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price auction. These results formalize and make transparent the idea that
competition is reduced by bidders’ asymmetries. The Paper also contributes to
a better understanding of competition and the nature of rents in auction
markets. Anonymity of the allocation mechanism seems to be an important
factor.

JEL Classification: D43, D44, L13
Keywords: anonymous mechanisms, asymmetries, auctions, benchmark,
reduced competition

Estelle Cantillon

Department of Economics

Yale University

PO Box 208268

New Haven

CT 06520-8268

USA

Tel: (1 203) 432 3590

Fax: (1 203) 432 5779

Email: estelle.cantillon@yale.edu

For further Discussion Papers by this author see:
www.cepr.org/pubs/new-dps/dplist.asp?authorid=151115




*| am particularly indebted to Eric Maskin and John Riley for discussion and
suggestions on an earlier draft. | have also benefited from the comments of
Isabelle Brocas, Wouter Dessein, Mathias Dewatripont, Peter Eso, Paul
Klemperer, Patrick Legros, Martin Pesendorfer and Al Roth, as well as
seminar audiences at Harvard, LSE, MEDS, Nuffield College, Tilburg and
Yale. Huagang Li and John Riley kindly provided me with the source codes of
their Bidcomp2 program. Financial support from the Belgian Fonds National
de la Recherche Scientifique is gratefully acknowledged. Estelle Cantillon
thanks Cowles Foundation (Yale University), Harvard Business School and
CEPR.

Submitted 13 October 2000



NON-TECHNICAL SUMMARY

These days, auctions seem to be used everywhere. Strictly speaking, auctions
are allocation mechanisms: they provide rules to organize competition among
several interested parties by defining who gets the ‘object’ when and at what
price. A traditional area of applications for auctions is competitive public
procurement. Other classic (popular?) examples include the sale of art at
Christie’s or Sotherby’s and the sale of flowers in batch in the Netherlands.
But deregulation, and technological change in general, have significantly
broadened the scope of applications for auctions (see Klemperer's recent
CEPR Discussion Paper No. 2572).

The great advantage of auctions is that the auctioneer (or the procurement
authority) does not need to know much about market demand for the object he
is selling (or market supply for the object he is buying). Competition among
bidders, the argument goes, reveals that information, and drives prices up
accordingly (or down in the case of procurement). Of course, this assumes
that there are indeed enough bidders. A more subtle point is that high
numbers of bidders alone might not be a guarantee of effective competition,
and that it is also desirable to foster an equal playing field among bidders.
Both arguments have been used by auctioneers and public procurement
authorities to motivate procedures that encourage entry by new participants or
favour (at least temporarily) weaker bidders. Only the first point, however,
(the fact that all things being equal, more bidders is better for the auctioneer)
has been made and checked theoretically. This Paper addresses the second
argument.

Practically, the Paper seeks to understand the effect of bidders’ heterogeneity
in auction and procurement markets when values are private (i.e. bidders
know exactly how much they value the object or the contract at the time they
submit their bids) and independently distributed. To do this, one first needs to
frame the question properly. Indeed, whether bidders’ asymmetries are a good
thing or not for the auctioneer is not a well defined question unless we say
relative to what this judgement is being made. The benchmark auction
environment the Paper proposes is such that (1) bidders are symmetrically ex
ante, and (2) the distribution of the highest possible valuation in the
benchmark environment is the same as in the original (asymmetric) auction
environment. An important consequence is that we shall be comparing two
auction environments for which the potential social surplus is the same. In
other words, the question can now be rephrased as: how do asymmetries
affect the share of potential social surplus that the auctioneer is able to
capture as a result of the competition among bidders?

The Paper shows that asymmetries hurt the auctioneer in the first price
auction (FPA) and the second price auction (SPA). Indeed, in both cases the
expected revenue from the benchmark auction dominates that of the original



(asymmetric) auction. A corollary for the second price auction is that bidders
always gain in the aggregate from asymmetries. By contrast, the first price
auction is inefficient in the presence of asymmetries and so both bidders and
the auctioneer can lose from asymmetries. These results formalize the idea
that competition is reduced when bidders are heterogeneous.

The Paper also suggests that that the anonymity of the allocation rule in the
FPA and SPA (that is, the fact that bidders are treated equally) plays an
important role in this result. Intuitively, when the auctioneer cannot
discriminate among bidders, he really needs to rely on the competition among
them to drive prices up. Symmetry increases the competitive pressure on
bidders and this force is at the basis of our result. In contrast, when the
auctioneer is able to discriminate among bidders, for instance, by giving one
of them preferential treatment, bidders’ asymmetries might not be such a bad
thing if it allows the auctioneer to play them off against each other.
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1 Introduction

Known ex-ante asymmetries among bidders are widespread in auction mar-
kets. For instance, firms with a toehold in the target firm are favored in
takeover battles and this advantage is usually understood by all potential
buyers. In arts auctions, bidders’ tastes are known to be quite idiosyncratic.
Asymmetries among bidders have also been recently documented in procure-
ment markets, with sectors ranging from the public works (Bajari, 1998) to
the procurement of school milk (Porter and Zona, 1999, Pesendorfer, 2000).
In all these auctions, there was one or several firms with a clear comparative
advantage over the others. Last but not least, the competition in defense
procurement also tends to be unequal.

In this paper, 1 focus on private value auctions, that is, auctions where
at the time when bidders submit their bids, they know how much they value
the object they are bidding for. There have been recent advances in our
understanding of how these auctions work when bidders’ distributions of
valuations differ. Most importantly, we now know that an equilibrium exists
under quite general conditions in the sealed bid first price auction (Lebrun,
1996, Maskin and Riley, 2000a, and Athey, 1999) and understand under what
conditions it is unique (Maskin and Riley, 1996).!

Nevertheless, the effect of asymmetries on the auctioneer’s expected rev-
enue is still not well understood. Maskin and Riley (2000b) have shown
that the revenue ranking between the second price auction and the first price
auction depends generally on the kind of asymmetries among bidders. In
addition, we know that, in the presence of asymmetries, the first price auc-
tion is inefficient (it fails to allocate the object to the highest valuer) and
that both the first price auction and the second price auction are generally
suboptimal (they fail to maximize the seller’s expected revenue). However,
these results shed little light on the impact of bidders’ asymmetries within a
single institution: for instance, the first price or the second price auction.

In this paper, I am interested in understanding how (common knowledge)
ex-ante differences in bidders’ distributions of valuations affect their behavior
and, in turn, expected revenue and profits. To do so, I define a benchmark
auction environment to which to compare any auction with asymmetric bid-
ders. An important property of my benchmark is that the expected value of

'Tn the second price auction, existence and uniqueness of the equilibrium do not depend
on the distributional assumption, so asymmetries do not introduce any difficulty.



the highest valuation among bidders is the same as in the original auction.
In other words, I shall be comparing two auction environments for which
the potential social surplus is the same.? The key difference is that, while
bidders’ distributions may differ in the original auction, they are identical in
the benchmark auction.

A priori, it is unclear how asymmetries affect the auctioneer. In the two
auction formats I consider (the first price auction and the second price auc-
tion), the auctioneer is the residual claimant of bidders’ strategic interactions.
It is the competition among bidders that determines the winning price, and
this is the auctioneer’s revenue.> When bidders’ valuations are asymmetri-
cally distributed, bidders’ strategic adjustment to these asymmetries will for
sure affect the distribution of social surplus among bidders and the auction-
eer. How so is less clear. In particular, Maskin and Riley (2000b) have shown
that “strong” bidders, that is, bidders who are more likely to have a high
valuation for the object, are better off under a second price auction rather
than a first price auction. This suggests that bidders’ attempts to take ad-
vantage of their favorable positions might be self-defeating in the first price
auction. This could benefit the auctioneer. On the other hand, our economic
intuition suggests that asymmetries among market participants reduce the
competitive pressure they face, and that this should hurt the auctioneer.

My main results (theorem 1 and propositions 1 and 2) are that asymme-
tries hurt the auctioneer in the first price auction (FPA) and the second price
auction (SPA). Indeed, in both institutions, the expected revenue from the
benchmark auction dominates that from the original (asymmetric) auction.
A corollary for the second price auction is that bidders always gain in the
aggregate from asymmetries. By contrast, the first price auction is inefficient
in the presence of asymmetries and so both bidders and the auctioneer can
lose from asymmetries. I provide one such example.

These results are interesting on two counts. First, they provide some
insights on how these specific auction markets work. This is especially useful
in the case of the FPA where the lack of analytical solutions has slowed down
our understanding. Second, auctions can also be seen as a paradigm of how

2Remember that auctions are allocation mechanisms (they provide rules to allocate an
object among several bidders) and that social surplus is maximized when the object goes
to the bidder with the highest valuation.

3In that sense, the auctioneer is pretty much in the same position as consumers in an
oligopoly market.



markets in general work. From that perspective, the results hightlight the
decrease in the toughness of competition that market heterogeneity induces.

The results also shed light on the respective strengths of the equilibrium
versus optimal mechanism design approaches to auctions. Since the seminal
contributions of Myerson (1981) and Riley and Samuelson (1981), auctions
have been very fruitfully studied from an optimal mechanism design perspec-
tive.

A message of this paper is that, in the presence of asymmetries, the opti-
mal mechanism design approach might not be as good a substitute to study
specific auction formats. Indeed, optimal auctions and auction rules like the
FPA or SPA differ in one important respect: the ability in the former to
discriminate among bidders. As long as bidders are symmetric, this differ-
ence is unimportant because the optimal auctioneer does not want to treat
bidders differently anyway. However, when bidders are asymmetric, optimal
mechanism design becomes a less useful guide. A systematic study of equi-
librium behavior, though admittedly much less elegant, might be needed to
understand how these markets work. In particular, the fact that asymme-
tries are harmful could not have been anticipated simply using a mechanism
design perspective. In section 5, I provide an example where the optimal
auction yields more revenue in the presence of asymmetries than under the
benchmark (symmetric) configuration.

The structure of the paper is as follows. Section 2 describes the model
and introduces the benchmark auction environment. Equilibrium behavior
in the first price and second price auctions is very different, and so, I deal
with these institutions in turn. Section 3 studies the effect of asymmetries
in the second price auction. Section 4 deals with the first price auction. In
section 5, I first show that asymmetries do not need to hurt the optimal
auctioneer. I then elaborate on the nature of bidders’ rents in an auction.
Bidders’ private information is a central element in the analysis of auctions.
However, its importance depends on the competitive situation of bidders.
This contrasts with the optimal auction where bidders’ profits are entirely
driven by informational rents.

4Klemperer’s (1999) recent survey of the literature is a good place to realize the con-
tribution of mechanism design to auction theory.



2 A symmetric benchmark

I consider a simple two-bidder private value auction environment. There is
one object for sale through a sealed bid first price auction or a second price
auction. Bidders’ valuations are independently distributed according to the
continuously differentiable cumulative distribution functions F; with support
on [v;,7;], i = 1,2. Valuations are private information but their distributions
are common knowledge. Without loss of generality, I assume throughout
that 0 < v, < v,. Bidders are risk neutral.

With these assumptions and given the selling procedure, an auction en-
vironment is fully characterized as soon as we define the distributions of
bidders’ valuations, (Fi, Fy). I refer to the pair of cumulative distribution
functions, (Fy, Fy), as a configuration.

In this paper, I want to understand how asymmetries affect the outcome
in the first price and second price auctions. One way of doing this is to
compare the outcome in an asymmetric auction with that of a symmetric
auction which, somehow, we consider a natural point of comparison.

What properties should this benchmark have? At this point, it is useful to
remember that an auction is an allocation mechanism. In the private value
environment that we consider, the highest level of social surplus (efficiency)
is achieved when the object is allocated to the bidder with the highest valu-
ation. A property that seems reasonable if we want to draw any meaningful
conclusion on whether asymmetries are a good thing or not for the auctioneer
is that the expected potential social surplus (“the size of the pie”) is the same
in both the original (asymmetric) auction environment and the benchmark
environment. Indeed, without this condition, we would need to compare the
ratios of expected revenue to social surplus but these are not invariant to
cardinal changes to the environment.

To construct the benchmark, I go further and impose the condition that,
not only the expected potential social surplus is identical in both environ-
ments, but that the distribution of this surplus is also the same in both cases.
The motivation for this additional condition is again the fact that auctions
are allocation mechanisms. Imposing identical distributions of potential so-
cial surplus means that the distribution of the first order statistics is the
same in both cases. In other words, suppose that v is the highest realization
from (F, F,) with probability p. Then v will also be the highest realization



in the benchmark environment with probability p. As a result, both auctions
are similar from an allocation perspective.

This second condition uniquely defines the benchmark. Indeed, the cumu-
lative distribution function of the highest realization from (F}, F3) is given
by Fi(v)Fy(v). Similarly, the cumulative distribution function of the high-
est realization from a symmetric configuration (F, F') is given by F'(v)F(v).
Equating these two expressions, we have:

Definition 1: Given two cumulative distributions F; and F, with support
on [v,,71] and [v,, Ty respectively, their symmetric benchmark, F, is
defined, for all v, by:

F(v) = \/Fi(v)Fy(v)
F has support on [v, 7] where v = max{v,,v,} and ¥ = max{v;,7s}.

Because the choice of a proper benchmark takes on an important role
in determining whether asymmetries hurt or benefit the auctioneer, it is
worthwhile to discuss what the benchmark of definition 1 does and does
not. First of all, notice that the benchmark treats bidders’ distributions
symmetrically and that it straightforwardly generalizes to any number of
bidders.

Second, by construction, the benchmark preserves the distribution of the
first order statistics and the expected value of the potential surplus, two
properties that, I have argued, are desirable: the first because auctions are
fundamentally about orders, the second because it guarantees consistent com-
parisons.

By contrast, the support of the benchmark distribution need not include
any of the supports of the original distributions and therefore the range of
valuations under the benchmark might differ from the range of valuations
in the original configuration. In addition, when the supports of the original
distributions differ, the probability distribution function derived from the
benchmark is discontinuous.

In my view, these are unimportant features. Theorem 2 in the next
section provides further support for the benchmark by analyzing the class of
averages of F; and F; of the form (3 (v)* + %FQ(U)")é. For a # 0, these
averages have the same range of valuations as the original configuration and

6



their probability distribution functions are continuous. However, it is shown
that the benchmark of definition 1 (which corresponds to a = 0) is the only
average in that class that preserves the expected value of potential social
surplus. Figures 1 and 2 illustrate some of these properties.

[insert figure 1 here]

[insert figure 2 here]

3 The effects of asymmetries in the SPA

I start by considering how asymmetries affect revenue and profits in the
second price auction. In the SPA, the winner is the bidder who places the
highest bid and he pays the value of the second highest bid. It is well known
that bidding one’s own valuation is a dominant strategy in this setting.’
Given this, we have:

Theorem 1: Consider any configuration of bidders, (Fy, Fy). The expected
revenue from the second price auction for the symmetric benchmark, R*(F, F),
is always greater than that for the asymmetric configuration (Fy, Fy).

Proof. Denote by v(2), the expected value of the second order statis-
tics for (F, F). Similarly, v(lg denotes the expected value of the second
order statistics for (Fy, F»). Since the winner in the SPA is always the
bidder who has the highest valuation and since bidders bid their true
valuations at equilibrium, the auctioneer gets the expected value of the
second highest valuation, i.e., R*(F, F) = v(g) and R*(Fy, Fy) = vy}

2
(2)°
By definition,
V(o) = 2/ v(l = F(v))dF(v) = 2/ vdF(v) — v (1)

where v(;) denotes the expected value of the first order statistics.

5This might not be the unique equilibrium when the supports of valuations differ.
However, it is straightforward to show that all equilibria generate the same revenue.



Without loss of generality, let v; < v,.

1)(15 = /:1 v(l — Fy(v))dFy(v) + /:2 v(1 — Fy(v))dF3(v)

=1 =2

max{T1,02} max{71,02}
= / v(1 — Fy(v))dFy(v) —I—/ (1 — Fi(v))dFy(v)

min{21,22} min{ﬂl,ﬂz}

= [wr+ [ e - [R@Fw)

vy Y1 ]

= /U vd[Fy(v) + F>(v)] — U(11’§ (2)

=1

1’?. Hence, subtracting (2) from (1), we get:

By construction, vy = v

V(2) — vé? = 2/ vdF(v) —/ vd[F1(v) + Fy(v)]

v

= 2/ vdF(v) —/ vd[Fy(v) + F3(v)] (change of integration bounds)

Y A}

= —2/ F(v)dv +/ [F1(v) + F»(v)]dv (integration by parts)

Y1 =1

- /U(\/Fl(v) —VE®)?dv>0m

Why do asymmetries hurt the auctioneer in the second price auction?
Because bidders’ strategies are unaltered by asymmetries (bidding one’s own
valuation remains a dominant strategy), the origin of this effect is purely
statistical. Intuitively, the benchmark auction was constructed such that the
expected value of the highest draw from (F, F') and from (£}, F») is the same.
Since we expect the two draws from (F, F») to be more “noisy”, the expected
value of the lowest draw must be lower in that case, that is, U(lg < V().
Another way of thinking about this is the following. By construction,

F' 1F F
F 2'FR,  F

« F(v* Fj(v* . % % % %
,Flgv*g > Fzgv*g Since F(v*) Fy(v*) > Fi(v*) Fy(v*),

this means that bidder 1 is more likely to win at v*. Moreover, by (3),

] (3)

Now, suppose that for some v

8



%EZ; 1;,,((5:)). Therefore, when bidder 1 wins, her expected payment is

likely to be lower than under the benchmark. This boosts expected revenue
in the benchmark auction relative to the asymmetric auction.’

As plausible as these explanations sound, the result of theorem 1 actually
holds for a larger class of “averages”, where the intuition developed in the
previous paragraph is not as straightforward.

Theorem 2: Let F,(v) = (1 F} (1))0‘+%F2(1))a)é. Denote by v, the expected
value of the first order statistics of (Fy, Fy), and by Uy, the expected value of
the second order statistics. Then, for any asymmetric configuration (Fy, Fy),
(1) v}y is strictly decreasing in «;

(2) v(yy is strictly decreasing in o

(3) vy > 1)(15 for a < 1.

Notice that F, is the constant elasticity of substitution (CES) equivalent
for (Fy, Fy). In particular, when a = 0, F,(v) = Fy(v)2 F5(v)2, that is, the
symmetric benchmark. When a = 1, F,(v) = 1 Fi(v)+3F»(v), the arithmetic
average.

Theorem 2 is interesting in two respects. First, it provides further motiva-
tion for the benchmark since it shows that, in the class of CES-like averages,
our symmetric benchmark is the only one that preserves the expected value
of the potential social surplus. At the same time, theorem 2 suggests that
the result about asymmetries hurting the auctioneer in the SPA is actually
fairly robust to the choice of the benchmark. Indeed, for any convex CES av-
erage of (F1, F3), expected revenue in the benchmark auction is higher (point
(3)). Moreover, if we focus on the share of potential surplus that the auc-
tioneer is able to capture (the v(y)/v() ratios), then asymmetries also hurt
the auctioneer for o € [0,1] (combining points (1) and (3)).

Proof. Claim 1: vl Is strictly decreasing in a.

Note first that F, is increasing in Fj(v) and Fy(v) and that F,(v) =
Fy(v) for o # o if and only if Fy(v) = Fy(v). Moreover, Fi is a
monotonic transformation of F,, at Fi(v) = Fy(v) for o/ < a (or, in

6 Arguably, if bidder 2 won in the asymmetric auction with v*, his expected payment
would be quite high and actually higher than if he won in the symmetric benchmark
auction with the same valuation. However, this is an unlikely event by assumption and so
the driving force in favor of the symmetric benchmark is the one mentioned in the text.

9



other words, F,, is more convex than F,). Therefore, F, is increasing
in . Because the cumulative distribution function of the first order
statistics is equal to F,(v)?, vy strictly decreasing in « follows directly.

Claim 2: Uy 18 strictly decreasing in a.

Let S,(v) be the cumulative distribution of the second order statistics
for (Fy, F,). We want to show that =-S5, (v) > 0. By definition, S, (v) =
2(1 — Fo(v))Fa(v) + Fu(v)? = 2F,(v) — Fa(v)?. Hence, £S,(v) =

2(1 — Fo(v))LF,(v) > 0 by claim 1 (except at points where Fy = F}

where the derivative is nul), and Uy is decreasing in a.

Claim 3: Vi) > v(lg for a <1.

Given claim 2, we only need to show that this holds when a@ = 1 in
order to prove that V() > v(lg for all @ < 1. The idea is very similar to
the proof of theorem 1, except that when o = 1, (F,, Fy,) and (F}, F»)
have now in common their means instead of the expected value of their
first order statistics.

Wl = 2 / o1 — Fy(0)dEs(0) = 2 / " wdFy(v) - 2 / " E(0)dF, (1)

1 v, Uq

]

dll

_ / vd[Fy(v) + Fy(v)] — it (4)

1
By claim 1, 1)?51 < 7)(&50 = 1)(15, and so the result follows directly by
comparing (4) with (2) ®

What about bidders? How do they fare under asymmetries? Because the
SPA is efficient, we have the following direct consequence of theorem 1:

Corollary 1: In the second price auction, bidders’ ex-ante aggregate payoffs
from the asymmetric auction (Fy, Fy) always dominate that from the sym-
metric benchmark.

Proof. The result follows directly from theorem 1 and the fact that
the second price auction is always efficient in our environment. The
expected value of social surplus is the same under both configurations
and equal to v(;) = v(ll’?. Bidders’ ex-ante expected payoffs are equal to

V(1) —¥(2) in the symmetric benchmark, and to 1)(15 _7)(15 under (F, F5).

V1) — V) < 1)(11? — 1)(15 follows from theorem 1 W

10



Corollary 1 is an aggregate statement. However, we can be more precise
for the second price auction:

Theorem 3: Let p, denote the average valuation of bidder i.In the SPA,
the ex-ante expected payoff of bidder i,U?, is equal to

2

v — v R
Ul = (1)2 (2)—1-'&22”] for j#1i (5)

Proof. Given the efficiency of the SPA, we know that

s s 1,2 1,2
Up + U35 =vg) — v (6)

Claim: U5 = [mxmm) Fy(v)(1 = Fy(v))dv
1

min{vy,v,}

Without loss of generality, let v; < v,. By definition,

v = j:ié}v—xﬁﬁxﬂdﬂﬁﬁ

= —(1-F(®) /U(v — z)dFy(x)

D)

v1

v [ me) [ anEn

=2 =2

CB)

(integration by parts)

= / (1= Fi(v))Fa(v)dv

max{71,02}
= / (1= Fi(v))Fa(v)dv.

min{v;,vy}

Similarly, we can show that Us = fmax{vl 7} [y (v)(1 — Fy(v))dv, there-

min{v;,v,}
fore,

max{71,02} max{71,02}
Ui -U; = / Fg(v)dv—/ Fi(v)dv

min{v;,v,} min{v;,v,}
= / vdFy(v) — / vdFy(v) (integration by parts)
= M1 He (7)

Putting (6) and (7) together, we get claim (5) W

11



Given theorem 3, it is easy to generate examples where both bidders
benefit from the asymmetries. In particular, consider the case where bidders’
distributions have the same mean valuation but differ in terms of variance.

Since 1)(15 — 7)(15 > v(1) — v(2), both bidders gain from the asymmetries.

4 The effects of asymmetries in the FPA

In this section, I turn to the first price auction. In the FPA, the winner is the
bidder who places the highest bid and he pays his own bid. Formally, if bidder
1 has valuation v; and wins the auction by submitting a bid b, his resulting
payoff is equal to w;(v;,b) = v; — b (and zero otherwise). An equilibrium
in this Bayesian game is a pair of bidding functions b; : [v,,7;] — R, |
i = 1, 2. For the analysis, it is convenient to look at the inverse bid functions,
¢; : Ry — [v;, 9], i = 1,2. Maskin and Riley (1996 and 2000a) have shown
that there exists a unique equilibrium in this environment.” The equilibrium
inverse bid functions have support on [b, 5] and are solutions to the following
system of differential equations:

Fy(¢,(0)) ¢1(b) — b
Roméan 1 o
Fi(¢,(0)) ¢ (b) — b

subject to some boundary conditions. First, the minimum equilibrium win-
ning bid, b, is uniquely determined by the following lemma (adapted from
Maskin and Riley, 1996):

Lemma 1: Lower bound to the equilibrium distribution of winning
bids: If v, = v,, then b= v, = v,. If v; < v, then b solves max {arg max

b
(vy — b)F1(b)} € (vy,vy). Moreover, we must have that ¢,(b) = v, when
vy =vyand ¢;(b) = b and ¢y(b) = v, when v; < v,.

Second, the maximum equilibrium bid, b, is common to both bidders and
endogenously determined by the following condition: F;(¢,(b)) = 1. It can be
shown that the equilibrium inverse bid functions are strictly increasing and

continuously differentiable on their support.

If one bidder’s support of valuations is very far off the other bidder’s support, the
equilibrium is degenerate: At equilibrium, the “strong” bidder outbids the highest possible
valuation of the “weak” bidder and wins all the time. I shall ignore this case.
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To gain intuition for why the solutions (¢, ¢,) are indeed equilibrium
inverse bid functions, it suffices to realize that equations (8) and (9) are the
first order conditions of the pseudo-concave optimization problem for bidder
1 with valuation v;:

max (v; — b)Fj(¢;(b)) i #j (10)

b>0

There are three things to point out about the equilibrium in the FPA.
First, there is in general no analytical solution to the equilibrium in the FPA
when bidders are asymmetric.

Second, notice that in the presence of ex-ante asymmetries, bidders will,
in general, bid differently. This can be seen from bidders’” FOCs (8) and
(9). Suppose that bidders bid identically at v. Turning to the inverse bid
functions, we must have that v = ¢, (b) = ¢,(b) for some b. However, different

distributions will, in general, have different likelihood ratios, 2’8 + %EZ;
Therefore (8) and (9) cannot be satisfied at the same time. Because bidders
submitting the same bid will usually not have the same valuation for the
object, the allocation in the asymmetric first price auction is generically

inefficient.

Third, due to the winner-take-all nature of the first price auction, there
is some kind of “downward bias” in the way bidders adjust to asymmetries.
Indeed, when deciding how much to bid, a bidder takes into account the
distribution of bids of his opponent only to the extent that his own bid is the
highest (refer to (10) if needed).

I now turn to examples to illustrate the competitive pressure that a more
equal distribution of high realizations among bidders puts on bidding behav-
ior.

Example 1: Suppose that bidders’ valuations are distributed uniformly
over [0,1] (for bidder 1) and [1,2] (for bidder 2) respectively. Then,
bidders never bid more than 1 in equilibrium (by submitting a bid of 1,
bidder 2 wins for sure, so he has no incentives to bid any higher - bidder
1 does not bid more than her valuation at equilibrium). Therefore,
RI(F,F) <18

8 Actually, it can be shown that the equilibrium is not degenerate and that the distri-
bution of equilibrium winning bids has support on [0.5, 0.875], so Rf (F}, Fy) < 0.875.
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On the other hand, the benchmark distribution has support on [1, 2]
with cumulative distribution F'(v) = /v — 1. Because this auction sat-
isfies all the conditions of the Revenue Equivalence Theorem, we can
appeal to this result and conclude that R/(F,F) = vz > 1.In turn,
this implies that R/ (F, F) > R/ (F, Fy).

Example 1 is clearly extreme because, under (Fi, Fy), the highest valu-
ation is always bidder 2’s. Knowing this, bidder 2 is able to shade his bid
significantly, and this hurts the auctioneer. By contrast, under the symmet-
ric benchmark (F, F'), both bidders are as likely to have the highest valuation
and this keeps them on their toes.

However, the intuition generalizes to less extreme cases of asymmetries
as example 2 illustrates.

Example 2: Suppose F] is uniform on [0,v;] and F} is uniform on [0, vs].
Let vy < vy. Griesmer, Levitan and Shubik (1967) have shown that the
equilibrium inverse bid functions for this configuration are:

60 = Tep bebg (11)
60 = T—ap —22%2 (12)

with ¢ = 2% > 0. Tn particular, notice that ¢y(b) > ¢, (b): Bidder
1°2
2, who can be seen as the “strong” bidder, is partially insulated from

competition (when he has a valuation in (v, v5], he knows that he has
the highest realization of the two).” Therefore, he is able to shade his
bid more at equilibrium.

Now, on [0,vy], F(v) = ﬁ, the cumulative distribution function of

a uniform. Hence, using the well-known solution for the symmetric
FPA, b(v) = ﬁ Jo @F'(z)dz = % on [0,v;] or, in terms of inverse bid
function, ¢(b) = 2b for b € [0, %].

Let G(b) and G*(b) be the cumulative distribution function of bids un-
der (Fy, Fy) and (F, F') respectively. We have G(b) = Fi (¢, (b)) F5(¢4(b))

9And, in any case, for any realization v, he knows that he is more likely to have the
highest valuation.
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= L@fT"b) and G*(b) = F1(¢(b)) Fa(6(b)) = 22 on [0, %]. Compar-
ing these expressions, we see that G*(b) < G(b) on [0,%], i.e. the
distribution of bids in the benchmark auction first order stochastically
dominates that of the asymmetric auction over that interval. As propo-
sition 2 demonstrates, this relationship continues to hold for b > % and

this implies again that RY(Fy, Fy) < R/(F, F).

Though the supports of valuations in example 2 are overlapping, there
is still a clear notion of who the “strongest” or most eager bidder is. The
following lemma provides a characterization of equilibrium bidding for these
situations.

Lemma 2: Suppose that %/ > % for all v for which both ratios are defined

(in particular, this means that F; < Fjon the interior of their common
support — bidder i is the most eager bidder). Then, the equilibrium under
configuration (F;, F;) is such that:

(a) ¢;(b) > ¢;(b) for all bon the interior of their supports (the “strong”
bidder bids less aggressively for every realization); and

(b) Fi(¢:(b)) < Fj(¢;(b)) for all b on the interior of their supports (i.e. the

“strong” bidder continues to be more likely to win).

Proof. Lemma 2 has been proved under various degrees of generality
(see, e.g. Maskin and Riley, 2000b for the two bidder case under slightly
more general assumptions) M

Lemma 2 provides a rough intuition for what happens in example 2.
Because bidder 1 bids more aggressively and bidder 2 bids less aggressively
than under the symmetric benchmark, there is a priori no reason why the
revenue in the benchmark configuration should be higher. However, because
bidder 2 remains the most likely bidder to win the auction, his less aggressive
behavior is the force that dominates.

With these examples in mind, we have:

Conjecture: Consider any configuration of bidders, (Fy, Fy). The expected
revenue from the first price auction in the symmetric benchmark, R/ (F,F),
is always greater than that for the asymmetric configuration (F, Fy).

Numerical simulations under a wide range of distributional assumptions
were used to test, and confirm, the conjecture. Unfortunately, and as has
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become usual in the asymmetric auction literature, some distributional re-
striction is required to get analytical results.

In the remainder of this section, I prove the conjecture under two kinds
of distributional restrictions. First, I consider a particular form of bidders’
asymmetry that is generated by collusion or merger among bidders. Suppose
that a; ex-ante identical bidders (with distribution of valuations H(v)) decide
to merge or collude. If the merger produces no diseconomies nor economies
of scale,'” the distribution of valuations of the new entity is the distribution
of the highest valuation among the «; realizations, that is H(v)*.

Proposition 1 covers this type of asymmetries in a slightly stronger version
than the conjecture.

Proposition 1: Suppose that oy + oo = B + By for au, B; € N. Consider
two configurations of bidders. In the a-configuration, bidders’ distributions
are Fi(v) = H(@w)* and Fy(v) = H(v)*2 where H(v) is a continuously
differentiable cumulative distribution function with strictly positive density
on [v,7]. In the B-configuration, Fy(v) = H(v)Pr and Fy(v) = H(v)P2. Let
a1 > ag. Then, if B, > ay, the expected revenue from the [3-configuration,
RY(B) is lower than that from the a-configuration, R'(«).

Notice that when o = as, the a-configuration is the symmetric bench-
mark (F, F') and so the claim corresponds to that of the conjecture. When
a1 > ag, both configurations are asymmetric. However, the (-configuration
is “more asymmetric” than the a-configuration. Proposition 1 then tells us
that expected revenue decreases as asymmetries increase.

Denote by (¢,, ¢,) the equilibrium in the a-configuration, and by (51, 52),
the equilibrium in the f-configuration. Let G (b) = H(¢,(b))* H(p4(b))*?
and Gg(b) = H(¢, (b))% H(dy(b))?2, that is, G4 (b) and G(b) are the cumu-
lative distributions of bids under the a- and (-configurations respectively.
With these notations,

Rl(a) = / bdG . (b)
RI(B) = [ 4aGa0)

100r if transfers are possible within the ring and so the cartel is of the “strong” variety
(McAfee and McMillan, 1992).
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A sufficient condition for Rf(«) > R/(3) is that G4 (b) < G(b) in the in-
terior of their common support (first order stochastic dominance). By lemma
1, we know that the minimum bid, b, is equal to v in both configurations. We
can also show that G, (b) < G(b) close to b.

To show that this relationship continues to hold for all b, we use bidders’
first order conditions to prove that

G () _ Gil)
Go(b) — Ga(b)

Ga(b) = Ga(b) = (COND1)

This allows us to rule out any crossing of G, and Gg to the right of b and
we conclude that R’ (a) > R’(8). A detailed proof of proposition 1 can be
found in the appendix.

For the second distributional restriction, I consider uniform distributions:

Proposition 2: Consider any asymmetric configuration of bidders (Fy, Fy)
and its symmetric benchmark (F,F), where Fy and Fs are c.d.f. of uniform

distributions (some restrictions apply when the supports are nested). Then
Rf(F, F) > Rf(Fl,FQ).

Again, I only provide an outline of the proof here and refer the interested
reader to the appendix. Let G(b) be the cumulative distribution function of
the winning bids under the asymmetric configuration (with support on [b, b])
and let G*(b) denote the cumulative distribution function of bids under the
symmetric benchmark (with support on [b*,']). It is easily shown that b < b*
(using lemma 1) and that G(b) > G*(b) close to b*.

When bidders’ supports of valuations are non-nested (i.e. v; < v, <
71 < Uy), we can again use bidders’ FOCs to derive a condition equivalent to
(COND1), that is,

G _ G')
G+(b) ~ G)

whenever G*(b) = G(b) (COND2)

This is used to conclude the proof.

When the supports of distributions are nested (i.e. v; < vy, < Uy < 71),
the proof becomes more involved because, a priori, both %T(bb)) > g ((:))
Cé((:)) CG;/((:)) are compatible with G(b) = G*(b). Therefore we cannot rule

and
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out a crossing.!! At this stage, it is useful to realize that only bidders’ first
order conditions are used to derive (COND2). As is well known, a system of
differential equations admits a family of solutions. In that sense, (COND2)
captures the properties of any pair of solutions to the systems of differential
equations for the original and the benchmark auctions, irrespective of the
boundary conditions. Therefore, it does not fully account for equilibrium
behavior in the two underlying auctions.

To deal with this difficulty, a separate appendix derives additional condi-
tions that equilibrium behavior imposes on bidding functions when the sup-
ports are nested.!> These are then used to show that R/ (F, F) > R/ (Fy, Fy)
must hold for 7, either close enough to v, or close enough to ;.

To summarize, we have now shown that asymmetries hurt the auctioneer
in the FPA when bidders’ asymmetries are of the kind generated by mergers
or collusion, or when bidders’ valuations are uniformly distributed. These
two distributional restrictions are meant to be illustrative. In particular,
the conjecture is easily proved for the cases where an analytical solution
to the equilibrium in the asymmetric FPA does exist.'”® In addition, other
distributional restrictions lend themselves to an analysis along the same lines
as those of propositions 1 and 2.4

We can now turn to bidders. In section 3, we saw that bidders bene-
fited from asymmetries in the SPA. Does the equivalent result hold for the
FPA? Not necessarily. The reason is that the FPA is inefficient and therefore
the expected social surplus in the asymmetric configuration is less than in
the symmetric benchmark (remember by construction, the potential social

IThe reason why nested supports are different from non-nested supports in that re-
spect is that, in the case of non-nested supports, there exists a relationship of stochastic
dominance between bidders (bidder 1 is the least eager bidder). From lemma 2, we then
have ¢y < ¢y. This, in turn, is critical when deriving (COND1) or (COND2).

12This appendix is available from the author upon request.

13See Plum (1992) and Jofre-Bonet and Pesendorfer (1999) for specific examples. For
configurations (F, Fy) with Fy(v) = v7T and Fa(v) = 22, ¢, (b) = 2b and ¢y (b) = ab at
equilibrium (thanks are due to Paul Klemperer for suggesting this class of asymmetry).
More generally, looking back at the system of differential equations (8) and (9), other ana-
lytical solutions can be derived by imposing, say, a function for ¢, (b), generating Fu(¢,(b)
by integration and working back the conditions on F, and Fj to provide a consistent
system of differential equations.

4For example, consider the class of configurations (Fy, Fy) with Fy = vFy, v € (0,1).
(I thank John Riley for suggesting this example).
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surplus is identical in both cases).

The next example provides a case where bidders are made worse off
by asymmetries. By contrast, the numerical results reported by Marshall,
Meurer, Richard and Stromquist (1994, tables III and V) seem to indicate
that bidders benefit from asymmetries for the kind of heterogeneity examined
in proposition 1. Intuitively, inefficiencies are unlikely to be very big when
the supports of distributions are common to both bidders. Therefore, if the
auctioneer loses from asymmetries, it is quite likely that bidders benefit from
them.

Example 3 Let bidders’ distributions be uniformly distributed over [0, 1]
and [0, z] with z > 1. Equilibrium inverse bid functions are given by
(11) and (12) with C' = £31 > 0. Bidder 1’s ex-ante expected payoff is

2

equal to

Ui(x) = / (61(5) — b)Y Fo(65(8))dF (6, (1))
_ 4/5b2(1—0b2)

z Jy (14 Ch2)3

and similarly,

b 12 2
UQ(x):é/ YA+Cr)
0

x (1-Cv?)3

where b = Ti5- We consider how bidders’ aggregate payoff changes as
x changes.
d 1 8z
%[Ul(l') + UQ(ZL‘)] = —;[Ul(l') + Uz(l‘)] + m +

4 [Tz -1 1 — Cb?

x Jo (1+Cv?)3 (14 Cv?)*

1 3(1 + Cv?),dC

(1—Cp)3 "~ (1— Cb2)4]%

1
= & when evaluated at x = 1 (the last term cancels out).

Moving to the second derivative, evaluated at x = 1, we find

(o) + Uafa)] =

dx?

(13)
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5

Turning to the symmetric benchmark, we have:

-~ wvel01 L € 0,1
F(v) :{ \\f—f 0.1] and f(v) :{ \/51 ! 1[ ]
wov>1 e U7

Denote bidders’ ex-ante expected payoff by U;(r). By the Revenue
Equivalence Theorem, Uy(x) 4+ Ua(x) = vy — v(2).

vy = 2/0 vF(v)dF(v) =x —/0 F(v)*dv

3r2+1
6x

v = 2 /01 v(1 — F(v))dF(v)

= 2 [m s [ v
2y —1+2?

6x

Therefore U () + Us(x) = 902%7;\/5 Differentiating and evaluating at
Tr =

1
(@) +Ta@)] = g5l +5vE 1]
1
= gat.'L‘_]_
d? — 21 11 5)

Comparing with (13), we conclude that for z > 1 close to 1, bidders
are better off under the symmetric benchmark i.e. U;(z) + Uy(x) >
Ul(.CL') + UQ(Z’)

On the nature of rents in auctions

Are the results derived in the previous sections likely to hold for any auction
format? A good starting point to investigate this question is to look at how

20



the optimal auction performs in these environments.!® However, asymmetries
do not necessarily hurt the “optimal” auctioneer as example 4 illustrates.

Example 4: Suppose that F] is uniform on [0, 1] and F% is uniform on [0, z]
for x > 1. Following Myerson (1981), we first compute bidders’ virtual

valuations:

Ji(v1)) = v———2=2v;—1

Jo(vg) = 2v9—x

It is easy to check that Jy(vy) > Jo(vg) when vy < vy + m—gl Therefore,

RP(Fy, Fy)

z—1

Sl

1 1 x

—/ dvl/ dvo max{.Jy(v1), Jo(v2)}
T Jo 0

1 1

—+v1 T

dvo(2v; — 1) + / dvy(2vg — )]

27_14-?11

1 [ z—1
;/0 [v1(z — 1) — —5 + 20 — vy

—1)2 —
—% —v? — (z — 1), + % + zvp|dv;
Lo, (a—1)
— —_— —1)vy)d
- /0 (v] + 1 + (z — 1)vy)dvy
3z +1

12z (14)

Computing R°P*(F, F') is more difficult because the problem is not reg-
ular in the sense of Myerson (1981) (virtual valuations are not in-
creasing everywhere in the symmetric benchmark). In the appendix,
I derive an upper bound to R (F,F) when x = 4 and find that

RP(F,F) < 0.9784 < RP'(Fy, Fy) =

1 (by (14)).

15Tn this section, I abstract from reservation prices. The reason for this assumption is
to place the “optimal auction” (or rather, in this case, the constrained optimal auction)
on the same playing field as the FPA and SPA as analyzed in the previous sections. This
restriction is inessential for the insights developed here. In particular, we would just need
to shift the supports of the distributions in example 4 to the right so that even the optimal
auction does not require a reservation price (alternatively, consider that the auctioneer has
a negative value for the object).
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Example 4 is a useful reminder that the optimal auction operates very dif-
ferently from standard (“real life”) auctions. In the optimal auction, bidders’
treatment is differentiated and informational rent extraction is the driving
force. In example 4, both bidders in the symmetric benchmark have a larger
support for their valuations than under the asymmetric configuration, and,
as a result, they are able to extract higher informational rents.

By contrast, the FPA and SPA are anonymous mechanisms (bidders are
treated equally) and bidders’ competition is the driving element.'® Informa-
tional rents are not as costly to the auctioneer as an unmatched competitive
position. When bidder 2 has a valuation between 1 and x in example 4, he
knows that he has an absolute comparative advantage over his opponent, and
this allows him to take a larger profit margin.

As it is widely thought that incomplete information is an essential el-
ement in auctions, it might useful to elaborate further on this last point.
First, consider the SPA. In the private value SPA, a bidder wins if and only
he has the highest valuation and, in that case, his payoff is equal to the dif-
ference between his valuation and the second highest valuation (that is, his
payoff corresponds to his comparative advantage). Informational incomplete-
ness plays no role in the SPA. Bidders’ rents are competitive rents. At the
other extreme, bidders’ rents in the optimal auction can be termed as purely
informational.

The FPA lies somewhere in-between. Informational incompleteness is an
important element of the strategic environment in the FPA (it does affect
bidding behavior) and bidders’ rents are partly informational.

To illustrate, consider an extreme example. Suppose bidder 1 has valua-
tions distributed over [v, 7] according to the cumulative distribution function
F. Bidder 2 has (known) valuation v* € (v,7). We claim that bidder 2’s ex-
ante expected payoff in the FPA is less than in the SPA (in other words, he
earns less than his expected comparative advantage). Consider first bidder

16 A useful example here is the following: Suppose that bidder 1’s valuation is distributed
over some interval [v,7] according to F(v), and that bidder 2 has valuation vs € (v,7).
It can be shown that bidder 2’s ex-ante expected profit from both the SPA and the FPA
is strictly positive, whereas it is zero under the optimal auction (bidder 2 has no private
information).
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2’s ex-ante expected payoff in the SPA:

* *

Us = / (v* —v)dF(v) = / F(v)dv (integ. by parts)

In the equilibrium of the FPA, bidder 2 mixes over an interval [b, b] with
v < b < b < v*. For bidder 2 to be willing to mix, he must be indifferent
between any b on [b,b], so his ex-ante expected payoff is equal to U2f =
(U; —b)F(b). Drawing F' as a function of v in a graph, it is easy to check that
Uy, < US.

For a slightly more general example, consider 2 distributions that are sin-
gle peaked and symmetric around their means. Suppose that both distribu-
tions have the same mean, but bidder 2’s distribution has a lower variance.!”
By theorem 3, we know that bidders’ expected comparative advantages are
equal. Numerical simulations for the FPA indicate that (1) the bidder with
the lower variance has a lower ex-ante expected payoff than the other bidder,
and (2) he earns less than his expected comparative advantage.

At this point, it is tempting to reinterpret corollary 1 as suggesting that
bidders’ competitive rents are always reduced by symmetry. It is also inter-
esting to note the analogy between example 3 and example 4. In example 3,
bidders are better off under the symmetric benchmark for the FPA. In exam-
ple 4, the optimal auctioneer is worse off under the symmetric benchmark.
It is probably not a coincidence that both examples involve the same kind of
distributional asymmetry.

6 Concluding remarks

In this paper, I have sought to understand how ex-ante differences in the dis-
tributions of bidders’ valuations affect revenue and profits. I have shown that,
holding the distribution of potential social surplus equal, asymmetries reduce
expected revenue, both in the first price and in the second price auction. In
other words, in both cases, asymmetries reduce the share of social surplus
that the auctioneer is able to capture. Auctions are decentralized allocation

17Variances are a very imperfect way to capture the relevant privateness of a bidder’s dis-
tribution of valuations in a FPA since private information is worthier when one’s valuation
is high than when it is low.

23



mechanisms and the outcome is ultimately driven by bidders’ strategic inter-
actions. In that sense, the results formalize the idea that asymmetries reduce
the competitive pressure on bidders.

Common decentralized auction rules and the optimal auction differ in
one important respect: the first are anonymous mechanisms while in the
optimal auction, the auctioneer can treat bidders differently. Informational
rent extraction is a key element in the optimal auction. By contrast, the
auctioneer in the FPA or SPA needs to rely more on competitive forces.
Symmetry increases competition and this effect is at the basis of our result.
However, symmetry does not necessarily decrease informational rents and
we saw that the optimal auctioneer might actually suffer from a greater
symmetry among participants. A conjecture is that the results derived in
this paper apply more generally to any anonymous competitive allocation
mechanism.

I have made several assumptions in my analysis. First, I have assumed
private values. A reason for this is that I wanted to focus on how asymmetries
affect competition. With common values, there is an additional element of
inference that affect bidders’ behavior. At the very extreme, in the pure
mineral oil model where bidders receive a signal about a common underlying
value v, it is unclear what the appropriate benchmark is to study asymmetries
in bidders’ distributions of signals.

Second, I have assumed that bidders are risk neutral. Though the com-
parison between expected revenues remains legitimate as long as the seller is
risk neutral, the argument for the benchmark and in particular for compar-
ing auctions with the same expected social surplus (defined as the expected
value of the first order statistics) is obviously weakened. Nevertheless, it is
useful to note that the behavior in the SPA is unaltered by risk attitudes and
therefore theorems 1 and 2 continue to hold.*®

Third, I have assumed that valuations are distributed independently. This
is clearly a simplification and this assumption should be relaxed in the future.

18 Allowing for risk aversion, we might also want to ask a different but related question:
that of the effect of heterogeneities in risk attitudes on expected revenue. Marshall et al.
(1994) note that the kind of distributional heterogeneity studied in proposition 1 can be
reinterpreted as an environment with symmetrically distributed valuations but different
risk attitudes across bidders. Generalizing wildly from this example, we might want to
conjecture that asymmetries in risk attitudes also hurt the auctioneer in the first price
auction.
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Fourth, I have ignored the possibility of a reserve price. As long as reserve
prices are held constant across configurations, this assumption is unimpor-
tant. One way to view reserve prices is that they limit the range of valuations
over which asymmetries matter. However, as long as the distributions of val-
uations above the reserve price differ, the intuition, and results, continue to
hold. This is easy to check for the SPA (the same proofs, slightly amended
for the possibility of a mass point at the reserve price, go through). In the
FPA, notice that reserve prices only affect the boundary conditions of the
system of differential equations that characterize the equilibrium. Therefore,
the key condition, G* = G = %/ < %, continues to hold and this is all we
need.

Last but not least, the analysis has focused on the (simpler) two-bidder
case. This is also when we can expect strategic interactions to be most im-
portant in bidders’ decisions and, therefore, the two-bidder case is a natural
starting point to study the effect of asymmetries on equilibrium behavior in
auctions. Intuitively, with N > 2 bidders, bidder 1 and bidder 2 share N — 2
opponents. As N grows large, the common element in the environment they
face tends to dominate, and, as a consequence, bidders’ optimal strategies
become less differentiated. Nevertheless, the intuition developed in the previ-
ous sections for why asymmetries reduce expected revenue continues to hold
and we expect the results to generalize to N > 2.1
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7 Appendix

7.1 Proof of proposition 1

Proposition 1: Suppose that oy + as = B + B9 for «a;, 3; € N. Consider
two configurations of bidders. In the a-configuration, bidders’ distributions
are Fi(v) = H(w)* and Fy(v) = H(v)* where H(v) is a continuously
differentiable cumulative distribution function with strictly positive density
on [v,7]. In the B-configuration, Fy(v) = H(v)’* and Fy(v) = H(v)"2. Let
a1 > ag. Then, if B; > ay, the expected revenue from the [3-configuration,
RY(B) is lower than that from the a-configuration, RY(«).

Proof. Denote by (¢, ¢,) the equilibrium in the a-configuration and by
(¢1> q§2) the equilibrium in the S-configuration. Let G, (b) be the cumulative
distribution function of bids in the a-configuration. Define Gjg(b) similarly.
By lemma 1, we know that the minimum winning bid is b = v. For future
reference, bidders’ FOCs in the a-configuration read:

Oé2H (¢2(b)) ( ) 1

60 &) b (15)
0 (6, ()64 (0) |

T ) o) =0 (16)

and similarly for the FOCs in the -configuration.
Step 1: G,(b) < Gg(b) for b close to b.

At b, G4 (b) = Gg(b) = 0. We want to show that lim,, Gﬁgb; > 1. By definition,

Gp(b) _ H(gl(b))ﬁlﬂ(%(b))%
Go(b)  H(¢y (D)™ H(y(b))

By successive applications of 'Hopital’s rule (since H(¢;(b)) = H(¢,;(b)) =
H(v) =0for i =1,2), we get:

Golb) %%ﬂwﬂﬁ((M[F@Mm%%@W%@W
B Cu) laataa)l o gl [H (6, ()] [H (6 (D))]o2 [ ()] [ (B) ]2
B MU][@HSME o
= GO $1(b) = (b)) = §1(b) = Sy (b) (17)
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Claim 1: ¢/(b) = = +1, ¢;(b) = & + 1 with i # j.

Proof: We prove the claim for ¢} only. The other proofs are analogous.
Using bidder 1’s FOC (15) and solving for ¢5(b), we get:

H(¢,(0))
a2(¢1(b) - b)Hl(%(b))

When b tends to b, both the numerator and the denominator of this expression
go to zero. Applying I’'Hopital’s rule,

s(b) =

. H (6,0 h0)

blb apH'(¢y(D))(¢1(b) — 1) 4 (¢ (b) — b) H" (¢(D)) (D)
¢5(b)

(¢ (b) — 1)

Solving for ¢}, we get the claim.{

(k) =

Consequence of claim 1: Expression (17) reduces to:

o Ga0) _ (5 +1)%(5 + 1)
ble Go(b) (£ +1)22(L + 1)

al

We want to show that this expression is greater than 1.

Claim 2: For all oy, as, 34, 8, such that a; + ay = 3, + 3, and B, > oy >

g > By, X X X X
B B - Q2 "~ a1

Proof: Let f(z,y) = yIn(2 +1) + xln(i + 1). Taking the total differential
yields:

df(z,y) = (= +1) — —Y—Jd + [m(% 1) - ﬁ

Yy (1+z)x Iy

Setting dx = —dy > 0, we get:

df (x,y) = [}n(é +1) - ln(i MRART fy)y -G fx)xl]dx

~
>0 for x>y >0 for x>y
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This proves the claim (18) for the case when a3 > as. When oy = g,
we use the convexity of In(: + 1) in = (for z > 0). Specifically, let L =

be_(L41)4+ A (ﬁ_lz +1). Because In(L + 1) is convex,

B1+B82 61 B1+B82
B 1 b1 1
In(—+1) + In(—+1)>InL
B+ By By B+ By By
Now. [ = B3(1+81)+63 (1+85) _ B3+838,+83+6%8, _ B1B2(B,48) + B3+83
’ (B1+82)B182 (B1+82)B182 (B1+82)B182 (B1+82)B182

1+ ﬂlT2ﬂ2 since B3+ 5 > 23, 0,. Therefore In L > In(1+ m) = ln(l—i—a%).O

Step 2: Ga(b) = Gp(h) = S < 2

Summing up bidders’ FOCs and using the definition of G, and Gg, we get:

G.,(b) B 1 1
Cal)) — 6(0) b byb) b 19)
G,’@(b) B 1 1
Go®) o b 5ab) 20)

We first derive restrictions that equilibrium behavior and the fact that G, =
G impose on the relationship between ¢;, ¢, ¢; and ¢,. First, note that
since a; > o and 3; > (35, lemma 2 implies that

ault) > 6,00 1)
¢1(b) > ¢,(b) (22)
Second, G4 (b) = G(b) means that
H((0)" H(,(b)** = H(y(b)™ H(y (b))

— a1 Y J— ﬂl 3 ] ]
Let A = P and A = Biihy This expression can be rewritten as

Aln H (¢ (b)) + (1= A) In H(¢y(b)) = MNn H($, (b)) + (1~ X) In H(¢y(b)) (23)

with A < .
Finally, we can prove the following claim:

Claim 3: There cannot be any value of bid b for which ¢y(b) < ¢y(b) <
¢1(0) < ¢4(b).
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Proof: We first claim that if there exists such a 3, then
95(b) < §2(0) < 61(b) < 6,(b) for all b>b (24)

Towards a contradiction, suppose that, starting | from b onwards, ¢2 is the
first one to leave the “bounds” and that ¢, and gz52 cross at b > b. Then, we
must have ¢y(b) = ¢2( ) and ¢ (b) > ¢2( ) and so

!
. (9252)052 - 3, H' ()~
H(¢,) H(py)
Using bidder 1’s FOC (15) and its equivalent for the S-configuration, we
conclude that ¢,(b) < By (b ), a contradiction. Alternatively, suppose that b,
first hits ¢, at b. We must have ¢, (b) = ¢, (b) and ¢, (b) < gﬁll(b) So

(¢1)¢1 /81 (¢1)

H(¢y) (¢1)
Using bidder 2’s FOC (16) and its equivalent for the S-configuration, we
conclude that ¢,(b) > ¢4(b), again a contradiction. Hence, (24) must hold.

¢2 since ag > 3

¢1 since a; < 34

We are now ready to reach a contradiction. From the discussion in section 2,
we know that at equilibrium, the maximum bid is common to both bidders.
Let’s denote them by b, (for the maximum bid in the a-configuration) and
Elg respectively. In addition, since the upper bound to the distributions of
valuations, 7, is common in both configurations, we have ¢, (by) = ¢5(bs) =

¢,(bg) = dy(bs) = v. This is impossible if (24) holds.¢

Conditions (21) to (23) together with claim 3 imply that at any crossing of
G, and G only two configurations of bidding behavior are possible:

61(0) = 61(b) = 9u(b) = 6,(0) (25)

$1(0) = d1(b) = da(b) = do(b) (26)
where (22) and the fact that G,(b) = G(b) imply that at least one inequality
is strict (two in the case of (25))

We can now easily show that “ < G 2 must hold at any crossing. Referring

back to (19) and (20), the clalm follows trivially when (25) holds. In the
second case, the claims follows from the convexity of ﬁ in z. This concludes
step 2.

Steps 1 and 2 together imply that G,(b) < Gg(b) for all b on the interior of
their common support. Therefore, R (8) < R/ («). ®
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7.2 Proof of proposition 2 (the uniform case).

Proposition 2: Consider any asymmetric configuration of uniform distri-
butions (Fy, Fy) and its symmetric benchmark (F, F') (when the supports are
nested, some restrictions apply). Then RY(F, F) > R/ (Fy, Fy).

Proof. Let v; < v,. Let (¢, ¢,) denote the equilibrium under (F, F5) (with
support on [b,b]) and let (¢, ¢) denote the equilibrium in the benchmark
auction (with support on [b*,5']). Let G(b) = Fy (¢, (D)) Fa(¢y(b)) and G*(b) =
F(4(b))?. Given lemma 1 (when v; < v,) and example 2 (when v; = v,), we
know that b < 0" and that G(b) > G*(b) holds in a neighborhood to the right
of b*.

Strategy of the proof: The proof considers two scenarios in turn: (1)
When the supports for valuations are non nested, there exists a stochastic
dominance relationship between the two distributions and so ¢; < ¢, holds.
In turn, this allows us to prove that

') G'0)
G ~ G (b)

Therefore, G*(b) < G(b) everywhere and the claim holds.

(2) When the supports are nested, ¢, can be lower or greater than ¢, so a
claim along the lines of (27) is no longer available. Instead, we find (a)
conditions on vy such that G*(b) < G(b) for all b (claims 3-5), and (b)
conditions on ¥, such that b < R(F, F ). Because the proof in this case tends
to be more involved without adding any new insight, it is reported in a
separate appendix.

G(b) = G*(b) =

(27)

Part I: Non-nested supports: v, < v, <7v; <7,.

Claim 1: For all b in (b,0), ¢;(b) < ¢,(b).

Proof: When v; < v,, this follows from lemma 2. When v; = v,, this follows
from the explicit solutions (see example 2). ¢

Claim 2: G(b) = G*(b) for b > b* = aw  GUob)

G(b) ~ G*(b)
Proof: Adding bidders’ FOCs, G and G* satisfy:
G'(b) 1 n 1
G(b) G1(b) = b y(b) —b
G*/(b)

2
G*(b) ¢(b) = b
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on their respective supports. The following change of variables turns out
to be useful. Let di(b) = ¢,(b) — b, do(b) = ¢(b) — b, d(b) = ¢(b) — b,
u;(b) = b— 2, and u,(b) = b — v, (Notice that u; and u, are both strictly

positive at equilibrium). The condition %—' = %' can be rewritten as
2d.d
d= 2172 (28)
(d1 + dy)

(where the arguments have been dropped for simplicity). Similarly, G(b) =
G*(b) means that Fi(¢, (b)) Fa(¢2(0)) = F(4(1))* = Fi(¢(b)) Fa(é(b), that is,

(dy +uy)(da +1p) = (d +uy)(d + uy)

Solving for d, we get:

1
d= 5[\/(21 + uy)? + A(ddy + uydo + uydy) — (uy) + )] € (di,d2)  (29)
Next, we solve for the locus of points in the (u,us) space such that both
(28) and (29) hold. This yields the following expression:

(30)

This is represented in figure 3. By claim 1, ¢;(b) < ¢4(b), so d; < dy and
the locus describes a line above the 45° line. By construction G* = G and

7
¢’ _ -
&+ = & on that line.

[insert figure 3 here]

We now claim that G = G* implies %' < %' to the right of this line. To
see this, just consider one such point, the origin (0,0), and suppose that (29)
holds that is d = v/d;d. Substituting back into (28), it is easy to check that

d> (3&2) SO %—/ < % must hold.

This allows us to conclude the proof. By assumption, v; < v,, so u; > u, and

we are always to the right of the locus. Therefore, at any potential crossing

of G with G*, %' < %' is satisfied.$

Since G(b) > G*(b) close to b*, claim 2 implies that this relationship holds
for all b on their common support. R/ (Fy, Fy) < R/(F, F) follows. B
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7.3 Derivation of an upper bound to R?'(F,F) in ex-

ample 3
Suppose F] is uniform over [0, 1] and F} is uniform over [0,4]. Then:
2 wel0,1] 1 v e [0,1]
F(v) =1 2 ! dF(v) =1 2 ’
(v) { 4 o> 1 an (v) { 4\1/5 v>1

Turning to virtual valuations, we have:

[ 20-2 for v € [0,1]
) = { 3v—4y/v forv>1

It is easy to check that J'(v) > 0 on [0,1) and on (1,4]. However,

li = li =-1
im J(v)=0> im J(v)
This means that the problem is not regular in the sense of Myerson (1981)
and the optimal auction requires bunching over an interval of valuations.
Consider the following expression:

R:/O dvlf(vl)/o dva f(ve) max{J(vq), J(v2)} (31)

This expression would correspond to the expected revenue from the optimal
auction if the auction were regular. Given that it is not, (31) overestimates
the expected revenue from the optimal auction: R (F, F) < R.

Claim: R < 0.9784.

Proof. Because of the symmetry of the situation, R can be rewritten as

R=2 /0 F(0)J(0)probalJ(5) < J(v))dv (32)

where proba(J(v) < J(v)) stands for the probability that a valuation draw
from F has a virtual valuation lower than J(v).2° Define v* such J(v*) =
3v* — 4v/v* = 0. We have v* = 9. and J(.) monotonically increasing over
[42,4]. Therefore, proba(J(v) < J(v)) = F(v) for all v > v*. Similarly, J(.)is
increasing over [0,0.5] and J(v) < J(v') for all v < 0.5 < ¢'. Therefore,

20Notice that, since J(.) is not monotonic, proba(J(7) < J(v)) is not equal to F(v).
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proba(J(v) < J(v)) = F(v) for v < 0.5. Finally, notice that J(v) < 0 for all
v < v*. We can now rewrite (32) as:

0.5 16
R = /0 (v —1)vdv + 2 f(v)J(v)proba(J(v) < J(v))dv

0.5

1 4
+Z/ (3v — 4y/v)dv

16
9

0.5 1 4
< / (v —1)vdv + Z/ (3v — 4y/v)dv
0 T

0.5
7)3 7)2

3 2

1 302 81)%

S(E- -2 =0.9734m
+ 15 -5 0.978

16
9

0
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Figure 1: F, is the c.d.f of a normal N(0.5,0.2) truncated on [0,1]. F,(v) = F,(v)>. Left panel shows
the c.d.f. Right panel shows the derived p.d.f.
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Figure 2: F,(v) =vand F,(v) =v-0.5. Again, left panel shows the c.d.f and the right panel
represents the associated p.d.f.
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