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ABSTRACT
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This Paper derives arbitrage trading strategies taking into account the fact that
the actions of arbitrageurs impact prices. This avoids the difficulty of having to
rely on exogenous position limits to prevent infinite arbitrage profits. When
arbitrageurs are financially constrained their trading strategies can be
expressed as feedback functions of their capital, which in turn depends on the
optimal amount traded. An important component of the trading by financially
constrained arbitrageurs is done to guarantee future financial flexibility. It is
this hedging component that explains why price deviations persist in spite of
arbitrage. Financial constraints are also responsible for periods of excessively
volatile prices and for the time variation in the correlation of price deviation
across markets. The fact that the actions of regulated firms can influence the
dynamics of prices on which minimum capital requirements are based raises
important implications for the regulation of securities firms.
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NON-TECHNICAL SUMMARY

The Paper uses standard multi-period optimization techniques to derive
optimal trading strategies for rational, profit-maximizing investors (which we
call arbitrageurs), who trade in a market with discretionary liquidity traders and
noise traders. One distinct feature of the model is that arbitrageurs understand
that the quantities traded have an impact on the path of prices, and therefore
scale their trades to take into account how marginal trading opportunities
affect the value of their positions. Departing from the standard assumption that
the impact of trades on price can be considered before the optimal trading
strategy is derived poses the difficult problem of endogenizing the behaviour
of arbitrageurs. The challenge is justified since we want to provide an accurate
representation of large arbitrageurs in less than perfectly liquid markets. Given
the size of the positions currently being managed by large securities houses
and large hedge funds, we believe that the model can better describe a more
common situation than at first appears, and that it applies to developed
markets and not just to emerging and shallow markets.

We find that important anomalies can be explained in the context of our
model. For example, why prices are excessively volatile and why there are
patterns of volatility characterized by stable periods followed by turbulence.
We also show that financially weak arbitrageurs can contribute to problems of
contagion across different markets, and why in periods of instability returns
tend to be significantly more correlated across markets. In this respect our
Paper is an addition to the recent literature on financial crisis.

Our work discusses rules of capital requirements used to assess the risk of
traders’ positions. Measures used to determine the risk of firms’ capital are not
exogenous and are themselves influenced by the actions of the regulated
firms. When this happens, VaR models incorrectly measure the extent of
forced reductions in capital with important externalities and welfare distortions.
This is of relevance, since how good capital adequacy rules measure risk of
financial distress depends above all on liquidity. In markets that lack depth, as
is often the case during periods of instability, traders face extraordinary
difficulties in rearranging positions. Attempts to trade in shallow markets to
ensure compliance of regulations can impose large losses on traders’ capital.
Capital adequacy requirements may then have unintended effects at times
when they are most needed, because in their design it is ignored that
supervised traders impact prices when they rearrange their positions.



In a letter to investors announcing the recasting of his Quantum Fund, George Soros
wrote: “Quantum Fund is far too big and its activities too closely watched to be able to
operate successfully in the market”.! A month earlier another hedge fund arbitrageur, Julian
Robertson, echoed this same feeling when deciding to close Tiger Management which had
became too big, undermining its ability to trade in and out of positions. Both these state-
ments occurred in a period of considerable market volatility and although pricing anomalies
were frequent according to both arbitrageurs, opportunities to exploit discrepancies were
dwindling. Given the sheer size of some hedge fund portfolios it should not be surprising
that their bets are often noticed by the market.?

Financial arbitrage is carried out with very large positions in assets taken by relatively
few investors for short periods of time. Though sophisticated arbitrageurs understand that
their behavior might modify the path of prices, the academic finance literature still assumes
that the optimal strategy for arbitrageurs can be derived ignoring the impact of arbitrage
on prices. The few exceptions are the empirical studies of Mackinlay and Ramaswamy
(1988) and Merrick (1989), which find evidence that path dependence in the basis of stock
index futures contracts can be associated with the trading activities of arbitrageurs. Given

that it is common practice for arbitrageurs when trading to consider the effects of marginal

1See "High-flyers come back down to earth”, The Financial Times, April 29-30, 2000.

2 Another interesting case is that of Pimco’s actions reportedly associated with “Bloody Thursday”, Feb
3, 2000, when the 30-year Treasury bond finished off a week with a steep rise of more than 2%, while
mortgage bonds plummeted. According to the Wall Street Journal, Pimco bought large amounts of the
30-year Treasury bond and dumped mortgage bonds and triggered panicked trading. In Mr. William Gross,
Pimco’s manager, own words, “I think we were the spark to the market tumult. Others found out about the
trades too quickly, and we couldn’t do enough without driving the long bond to ridiculous levels.” The Wall
Street Journal, March 2000.



trading opportunities on the total value of their trades, it appears that competition between
arbitrageurs can be viewed as less than atomistic. Deviations from the perfectly competitive
case are not easily incorporated in a model of arbitrage trading because this raises the
challenge of endogenizing the behavior of arbitrageuers given the impact of trades on market
prices, a point first made by Brennan and Schwartz (1990).

In this paper we propose an analysis of arbitrage trading that attempts to capture some
of these features in a simple and tractable way. Arbitrageurs are large and trade with
noise traders, as well as with discretionary liquidity traders. This last group of traders
is characterized as having inelastic demand functions for the asset. Asset prices deviate
from the fundamental value and arbitrageurs aim to gain from buying cheap and selling
expensive. But, because arbitrageurs know that their actions affect market prices, it is
necessary to depart from the assumption that the impact of arbitrage on price is known
before the optimal arbitrage strategy is derived. When arbitrageurs are unconstrained they
supply a level of liquidity to other traders that maximizes their expected total trading profits.

A realistic model of arbitrage trading must take into account the fact that arbitrage
traders have to back their trading activities with own capital. Examples include the capi-
tal adequacy directives establishing minimum capital requirements for the trading books of
banks and securities firms and the system of margins in futures contracts and equity posi-
tions. Financial constraints can make a significant difference to the optimal level of arbitrage
trading, as well as to the time series properties of market prices. We show that in the pres-
ence of financial constraints based on market prices for securities, arbitrage trading strategies

can be expressed as feedback functions of the arbitrageur’s current capital, which in turn is



related to the optimal amount the arbitrageur chooses to trade. As a result, the arbitrageur
evaluates his trading options as if the costs of the leverage constraints were endogenous.?

In addition to paying careful consideration as to how their marginal trades impact the
total trade, financially constrained arbitrageurs try to avoid violations of the capital con-
straints that can result from adverse shocks to prices. Reducing the likelihood of violating
the capital requirements effectively means biasing arbitrage positions towards zero. This is
because a flat position in the asset is effectively immune to adverse shocks that affect the
value of the portfolio. Although the bias towards the zero position has opportunity costs
associated with forgone profits it has the benefit of reducing the likelihood of default, and
therefore increasing financial flexibility. Interestingly, this hedging motive for trading makes
financially constrained arbitrageurs at times trade larger quantities than unconstrained ar-
bitrageurs faced with similar arbitrage opportunities.

In comparing the behavior of prices, we find that when arbitrageurs are not financially
constrained, the expected future asset price is always equal to its expected fair value. How-
ever, in the presence of financially constrained arbitrageurs the market price is inefficient
and tends to deviate from its fundamental value for a sequence of time periods. The reason
is that in the desire to gain financial flexibility, a long arbitrageur sells more of the security
when liquidity traders want to buy it than he buys of the security when liquidity traders

want to sell it. Therefore, the mean value of the trade of a constrained arbitrageur with

a long position is negative. This has the effect of driving the expected price below the ex-

3Several other articles have also addressed the effects of financial constraints on the trading strategies of
rational traders - see, for example, Grossman and Vila (1992) and Zariphopoulou (1994). However, in all
these models, trading strategies do not modify the price process and leverage constraints are evaluated in
the presence of exogenously imposed leverage costs.



pected fundamental value. The opposite occurs when the arbitrageur is initially short in the
asset. Persistent price deviations occur and are then the result of arbitrageurs being finan-
cially constrained, since no price deviations are expected if arbitrageurs are absent from the
market or if they are unconstrained.

Although it is not our objective to explicitly model financial crisis, in our setting financial
constraints are shown to be responsible for anomalies such as excessively volatile prices and
for calm periods turning into turbulent periods and vice versa. Contrary to the case where
arbitrageurs are unconstrained where volatility is constant, in a market with financially
constrained arbitrageurs price volatility is dependent on the position held by the arbitrageurs.
On average, arbitrageurs reduce price volatility and improve market liquidity. However, there
are periods when prices become especially volatile, because arbitrageurs, after an adverse
shock, become constrained and are forced to liquidate positions to comply with capital
requirements. Instead of contributing to reverse the effect of the liquidity shock, in these
situations arbitrageurs cause the destabilization of market prices.> Higher price volatility also
occurs when net liquidity in the market drops to low levels as a result of high volumes of noise
trading and low elasticity of discretionary liquidity demand.® Another interesting feature of
our model is that patterns of changing volatility occur endogenously, whereby stable periods

are succeeded by more turbulent ones, and vice versa. The possibility of such scenarios

4Long run price ineficiencies have also been explained by transaction costs by Tuckman and Vila (1992),
and short horizons by Dow and Gordon (1994).

5This paper is not the first to point out this anomaly. Gennotte and Leland (1990) show that ratio-
nal traders facing portfolio insurance constraints put downard pressure on prices and amplify volatility in
declining markets.

6Yuan (1999) attemps to explain financial crisis arising from informational differences between rational
speculators facing borrowing constraints and liquidity traders with upward sloping demand functions. When
the asset price is high liquidity traders absorb more of the random asset supply. When the asset price is low
liquidity traders are increasingly resistant to absorb any supply because they do not know whether arbitrage
trading is informational driven or because of borrowing constraints.



suggests that different forms of institutional constraints imposed on arbitrage trading, such
as margin calls or tighter capital requirements, need to be carefully considered. When
financially fragile arbitrageurs find it impossible to raise additional capital from reluctant
investors these constraints can leave markets in a funk. In addition poorly designed rules
such as the standard Value at Risk measure can contribute to the perverse regulation of
trading risk and cause inefficiencies in the financial system.”

The actions of financially constrained arbitrageurs are also associated with correlations
of prices across different markets. In a multi-asset environment we show that correlations
between markets increase significantly in periods of instability, a fact that has been docu-
mented in recent empirical studies. Shocks that are unique to one market can affect the
financial condition of arbitrageurs with positions in that market, forcing them to liquidate
their holdings in other assets, and contributing to the propagation volatility across various
markets. This idea of contagion is related to that found in Kodres and Prisker (1998). There
informed investors reduce asset positions in various assets during market declines to meet
portfolio balancing needs. Undiversified investors in unrelated markets are not clear about
the motives of informed investors and sell as well. The result is that a negative shock in an
asset spreads to other assets even when nothing has fundamentally changed. In our model
these effects are more pronounced, because the actions by arbitrageurs impact both the level
and volatility of market prices.

Some of the points made in our paper are consistent with the arguments in Shleifer

"In an interesting quote George Soros remarks that “Markets have become extremely unstable and his-
torical measures of VaR no longer apply” (The Financial Times, 29-30 April 2000). We assert that VaR
rules that are set ignoring that trading by financial firms impact on prices do not measure well the trading
risk of these firms’ portfolios, and can lead to serious distortions.



and Vishny (1997). Their paper considers arbitrage in a delegated portfolio management
setting by modelling the arbitrageur’s strategy when he obtains capital from investors who
can observe returns on the portfolio but not the investment opportunities available. Their
results are similar to some of those presented in this paper, namely that the fully invested
arbitrageur may liquidate positions after a negative shock that results in immediate losses
due to increased mispricing, mispricing which improves the future returns to the position.
This will happen when the arbitrageur is unable to raise the additional capital needed to back
the positions. The authors argue, without an explicit model, that risk averse arbitrageurs
may liquidate positions even when they are not fully invested.

The remainder of the paper is organized as follows. Section I describes the economy
and the optimal trading strategy of a monopolist unconstrained arbitrageur. The section
also contains our main results on financially constrained arbitrage strategies and presents
the moments of the distribution of price deviations Section II extends the results to a
market with multiple arbitrageurs competing with each other. Section III considers the case
of arbitrage trading in multiple risky securities and derives implications for price behavior
across markets. Section IV discusses policy issues related to the regulation of arbitrage

activity. Section V concludes.

I. The Model

This section presents a dynamic strategy for an arbitrage trader who trades in a market

for a security with a population of liquidity traders. The fundamental value of the security,



1;, follows a random walk

It = It—l + Ot (1)

where, o is the per period volatility and ¢; is the innovation in the fundamental value of the
security at time ¢. This fair price is never observed directly but is revealed by the market
price of the security, F;. We assume that there are two components to liquidity trades in
the market for the security. The first is a pure noise component, A; = ope;.  The other
component represents the actions of discretionary traders, who respond to the deviation of
the market price from its fair price. In particular, a liquidity trader contemplating making
a discretionary purchase of the asset will do so if F; < I; 1, since this means that the asset

looks “cheap”.® We therefore assume that the total demand by liquidity traders is given by

DtL =0 (Ft - It—l) + A (2)

where D! is the flow of liquidity trades in the interval (¢ — 1,¢), and 3 > 0. Notice that
the first component of the demand is the price sensitive demand and the second is a flow of
random liquidity orders from those who trade and are not price sensitive. For simplicity we
assume that same shock affects both the asset value and the liquidity demand and that it
has the following distributional properties: E [g] =0 and E [¢?] = 1.7

The price of the security is set by market clearing. In the absence of arbitrage traders

this price is determined by setting DtL to zero, giving F; = I; 1 + %‘"&.

8The assumption here is that discretionary liquidity traders submit demand schedules, that is, they specify
the quantity that they will trade as a function of price.

9This assumption can be relaxed very easily - two correlated shocks can be used, where the shocks have
a correlation p. This makes the notation complicated and does not add to the intuition of the problem.



A. Trading Strategy of an Unconstrained Monopolist arbitrageur

The price of the security in the absence of arbitrageurs is different from its value. The
magnitude of the difference is ’(% — (71) et‘. The difference results from the fact that in-
formation related to the value of the security is incorporated into prices via the demand of
liquidity traders. But the sensitivity of the liquidity trader demand to the changes in the
value of the security is not one.!® Arbitrageurs, will attempt, in light of their knowledge of
the process generating liquidity trades to profit from these price deviations.

Let, 0; 1, represent the number of units of the security that the arbitrageur holds after
trading at date ¢ — 1 (prior to trading at date t); the quantity that he trades at date ¢ is
0y — 0, 1. Given that the demand for the security from liquidity traders is not perfectly
elastic, trading by the arbitrageur affects the market price of the security. If, as before,
the liquidity trader demand for the security is given by DL, the market price is set by the
market clearing condition that D + 6, — 6, 1 = 0. This gives the following expression for
the price of the security:

Ay 0 =0

Ft:]t_l—i_ﬁ—}_T (3)

The expression above describes how the demand flow from arbitrageurs affects the market
price of the asset. If the arbitrageur is buying the security (6; — 6;_1 > 0) the price, F}, will
rise relative to its fundamental value. The reverse will be true if the arbitrageur is selling

the security (6, — 0; 1 < 0).

107f 3 = %JI’-', the asset price adjusts to reflect the value of the asset. If 5 > %, the asset price under
adjusts to changes in value, while § < %fl’-', causes asset prices to over adjust to changes in value. The

0 < Z—f case is consistent with observed short-run negative autocorrelation in asset prices.

10



The arbitrageur’s profit from trading the security is given as:

TP(0,) = 0y 1(I, — I,_1) + (0, — 0, (I, — F) (4)

where, the first term represents the gains on the existing portfolio position and the second
term represents the profits from trading the security at a price that is different from its
value. The first part is unaffected by the trading of the arbitrageur, while the second part

is sensitive to the choice of quantity traded. Using (3), the expression for trading profit can

be re-written as

g — 0, 2
TP(Qt) = 010161 — (9t — ‘915—1) <?F — O'I) g — w (5)

This is the arbitrageur’s profit from trading the security in a single period indexed t.
The arbitrageur’s objective function which is the discounted, at discount rate ¢ per period,

expected trading profit over an infinite horizon starting period ¢, is given as

Vi :]\Igam ST 6T B [T P(6r)] (6)

= s Mo S B (6~ 0.) (% — ) e+ et

The solution to this problem is V* = 6,_; — g (%‘" - 01) e If %F > oy, the security
price over adjusts in the absence of arbitrageurs and the arbitrageur will buy the security,
that is 0U* > 0,_;, when liquidity traders are net sellers, e, < 0; and the arbitrageur will

sell the security, that is Y* < 0,_;, when liquidity traders are net buyers, ¢, > 0. In this

situation both discretionary liquidity traders and the arbitrageur profit from trading against

11



the noise traders.

On the other hand, when %E < oy the liquidity shocks cause prices to under adjust for
changes in the value of the asset. The discretionary liquidity traders are supplying too
much liquidity to the market, that is, § is too large. In this situation discretionary liquidity
traders lose money and the arbitrageur profits from trading against them. In the long-run
this is unsustainable since the discretionary liquidity traders would be forced out of the
market. Therefore, Eﬂﬂ < oy is unlikely to be observed.

Note that in this simple setting the quantity traded is not a function of the current
position or of any other variable.  Substituting the optimally traded quantity into the

expression for the price of the security, gives F;, = I, 1 + % (%F + 0'1) ¢, and the into the

objective function of the monopolist arbitrageur gives the maximized profit as

1 2
Vo = 01018 + mg (% - 0’1) (7)

Arbitrage traders in financial markets are often required to back their trading positions
with own capital. Examples include banks subject by regulators minimum capital require-
ments and margin requirements in futures contracts. Let us next analyze the problem of an

arbitrageur who faces such capital requirements.

12



B. Trading Strategy of a Financially Constrained Monopolist ar-

bitrageur

The most common constraints faced by traders in financial markets are: (a) a bankruptcy
constraint; (b) a symmetric margin requirement and (¢) an asymmetric margin requirement.
In this sub-section we consider the case of an arbitrageur who faces a bankruptcy constraint;
discussion of the other types of constraints is delayed until a later section.!!

In order to understand the implications of the constraints we start by modelling the
evolution of the arbitrageur’s capital balances. The capital balance, C; at time ¢, reflects
the initial capital of the arbitrageur and the market value of the sum of the gains and losses
from trading the asset. Changes to the capital balances occur due to gains and losses

resulting from changes in the price of the security,

Cy=Cio1+ 61 (Fy, — Foy) (8)

An important measure of the capital balances is the amount of capital remaining after all

positions have been liquidated,?

Ci(0, = 0) = Co_y + 0y (Fy(6, = 0) — F,_1) 9)

A very simple form of the bankruptcy constraint is considered here - the arbitrageur is forced to leave
the market immediately liquidating his position if one measure of his capital becomes zero. More compli-
cated forms of the constraint would include different liquidation strategies and different liquidation triggers.
Almgren and Chriss (1998) show that a liquidation strategy of the type considered here is the strategy that
has the minimum variance of liquidation proceeds.

2For very liquid assets, for example on-the-run US Treasury securities, liquidation of the arbitrageurs
position will have a very small impact on the capital balance and Cy (8; = 0) ~ Cy. For relatively less liquid
assets, for example stocks of small firms, liquidation of the arbitrageurs position may have a substantial
negative impact on the capital balance giving C; (6; = 0) << C}.

13



The evolution of the above quantity can be given as'®

2 o
Ct(et - O) - Ct,1 (9,571 - 0) —|— Bet,1 ((9%7_1 —|— 7F€t - (9,51) (10)

where, 0 | =0, 5 — g (%E — 0'1) gr1. The LHS of the above expression, Cy(0; = 0), is the
capital available to the arbitrageur if he were to liquidate all positions and F;(6; = 0) is the
market price of the asset if the arbitrageur liquidates his position.

Equation (9) allows us to solve for the maximum position that can be held by the arbi-
trageur as a function of capital available, C; 1, given that the arbitrageur is willing to bear
a small risk of forced liquidation. Figure 1 plots this relationship. The horizontal axis
is the capital available, C;_;, while the vertical axis is the value of 6;_; that ensures that
Pr(Cy(6; =0) > 0) = k. The plot solves expression (9), setting the LHS=0 and assuming
adverse shocks, that is, &, = —z, when 6;,_; > 0 and &, = +2z;, when #;_; < 0. As can be
seen the maximum position is a concave function of the capital. The figure also plots the
position limits under a system where the position held by the arbitrageur has to be backed
by a margin amount. This is represented by the straight lines in the figure. As can be
seen, for low levels of capital, the margin requirements give tighter bounds on the position,
while for larger amounts of capital the margin requirements are looser than the bankruptcy

constraint.
<Insert Figure 1 here>

Ultimately, it is the amount of capital remaining on liquidation, C; (6; = 0), that must

13This is obtained as follows: from equation (8) and (9) we have C; = Cy(6; = 0) + MT‘*]. A similar

expression can be obtained at ¢ — 1. Substituting into (8) and simplifying gives (10).

14



satisfy some exogenously imposed reservation value. For the analysis here we assume that
the arbitrageur can continue trading the security as long as this measure of capital is positive
and that he is forced to liquidate all positions and leave the market if the above measure
of capital is non-positive. This allows us to write the constrained monopolist arbitrageur’s

objective function as

]\/[ggw O, 1076 — %ﬁ Cy(6; =0) >0
_(Ht - 9t—1)(£ﬂE - UI)&:

Ve (01, Cy (6, = 0)) = (11)

+OE [Ve (01, Crr (0111 = 0))]

Oi_1018; + 0,1 (% —0r

N———
o
o~
|
|t
L
9!
—
s
o~
|
o
N—
AN
o

In the above expression, the case where the arbitrageur initially has a positive capital
balance is the problem that we would like to solve (the other case is trivial). The current level
of capital available to the arbitrageur depends on the entire history of positions held by the
arbitrageur, that is, it is path-dependent. As a result, a large number of state variables are
required to make the problem Markovian, making it difficult to solve the problem analytically.
For this reason we propose a simplification to the problem that retains all of its interesting
aspects while allowing us to obtain an analytical solution.

The simplification is based on the following observation: The optimized value of the
objective function described above is known at the two boundaries described by a financially
unconstrained, Cyy (6141 = 0) = oo, and a zero capital, Ci,1 (6;11 = 0) = 0, arbitrageur. In

the first case the optimized value function is given by Vi; (as in equation (7)). In the second

15



case, the arbitrageur is forced to liquidate his position and not trade ever again, giving

o 0;
Vi (6y) = 01018041 + b <FF - 01) €e41 — Et (12)

The value of the optimal trading strategy of a financially constrained arbitrageur with pos-
itive capital reserves 0 < Cyi1 (6;41 = 0) < oo, must lie between V, and Vj;. This value of
arbitrage trading is a concave function of the amount of capital balances available, because it
must remain finite over the entire range of capital balances. We use this fact to approximate
the Vi (04, Ciy1 (0i11 = 0)) term in the above optimization problem with a weighted sum of

the value function at the two boundaries, V; and V. The problem is then written as:

VC ((975_1, Ct (Qt = 0) > O) :]\40?1' Ht_lajat — (Ht — 075_1)(% — ()‘I)gt — W (13)

(1 = 7(Cos1 (41 = 0,6041))) Vi (61)
+o0E

+7(Crg1 (31 = 0,6041)) VL (61)

where the weights, 7(Ciy1 (021 = 0,6441)) and 1 — w(Cyyq (0141 = 0,e441)), given to each
component of the value function next period, Vi and Vi, are themselves function of the
arbitrageur’s capital balances next period. A consistent choice of 7’s would be one which
equals one if the trader has zero capital balance on liquidation and zero if the trader has
infinite capital available. The n’s should be monotonically decreasing functions of the
capital balance available to the trader, since a higher level of capital should imply a lower
likelihood of forced liquidation. Also, the 7’s should be such that the approximation used
above should be a concave function of available capital.

16



The arbitrageur’s capital balance next period is a function of his current capital balance,
the existing position in the asset and the realization of the liquidity shock. A higher level
of existing capital balance, C; (6; = 0) translates into a higher future capital balance and,
therefore, should translate into lower 7’s. If the arbitrageur has an initial long position, a
negative liquidity shock decreases his capital and should be reflected in a higher 7. Thus,
we must have that 7 (Cyq1 (0i41 = 0,001 < 0)) > 7 (Chyq (0411 = 0,441 > 0)) if 6, > 0 and
7T (Cii1 (0431 = 0,6441 > 0)) < 7 (Cypq (041 = 0,041 < 0)) if 6, < 0.

A functional form that satisfies the above requirements for the 7’s is

a
a+ ét(ct-i—l (€t+1))

T(Crr1 (01 = 0,6041)) = (14)

where, a is a constant and 0;(C;; (g4,1)) is the maximum position that the trader can hold

in the risky asset without being forced to liquidate at t + 1; that is, 8;(Cy,1 (€441)) solves

0 == Ct+1(9t+l == 0) (15)
_ 52

= C’t(Ht = 0) + %et ((97? + £2E€t+1) — 2—5'

= gtz - gt (91{] + UTFEtJrl) — %Ct(et = O)

where, 0V =0, | — g (%F - (71) g;. For a given level of ; and €;11, Cyy1(0:+1 = 0) increases

as Cy(0; = 0) increases. From (15) it can be seen that ; is increasing in C;(6; = 0), this will
cause the 7's to be decreasing in Ciy1(0:41 = 0) since 0, is in the denominator of 7. Since
(15) is quadratic in 6;, we have that ; is proportional to (C;(6; = ()))0'5, which implies that
7 is proportional to (Cy(6; = 0))70'5. Given a level of 6;, Cy1(6;11 = 0) can be expressed

as Cy(0; = 0)+constant, we get that 7 is proportional to (Ciyq(fy41 = 0)) *°. The value
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functions, Vyy and V7, are not functions of the available capital giving that V- is a concave
function of capital.

Notice also that (4,1 > 0) > 0;(g,11 < 0) when Y > 0 and the weight given to the like-
lihood of liquidation next period is greater for a negative liquidity shock, 7(Cyy1 (€441 > 0)) <
7(Ciy1 (6041 < 0)).  Also, when C;(6; = 0) — oo, 0; — oo giving  — 0 which is consistent
with the intuition that a constrained arbitrageur with a very large amount of capital behaves
similar to an unconstrained arbitrageur. When C;(; = 0) = 0, ; = 0 giving 7 = 1 which
means that the zero capital arbitrageur’s profits from future trading equal the cost associated
with liquidating his position in the asset.

The maximization program (13), with m(Cyy1 (€441)) given by (14) has a first order con-
dition:
0= —(%& —op)e; — %(0,5 —0;1) (16)

+5(%F —op)E[m(Cii1 (841))Er41] — %GtE [7(Cii1 (€141))]
Solving for 6, gives:
01— 5 (% - UI) {er — OF [m(Cri1 (E141))erta]}

0 = [0 7 (Cos (o)) 1"

To interpret the above expression let us first rewrite it in terms of the quantity traded by

the arbitrageur. This gives

* g D Et —1
0% — 0,y = —@% (—,@E - UI) € — et—l%# (18)

+2£l(65t) (UFF - ‘71) E{m(Cra (ee41))er41]

where D (g;) = 1 + 6F [7(Cty1 (e141))] > 1. The first term is similar to the case where the
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arbitrageur is unconstrained, except that we now have a D (g;) in the denominator. Since
D (g¢) > 1 this damps the quantity traded by the constrained arbitrageur. The second term
contributes a component that is always of opposite sign to 6;_;. The third term is also
of opposite sign to ;1 because m(Cyi1 (641 > 0)) < 7(Ciyq (6441 < 0)) when 6, 1 > 0 and
7(Ciy1 (€1 > 0)) > w(Cpiq (2041 < 0)) when 6;_; < 0. These two terms can be interpreted
as a drift towards a flat position.

Consider the case where the arbitrageur has an initial flat position, that is, #;_; = 0.
In this case the second term is zero. Also, m(Cyy1 (€441 > 0)) < m(Cypq (6141 < 0)) when
g < 0 and m(Cyiq (ee41 > 0)) > 7(Ciyq (8141 < 0)) when g, > 0. The intuition for this is as
follows: If the current shock is negative the arbitrageur will have a long position after trading
in the current period, hence a positive shock next period will increase his capital balance
and lead to a lower likelihood of future liquidation. This third term also tends to bias the
arbitrageur’s position towards zero. Thus, when 0;_; = 0, the constrained arbitrageur trades
a quantity that can be expressed as a linear function of the amount that the unconstrained
arbitrageur trades and the quantity traded is symmetric.

If the arbitrageur’s initial position is long, 6; ; > 0, the second and third terms are
negative since m(Cyy1 (g441 > 0)) < m(Ciy1 (g141 < 0)). In addition to this the denominator
is greater than in the case where the arbitrageur has an initial flat position. If g, < 0,
this results in the arbitrageur buying a smaller quantity of the asset than the constrained
arbitrageur with a initial flat position. On the other hand, if ¢; > 0 this results in the
arbitrageur selling a larger quantity than the constrained arbitrageur with an initial flat

position. The opposite holds true when 6;_; < 0.
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The movement towards a flat position seen above has a cost associated with it by way
of forgone profits, but, also has the benefit of increased flexibility resulting from a lower

likelihood of forced liquidation.

C. Price Patterns - Expected Deviation, Variance of Deviation

and AutoCovariance of Deviation

In this sub-section we examine the impact on the price of the security by the trading of the
arbitrageur. We consider three different properties of price: (a) the expected price deviation
next period, F[I; — F]; (b) the expected squared price deviation and the variance of the price
deviation, E[(I, — F})’] and Var(I, — F,); and (c) the expected serial price deviation and
the auto-covariance in price deviations, F[(l;11 — Fii1) (I — F)] and Cov(l141 — Fyoq, Iy —
F;)."*  We do this for the three cases considered above: the absence of arbitrageurs, the
case of the unconstrained monopolist arbitrageur and the financially constrained monopolist

arbitrageur. The security price is given as I} = I; 1 + % + %

, where we set the final
term to zero when there are no arbitrageurs trading the security. This gives I, — F; =

]t—]t_l—%—% :_<%_01)5t_ thgt—l'

1. Expected Price Deviation

In this sub-section we compare E [[, — F}] for the three cases. In the absence of arbi-

trageurs 6; = 0, 1, giving E [I, — F}] = — (%‘" — 01) E ;] = 0. When the arbitrageurs are

unconstrained substituting for 6; gives E [I; — F}| = —% (Eﬂf? — O']) Ele] = 0. Thus, in both

4These are the basic moments of the asset price. ~We could also examine the mean, variance and
autocovariance of Fy, but these are similar to the expressions reported below.
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these cases the expected price deviations are zero.

When a financially constrained arbitrageur trades the security, the above is no longer true.
This can be seen by substituting the quantity traded from (18) into the above expression.

This gives

Pl Fl = (2 o0) Bitg] + 007 255 )
<0 6,1<0
=0 6,,=0
>0 6,1>0

The intuition for the above result is rather simple: a financially constrained arbitrageur
always trades towards a flat position to get himself away from the constraint. Thus, if
he has a long position he sells more of the security when liquidity traders want to buy it,
than be buys of the security when liquidity traders want to sell. Thus, if he has an initial
long position the mean quantity that he trades is negative. This has the effect of driving
expected prices below expected value and represents a cost of the constraint. Figure 2 plots
the expected price deviation. Figure 2 assumes a fixed amount of capital and plots the
expected price deviation as a function of the arbitrageur’s initial position. As can be seen

from the figures the bias is increasing in the initial position of the arbitrageur.

<Insert Figure 2 here>
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2. Expected Squared Price Deviation and Variance of Price Deviation

In this sub-section we examine two related properties of the price deviations - the expected

® When arbitrageurs are absent from

squared deviation and the variance of the deviation.!
the market or when there are unconstrained arbitrageurs the expected squared deviation and
the variance of the deviations are the same. This is due to the fact that the expected price
deviation is zero. When a constrained arbitrageur trades the security, these two quantities

are different from each other because the expected price deviation is no longer zero.

The expected squared deviation can be written as E [(It — Ft)ﬂ, while the variance of
deviations can be written as Var(l; — F;) = E [(]t - F—-E[L - Ft])ﬂ. When arbitrageurs

2
are absent from the market F [(It — F})Q} = Var(l; - F,) = (%F — 0'1) . Trading by

unconstrained arbitrageurs reduces the variability of prices, giving F [(]t — Ft)z} =Var(l;—

2
F) = i (%F — O'[) . This is 25% of the variance in the absence of the arbitrageur.

The expected squared deviation when a constrained arbitrageur trades the security is

given as

2

B(li—F)| = E —(F o)t o (F —or)at 0aGp (20)

—55 (% = 01) B [7(Cry1 (141))ze41]
As can be seen from the above equation the expected squared deviation, like the expected
deviation, has an explicit dependence on the initial position of the arbitrageur.

Trading by a financially constrained arbitrageur results in a reduction in the variance of

15In the absence of information on the position held by the arbitrageur, the forecast of the deviation will
be zero. This makes the expected squared deviation, which is the unconditional variance of price deviation,
the more relevant measure of uncertainty in this setting.
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the price deviation, which is given as

Varll = F) = (3 —on) +2 (% — o) B[52] + =5
GRS Gl CRREE (A0 N

(%F - 01)2 <Var(l; = ) < (U_F - 01)2

PN

This results from the fact that the second term is always negative since (3 (%F — (71) =
—E 00" (c)&| > =B [67" () &] > 0.1°

Figure 3 plots the expected squared deviation (upper line) and the variance of the price
deviation (lower line) as a function of the initial position of the constrained arbitrageur.
From the plot it can be seen that the expected squared price deviation is increasing as the
arbitrageur’s initial position approaches its maximum sustainable level. Consider 6, 1 > 0:
As 0;_1 increases the arbitrageur sells an increasing amount of the asset to allow him to move
back towards a flat position. This causes an increasing deviation in between the asset’s price
and value. When 6;_; < 0: the arbitrageur buys an increasing amount of the asset to help
him move back to a flat position, causing price to deviate in the opposite direction relative

to value.

<Insert Figure 3 here>

3. AutoCovariance of Price Deviations

In this sub-section we again examine two related properties of the price deviations - the

expected serial co-deviation E [(l;41 — Fyy1) (I; — F})] and the autocovariance of the price

2
1f E (05" (e¢) &) = =0 (% - rr]), the second term equal —3 (% - 01) , while if E [0f (e,)e¢] =0,

the second term is 0.
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deviations, Cov (Iy41 — Fii1,I; — F;).  In the first two cases, absence of arbitrageur and
trading by an unconstrained arbitrageur, both of the above quantities are zero. In both
these cases the deviations depend only on the current period shock, and the shocks are
not auto-correlated giving zero expected serial co-deviation and zero autocovariance in price
deviations.

The presence of a financially constrained arbitrageur induces serial correlation in the price
deviations. The expected serial co-deviation and autocovariance of price deviations depend
on the initial position of the arbitrageur. This is due to the fact that the quantity traded
by the constrained arbitrageur depends on his initial position in the asset - the constrained
arbitrageur continuously trades down to a flat position. The expected serial co-deviation is

given as

C'* Cx*
9t _et

Bills = Fin) (= F) B (5 o) e S50 (5 =)o 502

= F, {(a—tc‘lfllgﬁ) ((% — (71) €+ _0?*,—8@1)}

(22)
The intuition for this result is that the arbitrageur is always trading down towards a flat
position. This will cause successive price deviations to be in the same direction. Mathe-

matically, the autocovariance is given by
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o~ B[o; o —Elog] | (o
CO?)(It+1 - Ft+17[t — Ft) FE |:( 1 ﬁ[ +1] + ( 3 - [) €t+1> <% + (_F - O'[) St):l

B
C'x C* Cx __ C*
= [(B) (B (5 - o))

>0

(23)

Figure 4 plots the expected serial co-deviation as a function of the constrained arbi-
trageurs initial position in the asset. As can be seen the expected serial co-deviation is a
quadratic function of the initial position of the constrained liquidity trader when the initial
position is not too large. For traders that have initial positions close to the maximum
sustainable the expected serial co-deviation rises sharply because of the high likelihood of

forced liquidation. This is consistent with the explanation provided above.

<Insert Figure 4 here>

This section considered the case of a monopolist arbitrageur trading a single risky security:.
In the next section we examine the impact of trading by multiple financially constrained
arbitrageurs competing with one another. The section following that considers the case

where a single arbitrageur trades multiple risky securities.

25



II. Oligopolistic Competition Among arbitrageurs

Here we consider the case where there are n arbitrageurs supplying liquidity. The market

clearing condition is modified to
Dt[/—i-gt—et,l—i—(ﬂl—l)At:O

where, the arbitrageur under consideration trades 6, — 6; 1 and A, is the quantity traded by

each of the remaining (n — 1) arbitrageur. The market price of the asset is given as

A 0, —0,_ n—1)A
Ft:]t—1+gt+ ! ﬁtl—f-( ﬂ) ¢

In this setting, there is competition among arbitrageurs. Since it is not atomistic competi-
tion, each arbitrageur will consider the impact of his own trading as well as that of competing
arbitrageurs in determining the quantity to trade. A financially unconstrained arbitrageur

optimally trades to the following position:

Or _ B for
0 =1 - s (T ) 20

which solves the maximization problem after substituting for F} into the expression for the

total profits, TP (;), when arbitrageurs are symmetric!”.

If arbitrageurs are financially constrained, we need to examine the evolution of their

17 Assuming that the arbitrageurs are symmetric is not unrealistic. Assymetry is generated by two sources:
(i) the initail position of arbitrageurs and (ii) differential information or beliefs. In markets where differential
information is not important, the impact of differences in the initail position will die out over time as all
arbitrageurs positions will converge.
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capital balances. The capital balance of an arbitrageur evolves as Cyy1 = Cy+0; (Fip1 — Fy).

Substituting for Fi,q gives Cy1 1 = C; + 0, (It + Af@“ + Gt“ﬂ*gt + (n_ll)@At“ — Ft). If each
trader accounts for the positions of the remaining traders when calculating the liquidation

n 2
value of his capital, we get Cyyq (01 =0) = Cy (0, =0) + QLTH)Q,: [GtU + ﬁatﬂ} - %,

where HtU =0;_1 — (—n%) (%5 — 01) ;. Let 6; be the limit position that the arbitrageur can

hold without being forced to liquidate next period, that is 8; solves Cyy1 (6,41 = 0) = 0, and

use as before weight functions 7 (g,11) = This allows us to write the problem of

—_a
at+0¢(erq1)”

a financially constrained arbitrageur as

]\49?515 010161 — (9t - Gt—l) (%E - UI) €t — L%_lﬁ - (9t - et—l)w

’ (25)
+OE [ (e041) Vi (8141) + (1 — 7 (e441)) Vir (E¢41)]
where, Vi, (e41) = 01016001 +6; (%E — (71) €141 — %’3, which is obtained by setting A; 1 = —6;

2
because of simultaneous forced liquidation at t41, and Vi (e441) = Htajatﬂ—l—ﬁ " fl)g (%F — O']) .

Solving for the optimal position gives

cor 0= 5 (3 = o0) (6= 6B [r cu) v}
0, (26)

(1+ 25 Er (2141)])

It is not surprising that the financially constrained oligopolistic arbitrageur holds a smaller
position in the asset than if he were unconstrained. Also, the difference between the
oligopolist case and the monopolist case is the standard one. Individually, each compet-
itive arbitrageur holds less than the monopolist arbitrageur, but on aggregate the quantity
traded by oligopolistic arbitrageurs is larger than that of the monopolist, and therefore the

impact on market prices is higher under the oligopoly, and the profit per unit and the total
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arbitrage profits are also lower.

From the above it can be seen that the oligopolist arbitrageur’s optimal quantity traded
is determined in a similar way to the monopolist arbitrageur’s. The results on price patterns
are also very similar in this case.

The above results were obtained assuming that the arbitrageurs held the same initial
positions and had the same amount of capital available to them. A situation that may
sometimes be observed is one where the arbitrageurs have different amounts of capital avail-
able to them or/and have different initial positions. The discussion here is an attempt to
understand how the above results would change in this setting.

We can consider the heterogenity of capital availability and initial positions together since
the quantity that is important is the initial position relative to the maximum sustainable.
Let n arbitrageurs trade an asset. As seen above, the quantity traded by constrained
arbitrageurs is made up of two parts - the purpose of one component of the trade is to help
move the arbitrageur’s position down to zero, the second component is the supply of liquidity
that generates trading profits.

First consider the case where the total initial position held by the competing arbitrageurs
is close to zero. In this setting the arbitrageurs start out with initial positions on both sides
of the market - some have long positions in the asset while others have short positions. Each
arbitrageur will be aggressive in determining the magnitude of the first component of the
trade since the cost of moving towards a flat position will be relatively low - competing
arbitrageurs will be on different sides. This means that situations with arbitrageurs on

both sides of the market with total initial position close to zero will tend to disappear rather
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quickly. The second component of the trade, the supply of liquidity will also be determined
more aggressively than in the symmetric case, though much less aggressively than the first
component of the trade. The aggressiveness in the determination of the second component
of the trade is lower since the arbitrageurs would not rationally expect the initial conditions
to persist.

Now, let us consider a second case where the arbitrageurs have positions of various sizes
but the total position of the arbitrageurs is significantly different from zero, say a net long
position. In this setting the total of the of the first component of the trade across arbitrageurs
will be negative. Arbitrageurs who have an initial short position will be able to aggressively
liquidate their positions, while arbitrageurs with initial long positions will be forced to be
much less aggressive in their movement towards a flat position. On the second component
of the trade, the arbitrageurs with a greater level of flexibility, those with smaller initial
positions relative to the amount of capital available will be able to supply liquidity more
aggressively allowing them to earn greater profits.

We next consider the case of an arbitrageur who can trade multiple assets.

III. Arbitraging with Multiple Assets

In this section we consider the problem of a monopolist arbitrageur who can trade multiple
risky assets. For simplicity we assume that the only link between the markets is through
the trading of the arbitrageur and the shocks to the values of the assets and to the liquidity
demand in the markets. If the arbitrageur is unconstrained his optimization problem is

similar to that of two arbitrageurs each of whom trades a single asset. This allows us to
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write the value function for the two-asset unconstrained problem as

2

2
i g;
Vu (E1,641,€2,041) = ; 0; ¢0ir€it1 + ﬁ <Fj — Uu) (27)

Consider next how the financially constrained monopolist arbitrageur splits his trades when

there two assets. Position limits are computed from the capital available which depends on

the portfolio holdings:

OiF
Cip1 (01441 = 02441 =0) =Cy (614 =062, =0) + Z .3, 0; GZUt 5 62 41— Oig (28)
where, (92~U7t = 0,41 — & (ﬁl— — au) git.  Define the weight function m(£1441,€2¢+1) =

a
a+01¢(e1,t41,€2,6+1)

where 01, (€1,441,€2.4+1) is obtained by setting to zero the amount of cap-
ital left after liquidating the portfolio next period, Cyi1 (61441 = 02441 = 0) = 0. We assume

that if the arbitrageur is not forced into liquidation he will trade to maintain next period a

0 05, i
ratio of holdings, —?f = H—?ij = '®. 014 (£1441,24+1) then solves

2 — o
0= Ct ((91775 = (927,5 = 0) + Eelt [(9% — (9175) < + a?g: ﬁ 2F

62 = €2,t+1 (29)

O1F
+ 2 81t+1+0ét

The objective function can then be written as

8The expression for the evolution of the capital has two variables, 01+ and 6 ;. This assumption allows
us to fix the value of one variable relative to the other. In the single asset case 6, is the maximum position
that can be sustained without triggering bankruptcy next period. In the two asset case we would have to
solve for 51,1: and gg’t, the maximum in each of the two assets, where 51,7‘, and 52,,5 would be related. As a
result of the assumption we consider only a particular combination of 51,7‘, and gg’t. The combination that
we consider has the same ratio of holdings as held by the unconstrained arbitrageur.
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2 O F (03, —0i,0—1)>
Max 75, [ei,t—laz’,lei,t — (i — Qi,t—l)(—’—fg, — 0y 1)Ei — o
01,¢,02,¢ @ i

7 (€1,041,€2441) VL (€141, €2,¢41)
+6F

+(1—m (51,t+17 52,t+1)) Vu (61,t+1, 52,t+1)

and the value of the trading strategy when the arbitrageur is forced to liquidate because of

zero capital is also similar to the single asset example:

2 (92

O F it

Vi, (61,t+1, 82,t+1) = Z i 10ir€it41 + Oig ( 3 - 01',]) Eit4+1 — 3
i—=1 7 7

2

Consider correlated liquidity shocks across markets, E [e1,62¢] = p. The solution to the

constrained optimization problem for asset 1 is

0 0101 — % (%’li - (71,1) (614 — OE [ (1,441, €2,041) E1441))
o (L4 6B [ (e141,22001))

and similarly for asset 2,

02, F

92,1571 ) ( 2 (72,1) (52,'5 —0E [W (81’”1’ 82’”1) EQ’HI])
; (1 +6F [7T (81,t+1u 52,t+1)])

The above solutions do not contain an explicit dependence of the quantities traded of one
asset on the direction of the shock to the other asset. The dependence results from the
fact that the expressions for the 7’'s contain the current shocks and holdings of both assets.
The arbitrageur’s capital balance is affected by the direction of the shock and the current
holdings of both assets which affects §;, and this affects the weights used to approximate

future profits. Thus, the quantity traded of each asset does depend on the liquidity shock
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to the other asset and the current holding of the other asset.

A. Price Patterns - Expected Cross Deviation

In this sub-section we examine the expected cross deviation, E [(I1; — Fii) (Isy — Fy)], in
the two asset prices. In the absence of the arbitrageur the two asset prices are linked only
by the fact that the liquidity and value shocks are correlated. Using the expressions for the

price of the assets from section 2 we can write

E (L — Fu) (Iy — Fy)| = (Uﬂl—f — 0’11) (OE—: — 0’21) E [e1,4624] (31)

= (%5 —ou) (B — o)
The presence of an unconstrained arbitrageur does not change the results significantly. There
is a reduction the magnitude, but this results purely from the fact that the arbitrageur

absorbs part of the liquidity shock. We can now write

E[(Iu—Fu) (f2t—F2t)] = i (% —011) <% —021)[) (32)

This reduction in the magnitude of the expected cross deviation is similar to the reduction
in the magnitude of the variance of the deviation in the single asset unconstrained case. If
we standardize the above expressions by the standard deviation of the price deviation, we
obtain the correlation of the price deviation, which in both cases is equal to p. Thus, the
absence of an arbitrageur or trading by an unconstrained arbitrageur does not affect the
correlation between the asset prices.

This is no longer true if there is a constrained arbitrageur trading the assets. In this
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case, the expected cross deviation depends on the arbitrageurs holdings of the two assets.

The expression for the expected cross deviation is given as

E(ly— Fu) (loy — For)] = FE [((Uﬁl—f - 011) e1t + 7(0“7,@‘01”71)) ((@—F — 0’21) 9t + 7(9%7;;”1))}

- (s =) (3 o) B[ - ) e

FE[(22 — o) Qotimc, ] 4 p [@atum) Gustunn)]

(33)
To interpret this expression let us start by rewriting the expressions of the quantity that the

arbitrageur trades as

_ B (o1F (D-1)
91,t - ‘91,t71 = “ap\ B Ul €1t — ‘91,t71 D

+é2% (%’f - (71,1) E[m (1,641, €2,641) €1,641

and
_ 2 g9 F D—1
92,t - 92,t—1 = —% (—’—ﬂQ - (72,1) Eat — 92,t—1 D

+% (UE—QF - 02,1) Em(e141,€2441) €241
where, D = [1 4+ 0E 1 (€1,441,€2441)]] > L.
For the remainder of the discussion in this section assume that o1p = o9p = op, o171 =
oor = oy, p=0and B, = B, = 3. Consider first the case when 6, ; =02, 1 = 0. In this
case, the arbitrageur trades the two assets symmetrically and the expected cross deviation

is zero!®. The expected cross deviation is also zero if either 011 =0o0r by 1 =0 In

et 21,29 € (0,00). The set of liquidity shocks to the two assets can be (z1,22), (=21, 22), (21, —22)
and (—z1,—2z2). If the correlation between the shocks is zero, the four outcomes are equally probable.
FOI‘ 91,t71 = 92,t71 = 0, we have Ql,t (—21,22) = Ql,t (—21,—22) = —Gl,t (21,22) = —Gl,t (21,—22) and
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these cases there is zero price deviation for one of the assets, while there is a price deviation
for the other asset, giving an expected cross deviation of zero.

Next, consider the case where ¢ ;_; and 02, are of the same sign, that is, the arbitrageur
holds initial long positions in both assets or he holds initial short positions in both assets.
Assume that he has long positions in both the assets. In this case, part of the arbitrageurs
trade is directed towards trading down to a flat position in both assets. For any magnitude
of the liquidity shock to the two assets the arbitrageur always sells more of the asset if the
shock is positive than he buys of the asset if the shock is negative. This results in an
expected cross deviation across the two assets that is positive. The same results when the
arbitrageur holds initial short positions in the two assets. The expected cross deviation is
highest when the positions in the two assets are equal.

A similar line of reasoning gives the result that the expected cross deviation is negative
when the arbitrageur is initially long one asset and short the other. In this case the
arbitrageur in an attempt to trade down to a flat position is biasing his trade in the asset
that he is long towards selling and towards buying in the asset that he is short. This gives

an expected cross deviation in the assets that is negative.
<Insert Figure 5 here>

Figure 5 plots the expected cross deviation of price as a function of the initial position in
the two assets. The horizontal axis is a measure of the relative position in the two assets,

tan~! (%) and goes from 0 to 27. The case where 611 > 0 and 65,1 > 0 is from 0 to

02, (z1,22) = O (—21,22) = —b24(—21,—22) = —b24(21,—22). This implies that the expected cross-
deviations computed over these four points is zero. Integrating over all possible combinations of (z1, 22)
gives that the expected cross deviation is zero.
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5, 0141 < 0and 0p; 1 > 0is from § to 7, 01, 1 <0 and ;1 < 0 is from 7 to 37“ and

01,-1 > 0and 5,1 <0 is from 37” to 2. The three lines in the graph correspond to initial
positions, &6%, 4603, 1, that are 30%, 60% and 90% of maximum sustainable.

As can be seen from figure 5 the expected cross deviation is positive when the initial

3

positions are of the same sign, between 0 and § and 7 and <, and negative when the

initial positions are of opposite signs, between 7 and 7 and 37” and 2w.  The line with the
smallest variation corresponds to the case where the total initial position is 30% of maximum

sustainable, while the line with the greatest variation corresponds to the case where the initial

position is 90% of maximum sustainable.

IV. Implications for the Regulation of Arbitrage Activities

In the last decade banks have greatly increased their holdings of traded assets. The
increase in the relative importance of trading risk in bank portfolios poses new challenges
to regulators. In 1996 the Basle Committee addressed the issue by requiring banks to hold
capital equivalent to a percentage of their holdings in different asset categories, where the
percentages are set to reflect the price volatilities of standard assets in the relevant categories.
The benchmark used to define risk levels, value at risk (VaR) is a cut-off level that the
loss over a given time horizon exceeds with some probability. The Bank for International
Settlements (BIS), for example, sets this probability to 1% over a ten day period for purposes
of determining the adequacy of bank capital. Banks themselves have developed value at risk
measures for internal purposes, such as the J.P. Morgan’s daily VaR at the 5% probability

(95% confidence level).
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As many have pointed out?

whether the VaR of a firm’s portfolio of positions is a good
measure of the risk of financial distress over a short period depends on the liquidity of the
portfolio, as well as the risk of adverse extreme cash outflows or of severe disruptions to
market liquidity. Market liquidity is indeed a relevant precondition for VaR measures of
risk to work, since in markets that lack the necessary depth, traders may face difficulties in
rearranging their portfolio of positions. In more extreme circumstances, attempts to trade in
a temporarily shallow market to ensure compliance with regulations may impose large losses
on traders’ capital, which is exactly what regulations are supposed to help avoid. Capital
adequacy requirements which appear to work under normal circumstances then fail at times
when they are most needed.

VaR measures currently in use seem to ignore that trading by large financial institutions
can have an decisive impact on market prices in less than perfectly liquid markets. The com-
mon assumption in existing VaR models, that, price volatilities are exogenous is problematic
for two reasons. First, VaR incorrectly measures the extent of potential forced reductions of
the bank’s capital at some confidence level. Second, it creates distortions. Below we show
that this underestimates the required capital for some banks at the expense of overestimating
the amount of capital required for other banks. The problem arises because the available
regulatory benchmarks devote little attention to the fact that the actions of regulated firms
affect the distribution of assets returns which serve as the basis in determining the minimum

capital requirements. This is especially critical in the case of large banks, those for which

good oversight is most important to safeguard the financial system.

20Gee, for example, Duffie and Pan (1997), page 9.
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VaR models rely on the specification of random changes in the market prices of the assets
and on a model for computing the sensitivity of the bank’s capital to prices of the underlying
securities held. To highlight the importance of building VaR models that correctly reflect
trading risk of financially constrained institutions, we will separate the impact of financial
constraints from the impact of the assumption that arbitrageurs do not effect prices when
they execute their transactions.

Consider the case of the unconstrained arbitrageur presented in Section II.A. Gains and
losses from trading are given by 0, ;(F; — F; 1), where F; is normally distributed with

1

mean I;_; and variance Z(%F — (71)2. These gains and losses are also normally distributed,

N <(9t_1 (I_1 — F,q), G%T‘l (%E — O']) 2> . The VaR is then simply given as

VaR = 0,_, ((It_1 —Fy)+ 2—2” (% - 0'])) (34)

where z, is the number of standard deviations from the mean that gives a loss in capital
that is exceeded with probability n over a period of time.

In the case of the constrained arbitrageur in Section I1.B, gains and losses are expressed by
the second term in expression (8), with ¢ in (18) entering the equation for F;. Substituting

gives an expression for the gains/losses:

Iy —Foy— 6, 25l

0, , (35)

+356 (zﬂj‘i - UI) Em(Crpa (ee41))ea] + [% ~ 6 (% B UI))} N
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and the corresponding VaR measure that obtains is:

Iy = Fyoy = 0, 2550

VaR = 0; 4
_‘_% (%‘ — (7[) FE [W(Cprl (5t+1))€t+1] + [UFF o ﬁ (% N O-I))} n

Consider now that the regulators in setting the minimum capital requirements overlook
the fact that arbitrageurs’ trades impact asset prices. These prices are then assumed to be
given by F; = I, + %Fet and in turn the gains and losses are assumed to be: 0, |(F;— F; 1) =
0,1 ((It_l —F_q)+ %Q). The amount of capital required that satisfies the VaR at the n

per cent level of confidence is then set equal to

Cy > MO, ((Itl —F 1)+ Zn%)

where M is an arbitrary coverage ratio. Note that the amount of capital is effectively
like a margin requirement with a variable component and a fixed component. The first
component depends on the price deviations assumed under no influence from arbitrageurs,
and the fixed component depends both on an level of price volatility, assuming that arbitrage
trading does not contribute to this volatility, and on the liquidity traders’ demands. The
only reason why this component is fixed lies on the incorrect assumption that arbitrageurs’

trading strategies do not impact prices, and therefore it can be exogenously determined.?!

21Tt is possible to see that the capital required to stay in business depends only on the previous two shocks,
after replacing both F; 1 and I; 1 by their corresponding values:

CRy > M0O;_4 <(O’]Et_2 - %ft—l) + Zn%)
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Financially constrained arbitrageurs take this VaR measure in their capital requirements
when deciding on their optimal trading strategies, knowing that their trades impact on prices.
The optimization problem in Section II.B remains the same, but where (9) is replaced by an
equivalent capital adequacy constraint, Cy 1+ 60, 1(F; — Fy 1) > MO, 1[(Iy 1 — F 1) + zn‘%‘"]
Expression (11) is then replaced by

_ 2
]\49@1’ Oi_1018 — K%L Cy > VaR;
¢

—(0y — 0,1)(%F — o1)ey
Ve (6,-1,C (0, = 0) = ( )G — 1)

+O6F [V (0, VaRy)]

2

0107t + 011 (Eﬁﬂ — 01) € — at,%l Cy <VaR,

Solving for the maximum position that the trader can hold in the risky asset without
violating the capital adequacy constraint, gives now 0;(Cyy1 (641)) = Ci/M(I; 1 — Fy 1 +
“er41), which can be seen to differ from (15). The optimal holding in the asset remains as
the solution to (13), but where the weight 7 is now different.

When regulators ignore the impact of arbitrageurs actions on the level and the volatility
of prices the maximum sustainable position is a linear function of the capital required to
stay in business. If followed the correct regulatory capital requirement would produce results
consistent with those shown in Figure 1. The concavity of the correct function means that
it lies above the linear function implied by the standard VaR capital adequacy rule that
ignores the effects of arbitrage trading for small levels of capital, and it lies below the linear
function for large levels of capital. What this means is that standard VaR rules force small
institutions, those with lower levels of capital, to take less aggressive positions than they

could if the correct measure was used. Similarly, standard VaR rules allow large institutions,
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those with higher levels of capital, to take more aggressive positions than they could if the
correct capital requirement measure was used. This creates inefficiencies in the financial
system because the social costs created by the unexpected default of a large institution,
while it still seems solvent under the standard VaR measure, are much greater than those
associated with the default of a small arbitrageur. The effects on competition are also
important, since small arbitrageurs can justifiably complain than theirs is not a level playing
field position.

The analysis performed here helps to see that a system of capital requirements that
ignores that arbitrageurs affect prices has clear drawbacks in its treatment of trading risk.
If after a negative shock, financially fragile securities firms are forced to liquidate positions
to comply with regulatory requirements, markets can become more volatile and this can
contribute to further losses in the value of the arbitrageurs’ portfolios. This is also the
case when a cash margin call precipitates sales which further depress prices. The intention
of creating a stable environment that might have motivated the idea of capital adequacy
standards is then put into question. This is of even greater importance since events in one
market that affect the wealth of financially constrained arbitrageurs may be transmitted
to other markets where nothing has fundamentally changed. In these situations what may
have been considered a low risk arbitrage opportunity, due to the low correlations of the
asset returns, can turn into a very risky investment. The correlations instead of being
exogenously determined as assumed are dependent on the state of the arbitrageurs’ financial
health and events in one market that negatively impact the arbitrageurs capital may drive

the correlations towards unity.
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V. Conclusion

We have developed a dynamic arbitrage strategy which takes into account the impact
of arbitrage on prices, thus avoiding the need of risk aversion or position limits to prevent
infinite arbitrage positions. The stochastic process for the asset price deviations has been
endogenized in a way that appears to be consistent with empirical evidence.

The model consists of stochastic demand by liquidity traders that induces noise and trad-
ing by arbitrageurs that modifies the mispricing. The results demonstrate the importance of
different competitive structures in the arbitrage market. They also suggest that financially
constrained arbitrageurs may contribute to excess volatility in prices, and that they are re-
sponsible for the variation in the correlation of asset prices across different markets. In some
cases arbitrageurs themselves contribute to the propagation of turbulence.

The findings also raise issues that are important from a regulatory view point. Specifi-
cally, it shows that measures that are used to determine the risk of arbitrage capital are not

exogenous and are themselves influenced by the actions of arbitrageurs.
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Max. Position

Capital Available

Figure 1: Maximum sustainable position as a function of the capital balance (C;_;).
The curved lines are the values of 6;_; that solve (9) with the LHS set to zero for a given
level of probability. The straight lines correspond to the maximum sustainable position for
a given margin requirement.

Expected Deviation

Initial Position

Figure 2: Expected Price Deviation as a function of the initial position.
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Expected Squared Deviation

Initial Position

Figure 3: Expected Squared Price Deviation and Variance of Price Deviation as a
function of the initial position. The variance of price deviation is parallel to the horizontal
axis and is indistinguishable from it in the figure..

Expected Serial Co-Deviation

Initial Position

Figure 4: Expected Serial Co-Deviation as a function of the initial position.
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Figure 5: Expected Cross Deviation as a function of the arbitrageur’s position in the two

assets. The figure uses p = 0. The horizontal axis is tan~! (g—fﬁ over the range (0,27).

The three lines in the figure are for three different levels of /6%, | 4 603, ;, corresponding
to 30%, 60% and 90% of maximum sustainable position.
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