
DISCUSSION PAPER SERIES

������������

An online version of this Paper can be found at ������������	�
��	
��	����������

No. 2664

TIME CONSISTENCY WHEN OPEN
MARKET OPERATIONS ARE THE

MONETARY POLICY INSTRUMENT: IS
THERE REALLY A DEFLATION BIAS?

Neil Rankin

INTERNATIONAL MACROECONOMICS



ISSN 0265-8003

TIME CONSISTENCY WHEN OPEN
MARKET OPERATIONS ARE THE

MONETARY POLICY INSTRUMENT: IS
THERE REALLY A DEFLATION BIAS?

Neil Rankin, University of Warwick and CEPR

Discussion Paper No. 2664
January 2001

Centre for Economic Policy Research
90–98 Goswell Rd, London EC1V 7RR, UK

Tel: (44 20) 7878 2900, Fax: (44 20) 7878 2999
Email: cepr@cepr.org, Website: www.cepr.org

This Discussion Paper is issued under the auspices of the Centre’s research
programme in International Macroeconomics. Any opinions expressed
here are those of the author(s) and not those of the Centre for Economic
Policy Research. Research disseminated by CEPR may include views on
policy, but the Centre itself takes no institutional policy positions.

The Centre for Economic Policy Research was established in 1983 as a
private educational charity, to promote independent analysis and public
discussion of open economies and the relations among them. It is pluralist
and non-partisan, bringing economic research to bear on the analysis of
medium- and long-run policy questions. Institutional (core) finance for the
Centre has been provided through major grants from the Economic and
Social Research Council, under which an ESRC Resource Centre operates
within CEPR; the Esmée Fairbairn Charitable Trust; and the Bank of
England. These organizations do not give prior review to the Centre’s
publications, nor do they necessarily endorse the views expressed therein.

These Discussion Papers often represent preliminary or incomplete work,
circulated to encourage discussion and comment. Citation and use of such a
paper should take account of its provisional character.

Copyright: Neil Rankin



CEPR Discussion Paper No. 2664

January 2001
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Policy Instrument: Is There Really a Deflation Bias?*

We re-examine optimal monetary policy in a dynamic general equilibrium
model where open market operations are the only policy instrument. The
government optimizes purely over private agents’ welfare. We use a money in
the utility function approach with a welfare cost of ‘current’ inflation. Under
commitment, for the most plausible specification time inconsistency takes the
form of surprise inflation, if there is high initial government debt. Although
‘orthodox’, this result contradicts Nicolini’s related analysis, in which surprise
deflation is the main finding. Under discretion, we find that the long-run
inflation rate is quite likely to be positive, not negative as in Obstfeld’s related
analysis.
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NON-TECHNICAL SUMMARY

The time consistency aspect of monetary policy, and the perceived inflation
bias that it explains, have been the most researched aspect of monetary
policy in the last two decades. Two basic sources of time inconsistency have
been appealed to: first, the short-run Phillips curve trade-off, usually
interpreted as embodying temporary nominal rigidities (a classic reference
being Barro and Gordon (Journal of Political Economy 1983)); and, second,
the use of surprise inflation as a means of generating non-distorting tax
revenue when conventional lump sum taxes are impossible (a classic
reference being Lucas and Stokey (Journal of Monetary Economics 1983)).
Work on the first is much better known, but it can be criticised because it
typically uses ad hoc models and ad hoc government objective functions.
Work on the second, by contrast, belongs in the public finance tradition, where
general equilibrium models are used, and private agents’ utility, i.e. welfare,
provides the government’s objective function. Recently, the growing use of
dynamic general equilibrium (DGE) models in macroeconomics has spawned
some interesting attempts to study the Barro-Gordon problem using welfare as
the government’s objective function (for example Ireland (Journal of Economic
Dynamics & Control, 1997) and Neiss (Journal of Money, Credit &
Banking,1999)). These come close to being pure ‘public finance’ treatments.
Nevertheless, a feature which prevents them from completely treating the
problem as a public finance one is that they assume the possibility of lump
sum taxes or transfers: the instrument for changing the money supply is taken
to be lump sum cash handouts to (or levies on) private agents. Although this is
standard in many DGE analyses of monetary policy, it is unrealistic, since in
practice the instrument for changing the money supply is open-market
operations, i.e. purchases or sales of government debt in exchange for
money. Moreover, if lump sum taxation is possible, why not use it to finance
subsidies to remove the underlying distortions to the real economy which give
rise to the Barro-Gordon problem in the first place? These observations give
additional motivation to the Lucas-Stokey strand of research. Before the two
strands can be merged, however, a major puzzle concerning the latter
remains.

Although the original finding of Lucas and Stokey was that a government
would have an incentive to choose an inflation rate higher than it had
previously announced, thereby acquiring real revenue without distorting
agents’ decisions at the margin, Nicolini (Journal of Monetary Economics,
1998) has recently suggested that the incentive may instead be to create
lower inflation than previously announced: surprise deflation rather than
surprise inflation. This is the sense in which his result is one of ‘deflation bias’.
The government’s problem, as analysed in this setting, is to allocate optimally
over time the distortions which inflation causes to agents’ holdings of real
money balances, subject to the present value of seigniorage revenue adding



up to equal the outstanding initial government debt, plus the present value of
any exogenous government spending obligations. Government debt is thus a
medium for ‘inflation tax smoothing’. Nicolini modifies Lucas and Stokey’s set-
up of the problem to avoid an extreme feature of the latter, namely that the
optimal monetary policy is to drive the current inflation rate to infinity. His
modification is to change the timing assumptions of the cash-in-advance
model so as to introduce a welfare cost of current inflation, something which is
lacking in Lucas-Stokey. The welfare cost is what restrains the government
from setting current inflation to infinity, but it also has the unorthodox
consequence that, for the most plausible parameter values, the government’s
incentive is to renege on its previously promised inflation rate in the
downwards direction. This inverts all the usual conclusions about time
inconsistency in monetary policy, even though it has the great virtue of making
the policy problem well defined without needing extra ad hoc assumptions.
Hence it naturally raises the question of how robust such a finding is.

In this Paper we argue that the surprising ‘deflation bias’ finding is not very
robust, and that an alternative specification of the problem, while still close in
spirit to Nicolini’s, restores the possibility of a more orthodox ‘inflation bias’
finding. We also offer more intuitive insight into what is driving the possibility of
‘deflation bias’. Further, we show that the initial level of outstanding
government debt is important for whether or not there is inflation bias in our
setting, unlike in Nicolini’s. For the most reasonable specification, a low level
of initial debt may generate deflation bias, but a high level generates inflation
bias. It also emerges that there exists a critical level of initial debt such that
there is no time inconsistency.

Nicolini concerns himself only with the case where monetary policy is fully
credible. We begin with this case, but then proceed to study what happens in
the opposite case where the government has no credibility, so that monetary
policy is completely discretionary. Under discretionary policy, the public’s
forecasts of inflation are based on the observed level of government debt, not
on the government’s announced path of the future money supply. We find
that, for the most reasonable specification, the economy converges over time
to a steady state at the critical debt level referred to above. This part of our
analysis is comparable to work by Obstfeld (Journal of Economic Dynamics &
Control, 1991; Macroeconomic Dynamics, 1997). Obstfeld, however, is
obliged to introduce an ad hoc modification of private agents’ utility function in
order to obtain a government objective function which generates a well
defined problem. This is not necessary under our approach, which is purely
welfare-based. Obstfeld finds that in the long run the economy converges on
the ‘Friedman Rule’, where the inflation rate is negative and government debt
is also negative. Thus he, too, obtains a curious ‘deflation bias’ result (though
in a somewhat different sense from earlier): a result which says that in the
long run there is no need to worry about inflation, even though the government
cannot commit its policy. Our finding is that this result is also not robust: in our
analysis there is no reason why the long-run inflation rate has to be negative,



or indeed the level of government debt. The orthodox view that inability to
commit policy may have inflationary consequences, even in the long run, is
restored in our analysis. It is moreover restored while avoiding ad hoc
elements in the government’s objective function.

In summary, then, this Paper helps to resolve two ‘deflation bias’ puzzles
which exist in recent work on time consistency in monetary policy when open
market operations are the policy instrument. More broadly, it is also a
contribution to the objective of bringing the analysis of the time consistency
problem into the world of DGE models, and of subjecting it to the discipline of
the public finance approach to policy.

The modelling innovation, which underlies the Paper, is a variant on that used
by Nicolini. Nicolini used a cash in advance framework and modified the timing
assumptions so that agents could be temporarily unable to adjust their cash
balances; we make a similar modification using the money in the utility
function framework. Our assumption is the same as that used by Neiss: that it
is money held at the beginning, not the end, of each period which enters,
deflated by the price, the utility function for that period. This apparently minor
alteration of the specification causes current inflation to have a welfare cost,
since, if agents’ beginning-of-period money holdings are predetermined, a rise
in the current price level causes a shortage of the real balances needed for
making current goods purchases, and thus a loss of liquidity services. The
difference between our results and Nicolini’s arises because the money in the
utility function framework produces a more flexible money demand function.
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1. Introduction

The time-consistency aspect of monetary policy, and the perceived inflation bias which

it explains, has been the most researched aspect of monetary policy in the last two decades.

Two basic sources of time inconsistency have been appealed to: first, the short-run Phillips

curve trade-off, usually interpreted as embodying temporary nominal rigidities (a classic

reference being Barro and Gordon (1983)); and, second, the use of surprise inflation as a

means of generating non-distorting tax revenue when conventional lump-sum taxes are

impossible (a classic reference being Lucas and Stokey (1983)). Work on the first is much the

better known, but it can be criticised because it typically uses ad hoc models and ad hoc

government objective functions. Work on the second, by contrast, belongs in the public

finance tradition, where general equilibrium models are used, and private agents’ utility, i.e.

welfare, provides the government’s objective function. Recently, the growing use of dynamic

general equilibrium (DGE) models in macroeconomics has spawned some interesting

attempts to study the Barro-Gordon problem using welfare as the government’s objective

function (for example Ireland (1997) and Neiss (1999)). These come close to being pure

‘public finance’ treatments. Nevertheless, a feature which prevents them from completely

treating the problem as a public finance one is that they assume the possibility of lump-sum

taxes or transfers: the instrument for changing the money supply is taken to be lump-sum

cash handouts to (or levies on) private agents. Although this is standard in many DGE

analyses of monetary policy, it is unrealistic, since in practice the instrument for changing the

money supply is open-market operations, i.e. purchases or sales of government debt in

exchange for money. Moreover, if lump-sum taxation is possible, why not use it to finance

subsidies to remove the underlying distortions to the real economy which give rise to the

Barro-Gordon problem in the first place? These observations give additional motivation to

the Lucas-Stokey strand of research. However, before the two strands can be merged, a major

puzzle concerning the latter remains.

Although the original finding of Lucas and Stokey was that a government would have

an incentive to choose an inflation rate higher than it had previously announced, thereby
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acquiring real revenue without distorting agents’ decisions at the margin, Nicolini (1998) has

recently suggested that the incentive may instead be to create lower inflation than previously

announced: surprise deflation rather than surprise inflation. This is the sense in which his

result is one of ‘deflation bias’. The government’s problem, as analysed in this setting, is to

allocate optimally over time the distortions which inflation causes to agents’ holdings of real

money balances, subject to the present value of seigniorage revenue adding up to equal the

outstanding initial government debt, plus the present value of any exogenous government

spending obligations. Government debt is thus a medium for ‘inflation tax smoothing’.

Nicolini modifies Lucas and Stokey’s set-up of the problem to avoid an extreme feature of

the latter, namely that the optimal monetary policy is to drive the current inflation rate to

infinity. His modification is to change the timing assumptions of the cash-in-advance model

so as to introduce a welfare cost of current inflation, something which is lacking in Lucas-

Stokey. The welfare cost is what restrains the government from setting current inflation to

infinity, but it also has the unorthodox consequence that, for the most plausible parameter

values, the government’s incentive is to renege on its previously promised inflation rate in the

downwards direction. This inverts all the usual conclusions about time inconsistency in

monetary policy, even though it has the great virtue of making the policy problem well-

defined without needing extra ad hoc assumptions1. Hence it naturally raises the question of

how robust such a finding is.

In this paper we argue that the surprising ‘deflation bias’ finding is not very robust, and

that an alternative specification of the problem, while still close in spirit to Nicolini’s,

restores the possibility of a more orthodox ‘inflation bias’ finding. We also offer more

intuitive insight into what is driving the possibility of ‘deflation bias’. Further, we show that

the initial level of outstanding government debt is important for whether or not there is

inflation bias in our setting, unlike in Nicolini’s. For the most reasonable specification, a low

level of initial debt may generate deflation bias, but a high level generates inflation bias. It

                                                
1 A number of studies of the optimal seigniorage problem have used ad hoc assumptions to make it well-defined,
such as postulating a government objective function different from private agents’ utility. See, for example,
Obstfeld (1991, 1997) (also discussed below), or Barro (1983). Nicolini’s study is notable because it is the first
to obtain a non-degenerate solution within a pure public finance approach.



3

also emerges that there exists a critical level of initial debt such that there is no time

inconsistency.

Nicolini concerns himself only with the case where monetary policy is fully credible.

We begin with this case, but then proceed to study what happens in the opposite case where

the government has no credibility, so that monetary policy is completely discretionary. Since

government debt is a state variable in this economy, discretionary policy is modelled using

Markov-perfect equilibrium. We find that, for the most reasonable specification, the economy

converges over time to a steady state at the critical debt level referred to above. This part of

our analysis is comparable to work by Obstfeld (1991, 1997). Obstfeld, however, is obliged

to introduce an ad hoc modification of private agents’ utility function in order to obtain a

government objective function which generates a well-defined problem. This is not necessary

under our approach, which is purely welfare-based. Obstfeld finds2 that in the long run the

economy converges on the ‘Friedman Rule’, where the inflation rate is negative, and

government debt is also negative. Thus he, too, obtains a curious ‘deflation bias’ result

(though in a somewhat different sense from earlier): a result which says that in the long run

there is no need to worry about inflation, even though the government cannot commit its

policy. Our finding is that this result is also not robust: in our analysis there is no reason why

the long-run inflation rate has to be negative, nor indeed the level of government debt. The

orthodox view that inability to commit policy may have inflationary consequences, even in

the long run, is restored in our analysis. It is moreover restored while avoiding ad hoc

elements in the government’s objective function.

In summary, then, this paper helps to resolve two ‘deflation bias’ puzzles which exist in

recent work on time consistency in monetary policy when open market operations are the

policy instrument. More broadly, it is also a contribution to the objective of bringing the

analysis of the time consistency problem into the world of DGE models, and of subjecting it

to the discipline of the public finance approach to policy.

                                                
2 Here we refer to the case of his analysis which uses a version of the government’s objective function which is
as close as possible to private utility functions.
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The modelling innovation which underlies the paper is a variant on that used by

Nicolini (1998). Nicolini used a cash-in-advance framework and modified the timing

assumptions so that agents could be temporarily unable to adjust their cash balances; we

make a similar modification using the money-in-the-utility-function framework. Our

assumption is the same as that used by Neiss (1999): that it is money held at the beginning,

not the end, of each period which enters, deflated by the price, the utility function for that

period. This apparently minor alteration of the specification causes current inflation to have a

welfare cost, since, if agents’ beginning-of-period money holdings are predetermined, a rise

in the current price level causes a shortage of the real balances needed for making current

goods purchases, and thus a loss of liquidity services. The difference between our and

Nicolini’s results arises because the money-in-the-utility-function framework produces a

more flexible money demand function, as we explain in more detail in the body of the paper.

The body of the paper is organised as follows. Section 2 describes the structure of the

economy; Section 3 looks at optimal monetary policy under precommitment; Section 4 looks

at optimal monetary policy under discretion; and Section 5 concludes.

2. Structure of the Economy

The economy is populated by identical infinitely-lived households who consume the

single type of output good, supply a single type of labour to firms, and hold money and

bonds. Firms produce output using labour as the sole input. Markets are perfectly competitive

and all prices are flexible. The government issues money and bonds. Bonds are taken to be

‘real’, or indexed, bonds, as in the papers already cited.3 A key constraint on the government

is that it does not have access to lump-sum taxes and transfers: the money supply must be

changed through open market operations, i.e. purchases or sales of bonds in exchange for

money. To keep the focus purely on monetary policy, we shall also ignore conventional

distorting taxes, and government spending on goods and services.

In more detail, the optimisation problem of the representative household is:
                                                
3 Although it would be more ‘realistic’ to assume nominal bonds, this would obviously make it easier to
generate a ‘surprise inflation’ result, so assuming real bonds cannot be said to favour our main conclusion.
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The variables here are: Mt, the stock of money held at the end of period t; dt, the stock of

government bonds held at the end of period t; wt, the real wage; lt, labour supply; πt, real

profits received from firms; ct, consumption; pt, the price of goods; and qt, the price of a

bond, where the latter is a promise of one unit of goods in one period’s time. As in the

tradition stretching back to Sidrauski (1967), real balances are included in the utility function

to represent their role in helping consumers to buy goods. The less common feature of our

specification is that the real balances entering the utility function are defined as money held

at the start of period t, deflated by pt, rather than as money held at the end of period t,

deflated by pt.
4 This is the feature which we share with Neiss (1999), who also uses the

money-in-the-utility function approach. Moreover it is analogous to the definition of ‘cash’ in

the cash-in-advance approach used by Nicolini (1998).5 The definition captures the idea that

there may be a temporary inability on the part of consumers to adjust their portfolios when

confronted by an increase in the price level. Since Mt-1 is predetermined in period t, a rise in

pt lowers mt, imposing a welfare cost of current inflation on consumers because they find

themselves short of cash with which to make goods purchases. A more developed version of

the same idea also used by Nicolini is one in which consumers are divided into two groups,

each group being allowed to visit the bank only in alternate periods. Here we shall work with

the compact version, thereby avoiding the complications which would be introduced by

heterogeneity amongst consumers.

The first-order conditions for this problem can readily be derived as:

                                                
4 This second definition is nearly universal in the literature. Just to cite one example out of many, see the recent
graduate text by Walsh (1998).
5 Here we refer to the ‘compact’ version of the model suggested by Nicolini, rather than to the full version
which allows for two groups of agents, as explained below.
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(3) is the standard consumption Euler equation (note that 1/qt is the gross real interest rate),

and (4) is the equally standard condition that the real wage equal the marginal rate of

substitution between goods and leisure (where uc(t), etc., indicates the partial derivative of

utility with respect to c in period t). In (5), inside the term in square brackets we have the

product of the gross real interest rate and the gross inflation rate, which is therefore the gross

nominal interest rate, it-1. Thus we can rewrite (5) as:

)(]1[)( 1 tuitu ctm −= −       where      
11

1

1

−−
− ≡

t

t

t
t p

p

q
i . (5’)

In this form it says that real balances should be held to the point where their marginal utility

just equals the marginal utility of their opportunity cost in terms of lost consumption, the

latter resulting from the fact that real balances, unlike bonds, do not pay interest.

Turning to the representative firm, its optimisation problem is to choose (lt, yt) to

maximise profits πt = yt - wtlt subject to the production function yt = f(lt). This leads to the

standard first-order condition wt = f’(lt). In labour market equilibrium, using this together

with the labour supply condition (4), and adding the assumption (which we shall maintain

hereafter) that the utility function is additively separable, we have f’(lt) = -ul(lt)/uc(ct). Since,

in goods market equilibrium, ct = yt = f(lt), we can write:

))((

)(
)(’

tc

tl
t lfu

lu
lf −= . (6)

This equation determines lt, and thus the equilibrium employment level in the economy. From

it we can see the standard result that, under additive separability, the economy has a ‘natural

rate’ of employment which is independent of monetary policy. Henceforth we denote this,
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and the corresponding output level, by ),( yl . Note that this further implies uc(t) = )( yuc for

all t, whence (3) implies qt = β for all t, i.e. the equilibrium gross real interest rate is the

constant, 1/β.

It remains to determine equilibrium in the monetary sector of the economy. For now,

suppose an arbitrary monetary policy, defined by a given sequence of money supplies
∞
=0}{ ttM , or, equivalently, monetary growth rates ∞

=µ 0}{ tt  (where µt ≡ Mt/Mt-1). Using (5) to

eliminate qt from (4), and also the foregoing definitions and results, we arrive at the following

difference equation in real balances, which gives the basic law of motion of the private-sector

equilibrium:









+

µ
β= +

+ )(

)(
1 1

1 yu

mu
mm

c

tm
t

t
t . (7)

Since the endogeneity of mt reflects the endogeneity of pt, mt is a non-predetermined variable.

(7) must hence be solved in a forward-looking manner, in which (subject to an appropriate

saddlepoint stability condition being satisfied), the current value of mt is determined as the

value which causes the resulting sequence ∞
=+ 0}{ sstm  to be non-divergent. In general, mt

thereby becomes a function of all current and future monetary growth rates, ∞
=µ 0}{ tt .

Since lump-sum taxes are ruled out, the government does not have a completely free

choice of the µt sequence: the µt’s must satisfy its intertemporal budget constraint. First look

at the government’s single-period budget constraint:

( )tttttt
t

tt
t dqmdq

p

MM
d +−µ≡+

−
= −

−
− 1

1
1 ]1[ . (8)

This says that outstanding debt at the start of period t must be financed either by issuing

money or by issuing new debt. By repeatedly using (8) advanced one period to substitute out

dt, dt+1,…, etc. (also noting qt = β), and applying the ‘No Ponzi Game’ condition that in the

limit debt cannot grow faster than the real interest rate 1/β, we obtain:

stst
s

st md ++
∞
=− −µβΣ= ]1[01 . (9)
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This form of the intertemporal constraint states that the present value of ‘cash-flow’

seigniorage must equal initial outstanding debt, where ‘cash-flow seigniorage’ is the real

value of the increase in the money supply during a period, i.e. [Mt-Mt-1]/pt or [µt-1]mt. An

alternative version of (9) is in terms of ‘opportunity cost’ seigniorage, where the latter is

defined as real balances times the net nominal interest rate, [it-1-1]mt:
 6

stst
s

stt mimd +−+
∞
=− −βΣ+−= ]1[ 111 . (9’)

(9’) helps to reveal the source of the time consistency problem, because it shows how

‘current’ real balances enter differently from ‘future’ real balances. Since in equilibrium each

period’s real balance level and nominal interest rate is associated with that period’s inflation

rate, this translates into a different impact of current and and anticipated inflation on the

present value of seigniorage. Thus, as time passes and ‘anticipated inflation’ becomes

‘current inflation’, an incentive may arise for the government to alter its earlier choice for

inflation. The study of this change in incentive will be a central concern of the paper.

3. Optimal Monetary Policy Under Commitment

The structure of the government’s optimisation problem

In this section, a given plan for monetary policy, ∞µ 0}{ t , is assumed to be fully credible

by the public, so that the public’s expectations of future µt’s simply equal the µt’s in the plan.

Under this assumption, the government’s optimisation problem from the perspective of

period 0 may be stated as:

∞

∞
=

µ
βΣ

0

0
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),,(maximise

t

t
t

t mlyu

t
c

tmt
t m
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)(

)(
s.t. 101 βΣ+−= ∞

=− ,  d-1 given,

                                                
6 See Herrendorf (1997) for a useful discussion of these two definitions. To obtain (9’) from (9), note that
[Mt-Mt-1]/pt can be rewritten as mt+1βit-mt; regrouping the terms in the sum then yields (9’).
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Note that we have substituted out it-1 from the government’s budget constraint using (5’). It is

clear from the structure of the problem (10) that, rather than treat ∞µ 0}{ t  as the choice

variables, we can equivalently treat ∞
0}{ tm  as the choice variables, leaving the difference-

equation constraints to determine ∞µ 0}{ t  residually. Thus we can rewrite the problem more

compactly as:

∞
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The nature of the problem can first be described in intuitive terms. Notice straight away

that, if lump-sum taxes (τt, say) were permitted, the RHS of the constraint in (10’) would be

augmented by t
t

t τβΣ∞
=0 . With these extra instruments available, there would be no obstacle to

achieving the first-best solution to the problem, which is to set mt = m  for all t, where m is

the ‘satiation level’ of real balances such that um( m ) ≡ 0 (assuming the utility function to

possess such a level). This is Friedman’s (1969) ‘Optimum Quantity of Money’ Rule, in

which the nominal interest rate is zero, and there is deflation of prices ([pt-pt-1]/pt-1 = β-1) and

negative monetary growth   (µt-1 = β-1). In the absence of lump-sum taxation, however, this

outcome is not feasible, since the revenue needed to finance continual withdrawals of money

from the economy is not available7. The government must trade off the objective of getting mt

as close as possible to m  with the objective of getting ms as close as possible to m , for any

s≠t. The cost of a high value of mt is a lower value of ms: the mechanism through which this

occurs is that, to raise mt, the government must lower the inflation rate, pt/pt-1, which lowers

seigniorage revenue in period t; to compensate it must then raise seigniorage in period s by
                                                
7 If we were to allow marginal taxation (other than the ‘inflation tax’), which for simplicity we have excluded,
other revenue would be available, but it would have a distortionary cost which would still make it generally
suboptimal to follow the Friedman Rule, as was originally pointed out by Phelps (1973). Some authors have
challenged Phelps’s conclusion (for example, Chari et al. (1996)) but, to be valid, the challenge requires
particular assumptions about preferences over goods and leisure. In this paper we focus on pure monetary policy
and leave this debate to one side.
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increasing the inflation rate ps/ps-1, which lowers ms. For t=0, the negative relationship of

inflation to real balances derives simply from the fact that M-1 in m0 ≡ M-1/p0 is

predetermined. For t≥1, it derives from private agents’ money-holding first-order condition

(5) (recalling that qt = β and uc(t) = )( yuc ).

To look at this another way, observe that (5) or (5’) can be inverted to obtain the

‘demand for money’ function:

( )]1)[( 1
1 −= −

−
tcmt iyuum . (11)

This shows that mt is a unique function of it-1-1 (or equivalently of pt/pt-1); and it is moreover

decreasing, since umm < 0 is required for convexity of preferences. A condition which is

obviously necessary for the tradeoff just described to arise is that seigniorage revenue

[it-1-1]mt be increasing in it-1-1, or, equivalently, decreasing in mt. Intuitively, this is the

condition that the economy be on the upward slope of the ‘seigniorage Laffer curve’. For it to

hold, we need that the net-interest elasticity of the money demand function (11) be less than

one.

More formally, now, we may derive the following first-order conditions for the problem

(10’):

)(

)(
1)(

0mu

yu
m

m

c
t +=ρ ,  t = 1,…,∞,      where      

)(

)(
)(

tm

tmm
t mu

mmu
m −≡ρ . (12)

ρ is a measure of the curvature of the subutility function over real balances (the ‘relative risk

aversion’ parameter, although of course in the present context there is no risk). It is also the

inverse of the net-interest elasticity of demand for money, as is easily shown by

differentiating (11). A number of points can be seen from (12). First, an optimal monetary

policy under commitment requires that all future levels of real balances, (m1,m2,…), be set at

the same level. This is the standard ‘tax smoothing’ result, first noted for conventional taxes

by Barro (1979). Second, current real balances will generally be set at a different level from

future real balances. This is clear from (12) because m0 enters in a different way from

(m1,m2,…). The optimal path of real balances as a function of time thus has a ‘step’ shape, as

we show in Figure 2 below: either a ‘step up’ or a ‘step down’. Mathematically speaking, the



11

reason for this is obviously that m0 and (m1,m2,…) enter the government’s intertemporal

budget constraint in different ways. This is a key point, and we will discuss why they enter in

different ways below. Third, (12) can only be satisfied if ρ(mt) > 1: this is the condition that

the optimum must occur where money demand is net-interest-inelastic, as already noted.

Since an optimal policy involves only two levels of real balances, m0 and m1 (where

‘m1’ stands for the common mt, t≥1), we can summarise it by the (m0,m1) pair which satisfies

the following two equations:

1
1

01 )(

)(

1
m

yu

mu
md

c

m

β−
β+−=− , (13)

)(

)(
1)(

0
1 mu

yu
m

m

c+=ρ . (14)

We can also depict the government’s problem in reduced form on an indifference curve

diagram, as in Figure 1:

Figure 1

Here the indifference curves are implicitly defined by ),,(]1[),,( 1
1

0 mlyumlyuU −β−β+= ,

the budget constraint by (13), and the locus AB by (14). Note that the budget constraint takes

its shape from the seigniorage Laffer curve: as m1 falls (corresponding to a rise in future

inflation), future seigniorage revenue at first rises, enabling less current seigniorage to be

raised, and hence higher m0 to be attained. However, it may happen that beyond a certain
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point the Laffer curve peaks, reversing the sign of the relationship. For a given d-1, the

optimal (m0,m1) are given by the intersection of the budget constraint for that d-1 and AB. AB

can also be interpreted as the ‘expansion path’, i.e. the locus of optimal (m0,m1) pairs traced

out as initial debt, d-1, varies. Observe that as d-1 rises, the budget constraint shifts leftwards

in parallel fashion, and AB picks out the the points of tangency with the indifference curves.

A condition for when a ‘step up’ or ‘step down’ in the time path of real balances is

optimal may now be given. Notice that ‘step up’ behaviour occurs at points on the expansion

path to the left of the 450 line, and ‘step down’ behaviour at points to the right. Suppose AB

intersects the 450 line (as in Figure 1), and moreover suppose for the moment that d-1 is such

that the optimum occurs exactly at the point of intersection (C, in Figure 1). In this case m0 =

m1. From (14), m1 then satisfies:

)(

)(
1)(

1
1 mu

yu
m

m

c+=ρ . (16)

Now, the private first-order condition for money holding, (5’), implies that the RHS of (16)

equals i0/[i0-1], whence, at point C, [1/ρ(m1)][i0/(i0-1)] = 1. But [1/ρ(m1)][i0/(i0-1)] is just the

gross-interest elasticity of demand for real balances m1 (i.e. [-∂m1/∂i0][i0/m1]), so this tells us

that if the optimal path for real balances is ‘flat’, this occurs where the gross-interest elasticity

of future real balances is unity. From this it is not hard to deduce that if, instead, d-1 is such

that the optimum is at a point on AB to the left of the 450 line (indicating ‘step up’

behaviour), the gross-interest elasticity of future real balances here must be greater than

unity; and conversely if to the right. Next note that the elasticity of future real balances with

respect to the gross interest rate is the same as with respect to the gross inflation rate (since i0

= (1/β)p1/p0), and that the elasticity of current real balances with respect to the gross inflation

rate p0/p-1 is one, since it derives solely from the fact that M-1 is predetermined (m0 ≡ M-1/p0).

Thus:

Lemma 1 Under optimal monetary policy with commitment, future real balances are less

(greater) than current real balances according as the gross-inflation elasticity of future real
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balances is less (greater) than the gross-inflation elasticity of current real balances (the

latter being unity).

Roughly speaking, this corresponds to the familiar idea in optimal tax theory that the good

which should be taxed most heavily, and therefore demand for which is likely to be most

depressed, is the one in the most inelastic supply.8

We end with three further remarks. First, (14) shows that the condition for the

expansion path to be upward-sloping is that ρ’(mt) > 0. This is necessary if (m0,m1) are to be

‘normal goods’ for the government, i.e. if a reduction in initial debt d-1 is to raise both real

balance levels. In fact ρ’(mt) > 0 is also necessary to ensure that, in the choice between any mt

and ms for t,s ≥ 1, the local second-order conditions are satisfied, as we show in the

Appendix. Hence we shall maintain this assumption in what follows. Second, if the utility

function possesses a satiation level, m , then, under mild conditions, the expansion path will

tend to the point ( m , m ) at its upper end (as drawn in Figure 1).9 Intuitively, this ‘first-best’

outcome will occur if initial debt d-1 is sufficiently negative, i.e. if the debt is in fact a

sufficiently large stock of assets, since then the government can use the (real) interest earned

on these assets to finance continual monetary withdrawals, and so implement the Friedman

Rule. Third, we remark that the solution defined by (11) exhibits ‘path dependence’, in the

sense that the long-run value of mt under an optimal policy (i.e., ‘m1’) depends on the given

initial debt, d-1. This is different from what is found under optimal discretionary policy, as

will be seen below.

The incentive to renege

We have just discussed the optimal policy from the perspective of period 0. Let the

values of (m0,m1) chosen in the optimal plan made in period 0 be denoted (m0|0,m1|0). Once

period 1 has arrived, the government may have an incentive to choose an m1 different from
                                                
8 The correspondence is only ‘rough’, because the standard rule is about tax rates rather than quantities, and
because in our case nothing is in fact implied about the relative size of current and future ‘inflation tax rates’:
the optimal current inflation rate depends on p-1, whereas the optimal level of m0 does not. The optimal
monetary policy problem (10’) cannot be made completely equivalent to a standard optimal commodity tax
problem, because ‘current seigniorage revenue’ is -m0, not [i-1-1]m0.
9 As can be seen from (14), ( m , m ) will lie on the expansion path if ρ(m1) tends to infinity as m1 tends to m . In
the Appendix we give a sufficient condition for this to be the case.
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m1|0.
10 Its optimal choice from the perspective of period 1 will be denoted m1|1. We now

investigate whether, and in which direction, m1|1 differs from m1|0. Since m1 ≡ M0/p1 and M0 is

predetermined in period 1, clearly ‘surprise inflation’ corresponds to the case where

m1|1 - m1|0 < 0 and ‘surprise deflation’ to the case where m1|1 - m1|0 > 0.

Consider first how debt evolves over time under plan 0. The ‘step’ property of the

optimal plan implies that the government budget constraint in (10’) applied to ∞
00| }{ tm can be

written:
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The same budget constraint applied to the ‘continuation’ of this plan, i.e. to ∞
10| }{ tm , gives:
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Subtracting,

0|10|010 mmdd −=− − . (19)

So debt rises (falls) during the first period of the plan if it prescribes a ‘step down’ (‘step up’)

in the path of real balances. Next, (10’) applied to plan 1 gives:
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Equating this expression for d0 with that in (14), we obtain:
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β=− . (20)

                                                
10 Standard remarks apply to the interpretation of this type of investigation. If policy is truly committed, as a
result of some mechanism which ties the government in, then reneging is not actually feasible, and the
discussion here is hypothetical: it concerns what the government would do, if it could alter its plan. If, on the
other hand, reneging is feasible, then the discussion here is not hypothetical, but the expectations held by the
public in period 0 were not rational – the public were foolish to believe the government’s plan. Which is the
case is not our particular concern in this section; in the next section we will look explicitly at what happens
when the government cannot commit, and the public know this.
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As noted, surprise inflation or deflation occurs accordingly as this expression is negative or

positive. Now, as seen, if plan 0 involves a ‘step down’, d0 > d-1. Given that real balances are

‘normal goods’ for the government, the rise in d implies that m2|1 < m1|0. Recalling that ρ > 1,

whence um(m)m is decreasing in m, it follows that the RHS of (16) is positive. Thus:

Lemma 2 Under optimal monetary policy with commitment, in period 1 the government will

be tempted to choose a higher (lower) inflation rate than that which was planned in period 0

(i.e. to create surprise inflation [deflation]), if the plan specified a step up (step down) in the

time path for real balances (i.e. specified higher [lower] real balances in period 1 than

period 0).

A visual summary of the two possible relationships between plan 0 and plan 1 is presented in

Figure 2.

Figure 2

Linking this to our earlier analysis of the ‘expansion path’, it can be seen that if, in

period 0, the economy is at a point on the expansion path to the left of the 450 line, then, in

period 1, the government will have an incentive to create surprise inflation; while if it is to

the right of the 450 line, the government will have an incentive to create surprise deflation.

The position and shape of the expansion path are therefore key to whether surprise inflation

or surprise deflation is the more likely. A possibility of particular interest is that the

expansion path may cut the 450 line (as in Figure 1), in which case whether there is surprise

inflation or surprise deflation depends on where on the path the economy lies, and thus on the
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level of initial government debt, d-1. In the case in Figure 1, the expansion path cuts the 450

line ‘from above’. Thus, for a sufficiently low level of initial debt, d-1, the economy will be at

a point on the segment CB, where in period 1 the government will have an incentive to create

surprise deflation, as Nicolini (1998) found. However, for a high level of debt, the economy

will be at a point on the segment AB, where in period 1 the government will be tempted to

create surprise inflation. This latter is the orthodox finding in the literature on time

consistency in monetary policy. In our model, then, if the expansion path appears as in Figure

1, a sufficiently high level of initial debt yields the orthodox, surprise inflation, result. By

contrast, in Nicolini’s model, the size of the debt is irrelevant to the sign of the inflation

surprise. For the most plausible parameter values, his model always predicts surprise

deflation.11 It seems fairly intuitive that, as we find here, surprise inflation should be

associated with high, rather than low, initial debt: high debt means that the need for revenue

is strong, and surprise inflation has traditionally been regarded as a measure to which a

government is likely to resort when hard-pressed to raise revenue.

For surprise inflation to be associated with high initial debt, we need the expansion path

to cut the 450 line ‘from above’. Earlier it was shown that points on the expansion path to the

left of this line exhibit a gross-interest elasticity of demand for future real balances greater

than one, and points to the right, an elasticity less than one. Given this, we can summarise the

main finding of this section in the following way:

Proposition 1 Under monetary policy with commitment, if a critical level of future real

balances exists whose gross-interest elasticity of demand equals one, then there will be an

associated critical initial debt level such that, if initial debt takes this value, there is no time

inconsistency. If, moreover, the elasticity is increasing (decreasing) in the interest rate at this

point, then initial debt above the critical level will be associated with a temptation to create

surprise inflation (deflation), and initial debt below the critical level will be associated with a

temptation to create surprise deflation (inflation).

                                                
11 The key parameter value for Nicolini is the size of the intertemporal elasticity of substitution of consumption.
If this is less than one – as most econometric studies suggest – surprise deflation rather than surprise inflation
occurs in his model.
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The likely shape of the expansion path

To assess how likely the condition of increasing gross-interest elasticity is to hold, one

approach is to consider particular functional forms for subutility of real balances. For

example, suppose utility takes the quadratic form:

]2/[ tt mmm − . (21)

With this, it can readily be verified that behaviour is qualitatively identical to that depicted in

Figure 1. Notice that um(mt) = m - mt, so that the money demand function is linear: mt =

m - uc( y )[it-1-1]. As with any linear demand function, the price-elasticity of demand is

increasing in the price, and this is true here whether we use either the net or the gross interest

rate as the ‘price’.12 Another example is that of the ‘constant relative risk aversion’ (CRRA)

functional form:

]1/[]1[ 1 ρ−−ρ−
tm . (22)

This has often been used in DGE models - especially in the limiting case where ρ tends to

one, when it becomes ln mt. However it is clear from the foregoing that CRRA utility causes

problem here, since it violates the condition that ρ be increasing in mt. It generates an

expansion path which is a vertical line (as can easily be seen from (14)), making m0 a ‘non-

normal good’ for the government. This further implies that the relationship of the incentive to

renege to initial debt d-1 is reversed: low debt is now associated with surprise inflation, and

high debt with surprise deflation – a somewhat counter-intuitive result. This could, then, be

taken as evidence that increasing gross-interest elasticity is not particularly likely. However,

it is clear that the CRRA functional form has a significant limitation in the current context,

because it fails to incorporate a satiation level of real balances. It may be appropriate for

monetary policy experiments involving small or moderate changes in real balances, but

                                                
12 To ensure that the gross interest elasticity passes through one for real balances in the feasible range, the

restriction mycu <)(  is necessary. Otherwise the expansion path lies everywhere to the left of the 450 line, so

that the incentive is always to create surprise inflation.
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inappropriate for experiments involving optimisation over the global range of what is

feasible.

A second approach to assessing how likely the increasing-gross-interest-elasticity

condition is to hold, is to consider particular functional forms for the money demand

function, especially those which have found favour in econometric studies. Simple early

studies often just regressed the level of real balances on the level of the nominal interest rate.

This linear form is derivable from the quadratic utility function, as noted above, and hence it

supports the increasing-gross-interest-elasticity condition. Another commonly used form is

the semi-logarithmic, in which the log of real balances is regressed on the level of the

nominal interest rate (see, for example, Hendry and Ericsson (1991)). It is straightforward to

check that this also implies an increasing gross-interest elasticity.

Clearly these observations are not completely conclusive, but they do provide some

evidence supporting the type of situation depicted in Figure 1.

The source of the incentive to create surprise deflation

Notwithstanding our argument that surprise deflation is relatively unlikely, it can still

arise in our model, and since it is an unorthodox form of time inconsistency, it is worth

seeking an intuitive understanding of where it comes from. In general the time consistency

problem arises because, although a small change in real balances has the same effect on

utility (after allowing for discounting) irrespective of whether it is current or anticipated, it

has a different effect on the present value of seigniorage depending on whether it is current or

anticipated. This can be seen by considering once more the government’s optimisation

problem (10’), noting again that m0 and mt, t≥1, enter the budget constraint in different ways.

Therefore as time passes and ‘future’ real balances become ‘current’, although the perceived

utility benefit of a small increase in the level of real balances does not change, the perceived

loss-of-revenue cost does change. Intuitively, if this cost goes down, there is an incentive to

raise current real balances above their previously planned level: this is the case of surprise

deflation. Alternatively it may go up, producing instead surprise inflation. Hence the key is to

understand why current and anticipated seigniorage are different functions of real balances.
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To probe into this, consider the changes in monetary growth rates necessary to achieve,

on the one hand, a 1-unit rise in m0, and, on the other, a (1/β)-unit rise in m1, with all other

real balance levels unchanged. Using the private-sector law of motion, (7), it is

straightforward to see that a 1-unit rise in m0 requires a reduction in µ0 and no change in any

other µt. Its effect on the present value (PV) of seigniorage is obviously to reduce it by 1 unit.

Note that we can also view this 1-unit reduction using the ‘cash-flow seigniorage’ version of

the government budget constraint, (9), which shows that it has to be equal to the change in

[µ0-1]m0. Turning to m1, and again using (7), we can see that a 1-unit rise in m1 requires the

same reduction in µ1 and again no change in any µt, t>1; however, it now also requires some

alteration in µ0, since if µ0 is not changed, the anticipation of the rise in m1 will alter m0 (as

can be seen by writing (7) for t=0). It is the need for an offsetting change in µ0 which

explains why a (1/β)-unit rise in m1 has a different effect on the PV of seigniorage from a 1-

unit rise in m0. To see this, refer again to (9), where, now, there is the same 1-unit fall in the

PV resulting from the fall in [µ1-1]m1, but in addition there is a change resulting from an

alteration in [µ0-1]m0 – positive or negative depending on whether µ0 has to be raised or

lowered. Clearly, it is the ‘forward-looking’ nature of the private-sector equilibrium which is

responsible for this difference.

Since surprise deflation occurs when a higher loss of seigniorage is associated with an

increase in m1 than with an increase in m0, it follows from the foregoing that surprise

deflation occurs in situations where to achieve a 1-unit increase in m1 without changing m0

requires a reduction (rather than an increase) in µ0. In turn this implies that, if µ0 were not

reduced, the reduction in µ1 and thence in p1 would cause p0 to rise. Put another way, surprise

deflation is associated with situations where there is ‘perverse transmission’ from expected

future monetary policy: an anticipated future money supply decrease13 causes the current

price level to increase. Intuitively, perverse transmission is possible because there are two

conflicting effects of a fall in p1 on p0. First, at the old (p0, i0), the real interest rate has risen,

inducing, in the goods market, an attempt to substitute from current to future consumption.

                                                
13 Note that a decrease in µ1 alone is an equiproportionate decrease in M1,M2,..., with M0 unchanged.
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This puts downward pressure on current price level, and is the normal mechanism whereby

anticipated future deflation induces current deflation. Second, however, the fall in p1 raises

real balances M0/p1. Since M0 enters the utility function deflated by p1, this means there is an

excess supply of real balances at the old i0, i.e. money market disequilibrium, and to remove

this requires a fall in i0. This tends to offset the rise in the real interest rate, moderating the

need for p0 to fall. If the fall in i0 is sufficiently strong, p0 may need to rise, generating

‘perverse transmission’. This effect of p1 in disturbing period 0’s money market equilibrium

is a consequence of the use of ‘beginning-of-period’ real balances as the liquidity variable.

With the more conventional ‘end-of-period’ real balances, i.e. M0/p0, in the utility function, it

would not arise, and perverse transmission could not occur. Note also that it is more likely the

lower is the interest-elasticity of money demand, since then a bigger fall in i0 is needed to

clear the money market: this accords with our earlier finding about the role of interest-

elasticity.14

4. Optimal Monetary Policy Under Discretion

Definition of the discretionary equilibrium

If the government is known to be unable to commit to a given policy plan made in

period t, ∞
=+µ 1| }{ stst , then it is not in general rational for households’ forecasts of future µt+s’s,

as of time t (denote these subjectively expected values by e
tst |+µ ), simply to equal the values in

the plan, as has been assumed up to now. Instead, forecasts should be based only on

‘observables’ at time t. In principle these observables could include all current and past

variables. One relevant variable is clearly the stock of government debt, whose value at the

end of period t is dt.
15 As we have seen, the government’s inherited level of debt is a key

                                                
14 The explanation for surprise deflation given here can also be adapted to explain Nicolini’s (1998) surprise
deflation result. Nicolini uses a cash-in-advance model, where the interest-elasticity of money demand, for given
consumption, is necessarily zero (velocity of circulation must be unity). However, since consumption is
endogenous, the intertemporal substitution of consumption in response to a change in the real interest rate
implies that real balances can respond to the interest rate. When the elasticity of intertemporal substitution of
consumption is less than unity, this implies a low interest-elasticity of money demand; and it is the former
condition which Nicolini shows to give rise to surprise deflation.
15 dt is observable to the public in period t because the current monetary growth rate µt, which determines it via
(8), is instantaneously observable.
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determinant of its optimal choices under precommitment, so that the same is likely to be true

under discretion, and it is hence rational for households to base their forecasts on dt. We

could also assume that they base their forecasts on current and past values of µt, but this

would introduce an element of reputation-building behaviour into optimal government policy.

Since we wish to focus on purely ‘discretionary’ behaviour, we exclude everything but dt

from households’ forecasting rules.

Suppose, then, that households forecast next period’s monetary growth rate according to

the rule:

)(ˆ|1 t
e

tt dσ=µ + , (23)

where (.)σ̂  is for the moment treated as an arbitrary function. Combining this with the

government’s budget constraint yields an associated rule for forecasting dt+1:

)(ˆ|1 t
e

tt dgd =+ . (24)

To generate an s-period-ahead forecast we can use (24) repeatedly in (23) to get:

))(ˆ(ˆ 1
| t

se
tst dg −

+ σ=µ , (25)

where )...))(ˆ(...ˆ(ˆ)(ˆ tt
n dgggdg ≡ denotes the nth iterate of the function )(ˆ tdg .

These forecasting rules can now be used to determine equilibrium real balances in

period t. Recall that the equilibrium value of mt is given by the saddlepath solution of the

private-sector law of motion (7). However, the relevant µt’s to use in this equation are here

the forecast values ∞
=+µ 1| }{ s

e
tst  as given by (25), rather than the values ∞

=+µ 1| }{ stst  from the

government’s policy plan, since what counts for determining the actual mt are households’

expectations. It is helpful to think of the determination of mt in two parts. First, given dt and

thus the households’ sequence of forecasts as generated by (25), we use (7) for periods

t+1,...,∞ to find the saddlepath solution for mt+1. This gives households’ forecast of the

equilibrium value of mt+1, and since it is contingent on the given dt, we may write it as e
ttm |1+

= )(ˆ
tdθ , where the function (.)θ̂  implicitly derives from the forecasting functions and the
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private-sector law of motion. Second, using this in (7) for period t, we obtain the equilibrium

value of current mt:
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This shows that mt depends on µt with an elasticity of –1, and on dt through a function which

we can summarise as e(dt). The form of the function e(.) derives from that of (.)θ̂ , and thus

ultimately from that of (.)σ̂ , as well as from the form of the utility function.

Using the equilibrium-real-balances function (26), we can specify the government’s

optimisation problem:
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or, substituting out mt:
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Note that the problem (27’) has a standard ‘recursive’ form, in which the new value of the

state (dt) just depends on the current value of the state (dt-1) and on the current value of the

control (µt); while the flow maximand also just depends on the current value of the state (if

we imagine rearranging the constraint to substitute dt out of the utility function) and on the

current value of the control. Therefore it can be solved by dynamic programming, which in

turn ensures that the solution will be time consistent. We also know that the dynamic

programming solution can be written as a pair of feedback rules on the state, which we can

denote as:
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µt  =  σ(dt-1), (28)

dt  =  g(dt-1). (29)

(28) and (29) define the government’s optimal monetary policy taking as given the

public’s arbitrary forecasting function, (23). However, for (23) to imply ‘rational’ forecasts, it

needs to coincide with the optimal feedback rule, (28), which is based on it. In this case

households will forecast correctly, no matter what the value of dt. The discretionary

equilibrium (Markov-perfect equilibrium) of the model is thus a function )(ˆ tdσ  with the

property that it generates a σ(dt) such that )(ˆ tdσ  = σ(dt) for all dt.

Characterising the discretionary equilibrium: steady states

It is not in general possible to solve explicitly for the equilibrium forecasting rule-cum-

policy function σ(dt), and its associated functions g(dt), )(ˆ
tdθ  and e(dt). This would be

possible if the government’s optimisation problem were linear-quadratic, but the problem

here is not linear-quadratic even if we assume a quadratic utility function, since the constraint

involves a ‘Laffer curve’, which is inherently non-linear.16 Hence our procedure will be to try

to characterise the discretionary equilibrium by conjecturing its properties, and then seeking

to verify or falsify these conjectures. It will turn out, however, that we are able to solve for an

approximation to the equilibrium path in the neighbourhood of some steady states. We begin

by examining possible steady states themselves.

First, observe that the problem (27) may be re-expressed so as to treat mt rather than µt

as the control variable:
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= βΣ
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(30)

s.t.    tttt dmded β+−=− )(1 ,    t = 0,...,∞,    d-1 given. (31)

The first-order condition for this problem is readily derived as:17

                                                
16 Obstfeld (1997) does consider a linear-quadratic version of the problem, but he is only able to do this by ad
hoc approximations of some of the underlying functions.
17 Given that the function e(dt) has unknown properties, there is a question as to whether the optimisation
problem is well defined. For the moment we proceed as if this is the case, but we return to the question below.
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(31)-(32) constitute a pair of first-order difference equations in (mt,dt) which in principle

describe the evolution of the economy along the optimal policy path. The steady state (m,d)

of this system, if it exists, is thus defined by:

mded −=β− )(]1[ , (33)
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Examination of (33)-(34) suggests two ways in which they might be satisfied. First, if m = m

so that um( m ) = 0, then (34) is automatically satisfied, and, given m, (33) determines d. We

will refer to this as the ‘Friedman Rule’ steady state, for reasons which are clear from the

discussion in Section 3. Second, suppose there exists a d such that e’(d) = 0. Then (34) is

clearly satisfied, and, given d, (33) determines m. We will refer to this as the ‘time consistent’

steady state. We now comment further on each of these possibilities.

The ‘Friedman Rule’ steady state is exactly the one which Obstfeld (1991, 1997)

identifies as being the long-run outcome in his closely related analysis.18 In this steady state

government debt is negative (in fact equal to - m , as is seen by setting µ = β in the budget

constraint in (27)), and inflation is negative (equal to β-1). We have already noted that, under

commitment, if initial debt were sufficiently negative the government would be able to

achieve the first-best allocation by using the real interest on its assets to finance continual

monetary withdrawals at the rate β-1, and this is what is happening in this steady state. In this

extreme but happy situation, the optimal tax problem has been removed, as has the incentive

for time-inconsistent behaviour. The question then arises as to whether there exists a

discretionary equilibrium path which converges on this steady state, if initial debt d-1 starts

above - m . We investigate this below. If there does, it follows that, for the given d-1, whereas

long-run inflation under commitment is quite likely to be positive, long-run inflation under

                                                
18 Here we refer to the case of his analysis which uses a version of the government’s objective function which is
as close as possible to private utility functions.
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discretion is negative. This is Obstfeld’s surprising result: that under discretion there is no

long-run problem of inflation, and indeed there is a tendency towards deflation (‘deflation

bias’).19 Intuitively, the reason why the government may drive the economy to this extreme

outcome when it cannot commit is that reducing debt is the only method it has of lowering

inflation expectations. The government cannot lower expected inflation just by announcing

low future monetary growth, since this will not be believed. Expected inflation is based only

on the observed level of debt, so that to reduce expected inflation it must reduce debt. This

fact means that the ‘rate of return’ to a  unit reduction in debt, from the government’s point of

view, is higher under discretion than under commitment, with the effect that the optimal

policy is to give greater emphasis to the reduction of debt.

Turning to the ‘time consistent’ steady state, the conjecture that such exists is motivated

by our finding that, under commitment, a critical initial debt level may exist such that there is

no incentive to create surprise inflation or deflation. At such a debt level, we might therefore

expect that the outcome under discretion would be the same as under commitment. Hence,

more specifically, we now conjecture that the debt level d at which e’(d) is zero coincides

with the value of d-1 which, under commitment, induces m0=m1. From (13)-(14) this latter,

and the corresponding m value – call them (dc,mc) - are defined by:
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If our conjecture is correct, and if the discretionary equilibrium can converge to (dc,mc) for

values of d-1 in some neighbourhood of dc (see below), then Obstfeld’s result that under

discretion the government will always drive the economy to the ‘Friedman Rule’ steady state

is not robust. This moreover means that price deflation is not the inevitable long-run

consequence of discretionary policy: in general the net inflation rate associated with mc

                                                
19 However, this does not imply that discretion is better than commitment from a welfare point of view. Short-
run inflation will in general be positive and higher under discretion than under commitment. Taking the time
path as a whole, welfare is still higher under commitment, as Obstfeld shows.
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(namely )(/)(1 yumu ccmβ+−β ) may as well be positive as negative. This outcome therefore

removes the seemingly paradoxical and rather extreme conclusion that discretion is

associated with long-run ‘deflation bias’.

In fact it is straightforward to confirm that e’(d) is zero where d=dc. Given the definition

of e(dt) in (26), we have:
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On the RHS of this, although the derivative )(’ˆ
tdθ  depends on the unknown function )(ˆ

tdθ

and is hence unknown, the derivative with respect to mt+1 is easily calculated. Evaluating it at

mc as defined by (36), we readily show that it equals zero (see Appendix). Hence e’(dc)=0.

Thus (provided that dc exists, i.e. that the expansion path in the problem under commitment

cuts the 450 line), a ‘time consistent’ steady state of the discretionary equilibrium does exist.

What remains to be established is whether, if d-1 starts away from dc, convergence to this

steady state can occur.20

Characterising the discretionary equilibrium: dynamics

We now attempt to solve for a linear approximation to the non-stationary discretionary

equilibrium in the neighbourhood of each of the types of steady state just discussed, the aim

being to see whether a time path exists which converges on the steady state. If the properties

of the function e(dt) were fully known, the task would be straightforward. The complicating

factor is that the properties of e(dt) are unknown (except for the fact that e’(dc)=0, as just

established), and that indeed we wish to use this exercise to tie down its properties further. In

particular, at the time-consistent steady state, it would be of interest to determine the sign and

magnitude of e”; and, at the Friedman Rule steady state, to determine the sign and magnitude

of e’ and e”. Our strategy is to make use of two sources of information. First, treating e(dt) as

if it were known, we derive the approximated saddlepath solution of the system (31)-(32).

                                                
20 At this point it is appropriate to return to the question of whether the government’s optimisation problem (30)-
(31) is well defined. In the Appendix we look at a local approximation to the full problem, exploiting the finding
that e’(dc)=0, and confirm that this version of the problem is well defined.
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Equivalently, this is an approximation of the optimal feedback rule which solves the problem

(30)-(31): let us denote this optimal feedback rule as:21

mt  =  θ(dt-1). (38)

Such an exercise yields θ’ as a function of e’ and e” (evaluated at the appropriate steady

state). Secondly we use the definition of the function e(dt) as given by (26), plus the condition

of discretionary equilibrium that the public’s forecasting rule (23) must deliver correct

forecasts for all dt, which equivalently means that the public’s rule for forecasting mt+1,

)(ˆ
tdθ , must coincide with the government’s optimal feedback rule (38), i.e. θ(dt).

Differentiating this then yields e’ and e” as functions of θ’ and θ”. Exploiting the restrictions

which follow from evaluating these derivatives at either type of steady state, it turns out to be

possible to solve for θ’ at these steady states, simultaneously with the associated derivatives

of e(.). This then allows us to find the conditions for locally convergent discretionary

equilibrium paths to exist.

The details of the calculations just described are presented in the Appendix. Here we

will summarise the main results. A preliminary remark is that, if we substitute (38) into (31),

we obtain a first-order difference equation in dt which describes the evolution of debt in the

discretionary equilibrium:

dt-1  =  e(dt) - θ(dt-1) + βdt.

The local stability of this at an arbitrary steady state, d, is governed by the eigenvalue:
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, (39)

so that, for convergence, (39) must have an absolute value less than unity.

                                                
21 Since we have already observed that the problem (27’) (which is equivalent to the problem (30)-(31)), is
soluble by dynamic programming, it follows that the optimal value of the control can be expressed as a feedback
on the state.
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Consider first behaviour in the neighbourhood of the time-consistent steady state,

(mc,dc). In the Appendix we show that the discretionary equilibrium value of 1+θ’ solves the

following quadratic equation:

0)’1(
)1(

’
)’1(

)1(

’
1 2 =β−θ+

−ρρ
ρ+θ+





−ρρ
ρ− mm

, (40)

(m, ρ, ρ’ being evaluated at the steady state). The term mρ’/ρ(ρ-1) in this equation can easily

be shown, by differentiating (14), to equal the inverse of the slope of the expansion path for

the problem under precommitment, at the intersection with the 450 line. Now, since e’=0 at

the time-consistent steady state, (39) implies that for stability we need 1+θ’ to lie in the range

(-β,β). To determine whether either of the two solutions of (40) lie in this range, note that

when mρ’/ρ(ρ-1) < 1, the LHS of (40) when plotted against 1+θ’ is a parabola. This parabola

cuts the vertical axis at -β, so that for at least one solution to lie in (-β,β), we need the LHS

when evaluated at either −β, or β, or both, to be positive. Evaluating at -β, we obtain an

unambiguously negative number, as is easily verified. Evaluating at β, we obtain







−ρρ
ρ−−ββ=β=θ+ )1(

’
1)1()(40)ofLHS( ’1

m
, (41)

which is also negative when mρ’/ρ(ρ-1) < 1. Thus, when the expansion path cuts the 450 line

‘from below’ in the commitment problem, no path of the discretionary equilibrium which

converges to the time-consistent steady state exists. When mρ’/ρ(ρ-1) > 1, the LHS of (40) is

an inverted parabola. It again cuts the vertical axis at -β, and is negative when 1+θ’ = -β; at

1+θ’ = β its value is given as before by (41), which is now positive. From this it follows that

one solution lies in (0,β), and one in (β,∞). Hence, when the expansion path cuts the 450 line

‘from above’, a path of the discretionary equilibrium which converges to the time-consistent

steady state exists (and is unique).22

This result shows that there is a correspondence between whether high initial debt is

associated with surprise inflation or deflation under commitment, and whether the
                                                
22 The relationship of e” to θ’ is (βρ/m)[1-mρ’/ρ(ρ-1)](θ’)2, so that in this case e” is negative. Intuitively, this
means that above dc, higher debt is associated with a forecast by the public of lower equilibrium real balances
next period; while below dc the reverse is the case.
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equilibrium converges to, or diverges from (respectively), the steady state under discretion. In

Section 3 we gave reasons for thinking that money-holding preferences were more likely to

be such as to cause high debt to be associated with surprise inflation, which hence suggests

that, under discretion, convergence to, rather than divergence from, the time-consistent steady

state is more likely. Thus Obstfeld’s (1991, 1997) conclusion that under discretion the

economy is bound to end up at the Friedman Rule steady state, with consequent negative

inflation, does not hold in our framework. Rather it is more probable that the economy will

end up at an alternative and less extreme steady state, in which there is no reason why

inflation should not be positive. We summarise this finding by:

Proposition 2 Under optimal monetary policy with discretion, a steady-state equilibrium (the

‘time consistent steady state’) exists at the critical debt level defined in Proposition 1 (where

such a debt level exists), and inflation could be either positive or negative there. If, moreover,

the gross-interest elasticity of money demand is increasing (decreasing) in the interest rate at

this steady state, then, within a neighbourhood of the steady state, a discretionary

equilibrium which converges on it exists (does not exist).

Consider, lastly, behaviour in the neighbourhood of the Friedman Rule steady state. In

the Appendix we show that the discretionary equilibrium value of θ’ is related to that of of e’

by e’ = βκθ’, where κ ≡ )(/)(1 yumum cmm+  (note that κ could be either positive or

negative). We also show that e’ solves the following quadratic equation:

0)1(’)/12()’( 2 =−ββ+κ−β+ ee . (42)

Moreover, we demonstrate that in this case the eigenvalue (39) can be expressed as:
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−
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Thus, for convergence, we need that the solution for e’ should lie in the range (-2β,0). To

determine whether either of the two solutions of (42) lie in this range, note that the LHS of

(42) when plotted against e’ is a parabola. It has a negative intercept with the vertical axis,
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whence one solution for e’ is always positive, and so outside the range (-2β,0). Evaluating at

e’ = -2β, the LHS is β(2/κ+β-1), which is positive or negative as κ is positive or negative,

respectively (note κ ≤ 1). Thus, a positive κ implies exactly one solution for e’ in (-2β,0),

while a negative κ implies no solutions in this range. It follows that the condition for a

discretionary equilibrium to exist which converges locally to the Friedman Rule steady state

is κ > 0. Hence we have:

Proposition 3 Under optimal monetary policy with discretion, if the utility function has a

satiation level of real balances ( m ), then a steady-state equilibrium (the ‘Friedman Rule

steady state’) exists at which real balances equal their satiation level, and inflation and debt

are negative. If, moreover, the condition )(/)( yumum cmm−  < 1 (>1) holds, then within a

neighbourhood of the steady state, a discretionary equilibrium which converges on it exists

(does not exist).

The significance of this result is that it shows that, even where a satiation level of real

balances exists, and thus a Friedman Rule steady state of the discretionary equilibrium exists,

it is not guaranteed that under discretion the economy will converge to it despite starting

close by. More broadly speaking, this supports our basic point above: Obstfeld’s conclusion

that under discretion negative inflation will be the outcome in the long run does not have

generality.

A further conjecture might be that, where both a Friedman Rule steady state and a

unique time-consistent steady state exist, and where the latter is locally stable, the Friedman

Rule steady state will always be locally unstable. If this were true it would suggest that under

discretion the economy would converge on the time-consistent steady state for all values of

d-1 (> m ), not just those within some neighbourhood of the steady state. We can show that

this is indeed the case if subutility of real balances is quadratic (given by (21)): in this case

the condition κ < 0 is also the condition for the expansion path to intersect the 450 line in

Figure 1 (moreover the intersection will always be ‘from above’). However, the conjecture

does not appear to hold for a general unspecified utility function. In particular, there is no
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general correspondence between the stability of the Friedman Rule steady state and the slope

of the expansion path at ( m , m ) in Figure 1.

5. Conclusions

We have studied the time consistency problem in the realistic situation in which open

market operations are the instrument of monetary policy, lump-sum taxes and transfers being

prohibited. Our modelling of money demand captures a welfare cost of current inflation, as

Nicolini (1998) did, and this enables a non-degenerate optimal monetary policy to exist even

when the government’s objective is purely to maximise the welfare of private agents.

However we do not find a general presumption that time inconsistency will take the form of

‘surprise deflation’, unlike Nicolini: replacing the cash-in-advance by a money-in-the-utility

function motive for holding money, we conclude that the conventional temptation to ‘surprise

inflation’ is more likely. We have also studied optimal monetary policy under discretion.

Here we conclude that it is not inevitable that in the long run inflation will end up negative,

contrary to what Obstfeld (1991, 1997) found in a similar analysis but in which the

government’s objective was not pure private welfare maximisation. In our framework under

discretion long-run inflation could very well be positive, with real balances far distant from

their ‘Friedman Rule’, satiation levels.

The broader objective of this research has been to contribute towards bringing the

analysis of optimal monetary policy under the roof of public finance theory. The model used

here has been deliberately highly ‘classical’ and stripped-down in its features. It is to be

hoped that in future work it would be possible to introduce features which would enable an

integration with more traditional ‘macroeconomic’ analyses of monetary policy, such as

temporary nominal rigidities.
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Appendix

1. 2nd-order conditions for the commitment problem

Consider the government’s optimal choice of a particular (mt,mt+1) pair (t ≥ 1), treating

other real balances as given. The government’s (like households’) indifference curve between

mt and mt+1 has slope -um(mt)/βum(mt+1). The government’s budget constraint between mt and

mt+1 has a slope which can be calculated from (10') as:
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This constraint is clearly not necessarily convex. In the special case where ρ is a constant we

see that ρ cancels from (A1), and hence the slope of the constraint everywhere coincides with

that of the indifference curve. In this special case, therefore, the government is indifferent

about the allocation of seigniorage across periods 1,2,...,∞. More generally, in order for (12)

to define a strict maximum, we need that, as we slide up an indifference curve starting from a

point of tangency, the budget constraint should become flatter than the indifference curve,

and thus that the ratio of the (ρ−1)’s in (13) should decrease (see Figure A1). This clearly

requires that ρ be increasing in m.

Figure A1

2. The value of ρ when real balances reach satiation

From the definition of ρ as -mumm/um it is clear, except in the case where umm( m )=0,

that ρ tends to infinity as m→ m . In fact ρ still tends to infinity even if umm( m )=0, provided
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that utility remains continuous and continuously differentiable at m= m , and has at least one

non-zero derivative. To show this, note that when umm( m )=0 we can write the following

Taylor series approximations:

])[()( mmmumu mmmmm −≈ (A2)
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Here we assume that ummm( m ) is non-zero, and neglect higher-order terms. Thus:
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This tends to minus infinity as m tends to m , and hence ρ tends to infinity. If ummm( m )=0,

the 2nd- and 3rd-order terms may be used instead in (A2) and (A3), and so on.

3. An approximation of the problem under discretion

At the time consistent steady state we know that e’(dc) = 0. Therefore an approximation

to the full problem (30)-(31) in the neighbourhood of this steady state can be made by

treating e(dt) as simply a constant: e , say, where e  = e(dc). This gives the problem:
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Note that the assumed independence of e(dt) from dt means that the sequence of single-period

constraints can be integrated into a single intertemporal constraint. This version of the

problem has similarities to the general problem under commitment, (10’). The differences are

that current and future real balances here enter identically; and seigniorage revenue is linear

in mt. The latter means that the government’s budget constraint between mt and mt+1 is also

linear, so that the choice over any (mt,mt+1) pair can be pictured in the same way as in Figure

A1, but where the budget constraint is a straight line. It is clear, then, that (A5) is a well-

defined optimisation problem.
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4. Approximation of the discretionary equilibrium around the steady state

Our strategy for obtaining this solution was described in the main text. First, we derive

a linear approximation to the saddlepath of the equation system (31)-(32). A linear

approximation to (31)-(32) itself, about an arbitrary steady state (m,d), is:
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From this, we may solve for the eigenvalues of the coefficient matrix. In the main text we

saw that, if  θ’ denotes the derivative of the optimal feedback rule, then the eigenvalue of the

optimal path for debt is (1+θ’)/(β+e’) (see (39)). Since this must coincide with the stable

eigenvalue (if such exists) of the matrix in (A6), then by equating the two we obtain an

equation determining θ’:
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Second, using θ(dt) rather than )(ˆ
tdθ  in the definition of e(dt) (see (26)), we have:

[ ])(/))((1)()( yududde ctmtt θ+βθ= .

The first and second derivatives of this, at an arbitrary value of dt, are:

’}/]1[1{’ θρ−+β= cm uue , (A8)

2)’}(/’/]1{["}/]1[1{" θρ−ρ−β+θρ−+β= cmcmmcm uuuuuue , (A9)

(where uc denotes the constant )( yuc ). (A7)-(A9) provide 3 equations in 4 unknowns,

(θ’,θ”,e’,e”), and so cannot yet be solved. However, we now show that by making use of the

restrictions known to apply at either the time consistent or the Friedman Rule steady state,

solutions can be obtained.

At the time consistent steady state, 1+[1-ρ]um/uc = 0 (see (36)), and hence (A8) implies

e’=0, as asserted in the main text. Thus e’ drops out of (A7), which becomes a relationship
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between θ’ and e” alone. Further, θ” drops out of (A9), which hence provides a second

relationship between θ’ and e”. Using (A9) to substitute e” out of (A7) we obtain an equation

in θ’ alone. This equation is cubic in θ’, but it has θ’=0 as one root. We may discard this root

as being inconsistent with convergence, since it clearly implies that the eigenvalue given by

(39) in the main text is unstable. The remaining equation is then quadratic, and may be

arranged as equation (40) in the main text.

At the Friedman Rule steady state, by definition um=0 and m equals its satiation level,

m . In section 2 of the Appendix above, we showed that, under mild conditions, ρ( m ) = ∞.

In this case e” drops out of (A7), which becomes a relationship between θ’ and e’ alone.

Moreover, um=0 implies that (A8) can be written as e’ = βκθ’, where κ ≡

1+ m umm( m )/uc( y ), as asserted in the main text. Thus we have two relationships between θ’

and e’, from which we may attempt to solve for both. In (A7), the term under the square root

sign in (A7) is in fact an exact square, with the result that the RHS of (A7) simplifies to either

1/(β+e’) or 1+e’/β. Using 1/(β+e’), (A7) reduces to θ’=0, and (A8) then implies e’=0.

However convergence cannot occur under this solution, since the eigenvalue given by (39) in

the main text is then clearly unstable. Therefore we turn to the case where the RHS of (A7) is

1+e’/β. Combining this with e’ = βκθ’, we arrive at equation (42) in the main text. Since the

LHS of (A7) is just the eigenvalue (39), 1+e’/β is an equivalent expression for it, which

explains (43) in the main text.


