(θ), θ)

]
, (7)

Â(θ) = v(p̂(θ), θ)−
θ∫

θ

vθ(p̂(z), z)dz. (8)

Equation (7) presents the classical result that only the highest consumer type is efficiently
priced. The magnitude of the price distortion for each type θ therefore depends not only
on the characteristics of demand, but also critically on the monopolist’s knowledge of
the population distribution of tastes. The spread of this distribution is related to the
importance of the asymmetry of information between the monopolist and his customers
regarding consumers’ preferences. Therefore, conditional on the available information,
the monopolist charges the optimal mark–up over marginal cost for each consumption
level. The hazard rate of this distribution captures the economic effect of informational
asymmetries and plays an important role in defining the magnitude of the price distortion
(deviation from c) for each ex–post consumer type.

Provided that the single crossing property holds, and the hazard rate of the distri-
bution of ex–post types is increasing, the monopolist can screen consumers by offering a
continuum of self–selecting two–part tariffs that implement the optimal nonlinear pricing
solution. Since each consumer type finds one and only one of these tariff plans to maximize
her utility, each two–part tariff is the optimal solution for only one ex–post consumer type,
and therefore the equilibrium is ensured to be fully separating. As mentioned before, a
sufficient condition for this continuum of two–part tariffs to be self–selecting is that its
lower envelope be concave in consumption, i.e., a tariff with quantity discounts. This is
equivalent to the marginal tariff being decreasing in θ:

p̂′(θ) =
r′(θ)
r2(θ)

vpθ(p(θ), θ)
vpp(p(θ), θ)

− 1
r(θ)

∂

∂θ

[
vpθ(p(θ), θ)
vpp(p(θ), θ)

]
≤ 0. (9)

Since F (θ) is IHR, for the tariff to show quantity discounts it will suffice that the following
condition, related to the second term on the right hand side of (9), and involving third
derivatives of the indirect utility function, holds:8

∂

∂θ

[
vpθ(p(θ), θ)
vpp(p(θ), θ)

]
≥ 0. (10)

Any discrete version of the model will therefore consist of a menu of two–part tariffs
where lower marginal rates p̂1 > p̂2 > . . . > p̂n, are associated to higher fixed fees Â1 <
Â2 < . . . < Ân –because of the IC equation–, and thus, these two–part tariffs will be
self–selecting, and characterized by quantity discounts.

8 For inequality (10) to hold it suffices that x(p, θ) be concave in θ and that the price elasticity of
demand be non–increasing in θ. These regularity conditions are rather technical and have little economic
content, but they are assumed to hold in order to ensure a concave nonlinear schedule.
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3 Optional Nonlinear Tariffs
This section studies the design of optimal pricing mechanisms when consumer demand is
stochastic. I analyze two cases: optional two–part tariffs and optional nonlinear tariffs.
The sequential analysis of these two differentiated stages clearly points out the role of
the distribution of each component of the type on the features of the tariff options. The
single–dimensional ex–ante type, ex–post type, and type shock are defined as follows:

θ = θ1+θ2 (11)

Assumption 3: The ex–ante preference index θ1 and the type shock θ2 have contin-
uously differentiable probability density functions fi(θi) ≥ 0, i = 1, 2, on Θ1 = [θ1, θ1] ⊆ <
and Θ2 = [θ2, θ2] = [θ− θ1, θ− θ1] ⊆ < respectively, such that the cumulative distribution
functions given by:

Fi(θi) =

θi∫
θi

fi(z)dz ; i = 1, 2 (12)

are absolutely continuous. As in the standard case, θ1 and θ2 remain private information
for each consumer while F1(θ1) and F2(θ2) are both common knowledge and IHR.

Assumption 4: θ1 and θ2 are independent random variables.

This last assumption is needed to solve the pricing problem explicitly, analyze
how are the properties of the involved distributions related, characterize the properties
of optional tariffs, and compare them to the standard nonlinear pricing solution. Section
4.3 explores the robustness of theoretical results when θ1 and θ2 are correlated.

3.1 Menu of Two–Part Tariffs

Consumers first choose an optional tariff characterized by a fixed payment A, and by a
particular marginal tariff p. At the time of their choice, consumers are not fully aware
of their preferences. They only know θ1, and the distribution of θ2. This means that
consumers do not know how much will they consume when they choose the optional tariff
plan. The choice of the tariff plan is final, and neither the monopolist can take advantage
by switching consumers to a different plan, nor the consumer can request such a change
in the interim between the tariff subscription and the consumption decision. If there is
any tariff switching, it will only apply to future billing periods. Thus, given consumers’
private information θ1 and their expectation on type shocks, consumers choose the tariff
plan that maximizes their expected net rent, which given equation (11) and Assumption
4 leads to the following ex–ante IC constraint that applies to the choice of tariff options:

Ṽ ′(θ1) = E2[vθ(p̃(θ1), θ)]. (13)
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Once the tariff option has been chosen, consumers learn their ex–post type through
the realization of an individual type shock. Then, their consumption level is decided,
contingent on the previously chosen tariff plan {A(θ1), p(θ1)}. The optimal consumption
decision maximizes the actual rent given the tariff option, which leads to the following
ex–post IC constraint:

U ′[x(p̃(θ1), θ)]xθ(p̃(θ1), θ) = p̃(θ1), (14)

where U [·] denotes the direct utility function. The monopolist has to consider now two
sets of participation constraints. To make the different solutions directly comparable, I
assume that all households participate subscribing the service regardless of whether they
later buy anything or not:

Ṽ (θ1) ≥ 0, (15)

while ex–post actual rents should be non–negative in order to consume, and given the
previous choice of service it is required that:

V (θ1, θ2(θ1)) = v(p̃(θ1), θ1 + θ2(θ1))− Ã(θ1) ≥ 0. (16)

Thus, each ex–ante consumer type who chose the option {Ã(θ1), p̃(θ1)} faces a different ex–
post participation constraint. If the type shock is negative enough, θ2 ≤ θ2(θ1), consumers
with ex–ante type θ1 do not to buy anything and thus the monopolist only gets the fixed fee
Ã(θ1) from them.9 Then, given constraints (13) and (15)−(16), the monopolist maximizes
the following profit function:

max
p̃(θ1),Ṽ (θ1)

∫
Θ1

Ã(θ1) + (p̃(θ1)− c)

θ2∫
θ2(θ1)

x(p̃(θ1), θ)dF2(θ2)

 dF1(θ1), (17)

The solution of this problem is again a pair of functions {Ã(θ1), p̃(θ1)} now associating an
optional two–part tariff offered by the monopolist to each consumer with ex–ante type θ1:

p̃(θ1) = c− 1
r1(θ1)

[
E2[vpθ(p̃(θ1), θ1+θ2) |θ2 ≥ θ2(θ1)]
E2[vpp(p̃(θ1), θ1+θ2) |θ2 ≥ θ2(θ1)]

]
, (18)

Ã(θ1) = E2

v(p̃(θ1), θ1+θ2)−
θ1∫

θ1

vθ(p̃(z), z + θ2)dz

∣∣∣∣∣ θ2 ≥ θ2(θ1)

 . (19)

This solution resembles that of the ex–post pricing very closely. With the exception of
the ex–post participation constraint, the menu of optional two–part tariffs does not screen
consumers with respect to their ex–post type, since θ2 is integrated out in the monopolist’s
objective function. The monopolist thus just screens consumers with respect to θ1 by

9 The ex–ante type dependent cut–off shock θ2(θ1) is uniquely defined in (16) for each θ1 due to

continuity of all functions involved and monotonicity of vθ(·) > 0.
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offering them a menu of optional two–part tariffs that accounts for consumer differences
before θ2 is realized. The type shock only determines the amount that each consumer will
purchase depending on the tariff option previously chosen. Denoting by E?

2 the conditional
expectation with respect to the shock given that the ex–post participation constraints is
fulfilled, and by differentiating (18) with respect to θ1 we have:

p̃′(θ1)=
r′1(θ1)
r2
1(θ1)

[
E?

2 [vpθ1(p̃(θ1), θ1+θ2)]
E?

2 [vpp(p̃(θ1), θ1+θ2)]

]
− 1

r1(θ1)
∂

∂θ1

[
E?

2 [vpθ1(p̃(θ1), θ1+θ2)]
E?

2 [vpp(p̃(θ1), θ1+θ2)]

]
≤0. (20)

Equation (20) shows that it is optimal to offer tariff options with lower marginal tariffs
for future consumption if they are associated to higher actual fixed payments. Thus, the
ex–ante tariff is characterized by quantity discounts, which means that there is a concave,
lower envelope function underlying the optional tariffs. This concave function T̃ (θ1) is the
mathematical lower envelope of the menu of two–part tariffs denoted by {Ã(θ1), p̃(θ1)}.
But this function is not the tariff lower envelope in the traditional sense. For each ex–ante
type θ1 and tariff choice {Ã(θ1), p̃(θ1)} there is a unique type shock θ2 = θ∗2(θ1) so that
total payments equal those of the lower envelope. We know that θ∗2(θ1) is unique because
the SCP requires that demand is increasing in the type, xθ(·) > 0, and the marginal tariff
p̃(θ1) is given. Thus, if consumers receive any other shock different from θ∗2(θ1) they will
move along the tariff option chosen and will always pay more under the chosen tariff regime
than if the had “correctly” anticipated their future consumption, in which case they had
moved along the lower envelope by choosing a different two–part tariff option. If we now
repeat the analysis for other ex–ante types who chose different tariff options, we could
easily check that the shape of the actual ex–post tariff is state–dependent, and that the
payment outlay function is not ensured to be concave unless we unrealistically restrict
the behavior of θ2. However, since the distribution of θ1 is IHR, the mathematical lower
envelope T̃ (θ1) is still concave, and thus the optimal two–part tariff options are such that
they lead to quantity discounts by offering a lower marginal rate associated to higher fixed
fees. Furthermore, quantity discounts do not require any additional assumption on demand
relative to those made for the ex–post case. The reduction of the marginal tariffs for class
of services designed for high volumes of consumption is ensured because the distribution
of ex–ante types is IHR, which suffices to ensure IC of ex–ante plans.

A comparison with some related literature in Regulatory Economics may be useful
at this point. Laffont and Tirole (1993, §1.4) show that optimal regulatory mechanisms
can generally be implemented by a menu of linear contracts as long as the distribution of
the adverse selection parameter of firms is IHR. This corresponds to the analysis carried
out in Section 2 when the fully nonlinear ex–post tariff represented the lower envelope of
a menu of self–selecting two–part tariffs. In both cases there is a one–to–one relationship
between quantity purchased or reported cost level and the slope and intercept of the linear
contract.

The analysis of this subsection has made clear that when the monopolist offers
a menu of optional tariffs and consumers do not commit to purchase some particular
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level at the time of tariff choice, the consumption decision and tariff choice are no longer
equivalent solutions of dual problems. In the Regulation literature, Caillaud, Guesnerie,
and Rey (1992) and Laffont and Tirole (1986) among others prove that linear contracts in
reported cost are robust to the existence of additive shocks in the cost functions of firms. In
these models firms’ objective functions are linear in the cost noise that might exist. Thus,
substituting its expected value, firms’ IC and participation constraints are unchanged. The
realization of the cost shock still affects total payments (as in the present model), but the
lower envelope and the linear contracts remain unchanged. This is not the case for the
model presented here. Uncertainty enters nonlinearly in consumers’ objective function,
thus affecting the ex–ante IC and participation constraints (13) and (15) respectively.
Neither the tariff’s lower envelope or the two–part tariff options are immune to the existence
of uncertainty, but the main result of this subsection is to prove that even if this is the
case, the tariff can still be implemented by a menu of linear options.10

If the IHR assumption is not fulfilled and the optimal regulatory mechanism can-
not be decentralized through linear contracts, Picard (1987) shows that it could still be
implemented by a menu of appropriately chosen quadratic options. In the context of the
present research this means that optimal tariffs involve quantity premium. My alternative
approach is to assume that the distribution of θ1 remains IHR through the analysis in order
to make possible the existence of quantity discounts. Then, next subsection identifies the
conditions for nonlinear options (not necessarily restricted to be quadratic) to be concave.

3.2 Menu of Nonlinear Tariffs

We now deal with the general problem of a menu of nonlinear tariffs that also induce
self–selection of consumers with respect to their type shocks. I will characterize this tariff
using a constructive approach starting from the solution of the previous section. Each tariff
option in Section 3.1 was a two–part tariff and thus, each consumer selected one among
{Ã(θ1), p̃(θ1)} depending on her ex–ante type θ1 only but there was no further incentive
for consumers to ex–post self–select according to the realization of θ2. Two consumers
with the same expected consumption or ex–ante valuation of the product would choose
the same two–part tariff option. But they will later consume different amounts depending
on their respective type shocks. Since both of them consume at the level where their
marginal utility equates their marginal tariffs chosen in advance, the monopolist extracts
some rent based on the consumer ex–ante type while consumers keep all their ex–post
informational rent exclusively due to the learned type shock. To avoid this insufficient
screening, nonlinear tariff options also induce ex–post self–selection by means of quantity
discounts and thus further reduce consumers’ ex–post informational rents. Provided that

10 Baron and Besanko (1999) rise the question of the equivalence of solutions when the type of
an alliance θ comprises the types of the alliance members θ1 and θ2 when the type of the alliance is
defined as in equation (11). This is not the case in the present model because of the sequential nature of
the screening process, as well as for the fact that the unresolved uncertainty about θ2 affects the IC and

participation constraint of each consumer. A direct mechanism {Â(θ1+θ2), p̂(θ1+θ2} will not be equivalent

to {Ã(θ1), p̃(θ1} unless the distribution of θ2 becomes degenerate.
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each nonlinear tariff option is concave, they can also be implemented by a continuum of
self–selecting two–part tariffs. The task of the monopolist is not to design the optimal
menu of menus of linear tariff. At stage 1, when consumers only know θ1 they choose
a nonlinear tariff option ˜̃T (θ2 | θ1), or alternatively a particular continuum of ex–post,
self–selecting, two–part tariffs { ˜̃A(θ2 |θ1), ˜̃p(θ2 |θ1)}. Given consumers’ private information
θ1, their expectation on type shocks, and their knowledge of the “shapes” of tariff options
for each θ1, they choose the tariff plan that maximizes their expected net rent. Later, once
θ2 is realized, the mechanism determines consumption and payments conditional on the
previous choice of tariff.

General characterizations of the menu of nonlinear tariffs are difficult and cumber-
some. However, the fact that types components are statistically independent from each
other proves to be very useful in obtaining the characterization of this menu of nonlinear
tariff options. Since the shock is independent of the ex–ante type, the mathematical lower
envelope, T̃ (θ1), still capture the optimal incentive mechanism to screen consumers with
respect to their ex–ante type dimension regardless of whether tariff options are two–part
tariffs or more general nonlinear functions. Thus, ˜̃T (θ2 | θ1) can be considered to be
composed of two elements: one that screens consumers with respect to θ1, represented
by (18)− (19), and another that induces self–selection of ex–post types given the optimal
tariff choices of each ex–ante type θ1. This second component increases the revenue of the
monopolist by reducing consumers informational rents exclusively related to θ2. Obviously,
if θ1 and θ2 were not independent it would be impossible to separate the origin of the rent
extraction as screening for θ1 should also account for the related distribution of θ2. In
order to characterize the optimal menu of nonlinear options ˜̃T (θ2 | θ1), observe that since
tariff options are nonlinear, the ex–post IC constraint of a consumer with ex–ante type θ1

solves:
θ2 ∈ arg max

θ′2

[
v( ˜̃p(θ′2 |θ1), θ1+θ2)− ˜̃A(θ′2 |θ1)

]
. (21)

Observe also that since type components are independent each nonlinear option should be
tangent only once to T̃ (θ1) as characterized by equations (18)−(19), so that {Ã(θ1), p̃(θ1)}
remains the optimal mechanism to screen the ex–ante type dimension θ1 as the effect of
θ2 has already been integrated out. Therefore, only one particular two–part tariff of each
menu of ex–post nonlinear tariffs that characterizes each nonlinear option coincides with
one of the optional two–part tariffs of the problem solved in the previous section. Thus,
total and marginal payments will be the same, as well as consumption, when the realized
shock equals θ∗2(θ1).11 Under independence, this ex–ante, type specific, critical shock is
implicitly defined by:

E2[ ˜̃p(θ2 |θ1)] = ˜̃p(θ∗2(θ1) |θ1), (22)

The solution of the menu of nonlinear options builds upon the menu of optional
two–part tariffs of Section 3.1. Taking the solution of the menu of optional two–part

11 Uniqueness of θ∗2(θ1) is ensured by monotonicity of equation (10) in θ.
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tariffs (18)− (19) as the boundary condition at θ∗2(θ1), the optimal screening process with
respect to θ2 results in deviations of the ex–post marginal tariff and fixed fee payment
relative to those of {Ã(θ1), p̃(θ1)}. Thus, let define:

∆ ˜̃p(θ2 |θ1) = ˜̃p(θ2 |θ1)− p̃(θ2 |θ1), (23)

∆ ˜̃A(θ2 |θ1) = ˜̃A(θ1+θ2)− Ã(θ1). (24)

The IC constraint (21) can be rewritten as follows:

˜̃V ′(θ2 |θ1) = vθ( ˜̃p(θ2 |θ1), θ1+θ2). (25)

In addition, there is another boundary constraint for this problem:

∆ ˜̃V (θ∗2(θ1) |θ1) = 0, (26)

so that ˜̃p(θ∗2(θ1) |θ1) = p̃(θ1), and thus each nonlinear tariff option is ensured to be tangent
to T̃ (θ1) only once if ˜̃p(θ2 |θ1) is monotone.

Given all these constraints the monopolist’s problem solves, for each possible non-
linear option, the change in marginal rate that will maximize the increase in revenues from
the corresponding “boundary two–part tariff” option:

max
∆˜̃p,∆ ˜̃V

∫
Θ2

[
˜̃A(θ2 |θ1)+ ˜̃p(θ2 |θ1)x( ˜̃p(θ2 |θ1), θ1+θ2)−Ã(θ1)−p̃(θ1)x(p̃(θ1), θ1+θ2)

]
dF2(θ2).

(27)
Solving this optimal control problem, the optimal changes of the marginal tariff and fixed
fee relative to the optimal two–part tariff option chosen by an ex–ante type θ1 are:

∆ ˜̃p(θ2 |θ1) = − F2(θ∗2(θ1))− F2(θ2)
f2(θ2)

[
vpθ( ˜̃p(θ2 |θ1), θ1+θ2)
vpp( ˜̃p(θ2 |θ1), θ1+θ2)

]
, (28)

∆ ˜̃A(θ2 |θ1) = v( ˜̃p(θ2 |θ1), θ1+θ2)− v(p̃(θ1), θ1+θ2)

−
θ2∫

θ∗2 (θ1)

[vθ( ˜̃p(θ1 + z), θ1 + z)− vθ(p̃(θ1), θ1 + z)]dz. (29)

These two equations in conjunction with (18) − (19) characterize a menu of optional
nonlinear tariffs { ˜̃A(θ2 | θ1), ˜̃p(θ2 | θ1)} for each value of θ1. Observe that equation (28)
implies that consumers with ex–ante type θ1 faces higher marginal charges than p̃(θ1) if
they receive a small shock θ2 < θ∗2(θ1), but on the contrary, marginal tariffs will be smaller
than p̃(θ1) if θ2 > θ∗2(θ1).
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The final question that I have to address in this section is whether any further
assumption is necessary to ensure that each nonlinear tariff ˜̃T (θ2 | θ1) is concave, so that
screening consumers with respect to their type shocks could also be achieved through
quantity discounts. As Section 3.1 proved that T̃ (θ1) is concave, there only remains to
analyze whether marginal tariffs ˜̃p(θ2 | θ1) are decreasing in θ2. Thus, for each particular
nonlinear option { ˜̃A(θ2 |θ1), ˜̃p(θ2 |θ1)} to be concave it is required that:

∂∆˜̃p(θ2 |θ1)
∂θ2

=
[
r′2(θ2)
r2(θ2)

− f ′2(θ2)
f2
2 (θ2)

f2(θ∗2(θ1))
r2(θ∗2(θ1))

] [
vpθ( ˜̃p(θ), θ)

vpp( ˜̃p(θ2 |θ1), θ1+θ2)

]

+
[

1
f2(θ2)

f2(θ∗2(θ1))
r2(θ∗2(θ1))

− 1
r2(θ2)

]
∂

∂θ2

[
vpθ( ˜̃p(θ2 |θ1), θ1+θ2)
vpp( ˜̃p(θ2 |θ1), θ1+θ2)

]
≤ 0. (30)

The ratio vpθ/vpp is negative because the indirect utility function is convex in price,
and because of the SCP as stated by Assumption 1, while its derivative with respect to
θ2 is ensured to be positive by equations (10) and (11). Hence, the concavity of the
nonlinear tariff option critically depends on the signs of the terms between brackets. The
first term between brackets in equation (30) is ensured to be positive only if r′2(θ2) >
f ′2(θ2)[1 − F2(θ∗2(θ1))]/[1 − F2(θ2)]2, while the second term between brackets in equation
(30) is negative only as long as the shock θ2 does not exceed θ∗2(θ1).

Observe that even if f ′2(θ2) ≤ 0 and the distribution of θ2 is IHR, concavity of each
nonlinear option in this more complicated problem also requires that θ2 ≤ θ∗2(θ1), i.e.,
concavity will be ensured for lower consumption levels. If f ′2(θ2) > 0 or if θ2 > θ∗2(θ1),
the IHR assumption r′2(θ2) > 0 does not suffice to ensure that each nonlinear option
˜̃T (θ2 | θ1) is concave. Therefore we need the impose the more restrictive assumption that
the hazard rate of the distribution of the type shock is sufficiently increasing in order to
compensate the effect of large shocks or increasing density functions.12 The IHR property
is still critical for the model to be well behaved, but it is not sufficient to ensure that
each nonlinear tariff option leads to quantity discounts. If we just require that r′2(θ2) > 0,
we may find an asymmetric treatment of consumers with different θ1: nonlinear tariff
options chosen by high θ1 are most likely concave, while on the contrary, low θ1 choosing
tariff options “designed” for low consumption levels would suffer important premia if they
consume much more than what they expected. But still, the IHR property proves to be
critical for the model to be well behaved.

Therefore, going from a menu of two–part tariffs to a menu of nonlinear tariffs
only requires the additional assumption that the hazard rate of the distribution of the

12 There are cases where these conditions are fulfilled. One of such cases is when θ2 ∈ [0, 1] is
distributed as a standard unit beta distribution of the first kind with parameters p = 1 and q = λ2.
This distribution is IHR as long as λ2 > 0, and the density function is always decreasing when λ2 > 1.
The hazard rate of this distribution varies from λ2 when θ2 = 0 to ∞ when θ2 = 1. Thus, it is always
possible to find a large enough value of λ2 to ensure that the nonlinear tariff option is concave, even when
θ2 > θ∗2(θ1).
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shock is sufficiently increasing to ensure the existence of quantity discounts for every single
nonlinear tariff option. The basic setup thus remains unchanged: the IHR property proves
to be critical for the model to be well behaved. The following section studies how IHR
properties are affected by the existence of stochastic components, so that the relative
profitability of the ex–ante and ex–post pricing could be addressed.

4 Shocks, Convolutions, and Stochastic Dominance
The previous two sections have shown how to solve in isolation either the standard ex–
post nonlinear pricing problem, or the more complex ex–ante optional nonlinear pricing
problem. A most relevant question is whether these two solutions can be compared by
the monopolist in order to choose the most profitable one in expectation. Thus, these two
problems have to be consistently defined so that the ex–post pricing solution accounts for all
statistical properties derived from the fact that θ is actually the result of the convolution of
θ1 and θ2. In this section I focus on the relationship between properties of the distributions
of the ex–ante type θ1 and the type shock θ2, and show how are they related to the features
of the distribution of the ex–post type θ.

This section covers three related topics. First, it is shown that if the distribution
of the components of the types is IHR, then the distribution of their convolution is also
IHR. Second, I explore environments in which the comparison of these hazard rates can
be ordered unambiguously. Third, I discuss how robust are these results to the definition
of θ and the assumed stochastic independence of its components.

4.1 Preservation of IHR under Convolution

I should start this section by defining the distribution of the ex–post type in terms of the
distribution of its components.

Definition 2: Let θ1 and θ2 be independent, univariate, random variables with
cumulative distribution functions Fi(θi) : Θi → [0, 1], i = 1, 2. The cumulative distribution
function of θ = θ1+θ2 is given by the Fourier convolution:

F (θ) =
∫
Θ2

F1(θ − θ2)f2(θ2)dθ2. (31)

Therefore, given any arbitrary, but well behaved, distribution function for the ex–
ante type and the type shock, it is always possible to identify the distribution of ex–post
types up to a linear transformation.

Showing that the IHR property of the distributions of the components of the type,
{θ1, θ2}, is passed through to the distribution of the ex–post type, θ, is absolutely necessary
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to study the relationship between the features of the ex–ante optional and the ex–post
standard nonlinear tariffs as well as to test the empirical implications of a model with type
changes. The following Proposition summarizes a key result for the proper characterization
of the ex–ante and ex–post tariffs. The proof is included in the Appendix.13

Proposition 1: If the distribution of the components of the type, F1(θ1) and
F2(θ2) are both IHR, then the distribution of the convolution F (θ) is IHR.

This result is important because both the ex–ante and ex–post pricing problems
are consistent, well defined, and have separating equilibria involving quantity discounts as
long as the distribution of the components of the ex–post type are IHR.

4.2 Implications

The definition of the ex–post type given in equation (11) together with the regularity
conditions of the distributions of the type components discussed so far ensure that θ
second order stochastically dominate θi, i.e., θi ≤st θ. This is a direct testable implication
of the type–varying model. However, as we will see in Section 6.1, second order stochastic
dominance does not generally suffice to compare the relative expected efficiency of ex–
ante and ex–post nonlinear tariffs as higher or lower markups are inversely related to the
magnitude of the hazard rate of the involved type distribution. Second order stochastic
dominance alone allows for non–uniform orderings of the markups of the ex–ante tariff
relative to those of the ex–post tariff, depending on particular consumption ranges.

A sufficient condition to compare the optimal solutions of the ex–ante and ex–post
nonlinear pricing mechanisms is to require a particular hazard rate ordering of the involved
distributions, such as in Laffont and Tirole (1993, §1.4). Since optimal nonlinear solutions
critically depend on the value of the hazard rate of the corresponding distribution I have to
establish how large is the hazard rate of the convolution distribution F (θ) relative to those
of the components of the ex–post type, and thus determine whether a type–varying model
may lead to a uniform ordering of hazard rates and markups of each pricing mechanism.
Proposition 2, also proved in the Appendix, shows that for the present type–varying model,
θ dominates in hazard rate to θi if the support of the distributions is restricted to <+.

Proposition 2: Let Fi(θi) be IHR, i.e., r′i(θi) > 0 in θi on {θi > 0 : Fi(θi) < 1},
for i = 1, 2. Let F (θ) denote the cumulative convolution distribution of θ = θ1+θ2, with
hazard rate r(θ). Then r(θ) ≤ min{r1(θ), r2(θ)} on {θ > 0 : F (θ) < 1, Fi(θ) < 1; i = 1, 2}.

Proposition 2 implies that the distribution F (·) always puts more weight on higher
values of the type than the distribution F1(·). Therefore given some value θ̂, the probability

13 In a recent paper, Biais, Martimort, and Rochet (2000) claim that the convolution distribution
is IHR if at least the distribution of one of its components is IHR and the other has a bounded support.
Miravete (2001) discusses the accuracy of such statement. I still require that both distribution of the
components is IHR. But relative to the assumptions of Biais, Martimort, and Rochet (2000), Proposition
1 is more general because I do not exclude the set of IHR distributions whose density functions are not
log–concave, or whose support is not bounded.
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that θ > θ̂ always exceeds the probability that θ1 > θ̂. This intuitive result is formalized
in the following corollary.

Corollary 1: If r(θ) ≤ ri(θ) on {θ > 0 : F (θ) < 1, Fi(θ) < 1; i = 1, 2}, then θ
first order stochastically dominates θi.

Proof: Since r(θ) = −d log[1− F (θ)]/dθ it follows that ∀θ > 0:

1− F (θ) = exp

− θ∫
0

r(z)dz

 ≥ exp

− θ∫
0

ri(z)dz

 = 1− Fi(θ), (32)

and therefore F (θ) ≤ Fi(θ) ∀θ > 0, which is the definition of first order stochastic
dominance of θ over θi, i.e., θi ≤st θ.

Some pricing or agency problems, other than the telecommunications case studied
in later sections, could easily define environments where the support of type components
is constrained in a natural way. For instance, we could think of θ1 ∈ <+ as general skills
of workers before being hired (e.g., acquired through education and/or working experience
in other jobs). If hired, workers could develop some specific skills and abilities due to
learning by doing, and therefore increase their productivity. It is not unreasonable within
this framework to exclude the possibility of negative learning, and thus θ2 could also be
restricted to take only positive values. Consumption of electricity also provides a related
example. While households consume according to their habits and location, i.e., the base
load θ1 ∈ <+, changes in temperature (public information and common to all consumers)
may induce additional seasonal demand: whenever it is too cold or too warm, consumers
increase their demand for electricity by turning on the heating or the air conditioner. Thus,
θ2 could also be restricted to take only positive values, and the model will produce strong
empirical implications.

According to Laffont and Tirole’s interpretation (1993, §1.4–1.5), Proposition 2
means that the distribution of θ is more favorable than the distribution of θ1. Corollary 1
shows that this result could be obtained within the type–varying framework because of the
existence of an independent, but systematically positive type shock ensures that the actual
purchase (or valuation) is always higher in stochastic sense than the expected purchase (or
valuation). Similarly, Maskin and Riley (1984, §4) already considered the effect of changes
in the distribution of consumer types on the shape of the nonlinear tariffs. As I show in
Section 6.1, a nonlinear schedule based on F (θ) generally involves higher markups than the
nonlinear tariff based on F1(θ1) for all consumption levels, which is a direct consequence
of the hazard rate dominance of θ over θ1 in a model with type varying consumers if the
support of the distributions are restricted to <+.

The testable implications of Proposition 2 and Corollary 1 are, strictly speaking,
limited to situations where θ, θi ∈ <+, which exclude the empirical application of this
paper. There is no reason to expect that consumers always underestimate their future
local telephone usage, and thus the type shock θ2 is not restricted to take only positive
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values. However, a strong empirical evidence in favor of first stochastic dominance of θ over
θ1 will be consistent with the underlying hazard rate dominance of θ over θ1. Thus, in such
a case, an ex–post nonlinear tariff could lead to higher expected profits than an ex–ante
nonlinear tariff because the markups of T̂ (θ) uniformly dominates those of T̃ (θ2 | θ2) for
every consumption level.

4.3 General Distributions and Type Definitions

Equation (31) establishes that given the distribution of θ1 and θ2 it is always possible
to identify the distribution of θ up to a linear transformation of the distributions of the
type components. This identification issue rises the question of whether the results of the
model are limited to a particular definition of the ex–post type in terms of the ex–ante
type and the type shock. However, the distinction between convolution and composition
distribution is mostly irrelevant because the same preferences can always be represented by
any monotone transformation of a given utility function. Thus for instance, assume that the
utility function is multiplicatively separable in θ and x. Assume also that θ = θ1θ2, each of
which is beta distributed with appropriate parameters so that the composition distribution
is uniform. Observe that the same set of preferences could be represented by a logarithmic
transformation of that utility function. But in that case, θ and x are additively separable,
and θ = θ1+θ2 where θ is now distributed as a χ2(2) while θ1 and θ2 are now two exponential
generalized beta distributions of the second kind. Thus the functional form that relates
the ex–ante type and the shock with the ex–post type is not independently identifiable
from the assumed distributions and/or the utility function. Since the preference index is
just a theoretical construction to describe situations of asymmetric information, we can
always define a monotone transformation of the utility function that scale the index and its
distribution appropriately to represent the same preferences, which ensures the generality
of the results of the present model. In the end, types shocks, regardless of whether they
are linearly related to the ex–ante type or not, are only identifiable as non–price shifts
in consumer demand. Therefore, I can focus on the convolution case to analyze, without
loss of generality, the implications of the existence of type shocks for the design of optimal
pricing mechanisms.

Another important issue is the independence of θ1 and θ2. It is not difficult to
envision situations where large consumers also make more or less mistakes than small
consumers. For example, consider the reference case where θ1 and θ2 are independent and
F (θ) ≤ F1(θ) ∀θ ∈ Θ ⊆ <. Assume now that the ex–ante type and the shock are negatively
correlated, and denote by F ?(·) the cumulative distribution of θ = θ1+θ2 under negative
correlation. The distribution of θ is now less dispersed, with less mass of probability at the
tails of the distribution than if θ1 and θ2 were independent. In some sense the monopolist
is now “less uncertain” about the value that consumer types may take, because there is a
larger mass of probability around the mean of θ. Thus, for low values of θ (below the mean),
the probability of finding a type above a given θ is higher under negative correlation than
under independence. This is just because the probability distribution function of θ1+θ2 is
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more concentrated around the mean. Thus, the hazard rate function is lower under negative
correlation than under independence for low values of θ. Just the contrary holds for high
values of θ, i.e., the hazard rate of the distribution with negative correlation will exceed that
of the distribution of independent type components. If r?(θ) ≤ r(θ) only for low values of
θ, then for large customers ex–post nonlinear pricing markups will be lower under negative
correlation of type components than under the assumption of independence as markups
and hazard rate of the distribution of θ are inversely related. Consumer types are more
concentrated around the mean under negative correlation than under independence, and
thus it is necessary to introduce important distortions to distinguish among low consumers
and preserve the IC property of the mechanism.14 Thus, the results of this paper in general
need to be qualified for particular cases where type components are allowed to be correlated.

5 Empirical Evidence
Results of Section 4 provide us with direct testable implications of the “taste–varying”
approach. The goal of this section is to test these theoretical prerequisites in a particular
case where actual data provides with a direct instrument for θ, θ1, and θ2. Contrary to
many applied works, the source of asymmetric information in the application studied here
is not identified through the specification of some distribution of unobserved characteris-
tics, but rather using direct observations of consumers’ taste parameters. The empirical
analysis exploits the information available from the 1986 Kentucky Local Telephone Tariff
Experiment.

In November of 1984, the Kentucky Public Service Commission (KPSC) established
Administrative Case No. 285 to study the economic feasibility of providing local measured
service telephone rates. Directly linked to Case No. 285, South Central Bell (SCB) carried
out an extensive tariff experiment in the second half of 1986 in two cities of Kentucky to
provide the commission with evidence in favor of introducing the optional local measured
service. Prior to this tariff experiment, in spring of 1986, when all households in Kentucky
were on mandatory flat rates, SCB collected demographic and economic information for
about 5,000 households in the local exchanges of Bowling Green and Louisville. In the
second half of 1986 tariffs where modified in these two cities. In Bowling Green all
customers where placed on a mandatory measured service, i.e., all of them paid according
to their realized consumption. In Louisville, customers had the ability to remain in
the previous flat tariff regime or switch to a measured service option. Both measured
services, in Bowling Green and Louisville, included a monthly fixed fee, an allowance and

14 These intuitive results are however difficult to prove except, maybe, for particular distributions.
The reason is that under correlation, the probability density function of θ = θ1+θ2 cannot be factorized as
the product of the components’ probability density functions, and thus F (θ) is no longer the convolution
distribution of θ1 and θ2. One of the cases where F ?(θ) can be written explicitly is that of θ = θ1+θ2 where
(θ1, θ2) ∼ BV N [µ1, µ2, σ2

1 , σ2
2 , ρ]. In this case, θ ∼ N [µ = µ1 + µ2, σ2 = σ2

1 + 2ρσ1σ2 + σ2
2 ]. To illustrate

the argument of this paragraph, I computed the hazard rate functions of θ1 + θ2 under independence,
r(θ), and under perfect negative correlation (ρ = −1), r?(θ). For the case where µ1 = 0, σ2

1 = 1, µ2 = 1,

σ2
2 = 0.5, I found that r?(θ) > r(θ) ∀θ > 0.12.
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a nonlinear multidimensional tariff that sometimes accounted for call distance within the
local exchange, two or three periods of time for load pricing, as well as setup and duration
of calls. The regulated monopolist also collected monthly information on usage (number
and duration of calls classified by time of the day, day of the week, and distance), and
payments during two periods of three months in spring and the fall of that year.

It is remarkable that in addition to demographic and economic variables, SCB
also collected information on telephone customers’ usage expectations. SCB explicitly re-
quested customers’ own estimates of their weekly average number of calls. These individual
estimates are particularly useful because local calls were never priced before and consumers
were not aware of the tariff experiment that was going to be held in the second half of the
year. Thus, neither marginal tariffs or strategic considerations influence these estimates
of customers’ own satiation levels. This information, available for most households of the
sample can be compared with the actual number of weekly phone calls for every month in
the study. A direct test of the suggested taste–varying model will be constructed in the
next subsection using the comparison between the expected and the actual weekly number
of phone calls during the spring months of 1986.

Table 1 presents basic descriptive statistics of the sample. These two cities have
quite different demographic structures. Residents in Bowling Green make a significantly
higher income and households are larger, including the proportion of teenagers. Households
with married couples and college graduates are also more common in Bowling Green than
in Louisville. In this latter city, on the contrary, it is more common to find retired people,
those who receive some kind of social benefits to support their income, and a smaller
percentage of households that have moved in the last five years. Racial composition of
these cities is also different. Only 6% of the population in Bowling Green, but about 12%
of the population in Louisville, is black. There is also a significant difference between
usage and expected usage of local telephone service across these two local exchanges.
While the number of calls is higher in Louisville than in Bowling Green, the expected
consumption is much more accurate in the latter exchange. On average, Bowling Green
residents underestimate telephone usage by 2% and Louisville residents underestimate
their usage by 29%. The difference in magnitude of the bias (type shock of the model) is
remarkable. Perhaps it could be explained by positive network effects of the size of the
local exchanges [Taylor (1994, §9)]. Bowling Green barely reached 50,000 inhabitants by
the end of the 1980’s but Louisville had a population that exceeded 250,000.

5.1 Are Data Consistent with the Type–Varying Model?

A common problem in estimating demand when consumers face nonlinear budgets is that
the choices of consumption and the marginal tariff are simultaneous and therefore the
relevant price is endogenous [e.g., MacKie–Mason and Lawson (1993, §3.2)]. Regarding
this point, observe that comparing the expected weekly number of calls with the actual
number of calls during the spring months is qualitatively different from comparing those
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expectations with the actual number of calls during the fall months. In the second case
the number of phone calls is a function of the tariff chosen (in Louisville) and the marginal
charge per call, which varies with the time of the day and distance of the outgoing call
(both in Bowling Green and Louisville’s measured service option), as well as of customers’
accumulated monthly usage of telephone services. However, this is not the case during
the spring months because all local telephone customers were placed under a mandatory
flat rate regime. Price was a relevant economic variable for the decision to subscribe the
telephone service, but after that any additional call involves a zero marginal charge, and
consequently local telephone customers should consume at their satiation levels.

Focusing on the spring months of 1986, the present data set provides us with an
uncommonly available direct indicator for θ1, the expected number of weekly calls, and
also for θ, the actual number of weekly calls. The first column of Table 2 shows the average
usage expectation bias, µ2, which is positive for customers of these two local exchanges,
but it is about seventeen times larger in Louisville than in Bowling Green. A more detailed
analysis by demographic strata shows further differences between residents of these two
exchanges. While in Louisville the bias is always positive and large, independently of
the demographic characteristic considered, in Bowling Green it is more balanced and in
several occasions it takes negative values. In both cities consumers tend to underestimate
their future usage, but in Louisville they do it by more than an order of magnitude. The
smaller average bias in Louisville (single and male household) is still more than seven times
larger than the average bias in Bowling Green. Figures 1.7–1.8 show the empirical density
function of type shocks. Although these expectation bias are quite disperse, small mistakes
around the mean are the most frequent event. The “PAT” column presents further evidence
in favor of the type varying model by computing Pearson’s analog goodness of fit test for
the equality of F (·) and F1(·). That hypothesis is always strongly rejected and therefore
we can conclude that the distribution of θ2 is not degenerate and that the suggested type
varying model is an accurate representation of consumers preferences.

But there is also significant heterogeneity by demographic strata for local telephone
usage expectation bias. In both cities there is evidence (stronger in Louisville) in favor
of a mean increasing spread of the distribution of θ relative to that of θ1. However, a
systematic ordering of the means of θ and θ1 (through a positive µ2) is not sufficient to
ensure the stochastic dominance of θ over θ1, since the whole distribution matters. Figures
1.1–1.2 present the empirical frequency distributions of actual and expected weekly number
of local calls for the spring months of the experiment in the local exchanges of Bowling
Green and Louisville respectively. It is evident that the distribution of expected weekly
calls is characterized by the accumulation of frequencies on a few “focal points” of the
usage range. More informative is the empirical cumulative distribution functions shown
in Figures 1.3–1.4, which clearly indicates that in both cities telephone customers tend to
underestimate their future local telephone usage, which leads to the relative ordering of
the averages of θ and θ1 discussed in Table 2.
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If the mean of θ2 is finite, –i.e., E[θ2] = µ2–, and given that θ is additively
separable in θ1 and θ2, –i.e., equation (11)–, F (·) will be a stochastic spread of F1(·),
and therefore θ1 should second order stochastically dominate θ. The stochastic spread
will be mean preserving, mean increasing, or mean decreasing depending on whether µ2 is
zero, positive, or negative. Figure 1.4 appears to indicate that θ first order stochastically
dominates θ1 in Louisville, although Figure 1.3 fails to prove the same for Bowling Green.
While first order stochastic dominance (FOSD) implies second order stochastic dominance
(SOSD) and therefore supports the suggested type–varying model, FOSD is also much more
restrictive than SOSD because it implies that consumers systematically underestimate their
future consumption, not only independently of their demographic characteristics, but also
independently of the magnitude of their local telephone usage. Thus, strong FOSD of θ
over θ1 will be consistent with a model where θ dominates in hazard rate to θ1.

In order to test the hypotheses of FOSD and SOSD, I computed Anderson’s (1996)
nonparametric test of stochastic dominance. The test is based on comparing weighted
differences of frequency functions of two variables within given mutually exclusive fractiles.
For each demographic strata, stochastic dominance of any order is rejected if one ratio is
significantly positive for any single fractile. Thus, Table 3 reports for each demographic
strata the maximum of these ratios among 20 fractiles in which the range of phone calls
is divided. Table 3 provides with strong evidence in favor of the suggested type–varying
model, as SOSD of θ over θ1 is only rejected for two demographic categories in Bowling
Green for very large consumption ranges (exceeding 90 calls per week).15 FOSD of θ
over θ1 is generally rejected in Bowling Green but never in Louisville. This FOSD result
explains why the type shock has always a positive mean in Louisville, and its rejection in
Bowling Green is consistent with the negative average bias found for some demographic
strata.

6 Welfare Analysis
The monopolist has a choice between the ex–post and the ex–ante tariff. If we approach
the problem from an ex–post perspective, the monopolist should always prefer the ex–post
tariff to an ex–ante tariff made of two–part tariff options because in this latter case the
monopolist is not screening consumers with respect to θ2. The same comparison with
a menu of nonlinear options is however not so straightforward because in this case both
type components are used in the design of the tariff, but the monopolist screens them
sequentially rather than simultaneously.

However, the monopolist, as well as the regulator, has to evaluate the choice among
alternative ways to screen consumers ex–ante. As it was shown before, under sequential
screening, consumers’ expectations affect the IC and participation constraints, and thus
integrating out the effect or θ2 still affects the shape of the ex–ante tariff.

15 I furthermore checked that SOSD was never rejected for neither of the two cities in any single
month, using 10 and 15 fractiles.
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In the end, the monopolist will prefer the tariff that introduces higher markups
for every consumption level, thus reducing the informational rent. This may happen for
certain environments as those discussed in Section 4.2 where distributions can be ordered
according to their hazard rates. But most likely, the lower envelopes of the tariffs T̂ (θ)
and T̃ (θ1) will cross each other, defining regions for which one leads to higher profits than
the other. Thus, the evaluation of expected profit or welfare gains from the introduction
of optional pricing becomes difficult to characterize in general.

6.1 Freedom of Choice vs. Mandatory Pricing

In this section I analyze the role of the distribution of asymmetric information parameters
in the solution of the optimal ex–post nonlinear pricing problem. Suppose that consumer
type θ could be distributed with respect to either F (θ) or G(θ). Which of these two dis-
tributions is more informative for the monopolist? The following Proposition summarizes
a well known result in the mechanism design literature:

Proposition 3: Let F (θ) and G(θ) be IHR, i.e., such that r′F (θ) > 0 in θ on
{θ > 0 : F (θ) < 1}, and r′G(θ) > 0 in θ on {θ > 0 : G(θ) < 1}. Assume also that
rF (θ) ≤ rG(θ), ∀θ. Then, the price mark–up and the marginal tariff will be uniformly
higher under the F (θ) distribution than under the G(θ) distribution.

Proof: Differentiation of the price mark–up using solution (7) leads to:

∂

∂r(θ)

(
p̂(θ)− c

p̂(θ)

)
=

c · vpθ(p(θ), θ)
vpp(p(θ), θ)

r2(θ)
[
c− r−1(θ) · vpθ(p(θ), θ)

vpp(p(θ), θ)

]2 < 0. (33)

Thus, evaluating these expresions at rF (θ) and rG(θ) respectively, it follows that the price
mark–up will be higher under F (θ) than under G(θ).

The monopolist will charge a higher price mark–up under F (·) than with G(·)
because F (·) dominates in hazard rate to G(·). Distribution F (·) puts more weight on
consumers of high type.16 The fact that F (·) is more favorable than G(·) implies that the
optimal pricing has to create stronger incentives for inframarginal consumers to self–select
according to their true type. Proposition 3 shows that maintenance of the IC constraint
under more favorable distributions requires higher price distortions for inframarginal con-
sumer types. Thus, reducing consumers’ expected informational rents, the monopolist is
able to screen among the many particular type values that a smaller proportion of his
customers can reveal through their tariff choice or usage decisions.

Information structures that lead to the hazard rate ordering provide with a unique
case where different nonlinear tariffs can be sorted. But more frequently, comparison

16 This is true strictly speaking when the support of the distribution is restricted to <+. Otherwise,
hazard rate dominance is a regularity condition that has to be imposed to obtain this result.
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among informational structures will not lead to situations in which one distribution is
more favorable than the other over the whole support of the distribution of types. This
is the case of the present case study. Figures 1.5–1.6 compare the hazard rate of the
distributions of expected and actual number of calls in the two local exchanges. In both
cases, there is an alternating dominance in hazard rate of F (·) over F1(·) and vice versa.
But in Louisville, consistent with the FOSD result, F1(·) dominates in hazard rate to F (·)
only in very small ranges. Thus, without strict hazard rate dominance, markups can be
higher under one tariff only for a given range of consumption. The question that remains
to be answered is whether, regardless of all these issues, something can be said about the
desirability of ex–ante vs. ex–post tariffs for different agents.

Results for the monopolist are conclusive. Optimal tariff functions T (θ) are nec-
essarily increasing, T ′(θ) = p(θ) > 0. Furthermore, if the problem is well behaved, tariff
functions will be concave (quantity discounts), T ′′(θ) = p′(θ) < 0. The monopolist
generally expects an increase in profits by introducing optional pricing as the following
proposition shows. These results are a direct consequence of the classical conditions of
Hadar and Russell (1969) to order outcomes under uncertainty.

Proposition 4: Expected profits are higher under ex–ante pricing if any of the
following conditions hold:

(i) T ′(θ) > 0 and F (·) FOSD F1(·),
(ii) T ′(θ) > 0, T ′′(·) < 0, and F (·) SOSD F1(·).

Proof: Under circumstances of part (i), the difference of expected profits between
ex–post and ex–ante tariffs is (integrating by parts):∫

Θ

T (x)[F (x)− F1(x)]dx = −
∫
Θ

T ′(x)[F (x)− F1(x)]dx ≥ 0, (34)

while for part (ii) the result is obtained integrating (34) by parts again:∫
Θ

T ′′(x)
∫
Θ

[F (y)− F1(y)]dydx− T ′(x)
∫
Θ

[F (y)− F1(y)]dy
∣∣∣x=θ

x=θ
≥ 0, (35)

which completes the proof.

Therefore, more favorable distributions (FOSD) increase expected profits even for
cases where the pricing problem does not fulfill all required conditions to discriminate
among consumers by means of quantity discounts. But if these quantity discounts are
optimal, then less restrictive stochastic orderings (SOSD) also lead to the same conclusion.
The commonly observed practice of using optional nonlinear tariffs is therefore profit
maximizing under very general conditions, which should suffice to explain its widespread
use.

Unfortunately, I cannot affirm the same about consumers. Assumption 2 only
requires that the indirect utility function be increasing in θ. But the effect on the net
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rent v(p(θ), θ) − T (θ) will depend on many factors. If v(·) is more increasing than T (·),
then part (i) of Proposition 4 could be applied, and consumers will prefer optional pricing
to mandatory ex–post pricing. However, it is possible to observe that type shocks are so
biased that F (·) ≤ F1(·) and consumers still prefer the mandatory measured service. In
this case preferences just fail to be increasing enough in θ. This appears to happen in
the empirical analysis of the Louisville sample. A similar analysis could be made for the
case of SOSD in order to apply part (ii) of Proposition 4. In addition to v(·) being more
increasing than T (·), it would now require that v(·) is more concave than T (·). Thus, even
more restrictive preferences are necessary to obtain a definite ordering of pricing strategies
under increasingly less restrictive stochastic environments.

Obviously, this difficulty in ordering pricing schemes according to the expected
consumer surplus is translated to the Regulator’s welfare measure. The result is more
unclear the more weight is given to consumers in the Regulator’s objective function. But
still something can be said, at least in limiting cases. For instance, if σ2

2 = 0 then F (θ) =
F1(θ1). Obviously, if the variance of the shock is zero, all consumer differences are captured
by the distribution of the ex–ante type. Therefore, there is no real distinction between
tariff choice and usage decision. All consumers and also the monopolist would be indifferent
between an ex–ante and ex–post tariffs. A model like this is actually equivalent to one
where consumers are able to commit ex–ante to future consumption. Without being too
precise I conclude that the smaller is the variance of the shock relative to the variance
of the ex–ante type, the more likely is that ex–ante tariffs are welfare increasing and vice
versa. To confirm this intuition, the other extreme case should also be analyzed. If σ2

1 = 0
then F (θ) = F2(θ2). In this case, consumers only differ ex–post. Since consumers are all
alike ex–ante, the optimal ex–ante tariff will be a single two–part tariff. But that is not
the welfare enhancing in expectation (neither profit maximizing) tariff because consumers
will be considerably more diverse ex–post than ex–ante, and both welfare and profits
are increasing in the number of self–selecting tariffs [Faulhaber and Panzar (1977, §4);
Wilson (1993, §8)], which implies that the optimal strategy should be an ex–post based
fully nonlinear tariff. However, the discussion falls short of determining the threshold
levels of the ratio σ2

1/σ2
2 that make ex–ante pricing dominate ex–post tariffs or vice versa.

Determinants of this threshold are application specific, and will critically depend on the
specification of the utility function and the distributions used.

Thus, the stochastic nature of type shocks, whether they make the ex–post dis-
tribution more favorable (hazard rate effect) or whether consumers become more or less
heterogeneous after learning θ2 (variance effect) appear to drive welfare results in particular
applications. These relationships are complex enough to make precise predictions almost
impossible. Instead of solving the model for one of such ad hoc cases that avoids ambiguity,
the following section explores the magnitude of the welfare effects associated to different
pricing strategies using empirical distributions of θ, θ1, and θ2 as identified in the Kentucky
tariff experiment, which is a more interesting analysis because direct observations of types
are rarely available.
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6.2 Simulations

In this subsection I evaluate the average expected consumer surplus, profits (revenues), and
total welfare of screening local telephone customers through either a mandatory ex–post
pricing, a continuum of optional two–part tariffs, or a continuum of fully nonlinear options.
In order to run the Monte Carlo simulations, I assume that the indirect utility function is:

V (p, A, θ) =
θ

α
exp[−αp]−A ; α > 0, (36)

which leads to the following demand equation:

x(p, θ) = θ exp[−αp]. (37)

This specification has been used before in telecommunications demand analysis because
it is bounded under the flat rate option. If p = 0, consumers purchase their satiation
level x(0, θ) = θ. Similarly, when p = 0, the expected usage equals E2[θ] = θ1+µ2. The
solutions of T̂ (θ), T̃ (θ1), and ˜̃T (θ2 | θ1) for this particular demand function and general
distributions, are shown in the Appendix. Nonlinear pricing solutions based on (37) are
constructed under the assumption that the monopolist considers only the possibility of
allowing for call discounts, instead of price discrimination based on duration of the call,
time of the day, distance, or any other criteria.17 Table 4 presents the results of evaluating
these tariffs and their associated welfare effects for the two Kentucky local exchanges where
the tariff experiment was conducted.18

Kernel estimates are shown in Figures 2–3 for the two local exchanges of Bowling
Green and Kentucky. There are not many differences among the distributions of these
exchanges. In both cases, the estimates identify important focal points around 50 and 100
expected calls per week respectively. The hazard rate of all distributions can be considered
increasing. The first increasing portions of the different hazard rates of Figures 2 and 3
account for most of the corresponding mass of probability. As all increasing variances
of the kernel estimates of the hazard rates show, most variations in r̂(·) after the initial
increasing section are most likely due to purely random effects than to genuine increases
or decreases of the hazard rate for particular regions.

The values of θ and θ1 are identified as the actual and expected number of calls
during the spring months, when consumers faced a zero marginal charge. The existence of

17 The available data does not identify any effect other than potential volume discounts based on
the total number of calls. This is because it includes expectations for total number of weekly calls during
the spring months when the effective marginal tariff is zero, but it does not include anything regarding
expected duration of calls or average time/distance profile of these calls.

18 I compute an adaptive Gaussian kernel with optimal bandwidth chosen to minimize the mean
integrated square error of the estimation of the distributions of θ, θ1, and θ2 (actual or expected calls and
estimation bias respectively) corresponding to each local exchange. The estimation procedure discretizes
the ranges of θ, θ1, and θ2 around a 128 point grid to obtain the kernel estimation of each density by
means of a fast Fourier transform. Estimation of f(·) and F (·) for intermediate values of θ, θ1, or θ2 is
obtained by polynomial interpolation (with all 128 point estimates of the kernel) using Neville’s algorithm.
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a positive charge per call could lead to a selection effect in Louisville where the flat rate was
still an option later in the fall, and/or a suppression effect in Bowling Green (mandatory
measured) and Louisville (optional measured) due to the negative slope of demand. During
the fall months in which these tariffs applied, customers in Bowling Green made 134.33
local calls on average every month. This number identifies the number of calls of the
ex–post tariff in my base case for Bowling Green since it already includes the effect of
a positive marginal tariff. In Louisville this number is significantly higher as it averages
the number of calls of 10% of the customers on optional measured service, 86.69, and the
189.28 monthly calls of the remaining 90% of customers on optional flat rate service in that
exchange. The value of 179.02 is therefore used in the base case to identify the volume of
demand under the ex–ante pricing regime in Louisville.

The price elasticity of demand function (37) is given by ε = −αp. Therefore, for
any marginal rate, it is always possible to modify the value of α in order to fit a demand
function with the desired value of the elasticity. The simulations are run for four values
of price elasticity (evaluated at the average p) as reported in four independent empirical
studies of local telephone demand: −0.1 [Park, Wetzel, and Mitchell (1983)], −0.17 [Kling
and Van Der Ploeg (1990)], −0.45 [Train, McFadden, and Ben–Akiva (1987)], and −0.7
[Hobson and Spady (1988)]. Because of the richness of the data available, the estimate of
Park, Wetzel, and Mitchell is probably the most accurate. I however decided to choose
ε = −0.17 for the base case common to the two cities because this number allows for
comparisons with other situations, both with higher and lower elasticities of demands. But
also, and more importantly, because Park, Wetzel, and Mitchell (1983, §5) acknowledge
that demand elasticities are price dependent and they indicate that elasticities could likely
be higher for higher prices (as in my case). After comparing local tariffs and telephone
usage patterns in the two local exchanges, I chose an average cost per call of 7 cents as
representative for the base case of the simulations.

Table 4 evaluates each particular nonlinear pricing solution and its associated wel-
fare magnitudes: consumer surplus V , profits π, and total welfare W . All average values
of simulations in Table 4 are shown in 1986 dollars per month. Reported simulations
are the average of 10,000 independent draws from the kernel estimation of the empirical
distribution of types. I focus on the case where ε = −0.17. Thus, in Bowling Green, the
optimal ex–post tariff involves an average marginal rate of $0.07, and an average monthly
fee of $44.07. Given the empirical distributions of types in that local exchange, consumers
enjoy an average expected money surplus of $11.25, the local monopolist expects to make
$44.92 in profits per customer, and total expected welfare amounts to $56.17 per person.

Average monthly fees are slightly higher under optional pricing than with the
standard ex–post nonlinear tariffs, although almost no distinction is found between op-
tional two–part tariffs and optional nonlinear tariffs. Marginal rates are 34% lower with
optional two part tariffs than with ex–post pricing while under optional nonlinear tariffs
they rise 18%. These are however average magnitudes. Thus, the higher consumption
under optional nonlinear tariffs relative to optional two–part tariff could be explained by
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a likely reduction in the average marginal tariff under optional nonlinear tariff relative to
optional two part tariffs as consumption increases for each chosen tariff. This increase
in consumption explains the 14% increase in expected consumer surplus under optional
nonlinear tariff due to a 5% expansion of demand relative to ex–post pricing, as compared
to the 1% expansion induced by optional two–part tariffs.

Introduction of optional two–part tariffs enhances welfare by about 2%, mostly
due to a 4% increase in profits, because consumer surplus is reduced by 4% (of an initial
smaller amount). Optional nonlinear tariffs reduce welfare by 5%, but the distribution of
its components is quite different from the two–part tariff options case. The effect of the
reduction of marginal rates for large consumers under optional nonlinear tariffs dominates,
and thus consumers benefit more from the introduction of nonlinear options than from the
introduction of optional two–part tariffs, although the latter one is the welfare maximizing
pricing policy in expectation among the three analyzed here.

Finally, all magnitudes considered (with the exception of consumption) are inversely
related to the absolute value of the elasticity of demand. Thus, the more inelastic is the
demand, the higher is the average fixed fee as well as the average marginal tariffs. But
also the average expected consumer surplus, profits and total welfare. The welfare analysis
carried out before for the reference scenario when ε = −0.17 is also valid for the others, so
that the conclusion of optional two–part tariffs being the preferred pricing option appears
to be robust to different values of the elasticity of demand.

For the case of Louisville, the reference case of two–part tariff options is char-
acterized again with an average marginal rate of $0.07, and the average monthly fee of
$63.59.19 Individual expected consumer surplus is $10.03, expected profits per customer
are $65.00, and total expected welfare amounts to $75.03 per person. The welfare analysis
of the results of Louisville is very similar to that one of Bowling Green. There are two
sources of differences between these two exchanges that affect the results of simulations.
First, consumption pattern may vary due to differences in demographics, socioeconomic
variables, tariff options, and/or the size of the local network. The effect of all these
variables have already been captured through the identification of exchange specific levels
of telephone usage under different tariff regimes. The other source is the disparate behavior
of type shocks in these two cities. Systematic underestimation of future consumption is
the origin of the wider effects of welfare in Louisville relative to Bowling Green when
comparing pricing alternatives. Thus, for instance, for the ε = −0.17 scenario, going from
ex–post pricing to optional two–part tariffs reduces the expected consumer rents by 4%
and increases expected profits by 4% in Bowling Green, while in Louisville the expected
consumer surplus reduction is about 20% and the increase in expected profits reaches 7%.
However, optional two–part tariffs are again the welfare maximizing among the pricing
strategies considered here.

19 Observe that average marginal rates are normalized to $0.07 both for the optional two–part and
fully nonlinear option cases. Since consumption (independent of ε) is also normalized across scenarios, the
average marginal rate is always the same for these two alternative pricing strategies.
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Observe that the simulation results regarding differences of expected profits are
in accordance to the theoretical results of the previous sections, and of Proposition 4 in
particular. Welfare increases in expectation when we implement optional two–part tariffs
instead of ex–post nonlinear pricing. The SOSD of θ over θ1 is the dominant factor driving
this result. The FOSD of Louisville, with mean increasing effect on the usage level accounts
for the stronger magnitude of the increase of expected profits (7% in Louisville vs. 4% in
Bowling Green). Finally, the additional 4% increase in profits obtained when nonlinear
tariff option are in use instead of optional two–part tariffs should be explained by the
monopolist being able to discriminate consumers also with respect to θ2 instead of just
θ1. Expected profits increase as the number of options increases and accounts for ex–post
differences.

7 Conclusions
Optional nonlinear pricing has not attracted much attention among economists until very
recently. Traditionally, economists have incorrectly extended the application of results of
the standard nonlinear pricing theory to situations where consumption and tariff choice
were not simultaneous. The early treatment of Clay, Sibley, and Srinagesh (1992) studied
the design of optimal two–part tariffs, but restricted their attention to the discrete type
case. They also limited drastically the range of variation of θ2 to ensure that the same SCP
held both ex–ante and ex–post, so that the ordering of individual consumer preferences
remained unaltered after the realization of the shock. Miravete (1996) extended this model
to the case of a continuum of two–part tariff options with a continuum of types, indepen-
dently of whether the ordering of consumer tastes changed or not after the realization of
the shock. Miravete (2000b) used a particular closed form solution of this model to analyze
the estimation bias of not dealing with asymmetric information and self–selection issues
in a cross–section framework. Finally, Courty and Li (2000) analyzed a general model of
sequential screening with a continuum of types but limiting the analysis to consumers with
unit demands and biased type shocks in the sense of FOSD.

Relative to all these works, the present paper contributes by characterizing a fully
nonlinear tariff when consumers buy more than one unit, and by making explicit the role of
the statistical assumptions on the existence of quantity discounts (IHR of the distribution
of type components), and welfare effects (FOSD and SOSD of θ over θ1). This paper
also compares different optimal nonlinear tariffs depending on whether they are designed
ex–ante or ex–post, through the preservation of the IHR property of the distribution of
type components through convolution. Finally, the paper also contributes to this literature
by providing very strong evidence in favor of the suggested type–varying model based on
direct observation of consumer types. Furthermore, using simulations from the kernel
distributions of these types, the paper reports results that favor optional two–part tariffs
as the welfare maximizing strategy in two local exchanges of Kentucky.
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Appendix

• Proof of Proposition 1

First note that if any distribution function Fi(θi) is IHR, this is equivalent to the corre-
sponding survival function 1− Fi(θi) being log concave:

∂2 log[1− Fi(θi)]
∂θ2

i

=
∂

∂θi

[
−fi(θi)

1− Fi(θi)

]
≤ 0. (A.1)

Second, note that by Assumption 3, the survival function is continuously differentiable.
Therefore, it is a Pólya Frequency function of order 2 (PF2). Survival function 1− Fi(θi)
is PF2 if ∀x1 < x2 ∈ X ⊆ < and ∀y1 < y2 ∈ Y ⊆ <:∣∣∣∣ 1− Fi(x1 − y1) 1− Fi(x1 − y2)

1− Fi(x2 − y1) 1− Fi(x2 − y2)

∣∣∣∣ ≥ 0. (A.2)

To see the equivalence, assume without loss of generality that x1 < x2 and 0 = y1 <
y2 = ∆. Then, from the definition of PF2 and making use of common properties of
determinants, the following equivalent inequalities hold:∣∣∣∣ 1− Fi(x1) 1− Fi(x1 −∆)

1− Fi(x2) 1− Fi(x2 −∆)

∣∣∣∣ ≥ 0, (A.3)

∆ ·

∣∣∣∣∣∣∣∣
1− Fi(x1)− [1− Fi(x1 −∆)]

∆
1− Fi(x1 −∆)

1− Fi(x2)− [1− Fi(x2 −∆)]
∆

1− Fi(x2 −∆)

∣∣∣∣∣∣∣∣ ≥ 0. (A.4)

Since ∆ > 0, we can take limits in the latter determinant to obtain:

lim
∆→0

∣∣∣∣∣∣∣∣
1−Fi(x1)−[1−Fi(x1−∆)]

∆
1−Fi(x1−∆)

1−Fi(x2)−[1−Fi(x2−∆)]
∆

1−Fi(x2−∆)

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
−fi(x1) 1−Fi(x1)

−fi(x2) 1−Fi(x2)

∣∣∣∣∣∣ ≥ 0, (A.5)

which leads to:
fi(x1)

1− Fi(x1)
≤ fi(x2)

1− Fi(x2)
, (A.6)

i.e., Fi(·) is IHR. Thus, I have to prove that the survival function of the convolution
distribution is log–concave, i.e., for x1 < x2 and y1 < y2:

D =
∣∣∣∣ 1− F (x1 − y1) 1− F (x1 − y2)

1− F (x2 − y1) 1− F (x2 − y2)

∣∣∣∣ ≥ 0. (A.7)

Applying Definition 2 of the Fourier convolution to the survival function we get:
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D =

∣∣∣∣∣∣
∫

[1− F1(x1 − z)]f2(z − y1)dz
∫

[1− F1(x1 − z)]f2(z − y2)dz∫
[1− F1(x2 − z)]f2(z − y1)dz

∫
[1− F1(x2 − z)]f2(z − y2)dz

∣∣∣∣∣∣ ≥ 0. (A.8)

Using the commutative property of convolutions:∫
F1(x− z)f2(z − y)dz =

∫
f1(x− z)F2(z − y)dz, (A.9)

equation (A.6) becomes:

D =

∣∣∣∣∣∣
∫

[1− F1(x1 − z)]f2(z − y1)dz
∫

f1(x1 − z)[1− F2(z − y2)]dz∫
[1− F1(x2 − z)]f2(z − y1)dz

∫
f1(x2 − z)[1− F2(z − y2)]dz

∣∣∣∣∣∣ ≥ 0. (A.10)

The final step involves the application of the Basic Composition Formula to convolutions
[Karlin (1968, §1.2)]:

D=
∫

z1<

∫
z2

∣∣∣∣ 1−F1(x1 − z1) f1(x1 − z2)
1−F1(x2 − z1) f1(x2 − z2)

∣∣∣∣ · ∣∣∣∣ f2(z1 − y1) 1−F2(z2 − y1)
f2(z1 − y2) 1−F2(z2 − y2)

∣∣∣∣dz1dz2≥0.

(A.11)
Observe that for this last expression to be positive and thus ensure that the distribution
F (·) is IHR, each determinant has to be positive. Assuming without loss of generality that
0 = z1 < z2 = ∆, the condition that the first determinant is positive requires that:

[1− F1(x1)]f1(x2 −∆)− [1− F1(x2)]f1(x1 −∆) ≥ 0, (A.12)

which implies:

f1(x2 −∆)
1− F1(x2 −∆)

· 1− F1(x2 −∆)
1− F1(x2)

≥ f1(x1 −∆)
1− F1(x1 −∆)

· 1− F1(x1 −∆)
1− F1(x1)

. (A.13)

But since ∆ > 0 and x1 < x2:

f1(x2 −∆)
1− F1(x2 −∆)

≥ f1(x1 −∆)
1− F1(x1 −∆)

, (A.14)

which is just the hypothesis that F1(·) is IHR. Similarly, comparing the other elements of
inequality (A.13):

1− F1(x2 −∆)
1− F1(x2)

≥ 1− F1(x1 −∆)
1− F1(x1)

, (A.15)

which is equivalent to: ∣∣∣∣∣∣
1− F1(x1) 1− F1(x1 −∆)

1− F1(x2) 1− F1(x2 −∆)

∣∣∣∣∣∣ ≥ 0, (A.16)

that is the condition for the survival function 1− F1(·) to be log–concave, which we have
proved to be equivalent to the assumption of F1(·) being IHR. A similar argument proves
that if F2(·) is IHR, the second determinant in inequality (A.11) is also positive. Thus,
F (·) is IHR.
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• Proof of Proposition 2

Suppose not, i.e., for instance assume that for any common θ, r1(θ) < r(θ), that is:

f1(θ)
1− F1(θ)

<
f(θ)

1− F (θ)
. (A.17)

Using the definition of Fourier convolution, this inequality is equivalent to the following
two inequalities:

f1(θ)[1− F (θ)]− f(θ)[1− F1(θ)] < 0, (A.18)

∞∫
0

(
f1(θ)[1− F1(θ − z)]− [1− F1(θ)]f1(θ − z)

)
f2(z)dz < 0. (A.19)

Since f2(θ) ≥ 0 on 0 ≤ θ < ∞, it must be the case that the term between brackets is
negative ∀θ ≥ 0. But observe that this condition then requires:

f1(θ)
1− F1(θ)

≤ f1(θ − z)
1− F1(θ − z)

∀z ≥ 0, (A.20)

so that F1(·) should be decreasing hazard rate. Similarly, r2(θ) < r(θ) violates F2(·) being
IHR. Contradiction.

• Tariff Solutions for Exponential Demand

It is assumed that c = 0. This parameter only changes the scale of the marginal charge,
but the comparisons of expected welfare under pricing regimes remain unaffected. Thus,
the optimal ex–post tariff is characterized by:

p̂(θ) =
1

αθr(θ)
, (A.21)

Â(θ) =
1
α

θ exp[−{θr(θ)}−1]−
θ∫

θ

exp[−{zr(z)}−1]dz

 . (A.22)

Since the sample only includes active consumers, F2[θ2(θ1)] = 0 for all possible θ1,
and E2[θ2 | θ2 ≥ θ2(θ1)] = µ2, which is straightforward to compute from the data. The
menu of optional two–part tariffs is given by:

p̃(θ1) =
1

α(θ1+µ2)r1(θ1)
, (A.23)

Ã(θ1) =
exp[−{(θ1+µ2)r1(θ1)}−1]

α

(θ1+µ2)−
θ1∫

θ1

exp[−{(z+µ2)r1(z)}−1]dz

 . (A.24)
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For the utility function (36), condition (31) only requires that θ∗2(θ1) = µ2 for all
possible ex–ante types θ1. The optimal departure from the “boundary two–part tariff” is
then:

∆ ˜̃p(θ2 |θ1) =
F2(µ2)− F2(θ2)
α(θ1+θ2)f2(θ2)

, (A.25)

∆ ˜̃A(θ2 |θ1) =
exp

[
−{(θ1+µ2)r1(θ1)}−1

]
α

{
(θ1+θ2)

(
exp

[
F2(µ2)− F2(θ2)
(θ1+θ2)f2(θ2)

]
− 1

)

−
θ2∫

µ2

(
exp

[
F2(µ2)− F2(z)
(θ1 + z)f2(z)

]
− 1

)
dz

}
, (A.26)

which together with (A.23)−(A.24) defines for each ex–ante type θ1, the menu of nonlinear
options { ˜̃A(θ2 |θ1), ˜̃p(θ2 |θ1)}.
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Table 1. Descriptive Statistics

Bowling Green Louisville TEST

CALLS, θ 32.0489 36.6112 -6.63
(26.902) (38.197)

EXPCALLS, θ1 31.4137 25.9329 8.02
(36.123) (30.827)

BIAS, θ2 0.6352 10.6783 -12.64
(37.179) (39.966)

log(INCOME) 7.3097 7.0847 13.55
(0.798) (0.819)

HHSIZE 2.7960 2.5381 9.02
(1.266) (1.493)

TEENS 0.3711 0.2309 10.31
(0.713) (0.619)

DINCOME 0.1328 0.1603 -3.78
(0.339) (0.370)

AGE1 0.0614 0.0625 -0.22
(0.240) (0.242)

AGE2 0.2524 0.2644 -1.34
(0.434) (0.441)

AGE3 0.6861 0.6730 1.37
(0.464) (0.469)

COLLEGE 0.2803 0.2244 6.31
(0.449) (0.417)

MARRIED 0.6926 0.5059 18.85
(0.462) (0.500)

RETIRED 0.1525 0.2550 -12.40
(0.360) (0.436)

BLACK 0.0622 0.1168 -9.25
(0.242) (0.321)

CHURCH 0.2082 0.1692 4.88
(0.406) (0.375)

BENEFITS 0.2063 0.3152 -12.11
(0.405) (0.465)

MOVED 0.4820 0.4074 7.34
(0.500) (0.491)

ONLYMALE 0.0452 0.1053 -10.99
(0.208) (0.307)

MARCH 0.3288 0.3325 -0.38
(0.470) (0.471)

APRIL 0.3318 0.3318 0.00
(0.471) (0.471)

MAY 0.3394 0.3357 0.38
(0.474) (0.472)

Observations 5241 4349

Mean and standard deviations (between parentheses) of demo-
graphics for the spring sample. The “TEST” column shows the
test of differences of means for each variable in these two cities.
Full description of the variables can be found in the Appendix
of Miravete (2000a).
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Table 2. Consumption Expectation Bias

Bowling Green Louisville

Obs. PAT Avg.Bias Std.Dev. Strata Avg.Bias Std.Dev. PAT Obs.

5241 2652.59 0.6352 (37.179) ALL 10.6783 (39.966) 2353.89 4249

1723 879.39 0.9765 (37.076) MARCH 11.6001 (43.581) 758.78 1446
1739 903.94 0.6571 (37.014) APRIL 10.5580 (39.119) 791.41 1443
1779 879.94 0.2834 (37.457) MAY 9.8842 (36.946) 819.24 1460

1967 1029.82 2.9062 (39.662) LOW INCOME 15.9668 (50.592) 917.78 1645
3274 1662.00 -0.7291 (35.541) HIGH INCOME 7.4610 (31.388) 1484.04 2704

714 293.15 0.0920 (18.198) HHSIZE=1 6.2131 (34.470) 597.57 1095
1774 1016.19 -1.1249 (30.470) HHSIZE=2 6.4538 (27.637) 874.67 1502
1290 704.12 2.9518 (33.353) HHSIZE=3 13.8281 (38.995) 426.18 776
980 562.48 -0.0021 (47.312) HHSIZE=4 14.3265 (43.909) 336.77 582
483 281.00 3.0087 (59.734) HHSIZE ≥ 5 27.6001 (71.748) 277.91 394

3798 1941.58 -0.3655 (29.838) TEENS=0 7.5578 (35.786) 2060.40 3653
1029 611.62 0.9405 (54.873) TEENS=1 23.4185 (47.131) 252.33 460
414 225.09 9.0571 (42.156) TEENS ≥ 2 34.1479 (65.503) 164.79 236

322 217.03 -4.7589 (26.910) AGE1=1 8.4026 (32.578) 205.51 272
1323 869.76 -2.7377 (42.171) AGE2=1 9.0469 (38.949) 723.88 1150
3596 1677.65 2.3592 (35.866) AGE3=1 11.5307 (40.955) 1514.95 2927

1469 828.09 -3.4543 (37.277) COLLEGE=1 4.6580 (28.899) 524.11 976
3772 1878.68 2.2279 (37.024) COLLEGE=0 12.4203 (42.480) 1908.92 3373

3630 1851.96 0.5463 (36.427) MARRIED=1 10.6344 (32.603) 1243.15 2200
1611 835.40 0.8355 (38.830) MARRIED=0 10.7232 (46.315) 1166.71 2149

799 338.42 1.3146 (28.672) RETIRED=1 9.6512 (35.496) 561.92 1109
4442 2361.63 0.5130 (38.512) RETIRED=0 11.0299 (41.384) 1844.82 3240

326 237.93 11.6811 (71.411) BLACK=1 29.3614 (66.110) 454.15 508
4915 2488.20 -0.0974 (33.587) BLACK=0 8.2073 (34.340) 1957.76 3841

1091 600.92 -1.8867 (45.088) CHURCH=1 7.8696 (52.922) 329.06 736
4150 2107.23 1.2982 (34.779) CHURCH=0 11.2505 (36.754) 2056.26 3613

1081 493.97 2.2926 (35.188) BENEFITS=1 13.8292 (42.011) 726.25 1371
4160 2201.68 0.2046 (37.671) BENEFITS=0 9.2277 (38.910) 1661.81 2978

2526 1334.84 0.0820 (40.646) MOVED=1 10.7220 (39.305) 1100.09 1772
2715 1381.03 1.1500 (33.634) MOVED=0 10.6482 (40.422) 1303.97 2577

237 145.27 -3.5797 (23.912) ONLYMALE=1 4.6319 (27.237) 265.54 458
5004 2541.78 0.8349 (37.682) ONLYMALE=0 11.3900 (41.151) 2127.43 3891

“PAT” column reports Pearson analog goodness of fit test for equality of the distribution

”of the expected and actual number of calls. This test is distributed as a χ2(19), with 0.05
and 0.01” critical values at 30.14 and 36.19 respectively. All statistics have p–values lower
than 0.01.
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Table 3. Test of Stochastic Dominance

Bowling Green Louisville

Order: 1st 2nd 1st 2nd

ALL 2.72 0.51 -5.65 -8.44

MARCH 1.03 -0.26 -3.27 -4.37

APRIL 1.52 0.25 -3.56 -4.74

MAY 2.16 0.91 -2.94 -5.15

LOW INCOME -0.08 -1.94 -6.15 -6.15

HIGH INCOME 3.91 2.06 -1.92 -4.77

HHSIZE=1 2.64 0.51 -0.65 -2.73

HHSIZE=2 5.66 4.09 -0.79 -3.37

HHSIZE=3 0.27 -0.93 -3.28 -3.70

HHSIZE=4 0.79 0.00 -1.63 -2.69

HHSIZE ≥ 5 0.00 0.00 -2.55 -2.55

TEENS=0 3.59 2.14 -1.75 -5.77

TEENS=1 1.27 -0.41 -2.12 -2.12

TEENS ≥ 2 -0.18 -0.45 -0.58 -0.58

AGE1=1 3.74 2.68 2.73 1.92

AGE2=1 3.64 2.70 -1.61 -1.83

AGE3=1 0.65 -1.44 -5.34 -8.58

COLLEGE=1 4.25 3.59 0.06 -1.63

COLLEGE=0 0.69 -1.48 -5.89 -8.60

MARRIED=1 2.46 0.59 -3.46 -4.90

MARRIED=0 2.16 0.03 -4.51 -6.69

RETIRED=1 1.73 0.57 -1.65 -4.28

RETIRED=0 2.99 0.38 -5.43 -5.94

BLACK=1 -2.16 -2.16 -3.72 -3.72

BLACK=0 4.27 2.31 -3.00 -6.49

CHURCH=1 2.01 1.23 0.09 -0.85

CHURCH=0 3.40 -0.08 -6.57 -7.41

BENEFITS=1 1.47 -0.01 -4.60 -6.68

BENEFITS=0 3.27 0.57 -3.81 -5.48

MOVED=1 3.61 -0.22 -2.59 -2.72

MOVED=0 4.10 1.86 -4.00 -6.94

ONLYMALE=1 3.10 2.39 0.66 -1.48

ONLYMALE=0 2.66 0.36 -5.28 -8.51

Maximum ratios by demographics of Anderson’s (1996)
test for a uniform 20–fractile division of the calling range.
These ratios are distributed as a studientized maximum
modulus distribution [Stoline and Ury (1979)]. With 20
multiple comparisons and infinite degrees of freedom the
5% and 1% one–tail critical values are 3.03 and 3.49 re-
spectively.
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Table 4. Simulation Results

BOWLING GREEN

Tariff ε = −0.10 ε = −0.17 ε = −0.45 ε = −0.70

A 74.911 44.065 16.647 10.702
p 0.119 0.070 0.026 0.017

Ex–Post x 134.340 134.340 134.340 134.340
V 19.127 11.251 4.250 2.732
π 76.357 44.916 16.968 10.908
W 95.484 56.167 21.219 13.641

A 77.047 45.322 17.122 11.007
p 0.079 0.046 0.018 0.011

Op. TPT x 136.312 136.312 136.312 136.312
V 18.371 10.807 4.083 2.625
π 79.389 46.699 17.642 11.341
W 97.760 57.506 21.724 13.966

A 77.134 45.373 17.141 11.019
p 0.141 0.083 0.031 0.020

Op. NLT x 141.431 141.431 141.431 141.431
V 21.868 12.863 4.859 3.124
π 68.936 40.551 15.319 9.848
W 90.803 53.414 20.179 12.972

LOUISVILLE

Tariff ε = −0.10 ε = −0.17 ε = −0.45 ε = −0.70

A 100.530 59.135 22.340 14.361
p 0.195 0.115 0.043 0.028

Ex–Post x 174.076 174.076 174.076 174.076
V 21.323 12.543 4.739 3.046
π 103.002 60.590 22.889 14.715
W 124.326 73.133 27.628 17.761

A 108.266 63.686 24.059 15.467
p 0.119 0.070 0.026 0.017

Op. TPT x 179.017 179.017 179.017 179.017
V 17.046 10.027 3.788 2.435
π 110.498 64.999 24.555 15.785
W 127.543 75.026 28.343 18.221

A 115.539 67.964 25.675 16.506
p 0.119 0.070 0.026 0.017

Op. NLT x 179.017 179.017 179.017 179.017
V 9.773 5.749 2.172 1.396
π 114.385 67.286 25.419 16.341
W 124.158 73.034 27.591 17.737

Average value of 10,000 random draws from Gaussian kernel estimates
of the corresponding probability density functions.
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Figure 1. Empirical Distributions
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Figure 2. Bowling Green: Kernel Estimates
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Figure 3. Louisville: Kernel Estimates
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