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ABSTRACT

Consumption-Savings Decisions
with Quasi-Geometric Discounting*

How do individuals with time-inconsistent preferences make consumption-
savings decisions? We try to answer this question by considering the simplest
possible form of the consumption-savings problem, assuming that discounting
is quasi-geometric. A solution to the decision problem is then a subgame-
perfect equilibrium of a dynamic game between the individual’s ‘successive
selves’. When the time horizon is finite, our question has a well-defined
answer in terms of primitives. When the time horizon is infinite, we are left
without a sharp answer: we cannot rule out the possibility that two identical
individuals in the exact same situation make different decisions! In particular,
there is a continuum of dynamic equilibria even if we restrict attention to
equilibria where current consumption decisions depend only on current
wealth.
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NON-TECHNICAL SUMMARY

The purpose of this Paper is to study how an infinitely-lived, rational consumer
with ‘quasi-geometric’ discounting would make consumption and savings
decisions. We consider the idea that a consumer's evaluation of ‘utils’ at
different points in time does not have to take the form of an aggregate with
geometric weights. This idea was suggested first by Strotz (1956), and later
elaborated on by Pollak (1968), Phelps and Pollak (1968), Laibson (1994,
1997) and others. Quasi-geometric discounting leads to time-inconsistent
preferences: the consumer changes his mind over time regarding the relative
values of different consumption paths. One version of this inconsistency takes
the form of extreme short-term impatience. That formulation seems attractive
based on introspection. The recent literature also emphasizes behavioural
studies (such as Ainslie, 1992) as a motivation for a departure from geometric
discounting. This literature documents ‘preference reversals’, and it generally
argues that time inconsistency is as ubiquitous as risk aversion. This
information is too important to dismiss: at the very least, there is no definite
argument against a departure from geometric discounting, and since models
with time inconsistency potentially can have very different positive and
normative properties than standard models, they deserve to be studied in
more detail. That is what we set out to do here.

We assume that time is discrete and that the consumer cannot commit to
future actions. We interpret rationality as the consumer’s ability to correctly
forecast his future actions: a solution to the decision problem is required to
take the form of a subgame-perfect equilibrium of a game where the players
are the consumer and his future selves. We restrict attention to equilibria
which are stationary: they are recursive, and Markov in current wealth; that is,
current actions cannot depend either on time or on any other history than that
summarized by current wealth.

The consumption–savings problem is of the simplest possible kind: there is no
uncertainty, and current resources simply have to be divided into current
consumption and savings. Utility is time-additive with quasi-geometric
discounting, and the period utility function is strictly concave. We assume that
the consumer operates a technology which has (weakly) decreasing returns in
its input – capital (that is, savings from last period). A special case is that of an
affine production function, where the return is constant; this special case can
be interpreted as one with a price-taking consumer who has a constant stream
of labour income and can save at an exogenous interest rate. We do not study
interaction between consumers in this Paper.

Our main finding is one of indeterminacy of equilibria. That is, the restriction to
Markov equilibria does not reduce the set of equilibria to a small number. First,
there is indeterminacy in terms of long-run outcomes of the consumption–
savings process: there is a continuum of stationary points to which the



consumer’s capital holdings may converge over time. Second, associated with
each stationary point is a continuum of equilibria. Put simply, our theorizing
does not allow us to rule out the possibility that two identical consumers
placed in the same environment make radically different decisions, both in the
short and the long run.

What is the origin of the indeterminacy? Almost by definition, one important
component is expectations: equilibria can be thought of as ‘expectation-
driven’. Optimism and pessimism regarding your own future behaviour is a
real phenomenon in our model. The expectation concerns future savings
behaviour. In the time-consistent model, the expectations of future savings
behaviour are not relevant, since there is agreement on that behaviour: an
envelope theorem applies. If, instead, the consumer places a higher relative
weight on consumption two periods from now than does his next-period self,
then a high savings propensity of his next self is an added bonus from saving
today. Therefore what he believes about this future savings propensity is
important. One consumer may decide to save a lot because he expects
himself to save a lot in the future, thereby giving a high return to saving today;
another instead expects to consume a lot next period, thus lowering the
incentives to save now. Another important component in our equilibrium
construction is a discontinuous policy rule for savings. That is, we employ
locally extreme savings propensities to make the construction alluded to
above.

Our findings are significant in two mutually exclusive ways. First, as discussed
above, they suggest a theory of optimism and pessimism, a theory that seems
quite general (of course, with the nongeneric exception of exact geometric
discounting). Second, they may be viewed as a critique of the non-geometric-
discounting approach to understanding the phenomena documented in the
behavioural literature: if the most basic framework is so fraught with
indeterminacy, what prediction power does it have? Is there perhaps some
fundamental modelling problem underlying it? This point is important, as an
alternative modelling approach has recently been developed, one that is
axiomatic and by definition leads to precise predictions: the recent work by
Gul and Pesendorfer (1999), extended to a dynamic framework in Gul and
Pesendorfer (2000). Our own view is not yet entirely settled; work comparing
the two approaches is at its infancy and has not yet produced definitive
results. In any case, the results in the present Paper document some
fundamental features of one of the approaches.

The indeterminacy that we document in this Paper has not been noted in the
existing literature on consumption–savings decisions with quasi-geometric
discounting. Laibson (1994), and Bernheim, Ray and Yeltekin (1999) find
indeterminacy in settings similar to the one studied in this Paper, but they rely
on history-dependent (‘trigger’) strategies. In this Paper, we restrict ourselves
to Markov equilibria in which current consumption decisions depend only on
current wealth.



Harris and Laibson (2000) study a consumption–savings problem in which the
agent faces a constant interest rate and stochastic labour income. Their
framework is closely related to ours, which allows an affine production function
as a special case. The difference is that we consider a deterministic
environment; their analysis does not contain ours as a special case and it
seems important to understand the deterministic case separately. In addition,
we are able to provide an explicit characterization of equilibria near a
stationary point; Harris and Laibson provide existence, but not uniqueness or
explicit solutions.

Our findings of indeterminacy have the potential to be helpful in the applied
literature using quasi-geometric discounting. There, numerical methods are
often necessary for characterizing equilibria, and it turns out that there are
fundamental problems in finding algorithms that succeed in producing
accurate solutions, at least when the individual-specific uncertainty is limited.
The results herein suggest an explanation for the numerical problems: the lack
of convergence of algorithms appears to be cycling within the large set of
equilibria.

Our basic framework uses recursive methods and allows capital to be any
number on an interval of the real line. To illustrate the set-up, we parameterize
the model – logarithmic utility and Cobb-Douglas production – and derive an
analytical solution for this case. We then restrict the domain for capital to a
finite grid. The discrete-domain case allows us to demonstrate and discuss
our multiplicity results in a concrete and simple way. We also use it to study
whether there are simple domination arguments to rule out all equilibria but
one. We therefore spend some time analysing the simplest possible
consumption–savings problem: capital can take on only two values, high and
low. Finally, we use the discrete-domain case as a way of computing equilibria
numerically.

We then construct equilibria analytically when capital is restricted to lie on an
interval. The construction is not global; it applies to a restricted domain of the
following nature. Given a conjectured stationary point, we show that there is a
neighbourhood around this point such that, if capital is restricted to that
neighbourhood, there exists a ‘step-function’ equilibrium. To the left of the
stationary point, the policy rule – next period’s capital as a function of current
capital – is a step function with infinite steps. To the right of the stationary
point, the policy rule is flat. The construction works for any strictly concave
utility function and for any (weakly) concave production function, provided that
the discounting parameters lie in a certain range.

We also show that on any stationary point of a given equilibrium policy rule the
consumer can obtain higher current utility by having expectations of higher
future savings, and thereby increasing savings currently. In particular, this
means that the analytical solution we used as illustration for the log/Cobb-
Douglas case is dominated in utility – for at least some values of current



capital – by an equilibrium with higher savings both in the long and in the short
run.



1 Introduction

The purpose of this paper is to study how an in�nitely-lived, rational consumer with \quasi-

geometric" discounting would make consumption and savings decisions.1 We consider the idea

that a consumer's evaluation of \utils" at di�erent points in time does not have take the form of

an aggregate with geometric weights. This idea was suggested �rst by Strotz (1956), and later

elaborated on by Pollak (1968), Phelps and Pollak (1968), Laibson (1994, 1997) and others. Quasi-

geometric discounting leads to time-inconsistent preferences: the consumer changes his mind over

time regarding the relative values of di�erent consumption paths. One version of this inconsistency

takes the form of extreme short-term impatience. That formulation seems attractive based on

introspection. The recent literature also emphasizes behavioral studies (such as Ainslie (1992)) as

a motivation for a departure from geometric discounting. This literature documents \preference

reversals", and it generally argues that time-inconsistency is as ubiquitous as risk aversion. This

information is too important to dismiss: at the very least, there is no de�nite argument against

a departure from geometric discounting, and since models with time-inconsistency potentially can

have very di�erent positive and normative properties than standard models, they deserve to be

studied in more detail. That is what we set out to do here.

We assume that time is discrete, and that the consumer cannot commit to future actions. We

interpret rationality as the consumer's ability to correctly forecast his future actions: a solution

to the decision problem is required to take the form of a subgame-perfect equilibrium of a game

where the players are the consumer and his future selves. We restrict attention to equilibria which

are stationary: they are recursive, and Markov in current wealth; that is, current actions cannot

depend either on time or on any other history than that summarized by current wealth.

The consumption/savings problem is of the simplest possible kind: there is no uncertainty,

and current resources simply have to be divided into current consumption and savings. Utility is

time-additive with quasi-geometric discounting, and the period utility function is strictly concave.

We assume that the consumer operates a technology which has (weakly) decreasing returns in its

input, capital (that is, savings from last period). A special case is that of an a�ne production

function, where the return is constant; this special case can be interpreted as one with a price-

taking consumer who has a constant stream of labor income and can save at an exogenous interest

rate. We do not study interaction between consumers in this paper.

Our main �nding is one of indeterminacy of equilibria. That is, the restriction to Markov

equilibria does not reduce the set of equilibria to a small number. First, there is indeterminacy in

terms of long-run outcomes of the consumption/savings process: there is a continuum of stationary

1We mean by the term quasi-geometric a sequence which is geometric from the second date and on. The term

\quasi-hyperbolic" has been used in the literature with the same meaning|see, e.g., Laibson (1997). Laibson's use,
presumably, is motivated by trying to mimic approximately a true (generalized) hyperbolic function, which is possible

within a subset of the quasi-geometric class. Mathematically, however, quasi-geometric is clearly a more appropriate

term, and since we are interested in this entire class, as opposed to the subset mimicking the hyperbolic case, we opt

for this term.
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points to which the consumer's capital holdings may converge over time. Second, associated with

each stationary point is a continuum of equilibria. Put simply, our theorizing does not allow us to

rule out the possibility that two identical consumers placed in the same environment make radically

di�erent decisions, both in the short and the long run.

What is the origin of the indeterminacy? Almost by de�nition, one important component is

expectations: equilibria can be thought of as \expectations-driven". Optimism and pessimism

regarding your own future behavior is a real phenomenon in our model. The expectations concern

future savings behavior. In the time-consistent model, the expectations of future savings behavior

are not relevant, since there is agreement on that behavior: an envelope theorem applies. If,

instead, the consumer places a higher relative weight on consumption two periods from now than

does his next-period self, then a high savings propensity of his next self is an added bonus from

saving today. Therefore, what he believes about this future savings propensity is important. One

consumer may decide to save a lot because he expects himself to save a lot in the future, thereby

giving a high return to saving today; another instead expects to consume a lot next period, thus

lowering the incentives to save now. Another important component in our equilibrium construction

is a discontinuous policy rule for savings. That is, we employ locally extreme savings propensities

to make the construction alluded to above.

Our �ndings are signi�cant in two mutually exclusive ways. First, as discussed above, they

suggest a theory of optimism and pessimism, a theory that seems quite general (of course, with the

nongeneric exception of exact geometric discounting). Second, they may be viewed as a critique

of the non-geometric-discounting approach to understanding the phenomena documented in the

behavioral literature: if the most basic framework is so fraught with indeterminacy, what prediction

power does it have? Is there perhaps some fundamental modeling problem underlying it? This

point is important, as an alternative modelling approach has recently been developed, one that is

axiomatic and by de�nition leads to precise predictions: the recent work by Gul and Pesendorfer

(1999), extended to a dynamic framework in Gul and Pesendorfer (2000). Our own view is not

yet entirely settled; work comparing the two approaches is at its infancy and has not yet produced

de�nitive results.2 In any case, the results in the present paper document some fundamental features

of one of the approaches.

The indeterminacy that we document in this paper has not been noted in the existing literature

on consumption-savings decisions with quasi-geometric discounting. Laibson (1994) and Bernheim,

Ray, and Yeltekin (1999) �nd indeterminacy in settings similar to the one studied in this paper, but

they rely on history-dependent (\trigger") strategies. In this paper, instead, we restrict ourselves

to Markov equilibria in which current consumption decisions depend only on current wealth.

Harris and Laibson (2000) study a consumption-savings problem in which the agent faces a

constant interest rate and stochastic labor income. Their framework is closely related to ours,

which allows an a�ne production function as a special case. The di�erence is that we consider

2See Krusell, Kuru�s�cu, and Smith (2000).
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a deterministic environment; their analysis does not contain ours as a special case, and it seems

important to understand the deterministic case separately. In addition, we are able to provide an

explicit characterization of equilibria near a stationary point; Harris and Laibson provide existence,

but not uniqueness nor explicit solutions.

Our �ndings of indeterminacy have the potential to be helpful in the applied literature us-

ing quasi-geometric discounting. There, numerical methods are often necessary for characterizing

equilibria, and it turns out that there are fundamental problems in �nding algorithms that suc-

ceed in producing accurate solutions, at least when the individual-speci�c uncertainty is limited.

The results herein suggest an explanation for the numerical problems: the lack of convergence of

algorithms appears as cycling within the large set of equilibria.3

We lay out our basic framework, using recursive methods, in Section 2. That model allows

capital to be any number on an interval of the real line. To illustrate the setup, we parameterize

the model|logarithmic utility and Cobb-Douglas production|and derive an analytical solution for

this case. In Section 3, we then restrict the domain for capital to a �nite grid. The discrete-domain

case allows us to demonstrate and discuss our multiplicity results in a concrete and simple way. We

also use it to study whether there are simple domination arguments to rule out all equilibria but

one. We therefore spend some time analyzing the simplest possible consumption-savings problem:

capital can take on only two values, high and low. Finally, we use the discrete-domain case as a

way of computing equilibria numerically.

In Section 4, we construct equilibria analytically when capital is restricted to lie on an interval.

The construction is not global; it applies to a restricted domain of the following nature. Given a

conjectured stationary point, we show that there is a neighborhood around this point such that, if

capital is restricted to that neighborhood, there exists a \step-function" equilibrium. To the left

of the stationary point, the policy rule|next period's capital as a function of current capital|is

a step function with in�nitely many steps. To the right of the stationary point, the policy rule is

at. The construction works for any strictly concave utility function and for any (weakly) concave

production function, provided that the discounting parameters lie in a certain range.

We also show that on any stationary point of a given equilibrium policy rule, the consumer

can obtain higher current utility by having expectations of higher future savings, and thereby by

increasing savings currently. In particular, this means that the analytical solution we used as

illustration for the log/Cobb-Douglas case in Section 2 is dominated in utility, for at least some

values of current capital, by an equilibrium with higher savings both in the long and in the short

run.

Section 5 concludes.

3See, e.g., Laibson (1997).
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2 The setup

2.1 Primitives

Time is discrete and in�nite and begins at time 0.4 There is no uncertainty. An in�nitely-lived

consumer derives utility from a stream of consumption at di�erent dates. We assume that the

preferences of the individual at time t are time-additive, and that they take the form

Ut = ut + �1ut+1 + �2ut+2 + �3ut+3 + : : : :

The variable ut denotes the number of utils at time t; it is implicit that these utils are derived from

a function u(ct), where ct is consumption at time t. This formulation thus embodies an assumption

of stationarity: the discounting at any point in time has the form 1; �1; �2; : : :. The same consumer

at t+ 1 thus evaluates utility as follows:

Ut+1 = ut+1 + �1ut+2 + �2ut+3 + �3ut+4 + : : : :

Clearly, the lifetime utility evaluations at t and t + 1 express di�erent views on consumption at

di�erent dates, unless �t+k+1=�t+k is the same for all t and k and equal to �1, that is, unless

discounting is geometric: �t = �t for some �. We take the view here that geometric discounting is

a very special case and that the a priori grounds to restrict attention to it are weak. We consider a

very simple departure from geometric discounting: quasi-geometric discounting. Quasi-geometric

discounting can be expressed with two parameters, � and �. The weights on future utils are

1; ��; ��2; ��3; : : :. That is, discounting is geometric across all dates excluding the current date:

Ut = ut + �
�
�ut+1 + �2ut+2 + �3ut+3 + : : :

�
:

The case where � < 1 corresponds to particular short-run impatience (\I will save, just not right

now"), and � > 1 represents particular short-run patience (\I will consume, just not right now").

The case � = 1, of course, is the standard, time-consistent case.

It is straightforward to generalize quasi-geometric discounting: the weights would then be gen-

eral for T periods, and geometric thereafter. Pure hyperbolic discounting corresponds to the case

�t = 1=(t+1), which we do not consider here. In most of our analysis, we will restrict attention to

� < 1, since our resources are bounded. With growing resources, it is possible to allow a � larger

than 1 if the utility function takes a certain form.

We assume that the period utility function u(c) is strictly increasing, strictly concave, and twice

continuously di�erentiable. The consumer's resource constraint reads

c+ k0 = f(k)

where k is current capital holdings, f is strictly increasing, concave and twice continuously di�er-

entiable. We will focus on the case where f is strictly concave, but this assumption is not essential

for our main results.
4Barro (1997) studies a continuous-time model without uncertainty where the consumer's discounting is not

exponential.
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2.2 Behavior: modelling choices

How do we model the decision making? We use four principles:

1. We assume that the consumer cannot commit to future actions.

2. We assume that the consumer realizes that his preferences will change and makes the current

decision taking this into account.

3. We model the decision-making process as a dynamic game, with the agent's current and future

selves as players.

4. We focus on (�rst-order) Markov equilibria: at a moment in time, no histories are assumed

to matter for outcomes beyond what is summarized in the current stock of capital held by

the agent.

Some comments are in order. The �rst of the principles makes the problem di�erent than the

standard case. With commitment, decisions could be analyzed starting at time 0 in an entirely

standard fashion (using recursive methods) and only the decisions across time 0 and the rest of

time would be di�erent. That decision would be straightforward given an indirect utility function

representing utility at times 1, 2 and on. Moreover, commitment is not an unrealistic assumption.

Notice that commitment to consumption behavior in practice would require a demanding monitor-

ing technology and might be quite costly. 401(k) plans do not provide commitment to consumption,

unless there are other restrictions, such as borrowing constraints. We do not consider such con-

straints here. One could consider how access to a costly monitoring technology would alter the

analysis. We leave such an analysis as well to future work. Of course, the ability to overcome the

commitment problem may be a crucial ability of a consumer, and it deserves to be studied more.

Our second principle is what we interpret rationality to mean in this framework. We would

not want to abandon it: systematic prediction errors of one's own future behavior are not studied

in the time-consistent model, and we do not want to study them here. Moreover, studying such

prediction errors does not require time-inconsistent preferences.

Our third principle is the same as that suggested and adopted in the early literature on time-

inconsistent preferences. Our fourth principle is more of a restriction than a principle: we do

not study history-dependent equilibria with the hope of arriving at sharper predictions. There is

perhaps also a sense in which we think bygones should be bygones on the level of decision-making.

There is also existing work where bygones are not bygones: Laibson (1994) and Bernheim, Ray,

and Yeltekin (1999) study similar models and allow history dependence. The set of equilibria can

certainly be expanded in this way.

5



2.3 A recursive formulation

Assume that the agent perceives future savings decisions to be given by a function g(k):

kt = g(kt�1):

Note that g is time-independent and only has current capital as an argument.

The agent solves the \�rst-stage" problem

W (k) � max
k0

u(f(k)� k0) + ��V (k0);

where V is the indirect utility of capital from next period on. In turn, V has to satisfy the \second-

stage" functional equation

V (k) = u(f(k)� g(k)) + �V (g(k)):

Notice that successive substitution of V into the agent's objective generates the right objective if

the expectations of future behavior are given by the function g.

A solution to the agent's problem is denoted ~g(k). We have an equilibrium if the �xed-point

condition ~g(k) = g(k) is satis�ed for all k.

The �xed-point problem in g cannot be expressed as a contraction mapping. For a given

(bounded and continuous) g, it is possible to express the functional equation in V as a contraction

mapping. However, continuity of g does not guarantee that V is concave, and it is not clear that the

maximization over k0 problem has a unique solution. This also implies that ~g may be discontinuous.

A simple parametric example can be used as an illustration of the recursion. Suppose u(c) =

log(c) and f(k) = Ak�, with � < 1. Then it is straightforward to use guess-and-verify methods to

solve for the following solution:

k0 =
���

1� ��(1� �)
Ak�

and

V (k) = a+ b log k

with steady state

kss =

�
���A

1� ��(1� �)

� 1

1��

:

This solution gives a lower steady state than with � = 1.5

It is easy to check that, for this example, the time-consistent behavior thus solved for actually

coincides, in the �rst period, with the behavior that would result in the commitment solution.

An algorithm for numerical computation of equilibria is suggested directly from our recursive

problem: pick an arbitrary initial V , solve for optimal savings and obtain a decision rule, update

V , and so on. This algorithm is similar to value function iteration for the standard time-consistent

5The coe�cients a and b are given by b = �=(1 � ��) and a = (log(A � d) + �b log(d))=(1 � �), where d =
��bA=(1 + ��b).
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problem. If the initial V is set to zero, it is also equivalent to how a �nite-horizon problem would

normally be solved. It turns out that this algorithm does not work here. Typically, it leads to

cycling.6 Similarly, an algorithm that starts with a guess on g, solves for V from the second stage

condition, and then updates g (say, by a linear combination between g and ~g) also does not work:

it produces cycles. These two algorithms produce cycles even when u and f are of the parametric

form we discussed above|when g is known to be log-linear|and even an initial condition very

close to the exact solution is given. As we will see, the analysis in the following sections suggests

a reason for the apparent instability of these algorithms: there are other solutions to the �xed-

point problem in g that are not continuous, and the function approximations we used in the above

algorithms rely on continuity (for example, we use cubic splines).

We now turn to a version of our model with a discrete state space.

3 The case of a discrete domain

We now assume that capital can only take a �nite number of values: k 2 fk1; k2; : : : ; kIg. We make

the following assumptions:

1. Consumption-savings: u21 > u11 > u12, u21 > u22 > u12.

2. Strict concavity of u:

uij � uik > ui0j � ui0k:

for i < i0 and j < k.

3. Impatience: � < 1 and � < 1.

De�ne �ij 2 [0; 1] to be the probability of going from state i to state j. Given � (a set of �ij 's),

�nd the value function given uniquely by the Vi's solving the contraction

Vi =
X
j

�ij (uij + �Vj)

for all i (this is a linear equation system). This gives V (�). The �xed-point condition requires

�ij > 0) j 2 argmax
k

[uik + ��Vk(�)]:

Proposition 1: There exists a mixed-strategy equilibrium for the economy with discrete domain.

Proof: This is shown with a straightforward application of Kakutani's �xed-point theorem.

It is also possible to show monotonicity of the decision rules:

6The algorithm may converge if g is approximated with very low accuracy (with few grid points, or with an
inexible functional form).
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Proposition 2: The decision rule is monotone increasing, that is, if positive probability is put on

k at i and i0 is larger than i, then the choice at i0 cannot have positive probability on j < k.

Proof: Suppose not.

uik + ��Vk � uij + ��Vj

and

ui0j + ��Vj � ui0k + ��Vk

can be combined into

uij � uik � ui0j � ui0k

which violates strict concavity.

Monotonicity is a very useful property for understanding the behavior of the consumer in this

model. It will be used repeatedly below. The proof of monotonicity does not use discreteness, and

therefore the monotonicity property also applies when the domain for capital is continuous.

3.1 The 2-state case

We study the simplest possible case in some detail: the case where capital can take only two values,

1 and 2 (k1 < k2). We will use the short-hand ij for an equilibrium where the decision in state 1 is

to go to state i and the decision in state 2 is to go to state j, i; j 2 f1; 2g; further, i� refers to an

equilibrium where there is mixing in state 2 (for some speci�c probability), and �j refers to mixing

in state 1.

The characterization of the set of equilibria is that the parameter space (�, �, and the uij 's)

breaks into 6 regions:

Proposition 3: Generically, there are six possible equilibrium con�gurations; each of the following

characterizes a region:

1. A unique \no-saving" equilibrium: 1 ! 1 and 2 ! 1.

2. A unique \saving" equilibrium: 1 ! 2 and 2 ! 2.

3. A unique \status-quo" equilibrium: 1 ! 1 and 2 ! 2.

4. No pure-strategy equilibrium: 1 ! � and 2 ! 2 (long-run saving).

5. Three equilibria:

(a) 1 ! 1 and 2 ! 1 (no-saving).

(b) 1 ! 2 and 2 ! 2 (saving).

(c) 1 ! 1 and 2 ! � (no-saving).

6. Three equilibria:

(a) 1 ! 1 and 2 ! 1 (no-saving).

(b) 1 ! 1 and 2 ! � (no-saving).

(c) 1 ! � and 2 ! 2 (saving).

Proof: See Appendix 1.
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Notice that regions 1{3 are expected and standard; region 4 is a case where no pure strategy

equilibrium exists; and the remaining two cases have multiplicity. We will discuss their interpreta-

tion below. As shown in the proof of Proposition 3, regions 4{6 disappear for � = 1.

When there is more than one equilibrium, there are three. Two of these are very di�erent in

character: they lead to di�erent long-run outcomes. The third is a mixed version of one of the

others, with the same long-run outcome (equilibrium 5c is very similar to 5a, and 6b to 6a). The

essential character of each of the two equilibria is: if your future self is a saver, so are you; if not,

then neither are you.

The idea that there are multiple solutions to a decision problem is conceptually disturbing:

faced in a given situation, what will the consumer do? Our theory does not provide an answer, or,

it says several things can happen. Identical consumers, apparently, can make di�erent decisions,

rationally, in the same situation.

Can we interpret this as there being room for \optimism" and \pessimism" to inuence deci-

sions? These terms should, if used appropriately, refer to utility outcomes, about which we have

remained silent so far. The fact is that, in our 2-state economy, equilibria with long-run savings are

better than those without: they give higher current life-time utility, independently of the starting

condition, than no-saving equilibria.7 In this sense, there is a free lunch here: just be optimistic, it

is not associated with costs!

Of course, the free lunch aspect suggests a natural re�nement of equilibria, one which has a

renegotiation character: why stick to expectations which can be replaced with better ones? This

re�nement seems to work well in this application. However, it turns out that this re�nement is

problematic when there are more than two possible states for capital. The reason is that, in general,

there are parameter regions (which become large when the number of states becomes large) where

a utility ranking across equilibria does not exist. For example, state i might give equilibrium A

higher utility than equilibrium B, whereas in state j the reverse is true; moreover, state imight lead

to state j under equilibrium A. That is, if one picks equilibrium A now, one will want to change

one's mind later. That means that this re�nement is not time-consistent, and therefore not useful.8

This means, as far as we can tell, absent other useful re�nement concepts, that there might be

room for optimism and pessimism. Of course, these terms now have a more restricted meaning,

since an equilibrium with optimism today (in terms of current utility) may imply pessimism in the

future, and vice versa.

7In fact, all equilibria are ranked in this sense.
8Asheim (1997) proposes a concept called revision-proofness as a re�nement to subgame-perfect equilibria and

applies it in a context of time-inconsistent decision-making. He shows a speci�c example, similar to the present one
and featuring a discrete state space, where a revision-proof equilibrium exists. Here, one would exist in the 2-state

case, but not in general in the multi-state case.
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3.2 More than 2 states

With more than two states, we resort to numerical methods for �nding equilibria. To �nd equilibria,

we either perform exhaustive search (which of course is a slow method, prohibitively so except for

a very small number of states) or iterate on a �xed-point mapping from randomly selected initial

conditions for � (this algorithm is fast, but will miss some equilibria, at least those which are

\unstable").9

Several questions are relevant here:

� As the grid becomes �ner, will the multiplicity expand, remain unchanged, or shrink?

� As the grid becomes extremely �ne, and there is some hope that the solution approximates a

continuous state-space solution, what are the properties of such a solution?

� If we restrict parameters to replicate log/Cobb-Douglas assumptions as closely as possible,

will the analytical solution be found? Will other solutions continue to exist?

In general, the �ndings are: the multiplicity does not go away as the grid becomes �ner,

equilibria are not ranked in general, there is always some mixing when the grid is �ne enough, the

decision rules look \funny", and the analytical solution to the log/Cobb-Douglas case is not one of

the equilibria that is produced by the algorithm.

We will illustrate the equilibrium features in Figures 1, 2, and 3. They depict the policy rule

for capital, given current capital, and are constructed based on the case of 150 grid points. The

parameters are chosen based on the log/Cobb-Douglas speci�cation; the analytical decision rule

is graphed in each of the �gures. We found 30 equilibria in this case. If these are all the stable

equilibria, there should be an odd number in addition.

The general features are as follows: decision rules seem smooth over some intervals, but have

jumps. For a given decision rule, there is always a single stationary point. The stationary point is

reached, from the right, by a at section, and from the left, by a \creeping up along the 45-degree

line". The \creeping up" actually occurs with mixing: these points are mixing the 45-degree line

with a grid point above it. Mixing does not occur anywhere else. We will draw heavily on these

features when we construct equilibria in the case of a continuous state space in the next section.

Comparing stationary points to the analytical case, Figure 1 has its stationary point above,

Figure 3 below, and Figure 2 at the stationary point of the analytical solution. The equilibrium

in Figure 1 actually dominates the other equilibria in the �gures, but there is another equilibrium

with which it cannot be ranked.

9In order to �nd a mixed-strategy equilibrium, the latter method iterates until near indi�erence, makes a speci�c

guess of indi�erence and solves for the equilibrium given this guess, and �nally checks all equilibrium conditions.
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3.3 Additional comments

When the discrete-state model is solved backwards, that is, when a �nite-horizon version of the

model is solved, there is, as expected, a unique equilibrium for every time horizon. As the time

horizon goes to in�nity, there is sometimes no convergence in policy rules and value functions: a

cycle is reached. \Sometimes" is always when there are many grid points. Intuitively, then, all

equilibria we �nd with our other computational method have mixing, and mixing equilibria will

not be found with backward-solving: they will not exist, generically, with a �nite horizon. In the

two-state case, for example, in region 4, where there is no pure-strategy equilibrium, there is lack

of convergence. In regions 1{3, there is convergence to the unique pure-strategy equilibrium, and

in regions 5 and 6 there is convergence to equilibrium (a): the no-saving equilibrium. Thus, the

saving equilibrium seems to require an in�nite horizon to be implementable.

4 The case of a continuous domain

We now assume that the domain is a part of the real line. For general u's and f 's (which satisfy

strict concavity, etc.), and for a � < 1, we �nd equilibria by construction. We are not able to

construct these equilibria globally (unless we resort to numerical techniques), but instead restrict

the domain. A typical domain will be [�k � �; �k + b], where �k is a stationary point, � is a small

positive number (de�ning a left-neighborhood of �k), and b a positive constant. The key properties

of our decision rules are:

� Immediately to the right of the stationary point of a decision rule, the rule is at over a range:

if you don't expect your future self to save, you don't either.

� Immediately to the left of the stationary point of this rule, optimal behavior must be charac-

terized by a step function.10

Moreover, there is a continuum of equilibria for any given primitives:

� There is a continuum of stationary points associated with distinct decision rules.

� For each stationary point, there is a continuum of step function equilibria leading in to it.

Figure 4 illustrates the set of equilibrium decision rules. Three rules are plotted in the �gure;

two lead in to the same stationary point, and the third leads to a higher stationary point.11 We

change the domain as we construct the continuum of equilibria with di�erent stationary points. As

10When � exceeds 1, it is also possible to construct equilibria with the same methods: just exchange \left" for

\right" in all de�nitions and vice versa (the step function will be to the right of the stationary point, and the at

section to the left).
11As discussed below, the decision rules approach but do not touch the 45-degree line: at the 45-degree line, the

decision rules take a discrete jump upwards.
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before, decision rules are monotone (weakly) increasing, but randomization is no longer part of the

equilibria we construct.

We go through the construction of our equilibria in steps. The proof that the agent is maximizing

given the constructed decision rule is contained in the proof of Proposition 4 in Appendix 2.

4.1 The at part to the right

For the construction of an equilibrium decision rule, �rst select a stationary point �k. Then de�ne

a ��k > �k to the left of which the decision rule is at. Thus, b above is de�ned to be ��k � �k.

For the purpose of this discussion, restrict choices to [�k; ��k] and show it is optimal to always

choose �k over this range (the value function V takes a simple, well-behaved form then). We will

later verify that when the domain is extended left of �k, it is also not optimal to select points in

that part of the domain.

The intuition behind the construction here is that �k and ��k are such that you go to a \corner":

at k0 = �k, the marginal bene�t of saving is below the marginal cost of saving.

We thus have

V (k) = u(f(k)� �k) + �V (�k);

where

V (�k) =
u(f(�k)� �k)

1� �
:

By construction, V is di�erentiable and strictly concave over the restricted domain [�k; ��k].

Given V and k 2 [�k; ��k], the agent solves:

max
k02[�k;��k]

u(f(k)� k0) + ��V (k0):

The derivative of the objective function with respect to k0 is given by:

D(k; k0) � �U 0(f(k)� k0) + ��U 0(f(k0)� �k)f 0(k0):

Given k, the optimal choice for k0 is �k provided that D(k; k0) is negative for all k0 2 [�k; ��k]. Since,

holding k �xed, D is decreasing in k0, it su�ces to check that D is negative at k0 = �k. Thus, when

k = �k, D is negative for all k0 2 [�k; ��k] if and only if

��f 0(�k) < 1:

This condition puts a lower bound on the stationary level of capital.

Since, holding k0 �xed, D is increasing in k, the upper bound ��k is pinned down by:

u0(f(��k)� �k) = ��u0(f(�k)� �k)f 0(�k):

For k > ��k, D(k; �k) > 0, implying that �k is not the optimal choice.
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When the domain and the decision rule are extended to the left, the construction will still

make �k the optimal choice, because V will not be di�erentiable at �k: it is continuous but has no

left-derivative at that point. In particular, the step function decision rule to the left will generate a

su�cient drop in utility that the consumer never wants to choose a point less than �k if his current

capital stock is at or above �k. Figure 5 illustrates the shape of the value function for the three

equilibria depicted in Figure 4.

4.2 The step function to the left

We de�ne a step decision rule as follows:

� There is a countably in�nite number of steps, indexed by n, at fkng
1

n=0. At each of these

step points, the step is taken with probability one.

� The future utility at step n is denoted vn.

� For k 2 [kn; kn+1), the future utility is

V (k) = u(f(k)� kn+1) + �vn+1:

Note that V (kn) = vn and that V is strictly increasing and strictly concave on each open interval,

but not left-continuous at the step points.

The fkng
1

n=0 and fvng
1

n=0 sequences satisfy two key conditions. First,

u(f(kn)� kn) + ��vn = u(f(kn)� kn+1) + ��vn+1: (1)

This condition says that at steps you are indi�erent between taking and not taking the step. Second,

vn = u(f(kn)� kn+1) + �vn+1: (2)

This condition says that at a step you do take the step with probability one.12

Let (�k; �v) be a stationary point of the system of di�erence equations given by equations (1) and

(2). It is easy to see that this dynamic system has a multiplicity of stationary points. In particular,

12It is important that the probability is one. Why cannot randomizing be part of optimal behavior when optimal

behavior is given by our step function? At a point of indi�erence, we need to have

u(f(kn)� kn) + ��vn = u(f(kn)� kn+1) + ��vn+1:

This implies that vn+1 > vn. We also have

vn = � [u(f(kn) � kn) + �vn] + (1 � �) [u(f(kn)� kn+1) + �vn+1] =

u(f(kn)� kn+1) + �vn+1 + � (u(f(kn)� kn)� u(f(kn)� kn+1) + �(vn � vn+1)) =

u(f(kn)� kn+1) + �vn+1 + � (� � ��) (vn � vn+1) < u(f(kn)� kn+1) + �vn+1:

where � is the probability of picking kn. This means that V (k) is not right-continuous at kn if � > 0: the limit of

V (kn + �) = u(f(kn + �)� kn+1) + �vn+1 as � > 0 goes to zero is u(f(kn)� kn+1) + �vn+1 > vn. Since V (k) makes
a jump up at kn, it cannot be optimal to put positive probability on kn: a miniscule increase in savings above kn

would make the future bene�ts jump up discretely, and the current consumption loss would be miniscule.
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equation (1) is satis�ed at any stationary point, so the set of stationary points is determined by

equation (2): �v = u(f(�k)� �k) + ��v, implying that

�v =
u(f(�k)� �k)

1� �
:

We want to restrict attention to the set of stationary points for which the dynamic system (1)

and (2) is locally stable, i.e., for which the sequence fkn; vng
1

n=0 converges to (
�k; �v). Equations (1)

and (2) de�ne an implicit function h that maps (kn; vn) into (kn+1; vn+1). The Jacobian matrix of

�rst derivatives of h, evaluated at the stationary point (�k; �v), has one eigenvalue equal to 1 and one

eigenvalue equal to
1� ��f 0(�k)

�(1� �)
:

This eigenvalue is between 0 and 1 provided that f 0(�k) > 1 + 1��
��

. This condition puts an upper

bound on the set of admissible value for �k.

Under this condition, it is straightforward to modify standard results concerning the local

stability of nonlinear di�erence equations (see, e.g., Scheinkman (1973)) to show that the dynamic

system given by (1) and (2) has a one-dimensional stable manifold characterized by a continuously

di�erentiable function '(k0; v0). In other words, given a stationary point (�k; �v), there exists a

neighborhood N of this point such that the dynamic system (1) and (2) converges to the stationary

point for any initial value k0 2 N provided that v0 is chosen so that '(k0; v0) = 0.

In summary, we can construct a continuum of decision rules for each stationary point, and

the construction works for any stationary point �k 2
�
(f 0)�1( 1

��
); (f 0)�1(1 + 1��

��
)
�
. This interval

shrinks to a point as � goes to 1.

Throughout this section, we have assumed that f is strictly concave. Our results, however, also

apply to the case in which f(k) = Rk + w, where R and w are constants. In this case, the agent,

in e�ect, faces constant (exogenous) prices: a constant (gross) interest rate R and a constant wage

w. When f is linear, any level of asset holdings can be a stationary point, provided that

1 +
1� �

��
< R <

1

��

When � = 1, this range collapses to a point, yielding the familiar result that any level of asset

holdings can be a stationary point provided that R = ��1.

4.3 Optimality of the constructed decision rules

We now provide a formal proposition stating that the behavior posited in the constructed equilibria

are optimal for the consumer. The proof is lengthy|it checks with \brute force" at any k that the

posited behavior is better than any other behavior. The essential arguments rely on strict concavity

of u and the restriction that �k lie in the interval
�
(f 0)�1( 1

��
); (f 0)�1(1 + 1��

��
)
�
.

Proposition 4: Assume that �k 2
�
(f 0)�1( 1

��
); (f 0)�1(1 + 1��

��
)
�
. Then the decision rules con-

structed for �k in Sections 4.1 and 4.2 represent optimal behavior. That is, there exists an interval
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A � [�k � �; ��k], where � > 0 and ��k satis�es u0(f(��k) � �k) = ��u0(f(�k) � �k)f 0(�k), such that for each

k0 < �k belonging to this interval, there exists a v0 such that the sequence fkn; vng
1

n=0 satisfying

equations (1) and (2) is strictly increasing and converges to (�k; �v), where �v =
u(f(�k)��k)

1��
. Moreover,

the value function

V (k) �

(
u(f(k)� kn) + �vn if k 2 [kn�1; kn)

u(f(k)� �k) +
�u(f(�k)��k)

1��
if k 2 [�k; ��k]

satis�es

argmax
k02A

[u(f(k)� k0) + ��V (k0)] =

(
kn if k 2 [kn�1; kn)
�k if k 2 [�k; ��k]

Proof: See Appendix 2.

4.4 Utility comparisons across equilibria

Let W (k) be the present-value function utility function associated with a given equilibrium; this

function gives lifetime utility as of time 0 when the current asset holding is k. Numerical analysis

(as well as evidence from the discrete case with more than two states) suggests that the present-

value utility functions associated with di�erent equilibria are generally not ranked across the entire

state space, i.e., these functions can cross. Nonetheless, it is possible to rank equilibria in terms of

present-value utility at selected points in the state space.

First, it is possible to show that the steady states are ranked in utility in the following sense:

given a starting point in the interior of the range for which steady states exist, the utility from

the equilibrium which stays at that point is lower than the utility from embarking on a path with

capital accumulation and which leads to a higher steady state. This is demonstrated formally in

the following proposition.

Proposition 5: Assume � < 1 and let capital be restricted to [k?; �k], where both k? and �k > k?

are within the bounds allowing steady states to exist. Consider a decision rule for which k? is the

long-run outcome. Then there exists a decision rule whose long-run outcome is �k which gives higher

utility starting at k?.13

Proof: See Appendix 3.

It is also true that for any starting point k? in the at part to the right of a given steady state �k

(provided that k? is within the bounds in which steady states exist), the equilibrium whose steady

state is k? provides higher present-value utility than the equilibrium whose steady state is �k. This

is demonstrated formally in the following proposition.

Proposition 6: Assume � < 1.14 Consider a decision rule with steady state k?. Let �k be smaller

than k? and such that there is a decision rule whose steady state is �k. In addition, suppose that k?

13If � > 1, then the conclusion of the proposition is reversed: the decision rule whose long-run outcome is �k gives

lower utility starting at k?.
14The statement of the proposition is reversed when � > 1.
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is in the at section to the right associated with the decision rule whose steady state is �k. Then,

starting at k?, the decision rule whose steady state is �k gives smaller utility than the decision rule

whose steady state is k?.

Proof: See Appendix 3.

Notice that Proposition 5 holds whether or not the path which is constant is a smooth equi-

librium (e.g., like the one we know exists in the log/Cobb-Douglas case). Therefore, we have

shown that the loglinear equilibrium in the log/Cobb-Douglas case gives lower utility, at least on

its stationary point, than (some) other equilibria.

It is not true, however, that equilibria with higher steady states necessarily give higher utility

for all values of k. As an illustration, consider again the log-linear solution to the log/Cobb-Douglas

case. Let us compare the utility for di�erent values of k implied by this equilibrium to the utility

levels implied by a step function equilibrium whose stationary point coincides with the stationary

point of the log-linear equilibrium. Formally, we have

Proposition 7: Consider the case of logarithmic utility and Cobb-Douglas production. The

utility at k associated with any step function equilibrium with stationary point k?, where k? is

the stationary point of the smooth solution, is larger (less) than that associated with the smooth

solution if k < (>) k?.

Proof: See Appendix 3.

The present-value utility function W (k) is continuous for our step function equilibria (it is

continuous between steps, and continuous at steps by construction). Moreover, the function value

at every k also varies continuously with the stationary point chosen. This means that if the log-

linear solution to the log/Cobb-Douglas case is compared to a step-function solution with slightly

lower stationary point than k?, then there will exist points to the left of k? where this step-function

solution yields strictly higher utility than the log-linear solution. That is, solution with a higher

stationary point yields lower utility at those points in the state space.

4.5 Remarks

It is clear how one could extend the domain so as to solve for the step function equilibria more

globally. The two key conditions de�ning the step function amount to a nonlinear di�erence equa-

tion which can be solved numerically. One would then need to verify that the agent is optimizing,

which can be done numerically as well. At some point to the left, however, it would not be optimal

for the agent to follow the steps (the proof of the main proposition uses the fact that k is close to

�k to guarantee optimality). Then, one could extend the decision rule to the left by constructing,

piece by piece and iteratively from right to left, what must be optimal behavior; given that the

capital stock is increasing there, all that is needed is the decision rule we have already solved for.

A similar procedure can be used to extend the solution to the right of ��k.
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The step function equilibria we have derived have consumption function counterparts which are

quite jagged (lines with a slope of 1, followed by discontinuous downward drops, etc.). In fact,

they are quite similar to those pictured in Laibson (1997), where the model is similar except for

the presence of idiosyncratic uninsurable shocks and a �nite horizon. A comment on computation

is in order here. A variety of algorithms that we have implemented to compute equilibria in the

in�nite-horizon case (see Section 2.3 for a general description of two of them) fail to converge and

instead tend to cycle. Although these algorithms di�er in their details, they share the common

feature that they iterate \backwards" from a terminal condition. Although we have no detailed

insights into how the di�erent algorithms for computing equilibria work, these methods seem to

lead to step function equilibria (these equilibria seem \stable" with respect to the algorithm used).

Thus one possible explanation for the numerical �ndings in Laibson (1997) is that he is using a

backwards-iteration algorithm (which is the natural approach in a �nite-horizon model) that does

not converge but instead cycles through a sequence of step-function equilibria. Of course, the step

function equilibria cannot be easily computed numerically, since most numerical methods rely on

continuity, and this seems to be the reason for the lack of convergence.

As we show in Section 2.3, there is a \smooth" equilibrium (one with continuous decision rules)

for speci�c choices of u and f . Whether smooth solutions exist in general is an open question. The

optimal paths in our step function equilibria, however, are smooth, even though the decision rules

are not. In this sense, the step function equilibria do not represent \unusual-looking" behavior.

The propensities to consume at almost all points on the domain we use is one, and the propensity

to save zero. However, the realization of any equilibrium occurs at the steps, except possibly the

very �rst period (and, in a global solution which we have not solved for, for longer periods, before

the step function is reached).

5 Conclusion

In this paper, we study the consumption-saving decisions of a consumer who has time-inconsistent

preferences in the form of a departure from geometric discounting. Our analysis includes as a

special case the simplest possible consumption-savings problem in which a price-taking consumer

faces a constant exogenous interest rate and receives a constant stream of labor income. We make

no restrictions on the period utility function save for concavity. When the time horizon is in�nite,

we �nd that the dynamic game played between the consumer's successive selves is characterized

by a severe multiplicity of equilibria. This multiplicity arises even though we restrict attention

to Markov equilibria. The multiplicity takes two forms. First, there is a continuum of stationary

points for the consumer's asset holdings. Second, for each stationary point there is a continuum of

paths leading into this stationary point. Since we study a deterministic environment, a key question

is whether multiplicity of equilibria survives the introduction of uncertainty.
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Appendix 1

This appendix contains the proof of Proposition 3 in Section 3.1.

First, conditions for each type of equilibrium to exist are given below (it is implicit that the

consumption-savings and strict concavity assumptions are required in addition to the stated con-

ditions). After these conditions are given, the proof is provided.

� 1 ! 1 and 2 ! 1. We have, normalizing so that u11 � 1,

v1 = 1 + �v1

and

v2 = u21 + �v1

which implies

v1 =
1

1� �

and

v2 = u21 +
�

1� �
:

This equilibrium exists if

1 + ��
1

1� �
� u12 + ��(u21 +

�

1� �
)

and

u21 + ��
1

1� �
� u22 + ��(u21 +

�

1� �
):

These expressions simplify to

1� u12 � ��(u21 � 1) and u21 � u22 � ��(u21 � 1):

The latter of these implies the former, given the concavity assumption. Therefore this type

of equilibrium exists if the latter is met.

� 1 ! 2 and 2 ! 1. This equilibrium cannot exist since it violates monotonicity.

� 1 ! 1 and 2 ! 2. We have

v1 = 1 + �v1

and

v2 = u22 + �v2

which implies

v1 =
1

1� �

and

v2 =
u22

1� �
:

This equilibrium exists if

1 + ��
1

1� �
� u12 + ��

u22

1� �
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and

u22 + ��
u22

1� �
� u21 + ��

1

1� �
:

These expressions simplify to

1� u12 � ��
u22 � 1

1� �
and u21 � u22 � ��

u22 � 1

1� �
:

� 1 ! 2 and 2 ! 2. We have

v1 = u12 + �v2

and

v2 = u22 + �v2

which implies

v1 = u12 +
�

1� �
u22

and

v2 =
u22

1� �
:

This equilibrium exists if

u12 + ��
u22

1� �
� 1 + ��

�
u12 +

�

1� �
u22

�

and

u22 + ��
u22

1� �
� u21 + ��

�
u12 +

�

1� �
u22

�
:

These expressions simplify to

1� u12 � ��(u22 � u12) and u21 � u22 � ��(u22 � u12):

The former of these implies the latter, given the concavity assumption. Therefore this type

of equilibrium exists if the former is met.

� 1 ! � and 2 ! 1. This equilibrium cannot exist since it violates monotonicity.

� 1 ! � and 2 ! 2. We have

1 + ��v1 = u12 + ��v2

and

v2 = u22 + �v2

which implies

v1 =
u22

1� �
+
u12 � 1

��

and

v2 =
u22

1� �
:

The mixing probability satis�es

v1 = �(1 + �v1) + (1� �)(u12 + �v2);
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implying

� =
1

1� �

�
1

�
+ �

u12 � u22

1� u12

�
:

This equilibrium exists if

u22 + ��
u22

1� �
� u21 + ��

�
u22

1� �
+
u12 � 1

��

�
;

which is unrestrictive since it is equivalent to concavity, � � 0, that is,

1� u12 � ��(u22 � u12)

and � � 1, that is,

1� u12 �
��(u22 � u12)

1� �(1� �)
:

� 1 ! 1 and 2 ! �. We have

v1 = 1 + �v1

and

u21 + ��v1 = u22 + ��v2

which implies

v1 =
1

1� �

and

v2 =
1

1� �
+
u21 � u22

��
:

The mixing probability satis�es

v2 = �(u21+ �v1) + (1� �)(u22+ �v2);

implying

1� � =
1

1� �

�
1

�
+ �

1� u21

u21 � u22

�
:

This equilibrium exists if

1 + ��v1 � u21 + ��v2

which is automatically met since it is equivalent to concavity, and 1� � � 0, that is,

u21 � u22 � ��(u21 � 1)

and 1� � � 1, that is,

u21 � u22 �
��(u21 � 1)

1� �(1� �)
:

� 1 ! 2 and 2 ! �. This equilibrium cannot exist since it violates monotonicity.

� 1 ! � and 2 ! �. This equilibrium also cannot exist since it violates monotonicity.

21



In each of the cases when conditions for existence are given it is straightforward to see that

parameter values do exist such that the given conditions are met. We now turn to discussing the

possible coexistence of equilibria for given parameter values. The possible equilibria are denoted

11, 12, 22, �2, and 1� (referring to the decision in states 1 and 2, respectively). We assume in this

section that � and � are less than 1.

We now prove the proposition by methodically going through all possibilities. First we prove

six facts.

� 22 does not coexist with any other equilibrium. 22 requires 1� u12 � ��(u22 � u12). Let us

consider each alternative equilibrium in turn.

The condition for 11 is u21 � u22 � ��(u21 � 1). Combining it with the condition for 22 we

obtain

1� u12 � u21 + u22 � ��(u22 � u12 � u21 + 1)

which is a contradiction given strict concavity and �� < 1.

One of the conditions for the 12 equilibrium is that (1 � �)(1 � u12) + �� � ��u22. The

condition for 22 is ��u22 � 1�u12+��u12. But these are inconsistent since (1��)(1�u12)+

�� � (1� u12 + ��u12) = ��(1� �)(1� u12) < 0.

The �2 equilibrium violates the 22 condition immediately if � > 0; if � = 0 it reduces to the

22 equilibrium.

The 1� equilibrium, �nally, requires u21�u22 � ��(u21� 1), or u22 � (1���)u21+�� which

is strictly less than (1���)(1�u12+u22)+��. This implies ��u22 < 1�(1���)u12. But this

is contradicted by the 22 condition. This completes the argument that the 22 equilibrium is

the unique equilibrium if it exists.

� 12 does not coexist with �2. The requirement that � < 1 for the �2 equilibrium is (1 �

u12)(1� � � ��) < ��(u22 � u12), which can be rewritten as 1 � u12 <
��

1��
(u22 � 1), which

contradicts the �rst of the two conditions for the 12 equilibrium. If � = 1 the two equilibria

are equivalent.

� If 11 and 12 are both equilibria, then so is 1�. It is su�cient to show that

u21 � u22 �
��

1� �(1� �)
(u21 � 1);

which is the second of the conditions for the 1� equilibrium, as the �rst condition is implied

directly by the existence of the 11 equilibrium. This condition can be rewritten as u21�u22 �
��

1��
(u22� 1), which is identical to the second of the conditions needed for existence of the 12

equilibrium.

� If 1� exists, so does 11. The 1� case requires two conditions to hold, one of which is u21�u22 �

��(u21 � 1). But this condition is the only one required for the 11 equilibrium to exist.

� If 11 and 1� are both equilibria, then so is either 12 or �2. The 12 equilibrium exists if 1 �

u12 �
��

1��(u22 � 1), since the second condition under which 12 exists was just shown to be
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identical to the second condition under which 1� exists. If not, that is, if 1�u12 <
��

1��
(u22�1),

we need to show that �2 exists. This condition can be rewritten as 1� u12 <
��

1��(1��)
(u22 �

u12), which implies the second condition for �2. It remains to show that the �rst condition

for �2, namely, 1�u12 � ��(u22�u12), is met. Suppose it is not. Then the only condition for

the 22 equilibrium to exist is satis�ed. But we showed above that the 22 equilibrium cannot

coexist with any other equilibrium; in particular, it cannot coexist with 11 or 1�. This is a

contradiction, so the �2 equilibrium has to exist.

� If 11 and �2 are both equilibria, then so is 1�. We need to show that the second condition

for the 1� equilibrium, u21� u22 �
��

1��(1��)
(u21� 1), is met (the �rst one is implied directly

since the 11 equilibrium exists). From above, we know that this expression can be rewritten

as u21 � u22 �
��

1��
(u22 � 1). Now concavity implies that u21 � u22 � 1� u12. We also know,

by the second condition for �2 to exist, that 1 � u12 �
��

1��(1��)
(u22 � u12), which can be

rewritten as 1 � u12 �
��

1��
(u22 � 1). Combining these two inequalities yields the desired

result.

Going through all possible equilibrium sets, these six facts rule out everything except the six

possibilities we claim exist. It is straightforward to verify that these six remaining cases are possible.

Appendix 2

This appendix contains the proof of Proposition 4 in Section 4.3. The existence of a one-dimensional

stable manifold for the di�erence equation system (1) and (2) in a neighborhood of �k follows from

the remarks in Section 4.2 and from straightforward modi�cations of standard results concerning

the local stability of nonlinear dynamic systems (see, e.g., Scheinkman (1973)). That the sequence

fkn; vng
1

n=0 is strictly increasing near
�k follows from the fact that the the Jacobian matrix associated

with the system (1) and (2), evaluated at the stationary point, has one eigenvalue equal to one and

one eigenvalue between 0 and 1.

To check the optimality of the proposed decision rule, a number of lemmas will be stated

and proved. Each lemma considers a speci�c deviation from the proposed decision rule. We �rst

consider deviations from the optimal choice at �k.

Lemma 1: At �k it is not better to select a k0 2 (�k; ��k].

Proof: This is true given that �k is less than f�1(1=(��)), as shown above: the marginal cost of

increasing k0 above �k is above the marginal bene�t for any k0.

Lemma 2: At �k it is worse to select a k0 = kn (< �k):

u(f(�k)� �k) + ���v � u(f(�k)� kn) + ��vn:

Proof: We need to prove that

u(f(�k)� �k)� u(f(�k)� kn) � ��(vn � �v):

The left-hand side of this expression can be written

NX
s=0

[u(f(�k)� kn+s+1)� u(f(�k)� kn+s)]
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+u(f(�k)� �k)� u(f(�k)� kn+N+1)]

which, since the last two terms cancel as N goes to 1, equals

1X
s=0

[u(f(�k)� kn+s+1)� u(f(�k)� kn+s)]:

The right-hand side of the expression, in turn, can be rewritten as

��

1X
s=0

[vn+s � vn+s+1 ];

since vn goes to �v as n goes to 1. Using indi�erence on the steps, this expression becomes

1X
s=0

[u(f(kn+s)� kn+s+1)� u(f(kn+s)� kn+s)]:

It is now clear that the left-hand side is no less than the right-hand side if

u(f(kn+s)� kn+s)� u(f(kn+s)� kn+s+1) �

u(f(�k)� kn+s)� u(f(�k)� kn+s+1);

for each s � 0. But from the strict concavity of u these inequalities are all met (strictly), since
�k > kn+s and fkng is a strictly increasing sequence.

Lemma 3: At �k it is worse to select a k0 2 (kn; kn+1):

u(f(�k)� �k) + ���v � u(f(�k)� k0) + ��V (k0) 8k0 2 (kn; kn+1)

in which range

V (k0) = u(f(k0)� kn+1) + �vn+1:

Proof: Straightforward given the structure of the proof of Lemma 10 below.

We now move on to consider deviations from the proposed rules at any point k � �k.

Lemma 4: At k � �k it is worse to select a k0 > �k:

u(f(k)� �k) + ���v � u(f(k)� k0) + ��V (k0);

where

V (k0) = u(f(k0)� �k) + ��v:

Proof: Parallels the proof of Lemma 1; that is, for any k < ��k, the marginal bene�t of increasing k0

above �k is strictly below the marginal cost. For k = ��k, the marginal bene�t equals the marginal

cost.

Lemma 5: At k > �k it is worse to select a k0 = kn:

u(f(k)� �k) + ���v � u(f(k)� kn) + ��vn:

Proof: Parallels the proof of Lemma 2; the fact that k > �k strengthens the necessary inequalities.
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Lemma 6: At k � �k it is worse to select a k0 2 (kn; kn+1):

u(f(k)� �k) + ���v � u(f(k)� k0) + ��V (k0) 8k0 2 (kn; kn+1);

in which range

V (k0) = u(f(k0)� kn+1) + �vn+1:

Proof: The proof makes use of the proof of Lemma 10; however, to show that

�u0(f(k)� k0) + ��u0(f(k0)� kn+1)f
0(k0) > 0

one more argument is necessary, since k is no longer close to kn. This is straightforward, though,

since the expression is strictly increasing in k.

Turning to starting points k less than �k, we �rst consider deviations at steps, i.e., at points

k = kn.

Lemma 7: At kn it is worse to select a k0 = kn�s, s > 0:

u(f(kn)� kn+1) + ��vn+1 � u(f(kn)� kn�s) + ��vn�s 8s > 0:

Proof: By indi�erence at steps, we need to show that

u(f(kn)� kn) + ��vn � u(f(kn)� kn�s) + ��vn�s ;

or, that

u(f(kn)� kn)� u(f(kn)� kn�s) � ��(vn�s � vn):

The left-hand side of this expression can be written

s�1X
v=0

[u(f(kn)� kn�v)� u(f(kn)� kn�v�1)]

and the right-hand side can be written

��

s�1X
v=0

[vn�v�1 � vn�v ]

which from indi�erence at steps equals

s�1X
v=0

[u(f(kn�v�1)� kn�v)� u(f(kn�v�1)� kn�v�1)]:

It su�ces to show that, for each v in these sums,

u(f(kn)� kn�v)� u(f(kn)� kn�v�1) � u(f(kn�v�1)� kn�v)� u(f(kn�v�1)� kn�v�1)]:

But this inequality holds (strictly) for all v since u is strictly concave and fkng is a strictly increasing

sequence.

Lemma 8: At kn it is worse to select a k0 = kn+s, s > 1:

u(f(kn)� kn+1) + ��vn+1 � u(f(kn)� kn+s) + ��vn+s 8s > 1:
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Proof: The proof is similar to the proof of Lemma 7. We need to show that

u(f(kn)� kn+1) + ��vn+1 � u(f(kn)� kn+s) + ��vn+s ;

or, that

u(f(kn)� kn+1)� u(f(kn)� kn+s) � ��(vn+s � vn+1):

The left-hand side of this expression can be written

s�1X
v=1

[u(f(kn)� kn+v)� u(f(kn)� kn+v+1)]

and the right-hand side can be written

��

s�1X
v=1

[vn+v+1 � vn+v ]

which from indi�erence at steps equals

s�1X
v=1

[u(f(kn+v)� kn+v)� u(f(kn+v)� kn+v+1)]:

Due to strict concavity of u and the sequence fkng being strictly increasing,

u(f(kn)� kn+v)� u(f(kn)� kn+v+1) > u(f(kn+v)� kn+v)� u(f(kn+v)� kn+v+1)];

for each v > 0, which su�ces to show that the left-hand side exceeds the right-hand side.

Lemma 9: At kn it is worse to select a k0 � �k:

u(f(kn)� kn+1) + ��vn+1 � u(f(kn)� k0) + ��V (k0) 8k0 � �k;

where

V (k0) = u(f(k0)� �k) + ��v:

Proof: First consider k0 = �k. Noting that

u(f(kn)� kn+1 � u(f(kn)� �k) =
1X
s=1

[u(f(kn)� kn+s)� u(f(kn)� kn+s+1)]

and that

��(�v � vn+1) =
1X
s=1

(vn+s+1 � vn+s) =

1X
s=1

[u(f(kn+s)� kn+s)� u(f(kn)� kn+s+1];

the result again follows, using concavity and fkng being an increasing sequence for a term-by-term

domination. Turning to k0 values above �k,

we know from the construction of ��k that

MC(��k; �k) = MB(�k);
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where

MC(k; k0) � u0(f(k)� k0)

and

MB(k0) � ��V 0(k0) = ��u0(f(k0)� �k)f 0(k0);

the last equation of which holds over the range (�k; ��k]. Since both the MC and MB functions

are continuous over this range and the MC function is strictly decreasing in its �rst argument,

MC > MB for any k0 > �k whenever k < ��k so the consumer is strictly better o� setting k0 = �k

than k0 > �k. Since the �rst part of the proof of this lemma shows that the consumer prefers kn+1

over �k, the full proof is complete.

Lemma 10: At kn it is worse to select a k0 2 (kn�s; kn�s+1) for any s:

u(f(kn)� kn+1) + ��vn+1 � u(f(kn)� k0) + ��V (k0) 8s; k0 2 (kn�s; kn�s+1);

in which range

V (k0) = u(f(k0)� kn�s+1) + �vn�s+1:

Proof: We will establish that the payo� function is strictly decreasing in k0 over any interior range

(kn�s; kn�s+1) when � is small. From this fact it then follows, using Lemmata 7 and 8, that the

points in the interior ranges cannot be optimal. The payo� function reads

u(f(kn)� k0) + ��V (k0) = u(f(kn)� k0) + ��[u(f(k0)� kn�s+1) + �vn�s+1 ]

when k0 2 (kn�s; kn�s+1), since kn�s+1 is chosen from starting points in this region. Taking

derivatives with respect to k0, we have

�u0(f(kn)� k0) + ��u0(f(k0)� kn�s+1)f
0(k0)

which takes on the sign of ��f 0(k0)� 1 when � is small (recall that we restrict the feasible range of

k0 values to [�k � �; ��k]). Since ��f 0(�k) < 1 is assumed, this expression is strictly positive for small

values of �.

Moving, �nally, to points between steps to the left of �k, we can essentially use the proofs above.

Lemma 11: At a point k 2 (kn; kn+1), it is worse to select a k0 = kn+s+1, s 6= 0:

u(f(k)� kn+1) + ��vn+1 � u(f(k)� kn+s+1) + ��vn+s+1 8s; k 2 (kn; kn+1):

Proof: Uses the same kinds of arguments as the proofs of Lemmata 7, 8, and 10.

Lemma 12: At a point k 2 (kn; kn+1), it is worse to select a k0 � �k:

u(f(k)� kn+1) + ��vn+1 � u(f(k)� k0) + ��V (k0); k0 � �k; k 2 (kn; kn+1);

where

V (k0) = u(f(k0)� �k) + ��v:

Proof: The proof here parallels the proof of Lemma 9.

Lemma 13: At a point k 2 (kn; kn+1), it is worse to select a k0 2 (kn+s; kn+s+1) for any s:

u(f(k)� kn+1) + ��vn+1 � u(f(k)� k0) + ��V (k0); k0 2 (kn+s; kn+s+1); k 2 (kn; kn+1);
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where

V (k0) = u(f(k0)� kn+s+1) + �vn+s+1:

Proof: This proof closely follows that of Lemma 10.

With this, the proof of the proposition is complete.

Appendix 3

This appendix contains the proofs of Propositions 5, 6, and 7 in Section 4.4.

Proof of Proposition 5: The utility from the �rst rule is given by

u(f(k?)� k?) + ��v?;

where v? � u(f(k?)�k?)=(1� �). Let the second rule be given by a sequence of capital stock steps

fkng
1

n=1 with k1 = k?. The utility from the second rule is then given by

u(f(k?)� k2) + ��v2;

where vn is de�ned by the di�erence equation system determining fkng
1

n=1 and fvng
1

n=1. We need

to show that

u(f(k?)� k2) + ��v2 � u(f(k?)� k?)� ��v? > 0:

First, note that ��(v2 � v?) = �� (
P
1

n=2 [vn � vn+1] + �v � v?), which in turn equals ��(�v � v?) +P
1

n=2 [u(f(kn)� kn+1)� u(f(kn)� kn)], where �v � u(f(�k) � �k)=(1 � �), from indi�erence at the

steps. We therefore know that

u(f(k?)� k2)� u(f(k?)� k?) + ��v2 � ��v? (3)

has to be equal to

u(f(k?)� k2)� u(f(�k)� �k) + u(f(�k)� �k)� u(f(k?)� k?)+

��(�v � v?) +
1X
n=2

[u(f(kn)� kn+1)� u(f(kn)� kn)]

which in turn equals
1� �(1� �)

1� �

�
u(f(�k)� �k)� u(f(k?)� k?)

�
+

1X
n=2

[u(f(kn)� kn+1)� u(f(kn)� kn)] + u(f(k?)� k2)� u(f(�k)� �k):

Since k1 = k?, this can be rewritten as

1� �(1� �)

1� �

�
u(f(�k)� �k)� u(f(k?)� k?)

�
+

1X
n=1

[u(f(kn)� kn+1)� u(f(kn)� kn)] + u(f(k1)� k1)� u(f(�k)� �k):
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Again using k1 = k?, this expression becomes

��

1� �

�
u(f(�k)� �k)� u(f(k?)� k?)

�
+

1X
n=1

[u(f(kn)� kn+1)� u(f(kn)� kn)] : (4)

Note that, using the same technique as before,

��(v1 � v?) = ��

 
�v � v? +

1X
n=1

[vn � vn+1]

!
=

��(�v � v?) +
1X
n=1

[u(f(kn)� kn+1)� u(f(kn)� kn)] :

Solving for the sum and substituting back into our main expression (4), we obtain

��

1� �

�
u(f(�k)� �k)� u(f(k?)� k?)

�
+ ��(v1 � v?)� ��(�v � v?) = �� (v1 � v?) :

Using the recursive de�nition of v1 in terms of current utility and v2, this can be rewritten as

�� fu(f(k?)� k2)� u(f(k?)� k?) + �(v2 � v?)g :

The obtained quantity is still equal to the expression in (3), so

we obtain the following useful equation:

(1� ��) fu(f(k?)� k2)� u(f(k?)� k?)g+ ��(1� �)(v2 � v?) = 0;

or

v2 � v? = �
1� ��

��(1� �)
fu(f(k?)� k2)� u(f(k?)� k?)g :

Using this expression, we can evaluate our main expression in (3) to be

fu(f(k?)� k2)� u(f(k?)� k?)g

�
1�

1� ��

1� �

�
=

fu(f(k?)� k2)� u(f(k?)� k?)g �(� � 1)

which, since � < 1, is greater than zero if �k > k?, since then k2 > k?.

Proof of Proposition 6: Starting at k?, the utility from the decision rule whose steady state is k?

is:

U(f(k?)� k?) +
��

1� �
U(f(k?)� k?): (5)

Since k? is in the at section to the right of the decision rule associated with �k, the optimal path

for this decision rule (starting at k?) is to jump immediately to �k and then stay there. The utility

associated with this path is:

U(f(k?)� �k) +
��

1� �
U(f(�k)� �k): (6)

We want to show that (5) is greater than (6). To show this, we will show that (6) is an increasing

function of �k. Note that (6) is equal to (5) if �k = k?. If (6) decreases as �k decreases, then (5)

becomes greater than (6) as �k decreases.
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To show that (6) is an increasing function of �k, take its derivative with respect to �k:

� U 0(f(k?)� �k) +
��

1� �
U(f(�k)� �k)(f 0(�k)� 1): (7)

This derivative is positive if

U 0(f(k?)� �k)

U 0(f(�k)� �k)
<

��

1� �
(f 0(�k)� 1):

Note that
U 0(f(k?)� �k)

U 0(f(�k)� �k)
< 1:

In addition, the restriction f 0(�k) > 1 + 1��
��

implies that

��

1� �
(f 0(�k)� 1) > 1:

Proof of Proposition 7: Let us restrict attention, �rst, to values of k above �k. On the stationary

point, these two equilibria of course give the same utility. Their utility levels, as a function of k,

can be written

W s(k) � log(Ak� � �k) +
��

1� �
log(A�k� � �k)

for the step function solution and

W l(k) � log((1� s)Ak�) +
���

1� ��
log sAk� +#

for the log-linear solution, where s � ���

1���(1��)
is the savings rate and # is a constant (such that

W s(�k) = W l(�k)). Taking derivatives, we have

(W s)0(k) =
�Ak��1

Ak� � �k

and

(W l)0(k) =
�

k

1� ��(1� �)

1� ��
=
�

k

1

1� s
:

It is possible to rewrite (W s)0 as follows:

(W s)0(�k) =
�Ak��1

Ak� � sAk�
�k

sAk�

=
�

k

1

1� sh(k)
;

where h(k) �
�k

sAk�
. Notice that h(�k) = 1 and that h0(k) < 0. Therefore, we have that

(W s)0(k) � (W l)0(k)

for all k 2 [�k; ��k], with equality only at �k. This implies that the log-linear solution gives higher

utility to the right of �k.

We can also show that the opposite relation holds for k < �k: there, the log-linear solution gives

lower utility than that implied by any step function equilibrium with the same stationary point.
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We need to show that the utility W s(k) is higher than W l(k) for k immediately to the left of �k.

The function W s is continuous, but not di�erentiable everywhere to the left of �k. In the interval

(kn; kn+1), it is di�erentiable and strictly concave:

(W s)0(k) = u0(f(k)� kn+1)f
0(k):

At the step kn, W
s has a left-derivative and a right-derivative, but the former is strictly below the

latter:

(W s)0
�
(kn) = u0(f(kn)� kn)f

0(kn)

and

(W s)0+(kn) = u0(f(kn)� kn+1)f
0(kn):

Since W s(�k) = W l(�k), it is su�cient to show that (W s)0+(k) < (W l)0(k) for k very near and smaller

than �k. To do this, we have to compare

(W s)0+(k) =
�

k

1

1�
kn+1

Ak�

:

to

(W l)0(k) =
�

k

1

1� s
:

Clearly, we need to show that
kn+1
Ak�

< s �
���

1���(1��)
. This follows if we can show that

kn+1 <
���

1� ��(1� �)
Ak�n ;

since k � kn. Now we know that close to �k, fkng almost satis�es (from the linearization)

kn+1 �
�k = �(kn � �k);

where � (the non-unitary eigenvalue) equals
1���f 0(�k)

�(1��)
. This means that it is su�cient to show that

G(kn) � �kn + (1� �)�k �
���

1� ��(1� �)
Ak�n < 0

for kn < �k. To show this, �rst notice that since �k =
�

���A

1���(1��)

�
�1
, � simply equals �. The G

function therefore can be written

G(x) = �x + (1� �)�k �
���

1� ��(1� �)
Ax�:

Taking derivatives, we see that

G0(x) = �

�
1�

���

1� ��(1� �)
Ax��1

�
:

Using the expression for �k, we see that G0(�k) = 0. But since G0(x) is increasing, we conclude that

G0(kn) < 0 for kn < �k, and the proof is complete.
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