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ABSTRACT

Gross Credit Flows*

This Paper contributes to the empirical and theoretical knowledge of gross
credit flows: the simultaneous process of credit expansion and contraction
associated with a net change in the aggregate quantity of credit. Empirically,
the Paper summarizes heterogeneity in the banking industry by estimating
gross credit flows for the entire US banking system between 1979 and 1999.
The empirical exercise shows that sizeable gross flows coexist at any phase
of the cycle, even within narrowly defined regional units and bank size
categories. Furthermore, the Paper finds that aggregate credit contraction is a
concentrated series, which implies that a burst in credit contraction is followed
by prolonged periods of low contraction. Theoretically, the Paper proposes a
matching model in which financiers have to spend time and resources to
expand credit to heterogeneous entrepreneurs. The outcome of the model
resulting from the combination of idiosyncratic shocks and asymmetric
adjustment to positive and negative aggregate shocks appears consistent with
the empirical properties of aggregate credit flows.
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NON-TECHNICAL SUMMARY

Aggregate changes in the quantity of credit arguably represent one of the
most important macroeconomic variables for policy-makers, and a large
literature has studied the dynamic adjustment of net credit. By definition, the
change in the quantity of credit is the result of two different processes: the
extension of new loans, and the cancellation of expired and non-performing
loans. In a given period, banks are active on both sides, screening new
applicants to reduce information asymmetries, and investing time and
resources to recover non-performing loans. These activities generate
simultaneous aggregate gross flows of credit expansion and credit
contraction, shaping the observed dynamics of net credit flows. Surprisingly,
the empirical and theoretical knowledge of gross credit flows is still very
limited. This Paper is an attempt to fill this gap.

Empirically, the Paper uses bank level data on the entire US banking system
to construct aggregate statistics that summarize the process of credit
expansion and contraction between 1979 and 1999. More specifically, it
summarizes the process of credit expansion (contraction) by aggregating
positive (negative) changes in credit across individual banks, using The
Report of Condition and Income Database. It constructs aggregate flows at
guarterly and yearly frequencies and shows that sizeable gross flows coexist
at any phase of the cycle, even when banks are bunched together in terms of
regional and/or size characteristics. On average, gross credit flows appear
four times larger than net credit flows, and heterogeneity across states and
bank size groups can only partially account for the large rates of credit
reallocation, where the latter is defined as the sum of aggregate gross credit
expansion and contraction. Furthermore, credit contraction is a concentrated
series, which implies that a burst in one period is followed by prolonged
periods of low contraction.

Understanding the magnitude and the dynamic of gross credit flows has
important policy and macroeconomic implications. Indeed, the Paper argues
that the transmission of aggregate shocks (including monetary policy shocks)
over the gross margins is likely to be asymmetric, with immediate
consequences for the dynamic response of credit to aggregate shocks.
Further, the Paper suggests that reallocative shocks to liquidity represent a
propagation mechanism of aggregate changes in net credit. Indeed, the
realization of reallocative liquidity shocks may raise credit contraction and,
with some delays, may raise credit expansion, with a temporary fall in
aggregate credit.

The Paper explores also the theoretical implication stemming from the
dynamic asymmetric behaviour between credit contraction and expansion.
Specifically, the Paper proposes and solves a dynamic matching model,



where homogeneous financiers actively search to establish investment
relationships with ex ante heterogeneous entrepreneurs. The model is used to
study the dynamic interaction of aggregate and idiosyncratic shocks on
entrepreneurs-financiers matches, and to analyse the response of the creation
and the destruction margins to stochastic shocks to the financier's outside
options, which can be interpreted as changes in money market rates. Indeed,
a dynamic stochastic version of the proposed model generates gross credit
flows that replicate the main dynamic properties of credit creation and
destruction.



1 Introduction

Net changes in the aggregate level of bank lending are the result of two endogenous gross
flows: the extension of new loans and the cancellation of expired and non-performing loans.
Banks are active on both margins, screening new applicants to reduce informational asym-
metries, and investing time and resources to recover non-performing loans. While both
activities are costly and time-consuming, they are intrinsically different, with potentially
important consequences for the dynamic behavior of aggregate credit. Although a large
literature has studied the dynamic adjustment of net credit,! the empirical and theoretical
knowledge on gross credit flows is still very limited. This paper is an attempt to fill that
gap. First, starting from the empirical evidence that banks behave heterogeneously and that
such heterogeneity can be only partially explained by regional and structural differences,
it constructs new aggregate time series of gross credit expansion and contraction. Second,
it analyzes the cross sectional and dynamic behavior of the constructed gross credit flows,
and shows that credit expansion and contraction feature asymmetric time-series properties.
Finally, it presents a new matching model of bank lending that mimics relatively well the
dynamic characteristics of the constructed series.

The obvious question that arises is what we do miss by ignoring the magnitude and the
dynamics of gross credit flows. This paper suggests two answers. First, the transmission of
aggregate shocks (including, possibly, policy shocks) over the gross margins is likely to be
asymmetric, with immediate consequences for the dynamic response of credit to aggregate
shocks. Second, the emphasis on gross flows suggests that reallocative shocks to liquidity can
represent a propagation mechanism of aggregate changes in net credit. Indeed, the paper
argues that as long as credit expansion is time consuming, a reallocation of liquidity across
heterogeneous banks is associated with an aggregate contraction of credit.

Empirically, we use bank level data on the entire U.S. banking system to construct aggre-
gate statistics that summarize the process of credit expansion and contraction between 1979
and 1999. Our methodology, which to our knowledge has never been applied to the study
of aggregate credit, has been extensively applied by Davis and Haltiwanger for studying the
aggregate consequences of heterogeneous labor adjustments (Davis Haltiwanger and Schuh,
1996). More specifically, we summarize the process of credit expansion and contraction
by aggregating positive (negative) changes in credit across individual banks, using the The

Report of Condition and Income database (Call Report Files) for the U.S. banking system

1See Friedman and Kuttner (1993) and references therein.



between 1979 and 1999.

We construct aggregate gross flows at quarterly and yearly frequencies, and show that
sizable gross flows coexist at any phase of the cycle, even when banks are bunched together
in terms of regional and/or size characteristics. On average, gross credit flows appear four
times larger than net credit flows, and heterogeneity across states and bank size groups can
only partially account for the large rates of credit reallocation.

Dynamically, credit expansion (contraction) rises (falls) during net expansion and falls
(rises) during net contraction (expansion). Furthermore, we detect an asymmetry in the
dynamic behavior of gross flows. In particular, credit contraction is a concentrated series,
which implies that a burst in credit contraction is followed by prolonged periods of low
aggregate contraction. This property does not find a correspondence in the process of credit
expansion.

The asymmetric dynamic behavior of credit expansion and contraction is novel, and
suggests that a matching model of the credit market, where credit expansion is costly and
time consuming, would neatly rationalize the dynamic properties of gross credit flows. Thus,
we propose and solve a stochastic matching model, where homogeneous financiers actively
search to establish investment relationships with ez-ante heterogeneous entrepreneurs. The
model allows us to study the dynamic interaction of aggregate and idiosyncratic shocks
on entrepreneurs-financiers matches, and to analyze the response of the creation and the
destruction margins to stochastic shocks to the financiers’ outside option. Indeed, a dynamic
stochastic version of our model generates gross credit flows that replicate reasonably well
the main dynamic properties of credit creation and destruction.

In reality, there are several reasons why lending may be a time consuming process, es-
pecially in intermediated capital markets in which asymmetric information is pervasive,
screening is costly and time consuming, and good investment opportunities may be difficult
to find.? In this paper, however, we do not deal directly with informational asymmetries,
even though we do model an aggregate form of credit-rationing. Specifically, we assume that
there is a positive probability that financiers’ liquidity and idle projects do not succeed in
finding each other in a given period. In other words, we assume that financial relationships
can profitably take place only after a financier and an entrepreneur have been randomly

matched.® This over-simplification, while extreme from the perspective of microeconomic

2In the case of existing bank-client relationships, these problems are potentially less severe. However,
financial institutions still need to evaluate the profitability of increasing exposure vis-a-vis an existing client.

3Den Haan, Ramey, and Watson (1999), Wasmer and Weil (1999), and Dell’Ariccia and Garibaldi (1998)
apply the theoretical ideas of the matching literature to capital market issues.



theory, is meant to capture in an aggregate model the time consuming character of credit
formation. In real life capital markets, credit contraction is also costly, as banks may incur
liquidation costs when cancelling a loan. However, at the aggregate level, credit contrac-
tion may not involve significant time delays, since a sizable component of aggregate bank
lending is represented by lines of credit, which banks can recall immediately. Whereas bank
lending expansion is time consuming and recovering non-performing loans is costly, buying
and selling money market funds (or t-bills) can take place at will and without delays. As a
result, the speed at which lending opportunities become available, and the cost incurred for
recalling liquidity are important determinants of the dynamic behavior of aggregate bank
lending.

The paper proceeds as follows. Section 2 describes the empirical methodology and defines
credit expansion and contraction. Section 3 describes the cross sectional characteristics of
gross credit flows, with particular emphasis on the role of regional shocks and bank size.
Section 3 presents also the dynamic properties of gross flows, emphasizing the asymmetries
between credit expansion and contraction. Section 4 introduces concepts and notation of our
theoretical framework, while section 5 solves the steady state model. Section 6 extends the
analysis to a full dynamic setting, and shows that the implications of our model are consistent
with the dynamic properties of credit expansion and contraction. Section 7 discusses the

relevance of our work, and concludes.

2 Empirical Methodology

This section briefly describes the data used in this study and introduces the methodology to

construct gross credit flows.

2.1 Data

The Report of condition and Income database (Call Report Files) represents an ideal data
set for studying heterogeneous behavior in the U.S. banking system.* The database contains
bank level balance sheet information for all banks regulated by the Federal Reserve System,
Federal Deposit Insurance Corporation, and the Controller of the Currency. Complete bal-
ance sheets are available from 1976:1 to 1999:4, but constraints on the availability of merger

information limit the sample that we consider to the period 1979:3 to 1999:3. The number

4The database is available on-line on the Federal Reserve Bank of Chicago server at address:
http://www.frbchi.org/RCRI/reri-database.html



of banks we study is reported in Table 1 and the corresponding total number of observations
is approximately 1,300,000.

During the period of our investigation, the U.S. banking system went through an intense
concentration process, leading to a reduction in the number of banks from more than 15,000
to less than 10,000. Table 1 summarizes in few aggregate statistics the dynamic evolution of
the banking system, and the distribution of credit across banks.® The first three columns of
Table 1 highlight the dynamics of the two components of the aggregate credit: the number of
banks and the size of the average bank. Clearly, as the former dramatically fell, the growth
of aggregate credit was driven by a large increase in the latter. Indeed, the value of the real
loans of the average bank more than tripled over the period 1979-1998, while aggregate credit
doubled. The last three columns of Table 1 summarize the dynamics of the dispersion of the
credit distribution across banks. The coefficient of variation and the Herfindahl index feature
a u-shape dynamics, with both measures falling until 1991, and rising again toward the end
of the period. The Gini coefficient, conversely, rose steadily over the last twenty years,
indicating a mild decrease in the inequality in the bank size distribution. These measures
suggest that despite the dramatic fall in the number of banks, the overall dispersion in the

distribution of real loans across banks has not changed markedly.

2.2 Constructing Gross Credit Flows

Our measure of aggregate credit expansion and contraction draws on a methodology success-
fully applied by Davis, Haltiwanger, and Schuh (1996) to construct job flows data. The basic
logic of the methodology is as follows. Starting from individual bank data, we say that a
bank expands (contracts) credit in a given period if the net change in the value of real credit
is positive (negative). Then, at the aggregate level, gross credit expansion is proxied by the
sum of all positive credit changes across banks; gross credit contraction is the sum of the
absolute value of negative credit changes across banks. Finally, dividing the aggregate gross
flows by a measure of aggregate credit, we obtain gross rates of expansion and contraction.
While working with real credit appears sensible, we also construct our gross measures with
nominal data, and show that the main properties of the two series are very similar.
Traditionally, there are two main shortcomings associated with this procedure. The
first problem refers to the obvious underestimation of gross flows, due to the fact that this

methodology (and our data) cannot identify simultaneous expansion and contraction within

5See Berger, Kashyap, and Scalise (1995) for a detailed analysis on the evolution of the banking system
in the ’80s and ’90s.



Table 1: Dynamic Evolution of the U.S. Banking System

Year® | Num. ? Av. ¢ | Agg. ¢ | Coeff. © | Herf. 7 | Gini 9
Banks Bank. Loan Var.

1979 14946 100 100 12.42 1.04 0.836

1980 15410 98.19 101.24 14.69 0.99 0.89

1981 15372 102.74 105.6 14.93 1.00 0.894

1982 15412 108.93 112.3 14.68 0.99 0.895

1983 15410 113.75 117.3 13.92 0.89 0.892

1984 15270 126.2 128.9 13.15 0.79 0.895

1985 15270 137.7 140.7 12.39 0.70 0.897

1986 15109 156.9 158.6 11.84 0.64 0.902

1987 14649 164.3 161.9 11.17 0.57 0.908

1988 14086 175.0 164.9 10.74 0.53 0.913

1989 13674 184.3 168.6 10.90 0.54 0.916

1990 13311 183.0 163.0 11.02 0.56 0.917

1991 12887 190.9 164.6 10.98 0.55 0.917

1992 12502 192.0 160.6 11.72 0.63 0.918

1993 12057 204.8 165.2 11.71 0.63 0.921

1994 11541 227.3 175.5 11.74 0.63 0.927

1995 11001 253.7 186.7 12.06 0.67 0.933

1996 10550 280.0 197.7 13.24 0.80 0.939

1997 10090 308.5 208.2 14.56 0.97 0.942

1998 9639 334.6 215.8 12.24 1.18 0.922

@ Data Refer to December

bNumber of banks with non zero real value of loans

¢ Index for the loan value of the average bank

d Index for the aggregate value of loans

€ Coeflicient of Variation of the the value of loans

f Herfindahl index (*100) for the U.S. banking system

9 Gini Coefficient for the loan distribution.

Source: Authors’ calculation.

the smallest unit of observation (the individual bank in this paper). The second problem
refers to the risk of overestimating gross flows, by recording spurious gross credit flows that
are due, in reality, to merger and acquisitions. There is nothing we can do to correct for
the first problem in the absence of data on individual loans.® However, data on mergers and
acquisitions allow us to correct for the second problem.

In the case of gross credit flows, the bias introduced by mergers and acquisitions is
particularly serious, as the U.S. banking system experienced a marked reduction in the
number of banks since the mid eighties (Table 1). Fortunately, we are able to clean the
data from spurious expansion and contraction by using a second database from the Federal

7

Reserve.” This “merger file” contains information that can be used to identify all bank

6The same underestimation problem exists in the gross job flows data compiled by Davis and Haltiwanger.
However, in our case there is also the possibility of overestimating gross flows due to the trading of loans
among financial institutions.

"Also this database is available on-line on the Federal Reserve Bank of Chicago server at address:
http://www.frbchi.org/RCRI/reri_database.html



acquisitions and mergers that have occurred between 1976 and 1999.% These data can be
merged with those from the Call Report files by using the bank identity code variables.

We start from the raw data on gross total loans as defined in variable RCFD 1400 of
the Call Report Files. This series reports total loans at the bank level for each bank in the
database, and corresponds to the variable traditionally used by the scholars of the credit
view, and was recently exploited by Kashyap and Stein (2000) in their empirical test of the
credit channel of monetary policy.? First, we express the data in real terms by dividing them

by the CPI.1° Next, for each bank i and period ¢, we consider the change in total real loans
Al = lig — lig 1, (1)

where [;; is a measure of real loans of bank ¢ at time ¢. Then, we proceed to correct this raw
changes for the actual mergers that occurred in the sample.

Consider a merger occurring between time ¢ and time ¢t — 1, between bank i (surviving
bank) and bank j (non surviving bank). In period ¢, the total credit of bank j will be zero;
while the total credit of bank ¢ will be equal to its own credit in ¢ — 1, plus the net change
in its own credit, plus the credit of bank j in period ¢ — 1, plus the net change in the credit
of bank j. The first difference of the raw data overestimates both credit creation and credit
destruction, as the whole credit of bank j in period ¢ — 1 would be improperly counted as
credit destruction and credit creation. To avoid this measurement error, in period t, we
subtract the credit of bank j in period ¢ — 1 from the raw difference in equation (1) for
bank 7, and add it to the difference for bank j.!! More formally, let’s consider the following

function:

_ | 1 if bank 7 acquires bank j between ¢ and ¢ — 1,
9:5(t) = { 0 otherwise, (2)

8Because of possible errors due to changes in the classification of bank assets, we chose to limit the
analysis to the period 1979-1999.

9The series RCFD1400 reports the aggregate gross book value of total loans (before deduction of valuation
reserves) at the bank level. It includes all bank’s loan, regardless of the maturity and the borrower type. It
includes also commercial paper issued by non financial institutions. Since, in reality, the liquidity of such
claims varies across firms we decided to leave such assets in our definition of total loans. A more detailed
description of the series can be found at: www.frbchi.org/RCRI/dictionary.html

10We also estimate flows working with nominal differences.

HThere were two exceptions to this methodology. First, in a number of cases the non-surviving bank was
split among numerous surviving banks. In that case, we assumed that each surviving bank absorbed an
equal share of the credit of the non-surviving institution. Second, in 13 cases (merger code 5) the acquired
bank j was split rather than absorbed, and it continued to exist after the merger. In those cases, we assumed
that Al;; = 0; and subtracted (I;,_1 —[;) from the total credit of the acquiring bank.




which keeps track of all the banks acquired by bank ¢ between time ¢t — 1 and t. Further, we
let ¢,(t) be an indicator function that keeps track of the banks that are accrued between ¢

and ¢ — 1, and whose expression reads

(3)

() = { 1 if bank ¢ is acquired between t — 1 and ¢

0 otherwise.

Hence, making use equations (1) and (3) we obtain the adjusted real difference in credit Aly,

whose expression reads

N
Alip = Alig =Y (D)l i1 — (1) Aliy. (4)

k=1
With this methodology we are able to correct for 90 percent of the mergers that occurred
over the period of our sample.!?

The final step to obtain aggregate gross measures requires a simple cross section aggre-
gation of positive and negative changes. The aggregate creation rate between time ¢ and
t —1 (POS,) is simply the relative sum of the individual banks’ “adjusted differences”, Aly
that resulted positive (divided by a measure of aggregate credit). More formally, POS; is

N -
Zumi}zo Al
~ .
Dzt lig—1

Similarly, gross credit contraction is the sum of the absolute values of the adjusted differences

POS, = (5)

of equation (4), where the summation is taken over all and only those banks whose “modified
differences” were negative between ¢ and ¢ — 1 (divided by a measure of aggregate credit).

Thus, its formal expression is
N -
Zmliko Al
—_—
Zi:l lig

From these measures of gross flow rates, it is immediately possible to obtain NFET;, the

NEG, = (6)

growth rate in net credit as
NET, = POS; — NEG;. (7)

Finally we introduce two measures of credit reallocation. First, we indicated with SUM; the

simple sum of gross credit flows

SUM, = POS, + NEG,, (8)

12For the other mergers, missing data and other mismatches prevented us from doing the correction.

7
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Figure 1: Gross Credit Flows in the U.S. Banking System, Quarterly 1979:3-1999:3

or the total reallocation of credit in a given period. Second, we indicate with EXC} the

reallocation of credit in excess of the net credit change, and its expression reads
EXC; = POS;+ NEG, — |[NET,|. 9)

EXC; ameasure of credit reshuffling across banks, and represents our estimate of the extant
by which credit is reallocated across banks. The next section presents and discusses the

aggregate measures introduced in this section.

3 Aggregate Credit Flows: Magnitude, Composition
and Cyclicality

The availability of quarterly observations allows us to obtain estimates of gross flows at
two different frequencies: quarterly and annual. Figure 1 plots in a single figure quarterly
credit expansion (POS) and credit contraction (NEG). Table 2 reports summary statistics
of the time series plotted in figures 1 and for the same gross measures obtained with yearly

frequencies.

3.1 Cross Sectional Properties

The first finding of Table 2 concerns the relative magnitude of gross and net credit flows, and

the observation that the latter are remarkably larger than the former. Roughly speaking,

8



Table 2 shows that the average quarterly net growth of 1 percent is the result of a simulta-
neous quarterly gross expansion of 3 percent, and a quarterly gross contraction of 2 percent.
If we work with nominal data, the net growth in credit in the typical quarter is about 2
percent, and such growth is associated with a 4 percent of gross credit expansion and a 2
percent of credit contraction. When measured at yearly frequencies, net credit grows at an
average rate of almost 4 percent, with a corresponding gross credit expansion of almost 9
percent and credit contraction of 5 percent. Excess credit reallocation, the expansion and
contraction in excess of net changes, is about 4 percent per quarter (or 8 percent per year),
implying that in a given quarter (year) four (eight) percent of the existing credit is reshuffled
across individual banks. In addition, we find that gross credit flows are large at all times,
and sizable credit destruction exists also in periods of very large net creation. In 1985 and
1986, when net credit flows grew by almost 10 percent per year, gross credit contraction was
still around 3 percent. These numbers neatly summarize the heterogeneity in the banking
system.

An obvious rationalization of the magnitude of credit reallocation at the aggregate level
is the existence of sizable regional shocks. Indeed, excess credit reallocation may simply
mask the fact that credit is moving across different U.S. states. To this purpose, Table 3
constructs measures of credit expansion and contraction within each U.S. state, and shows
that credit expansion and contraction coexist within each of the 50 states, albeit the average
level of excess credit reallocation falls from 4 percent at the aggregate level to some 2 per-
cent at the state level. In what follows, we analyze quantitatively the extent by which the
aggregate process of credit expansion and contraction reflects credit reshuffling across states
or simultaneous expansion and contraction within states. Thus, we construct an index of

within state credit reshuffling as
> INETy|
S SUM;

where J is the total number of categories (states) in the sample. If equation (10) is equal

withing =1 — (10)

to 0, than credit shifts occurs entirely across states, while a value of 1 reflects realloca-
tion occurring entirely within states. Table 3 shows that the average values of the index
within calculated at the quarterly frequency is equal to 0.42, suggesting that state shocks
can account only for about 55 percent of the aggregate process of credit expansion and
contractions.

Structural differences across banks may provide a second rationale for credit reallocation.

In particular, a large literature has underlined the heterogeneous behavior of banks in terms

9
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Figure 2: Credit Reallocation within states and aggregate change in credit

of size (see Bernanke and Lown, 1991, Kashyap and Stein, 2000 and references therein).
Roughly speaking, small and large banks are likely to react to shocks very differently. Thus,
it may well be that an important component of total credit reallocation is accounted for
by credit expansion and contractions across banks of different size. If that was indeed the
case, we would expect that gross and net credit flows within narrowly defined classes of
banks would turn out to be very similar. In Table 4 we report the estimates of gross credit
flows calculated by dividing the distribution of average credit over bank size in deciles. A
given bank is assigned to a given decile according to its relative positions in the bank’s size
distribution, where bank credit is calculated as the average credit across all quarters in which
the bank was active. Results in Table 4 suggests that the gross credit flows coexisting within
each decile are remarkably large, with a value of excess credit reallocation falling from 5.4
percent in first decile to 3.7 in the largest decile. Indeed, the index within calculated in terms
of bank size yields an average value of 0.3, suggesting that 70 percent of credit reshuffling

occur within banks of similar size.

3.2 Cyclical Properties

Next, we look at the cyclical behavior of the constructed macroeconomic series. In Figure
1, the 1979 and 1990-91 recessions are immediately notable, with gross credit contraction
being larger than credit expansion for more than one quarter. If we take NET changes

as a measure of the aggregate economic activity, the correlations of Table 5 can be used

10
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to study the behavior of our gross measures over the cycle. At both quarterly and yearly
frequencies, credit creation appears strongly positively correlated with net credit changes,
while credit destruction is negatively correlated with net credit changes. Credit expansion
and credit contraction are also negatively and significantly correlated, but with an actual
correlation value that is much smaller than the correlation between gross and net flows. We
believe this latter findings to be important, since a correlation less than one indicates that
the dynamic behavior of the two gross time series is not just the mirror image of each other,
and suggests the existence of additional information encoded in the gross flows. In any event,
the difference in the dynamic behavior of credit expansion and contraction becomes apparent
in the final part of this section, where we show that credit contraction is a concentrated time
series. Credit reallocation, the sum of credit creation and destruction, appears positively
correlated with net credit changes, but with a correlation coefficient that is significant only
at quarterly frequencies. In order to test the robustness of our simple correlation, Table
5 reports also the results of the correlation of gross flows with net flows in a small panel
data of gross flows at the state level. Overall, the results in Table 5 suggest that even when
controlling for state effects and time effects, the correlation between gross and credit flows

is the same as the one obtained in the simple aggregate statistics.

Table 2: Gross Credit Flows: Summary Statistics

NET POS NEG SUM EXC
Quarterly “Real” Flows:
Average 0.008 0.031 0.023 0.053 0.038
Standard Deviation 0.016 0.01 0.008 0.010 0.012
Minimum -0.039 0.003 0.009 0.030 0.006
Maximum 0.045 0.06 0.046 0.083 0.07
Coefficient of Variation 2.01 0.32 0.34 0.25 0.31
Annual “Real” Flows:
Average 0.035 0.090 0.054 0.14 0.100
Standard Deviation 0.042 0.026 0.024 0.023 0.037
Minimum -0.033 0.048 0.026 0.11 0.055
Maximum 0.127 0.153 0.117 0.20 0.18
Coefficient of Variation 1.2 0.28 0.44 0.2 0.034
Quarterly “Nominal” Flows:
Average 0.024 0.042 0.017 0.059 0.034
Standard Deviation 0.017 0.013 0.006 0.013 0.012
Minimum -0.006 0.016 0.002 0.026 0.004
Maximum 0.093 0.104 0.037 0.114 0.07
Coeflicient of Variation 0.70 0.30 0.35 0.22 0.035
Source: Authors’ calculation.

Table 2 reports summary statistics on the volatility of credit expansion and contraction.
In absolute terms, credit expansion is slightly more volatile than credit contraction, as indi-
cated by the standard deviation of POS and N EG. However, the comparison of the standard
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Table 3: Gross Flows Within States

State | NET | EXC | State | NET | EXC
AK 0.011 | 0.013 | MS 0.011 | 0.016
AL 0.016 | 0.011 [ MT 0.003 | 0.023
AR 0.011 | 0.026 | NC 0.020 | 0.009
AZ 0.016 | 0.019 | ND 0.007 | 0.02
CA 0.006 | 0.027 | NE 0.009 | 0.024
CcO 0.01 0.024 | NH 0.020 | 0.021
CcT 0.007 | 0.015 [ NJ 0.013 | 0.018
DC 0.005 | 0.017 [ NM 0.008 | 0.021
DE 0.043 | 0.036 | NV 0.023 | 0.015
FL 0.020 | 0.025 | NY 0.009 | 0.043
GA 0.021 | 0.033 [ OK 0.006 | 0.026

HI 0.015 | 0.008 | OR 0.013 | 0.022
IA 0.005 | 0.022 | PA 0.008 | 0.018
1D 0.014 | 0.009 | RI 0.012 | 0.016
IL 0.008 | 0.037 | SC 0.019 | 0.009
IN 0.008 | 0.018 | SD 0.014 | 0.025

KS 0.007 | 0.027 | TN 0.013 | 0.018
KY 0.012 | 0.015 | TX 0.008 | 0.031
LA 0.008 | 0.021 | UT 0.016 | 0.021
MA 0.019 | 0.019 | VA 0.014 | 0.014
MD 0.012 | 0.014 | VT 0.007 | 0.011
ME 0.009 | 0.013 | WA 0.014 | 0.021
MI 0.008 | 0.013 | WI 0.010 | 0.018
MN 0.009 | 0.019 | WV 0.008 | 0.018
MO 0.010 | 0.022 [ WY 0.003 | 0.027
Average Value of Within State Excess: 0.46

See equation 10

Source: Authors’ calculation.

deviation, a measure of absolute variability, does not take into account the fact that credit
expansion is, on average, twice as large as credit contraction. Thus, Table 2 reports also
the coefficient of variation, and shows that in relative terms credit contraction is marginally
more volatile then credit expansion at both quarterly and yearly frequencies. Figure 2 plots
net credit changes versus the within states component of credit reallocation. While there is
an overall negative correlation between the within index and net credit changes, an interest-
ing asymmetry emerges by separating periods of positive net changes to periods of negative
net changes, as we did in Figure 4. In tranquil times, when net credit changes are close to
zero, credit appears to be reallocated mainly within states. Conversely, when net credit is
growing fast or contracting very fast, credit is reallocated mainly across states. While we do
not exploit this finding in the present paper, we believe that this phenomenon is novel and
interesting, and should be exploited in future research.

As Hall (1999) has recently argued, if heterogeneity is important and microeconomic
adjustment can be instantaneous, aggregate gross flows should feature the concentration

property, which implies that a burst in microeconomic adjustment is followed by prolonged
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Table 4: Gross Flows Within Size Categories

Decile | NET POS NEG | SUM | EXC
1st 0.008 | 0.041 | 0.033 [ 0.075 [ 0.054
2nd 0.008 | 0.035 | 0.026 [ 0.062 | 0.044
3rd 0.009 | 0.034 | 0.025 [ 0.060 | 0.043
4th 0.009 | 0.033 | 0.024 | 0.057 | 0.041
5th 0.009 | 0.031 | 0.021 | 0.053 | 0.037
6th 0.009 | 0.031 | 0.021 | 0.052 | 0.037
7th 0.010 | 0.031 | 0.020 [ 0.052 | 0.035
8th 0.009 | 0.032 | 0.023 [ 0.055 | 0.040
9th 0.009 | 0.034 | 0.025 [ 0.059 [ 0.044
10th 0.008 | 0.030 | 0.022 [ 0.053 [ 0.037
Average Value of Within Size Excess: 0.71

See equation 10

Source: Authors’ calculation.

Table 5: Gross Credit Flows: Cyclical Characteristics

Annual Quarterly “Real” Nominal

Correlation Between Simple Simple Regression] Seasonal Simple
b

POS-NET 0.837 0.779 | 0.623 0.86 0.93
p-value 0.000 0.000 | 0.000 0.00 0.00
NEG-NET -0.803 -0.731 | -0.376 -0.78 -0.63
p-value 0.000 0.000 0.000 | 0.000 0.00 0.00
SUM-NET 0.089 0.084 | 0.24 0.20 0.65
p-value 0.724 0.450 | 0.00 0.06 0.00
POS-NEG -0.347 -0.442 | -0.590 -0.36 -0.31
p-value 0.158 0.000 | 0.000 0.00 0.00
@ Regressions of on net flows, with time and country effects:
POS;t =a; + BNET;; + vt + wyp; ¢ =1..50;t =1..79
 Seasonal Adjusted with a regression on seasonal dummies.
Source: Authors’ calculation.

periods of low adjustment. Thus, it seems natural to ask whether, with respect to gross
credit flows, concentration is detected along the expansion and/or the contraction margin.
In time-series jargon, a process is said to be concentrated when its current value is likely to
be lower if its values over a span of time up to the recent past have been higher. If d; is

a covariance stationary time series, the concentration function with lag 7 and window N is

defined as

- _E[dt |dy 7+ .dy v N1
" %(dt —r+ dt foNJrl)

, (11)

or as the negative of the coefficient of the regression of d; on the lagged moving average
%(dt _++ ...d; _r_ny1). For a window one observation wide, the concentration function is
simply the negative of the autocorrelation function. In the moving average representation
of a concentrated series, the coefficients on longer lags of the innovation are negative. An

innovation causes a unit increase in the series when it occurs, but causes lower future val-
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Table 6: Concentration of Gross Credit Flows

Flows Coefficient® p-value structure ?
CREDIT CONTRACTION

“Real Flows” 0.55 0.03 3,9
“Real Seasonal Adjusted” 0.44 0.02 3,9
“Nominal Flows” 0.21 0.14 3,9
“Nominal Seasonal Adjusted” 0.21 0.09 3,11
CREDIT EXPANSION

“Real Flows” 0.17 0.26 3,11
“Real Seasonal Adjusted” 0.06 0.61 3,11
?® Regression of gross flows on the lagged moving average,

? Refer to windows N, and lagged value 7. See equation 11.

Source: Authors’ calculation.

ues. While a concentration coefficient can be estimated as the negative of the coefficient
in the regression of d; on %(dt —++ ...d; _+_n11), the correlogram is a useful tool for diag-
nose concentration. The correlagrams of the series combining the driving process and the
concentration effect have the shape characteristics of a concentrated series except for the
low-order correlations. Estimation of a concentration coefficient with an appropriate lag 7
should reveal the effect of concentration even though it is obscured by the dynamics of the
driving process for the low-order coefficients. The detection of concentration is most effective
if the lag 7 is chosen just high enough to avoid contamination by the short-run dynamics of
the driving process, and window width, N, is chosen not so high as to extend the window
into ranges where the concentration effect has disappeared.

Our estimates suggests that only gross credit contraction is a concentrated series. Figure
4 shows the correlogram of credit contraction at quarterly frequencies. The first few auto-
correlation are positive, presumably reflecting the short-run dynamics of the driving force.
The preliminary inspection of the correlogram suggests a fairly long lag, indicating a fairly
persistent behavior of the driving force. At lag 9, the autocorrelation turns negative and
remains consistently negative through lag 20. The concentration coefficient with lag 9 and
width 3 is 0.55 with a standard deviation of 0.23, providing statistical unambiguous evidence
of concentration (p = 0.03). Figure 3 shows the correlogram of credit creation, and suggests
that there is no tendency for the autocorrelation of credit expansion to turn negative after
a few quarters. Indeed, a regression of credit expansion (pos;) on its lagged moving average
fails to find any significant concentration coefficient. To test the robustness of our findings,
Table 6 reports estimates of the concentration coefficients calculated on different time series:
real gross flows, nominal gross flows and seasonal adjusted flows. In all such series, gross

credit contraction features the concentration property, even though with nominal data the
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lag 7 is marginally longer. Conversely, there is no evidence on concentration in credit ex-
pansion. Further, we also tried to understand whether the concentration of aggregate credit
is detected across banks of different sizes. Regressions similar to that reported in Table 1 for
different bank sizes suggest that aggregate concentration is mainly linked to the behavior of

large banks.

3.3 Implications

There are two main messages from our empirical analysis. First, the banking system exhibits
a degree of heterogeneity that can not be fully accounted for by changes in aggregate credit
across states, and across banks of different size. Second, our decomposition of credit changes
into aggregate credit expansion and contraction has shown that the dynamic behavior of the
gross flows is very different and asymmetric, as indicated by the existence of concentration
in the credit contraction series. This, in turn, implies that heterogeneity is important, and
that along the contraction margin banks can act on their stock of credit. Such property
is absent over the creation margin, suggesting that expansion and contraction are different,
and that such difference is relevant at the aggregate level.

In the rest of the paper we provide an analytical framework for thinking about the
“churning lending market”, and for rationalizing the asymmetric dynamic behavior of credit
expansion and contraction. In the theoretical model that we propose, the combination of
a symmetric aggregate shock and an idiosyncratic shock generate a dynamic environment
that is consistent with a simultaneous process of credit reallocation across narrowly defined
units. Furthermore, our theoretical analysis features an asymmetric dynamic behavior of
credit expansion and contraction that appears consistent with the dynamics of gross flows

described in the present section.

4 The Theoretical Environment and the Model

We consider an economy populated by a continuum of risk-neutral financiers and risk-neutral
entrepreneurs. Entrepreneurs are endowed with projects of different qualities and seek
project financing. Financiers are endowed with liquid funds and seek investment oppor-
tunities. Entrepreneurs have no private source of funds, and the financiers are their only
source of external capital. Financiers, however, may invest their capital in two alternative
assets: money market bonds and project-loans. For simplicity, we assume that each en-

trepreneur is endowed with an indivisible project requiring an initial investment of $1 that
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is productive only when it is matched to a unit of financial funds. Since our focus is on
financial contracts, we assume that each financier is endowed with a single unit of liquidity.
As a result, we abstract from issues related to market structure in the financial system.

The entrepreneur population has mass 1. Entrepreneurs are heterogenous in the quality
of their projects. FEach project is characterized by a pair (z,\), where z € [z,7],is the
project’s return, and A is the instantaneous probability of the project being hit by a shock, a
Poisson process that measures the project’s idiosyncratic risk. When hit by an idiosyncratic
shock, a project changes its type according to the distribution function F'(z), which is a
continuous distribution function defined over the support [z, Z]. Finally, each project can be
in two different states, depending on whether or not it is matched to a financier’s capital. A
financed project is active and it produces its idiosyncratic dividend x while an un-financed
project is idle and does not yield any dividend.

The financier population has also mass 1. Each financier can invest her indivisible unit
of liquidity in two different assets: money market funds or project loans. We let the money-
market investment be risk-free, and we let r; indicate its instantaneous return. Financiers
are exposed to their own idiosyncratic shocks that strikes with instantaneous probability &.
When hit by such shock, the individual financier is forced to liquidate her investment. The
point here is to introduce shocks to the financial system that may interact with the orderly

13 'We assume that such liquidation has no consequences

functioning of the real economy.
when the financier’s capital is invested in the fully liquid money-market; while it involves a
loss B, when the capital is used to finance entrepreneurial projects. We want the shocks &
to represent a reallocation of liquidity across the banking system, and we thus assume that
in each instant a flow ¢ of liquidity comes into the economy. This, in turn, ensures that
aggregate liquidity (and the mass of financiers) is constant at all times.

We model credit expansion as a time-consuming process. When time elapses in a con-
tinuous way, as we assume in the rest of the analysis, money market investment can be
undertaken immediately, whereas loan expansion is time consuming. Similarly, we assume
that credit contractions involve real liquidation costs, while money market disinvestment are
costless.

Formally, an analytically convenient way to model credit formation as a time-consuming
process can be borrowed from the traditional matching literature (Diamond, 1982, and

Mortensen and Pissarides, 1994). In what follows, we assume that the number of credit

130ne possible interpretation of this liquidity shocks is that they represent the reduced form of bank runs.
More on this later.
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applications that are fully screened and evaluated in a given interval of time is described by
a unique function of few aggregate variables: the stock of capital in the money market, and
the mass of idle projects.!* In other words, we are assuming that in the economy, during a
short period of time 6t, there is a positive probability 1 — adt that a unit of liquidity and
an idle project do not succeed in finding each-other.’® As a result of this assumption, the
economy is characterized by aggregate (and stochastic) credit rationing.' Formally, we do
not need to specify whether banks meet entrepreneurs randomly over time, or whether banks
find new projects at an infinite speed but their screening technology is intrinsically time-
consuming. In either case aggregate credit formation is time consuming, and the parameter
a captures this property in a simple way.

When a unit of financial liquidity and an idle project match, all ex-ante uncertainty is
resolved, and the financier immediately learns the type of the project. An active project,
however, remains subject to idiosyncratic risk at rate A. For the entrepreneur, the realization
of the shock represents an immediate change in its productivity. For the financier, a shock
to a financed project brings changes to the income generated by the associated loan. A
shock may be large enough to make a project economically not viable (negative surplus),
and separation takes place, but at a cost T'. This captures the idea that bankrupt firms have
assets that can potentially be liquidated, but only via a costly process. A second cause of
contract termination is an idiosyncratic liquidity shock to the financier. When such shock
strikes, the financier is forced to withdraw the liquidity, and the project, independent of its
type z, goes back to its idle state.

The existence of credit rationing as a result of a finite o generates a pure economic rent
to be split between entrepreneurs and financiers that successfully match. As a result, to
formally close the model, we need a sharing rule that determines the interest rate charged
to different projects. We follow the standard matching literature and assume that the total
surplus generated by an active project is continuously shared in fixed proportions, and we
let 3 represents the financier’s share. Thus, the financial contract of this model, which we
often improperly call “loan” for purposes of exposition, does not see the entrepreneur as

the residual claimant. Note that, because of the liquidation cost, the outside option for the

14This assumption implies that the amount of capital invested in existing loans does not affect the num-
ber of applications screened. Relaxing this assumption would make the analytic of the model much more
cumbersome, but it would not alter its conclusions.

15Formally, this can be model as a matching function. Our framework is similar to the simple form of
constant return to matching in the two-sided search model of Burdett and Wright (1998).

16We can also say that the banking system issues new loans with an average waiting time i
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financier changes once her capital has been invested in a specific project. For that reason
financiers will keep alive projects of a type that they would not finance from an ex-ante point
of view, meaning before sinking their investment.

Financiers choose a search strategy that maximizes the expected value of their capital:
they select a decision rule that describes whether to finance a specific project, whenever it
becomes available. Since the present value of financing each entrepreneur is monotonic in
x, the financier decision rule satisfies a “reservation” property. We show that in equilibrium
each bank selects an ex-ante cut-off quality x., such that for projects of quality lower than z.
financiers prefer to keep their funds in the money market, and an ex-post cut-off quality x4,
such that all active projects that fall below x4 are liquidated at cost T. Obviously, for 7" > 0,
we will have z, > x4. The equilibrium of the model will be represented by a couple (z., z4)
resulting from the financiers’ maximization problem. In the next section, we describe the

model in greater detail.

5 Steady State Analysis

This section presents and solves the steady state model, with an exogenous and time invariant
money-market interest rate, ry.

In what follows, we will indicate with V' (z) and J(x) the present discounted values to an
entrepreneur of type x of an idle project and an active project, respectively. The discount
rate, p, is assumed constant over time and equal for financiers and entrepreneurs. Let’s start
with V(z). Even though idle projects do not yield any dividend, their present discounted
value may still be positive, by virtue of the expected capital gain associated with successful
matching. An additional capital gain term reflects the fact that the project may change type

with instantaneous probability .17 We can thus write

(p+a+\)V(z) = amax [J(z) — A V()] + A / V(2)dF(z) (12)

"We will show that in equilibrium some types are not financed. We interpreted the matching function
as the reduced form of a time consuming stochastic screening process. However, as some types have zero
incentive to search, the equilibrium is not generic, meaning that an epsilon positive searching cost would
lead such types out of the market conditionally on the banks always screening. In that situation, the only
equilibrium would be one in mixed strategies where banks mix between screening and not screening applicant
borrowers and entrepreneurs with low type idle projects mix between applying and not applying for credit.
This is result is fully consistent with the Diamond paradox, and is common to many search models.
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where the max operator indicates that entrepreneurs have always the option to leave their
projects inactive. The term A is a transfer that takes into account the different outside option
of the financier before and after having sunk her investment into the project (its function will
be clearer in a moment). Active, or financed, projects yield an instantaneous dividend equal
to their type z. In addition, their discounted value contains two capital gain/loss terms. The
first is introduced by the probability of a change in their productivity/type; the second by
the probability that their financier suffers a liquidity shock and is forced to recall the loan.

We can write the value of an active project of type x as
(p+A+8)J(x)=x—r(z)+ )\/max [J(2); V(2)]dF(2) + &V (x) (13)

where, again, the max operator indicates that conditional on A striking, entrepreneurs have
always the option of going back to the idle state.

Now, look at the financier side. In what follows, we will indicate with D and C(z) the
present discounted values to a financier of deposit on the money market and of loan extended
to a type x project, respectively.

The discounted value of a unit of capital invested in the money market is determined by
the risk-free interest rate, r4, and by a capital gain term introduced by the probability of a

successful matching with an entrepreneurial project. We can write

(p+a+&)D= rd+a/max C(2) + A: D] dF(2) , (14)

where, again, the term A is included to keep into account the different outside option of the
bank ex-ante and ex-post; while the maz operator indicates that financiers have the choice
to refuse credit to applicant borrowers. Note that the capital gain term is expressed as an
average, as financiers know only the distribution of applicant borrowers and discover their
individual type only after the screening has successfully taken place. Active projects of type
x, pay an interest rate r(x). In addition, their discounted value contains two capital gain/loss
terms. The first term is introduced by the probability of a change in the type of the project;
the second by the probability that the financier itself is forced to liquidate the loan. Then,
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we can write the value of a unit of capital invested in a loan of type = as
(p+ A48 C@) = r(2) + A / max[C(2): D — T|dF(2) — €B | (15)

where the max term indicates that the financier has always the option to liquidate the project
at the cost T', and cut losses after a shock occurs.

For the financiers, creating a financial relationship with an entrepreneur is optimal as
long as C(x) + A > D; while it is optimal to maintain a previously established relationship
as long as C'(x) > D — T. Similarly, for entrepreneurs, activating an idle project is optimal
as long as J(x) — A > V(x); while it is worth to maintain it as long as J(z) > V(z). The
surplus ex-ante, meaning when the investment has not been sunk and outside option is D,

can be written as
So(z) = [J(z) = V()] + [C(x) — D]. (16)

The surplus ex-post, meaning when the loan has been granted and liquidating the project

would involve the cost T', can be written as
Si(z) = [J(z) = V()] + [C(z) = D + T,
obviously, we have
Si(x) = So(z) + T . (17)

As long as T > 0, there will be a difference between the outside option of the financier
before and after sinking the loan investment. Consequently, there will be a difference be-
tween the value of a match ex-ante and ex-post, with repercussions on the allocation of the
associated surplus between investor and financier. Since C(x) is the value of a financial
relationship ex-post, equation (14) introduces a lumpsum transfer A for taking into account
the fact that upon meeting, and only upon meeting, the financiers obtain C'(x) plus a side
transfer. To solve the model, we need an exogenous sharing rule that determines how fi-
nanciers and entrepreneurs divide the surplus generated by the match. Assuming that the

rule is such that financiers get a fixed share 3 of the surplus, we have

BS(z) = Clz) =D+ A;(1-p)S(x)=J(x) - D—-A; (18)
BSi(x) = Cz) = D+T;(1-p)Si(x) = J(z) — D;
A = (1-p)T. (19)

21



Equation (18) reflects two features characteristic of matching models. First, it is prof-
itable for the financier and the entrepreneur to establish (maintain) a credit relationship as
long as the total surplus is positive. Second, there is agreement between the financier and
the entrepreneur over which projects should be financed. Note that, in this model, there is
an additional cause of project destruction represented by liquidity shocks to the financiers.
The interpretation of such shocks is discussed in detail in the last section of the paper.'®
Finally, equation (19) shows that the entrepreneur transfers upfront a side payment identical
to its share of the liquation cost. This shows that the liquidation cost, even if technically
paid by the financier, is actually split in fixed proportions. We are now in a position to
define a stationary equilibrium.

A Stationary Equilibrium is defined as a set of two reservation margins (z., z4), an interest
rate rule r(z), a side payment A, and a set of balance flow conditions

such that

e financiers and entrepreneurs solve the financial entry decision;
e financiers and entrepreneurs solve their separation decision;

e the distribution of types is time invariant.

In the appendix, we prove that both surplus functions are increasing in z, and we show
that a simple restriction on the parameters guarantees the existence of a unique equilibrium.*®
In equilibrium, no project of type x < z. is ever financed, and no project of type x < x4 is
ever kept active. On the plan (X, X;) the equilibrium can be identified as the intersection
of two functions representing the locus Sy(z.) = 0, and the locus Sy(z4) = 0, respectively.

Formally, (z.,x4) is the solution of the system

Te—1q— NOT —EB+ H (ze,24) = 0,
Tg—rq+(p+&T —EB+ H (xe,1q) = 0,

18Tn brief, we introduced these shocks as a reduced form of a model where financiers have both an asset
and a liability side. In such a model, financiers would have first to collect funds from depositors and, then,
engage in lending. To the extent that depositors and entrepreneurs would not be able to bargain directly,
this kind of framework would entail inefficient destruction (the destruction of financially viable projects) if
depositors had to withdraw their funds for liquidity needs.

9The restriction is R: a < p+ ¢ .
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. From which it follows immediately that
Ta — T = (p+ &+ AT,

or that x4 < x. as long as T' > 0. Since the entry margin entry margin is upward sloping
and contraction margin is downward sloping (Figure 5), the equilibrium is unique.

Note that in equilibrium, the continuum of projects can be divided in four categories ac-
cording to their type, , and their state, active or idle. First, there is a mass j, of Good Active
Projects. They represent entrepreneurs that are financed and active, and whose idiosyncratic
type is above the entry margin, or x > .. Second, there is a mass j, of Bad Active Projects.
These are entrepreneurs that are currently active, but would not be refinanced if freshly
met on the market. When originally financed, these were highly productive projects with a
type ¢ > x., and later deteriorated because of negative idiosyncratic shocks, such that their
current type lies between x,. and x4. This group of projects is kept alive because of the cost
of liquidation T" and the associated loans can be considered “stuck liquidity”. Third, there is
a mass vy of Good Idle Projects. These are entreprencurs that would get liquidity if they met
a financier, and are such that their current idiosyncratic type z is above the entry margin,

or x > x.. Finally, there is a mass v, of Bad Idle Projects. These are idle projects that in
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Figure 6: Endogenous Partition of the Distribution of Projects

their current state would be turned down by financiers, but could become a profitable match
if they were hit by a positive idiosyncratic shock. Formally, they correspond to all the idle
entrepreneur whose type is below the entry margin, or x < x.. Symmetrically, there will
be a mass of financial liquidity d = v, + v, invested on the money market, a mass ¢, = j,
lent to good entrepreneurs, and a mass ¢, = j, stuck on non-performing loans. Obviously,
U+ Vg +Jp+Jg=d+cy+cy =1

In steady state the mass of projects in each type/state is constant. Then, we can derive
the steady-state values of vy, vy, jsand j, by imposing that inflows and outflows in each

type/state are balanced. The balance flow condition for bad entrepreneurs is
[AF(z4) + A1 = F(zc)) + Eljo = [AF(zc) — AF(24)]jy (20)

where the left hand side is the outflow and the right hand side is the inflow. Outflows
consist of bad projects that transit into bad idle projects because of a negative idiosyncratic
shock or a shock to their financier, and of projects that become good because of a positive
idiosyncratic shock. Inflows correspond to good entrepreneurs that are hit by a negative
shock to their productivity and end up with a type z € [ x4, ). Next consider the flows for
the bad idle projects. The balance condition yields

AF(z4)vg + [AF(24) + &) = A[1 — F(xc)]vp - (21)
The left hand side simply says that active projects (good and bad) flow into the bad vacancy
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state when hit by a negative shock that brings their type below the exit threshold or, for
bad projects only, when their financier is hit by a liquidity shock. Such inflows into the
bad idle state are balanced by the outflows consisting of project leaving the bad idle state
because of sufficiently large positive idiosyncratic shocks. Projects stop being “good idle
projects” when successfully matched with a financier or when hit by a sufficiently negative
idiosyncratic shock; new good idle projects consist of bad idle projects hit by positive shocks
and by good active projects that turn idle in response to a shock to their financier. The

balance condition yields
avy + AF(z)v, = N1 — F(z)]op + €jg - (22)
Finally, the balance condition for the good active projects reads
oy + A(L = F(e)js = V() + €l (23)

where outflows correspond to good active projects which are hit by negative shocks and turn
into bad active projects or are liquidated. Inflows are new matches and bad active projects
turning good. The system consisting of three equations among (20), (21), (22), (23), and

the condition that their sum equals one yields unique solution for j, , jy, vp, and v,.

5.1 Comparative Statics

We are now in the position to analyze a number of comparative static results. In particular,
we are interested in the relationship between the entry and exit thresholds and the parameters
that define the general economic environment of the model.

Let us consider changes in the outside option of the financiers, the money-market rate

rq. First, let us define

p+ &+ AF(zy)
al@ae) p+A+E
B A B A—af B
Hzaze) = [p+)\+§ p+)\+§+a(1—ﬂ)](1 Fze))
N1 —F
agn) = AT

which are all strictly positive. Then, by totally differentiating the two margins with respect

to r4 and applying Kramer’s rule, we obtain

Or. Oxq 1 -0
org  Org  a(zar.)(1+b(ram.)) + b(zaze)c(T47) '
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An increase of the money-market rate raises both thresholds. The intuition is straightforward
and goes as follows. When the return on the alternative investment increases, financiers
become more choosy with respect to entrepreneurial projects and require higher returns
both to start a lending relationship and to keep an existing one alive.

Now consider the effect of a reduction of the liquidation cost 7. Such changes could be
interpreted as improvements to the bankruptcy law that allowed financiers to recover their
investment more swiftly and cheaply. Again, by totally differentiating the two margins with

respect to T" and applying the Kramer’s rule, we obtain

dr. _ a()M—(p+&el) _
T a()(A+0()+b()c()
ra (140l +E+HON _
aT a() (L + () + b()e()

As expected the exit threshold decreases with T'. Hence, improvements to the bankruptcy law
would reduce the amount of “stuck liquidity” facilitating the relocation of funds from project
that are no longer profitable to new investment opportunities. However, the relationship
between T and the entry threshold is ambiguous. The net effect is the result of the negative
effect of T on surplus, that would raise x., and the indirect effect on the financier’s immediate
gain, through A, that decreases x.. It can be shown that the sign of the derivative is the
same as for § — (1 — F(zg)) .

Finally, consider changes in B, the loss suffered by financiers when they are hit by a lig-
uidity shock while their funds are invested in illiquid projects. Following the same procedure
as above we obtain

Ooxr. Oxg 19

9B ~ 9B _ a() (1 b0) 160

Not surprisingly, an increase in B raises both thresholds. As the loss associated to a liquidity
shock increases, financiers require a higher premium to hold illiquid assets relative to the

fully liquid money-market investment.

6 Aggregate Stochastic Shocks and Simulations

This section shows that our theoretical framework is consistent with most dynamic charac-
teristics of gross credit flows presented in the empirical section of the paper. To this purpose,
this section extends the stationary model solved in the previous sections into a fully dynamic

stochastic model with aggregate shocks, which we choose to model as stochastic changes in
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the financiers’ outside option. However, we first provide an intuitive explanation of why our
model is consistent with the cyclical behavior of gross flows.
Credit contraction is governed by the endogenous destruction margin, x; and the exoge-

nous reallocative shocks &. Formally, the credit contraction rate is defined as
cc=AF(xq)+¢& (24)

where A\F (x4 ) is the rate at which financial relationships are interrupted. Credit expansion
is governed by the probability that an idle project has instantaneous return grater than the
entry margin. From the discussion in the previous section it is clear that such probability

depends from the ratio of good to bad idle projects, and its formal expression reads

Vg

problV(z) > V(z. )| =

Vg + Up
where v, and v, are defined by the balance conditions (21) and (22). The credit expansion
rate reads

Vg 1—-c
Vgt v C

J (25)

ce = of

Let us consider what happens in the aftermath of a change in r4. Larger r; values lead to a
lower stock of financial contracts ¢, thus indicating a fall in net flows. Our main interest is
linked to the behavior of gross flows. Our comparative static result has shown that larger
values of r; increase the destruction margin x4. Thus, credit destruction increases and moves
countercyclically. Conversely, a larger r; makes financiers “more choosy”, and reduces the
proportion of good idle projects in the economy leading, through equation (25), to lower
credit expansion. Thus, credit expansion moves with the aggregate stock of credit.

Further inspection of equations (25) and (24) suggests that our model implies interesting
dynamic asymmetries. First, ce is likely to be a relatively persistent process, since its dynamic
behavior is linked to that of aggregate credit. Second, credit contraction is a jumping
variable. Consider what happens when there is an increase in r;. Equation (24) suggests
that there is an immediate burst in credit contraction, since the reservation value jumps,
and all financial relationships between the new and the old reservation values are liquidated.
Thereafter, credit contraction stays high, but at a lower value than the one reached in the
aftermath of the change in r;. This burst in credit contraction, followed by lower values of
credit contraction, suggests that credit contraction is likely to be a concentrated process. The

next section shows that a dynamic version of our model is able to reproduce a correlogram
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similar to that featured by the aggregate gross credit flows. Note that the dynamic behavior
of credit contraction does not find counterpart in the behavior of credit expansion in the
aftermath of a fall in r4. Indeed, inspection of equation (25) suggests that credit expansion
rises, and thereafter continues to increase, albeit at a slower rate. As a consequence, credit
expansion should not feature the concentration property, in a way consistent with what was

observed in the empirical exercise.

6.1 Aggregate Stochastic Shocks

We now looks at the dynamics of gross flows in a more formal way. This requires solving an
aggregate dynamic stochastic version of the stationary model solved in the previous sections.
To this end, we need to consider an explicit aggregate driving force, which we assume to
be a stochastic change in the financiers’ outside option r4. In this section, we assume that
aggregate conditions move stochastically across n states, indexed by the level of the money
market rate 7%, with 75 > 5™, Aggregate shocks are described by the elements 7;; of a
nzn stochastic matrix that keeps track of the probability that the financiers’ outside option
jumps from state ¢ to state j. From the analysis of the previous section, it is clear that for
each value of the outside option 7%, the system is characterized by two reservation values [z’
x4] with 2! < z%, . In the appendix, we sketch the methodology for solving for pairs x, z,
1=1...n.

The comparative static results of the previous section let us infer that, in general, since
r > it gl > 2t and 2% > 2. Further, for analytical simplicity we assume that 2% <
so that the 2n reservation productivities sort along the distribution F' in a monotonic fashion,
with all the exit margin preceding the entry margins. This conjecture must then be confirmed
numerically in equilibrium. Since we assume that aggregate shocks are anticipated, we need
to spell out a set of aggregate state contingent value functions for the various states. If we
indicate with C*(z) the value to the financier of a contract with idiosyncratic return = when

the aggregate state is 1, its value function reads

(n+Ximy) CH(z) = r'(x) + )\/max [C(2); D' — T] dF(z) — €B + (26)
+2T; m;x [CY(z); D =T ,

where, for analytical simplicity, we have indicated n = p + A + £. In equation (26) the

aggregate stochastic shocks introduce an additional source of credit contraction, since in the
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aftermath of a change in r4, the financier may find optimal to sever the relationship and put
its funds in a money market deposit. The value of the latter, when aggregate conditions are

1 reads
(n+Ximi;) D' =1 +a / max [C(2) + A; D] dF(2) + Smi; D7,

where the aggregate realization of the shock does not imply any new element of choice for
the financiers, since they simply alter the value of investing in the deposit. Similarly, the

value function for an idle entrepreneur V*(x) reads
(n+ Ximy) Vi(z) = amax [J(x) — A; V(2)] + )\/V(z)dF(z) + B VI ()
while the value of a financed project J*(z) reads

(n+Xmy) J'(z) = z—1"(z)+ )\/max [J(2); V(2)|dF(2) + &V (x) +
+ ¥,m;; max [;J (); VI (x) = T1,

where the latter capital gain term reflects the fact that upon the realization of the aggregate
shock the entrepreneur may be better off idle. Proceeding as in section 4, there will be now
two surpluses for each aggregate state 7, S’(x) and Si(z), where, as in the steady state,
the difference between the two surpluses is a simple function of the liquidation cost T'. The
2n cut off are obtained as a solution of a non linear system of 2n equations S'(z%) = 0,
Si(x%) = 0 for i = 1..n. The appendix sketches a two steps procedure for obtaining such

solution.

6.2 Numerical Simulations

In the rest of this section, we present a numerical simulation of the aggregate stochastic dy-
namic version of the model. This forces us to work with discrete time, and to make a specific
set of assumptions on the sequence of events. In what follows, we assume that aggregate
conditions are determined at the beginning of each period and stay constant throughout.
Thus, following the realization of the aggregate shock, the entry and the exit margins are

determined. At this points new matches are formed and unprofitable matches are severed.
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Finally, the new stocks are determined. If ¢/ ; is the stock of credit at end of period ¢ — 1
with aggregate conditions j, we indicate with 7, and with 27, the reservation values at

time ¢, after the aggregate conditions ¢ are realized. Credit expansion reads
v

l, .
g,t 1- CZ—I

cep = a— - :

Vgt T Ve iy

where the proportion of good idle projects depends only on the productivity relevant at time

t,(xh, xL,). Credit contraction reads

i
Ta,t

cr = €+ AF(zy) + 6, / j(2)dz (27)

Ta,t—1

where ¢, is an indicator function that takes the value of 1 if z;, > fEit_l and 0 otherwise.
This last term is one of the key mechanism of our theoretical framework and reflects the
one off adjustment of credit contraction in the aftermath of an adverse aggregate shock.
In equation (27), j(z) is a measure of the financial contracts at productivity z, and its
expression is governed by the dynamic counterpart of the balance flow equation presented
in the previous section.

In the simulations, to make the mechanism of our model as transparent as possible,
we assume that there are only two states: aggregate conditions switch between 7! and r?,

where state 1 indicates the “tight” regime and state 2 the “easy”

regime. The rest of the
parameters are indicated in Table 7. Chart 7 shows a time profile of two hundreds periods of
credit expansion and contraction. Spikes in credit contraction are observed in few periods,
while credit expansion appears a much more persistent process, with increases in expansion
followed by a slow adjustment process back to the steady state values.

Now, let us compare these simulated series with the gross flows constructed in the em-
pirical section of the paper. First, Table 7 shows that credit expansion (contraction) move
procycically (countercyclically) in a way similar to that observed in gross and net credit
flows. Furthermore, the correlation between credit expansion and contraction is negative,
although lower than the correlation between the observed gross flows and net flows. Second,
the most important results of our simulations, concerning the asymmetric dynamic behavior
between credit expansion and contraction. Figures 8 and 9 plot the correlogram of credit
expansion and contraction from our simulated series. Whereas the autocorrelation of credit
expansion is positive for 13 lags, the dynamic structure of credit contraction suggests the
existence of concentration. After the first few lags, the autocorrelation of credit contraction

turns negative, and stays negative throughout. Thus, in the model, credit contraction is a
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Figure 7: Credit Expansion and Credit Contraction from the model.

concentrated series. This asymmetric dynamic behavior suggests that our theoretical anal-

ysis is fully consistent with the dynamic behavior of gross flows in the U.S. banking system.
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Figure 9: Autocorrelation Function of Credit Expansion
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Table 7: Simulation Statistics

Variables Notation Value
matching probability a 0.06
pure discount rate p 0.04
reallocative shock 13 0.04
arrival rate idiosyncratic shock A 0.10
arrival rate liquidity shock P 0.04
liquidation cost T 4.00
bankruptcy cost B 10.00
int. rate tight rl 0.08
int. rate easy r2 0.06
Aggregate Statistics

Average Net Flows Net -0.0001
Average Expansion Pos 0.0470
Standard Dev. Expansion opOS 0.0006
Average Contraction Neg 0.0470
Standard Dev. Contraction ONEG 0.0019
Corr. Net Pos 0.61
Corr. Net Neg -0.97
Corr. Pos Neg -0.39

F' is uniform with Z =2 and z =0

Source: Authors’ calculation

7 Discussion and Conclusions

We have presented theory and evidence on gross credit flows, the simultaneous process of
credit expansion and contraction associated with a net change in the aggregate level of credit.
Empirically, we have summarized heterogeneity in the U.S. banking system by constructing
aggregate measures of credit expansions and contractions. Our empirical exercise has shown
that sizable gross credit flows coexist at any phase of the cycle, even within narrowly defined
regional units and within small partition of the bank size distribution. Furthermore, credit
contraction is a concentrated series, which implies that a burst in one period is followed by
prolonged periods of low values. Theoretically, we have proposed a matching model in which
financiers have to spend time and resources to expand credit to heterogeneous entrepreneurs.
The combination of idiosyncratic and aggregate shocks, and asymmetric adjustment between
credit expansion and contraction appears consistent with the characteristics of aggregate
credit flows. In this section, we emphasize the relevance of our theoretical and empirical
frameworks, and we suggest few directions for future research.

The concentration of aggregate credit contraction has important policy implications. If
the aggregate shocks to the money-market rate emphasized by our theoretical analysis are
interpreted as policy innovations, our framework provides new insights on the dynamic effects
of monetary policy on aggregate credit. Indeed, the propagation of interest rate changes over

the banking system depends crucially on the reaction of two different margins: the banking
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system’s ability to find and screen new projects, and the banking system’s ability to recall
existing loans. Since these processes are inherently different, bank lending will respond
asymmetrically to positive and negative innovations. Hence, the design and implementation
of monetary policy should take into account the asymmetric lag structure between policy
contractions and policy expansions, and react consequently. In particular, as a significant
part of the stock of credit may consist of unused credit lines, it is likely that banks are able
to contract credit much faster than they can expand it. Indeed, such dynamic asymmetry
appears fully consistent with the concentration of aggregate credit contraction. In addition,
Dell’ Ariccia and Garibaldi (1998) estimate the impact of monetary policy shocks on net flows,
and find evidence of asymmetry: aggregate credit reacts more sharply to policy contractions
than to policy expansions.

Our theoretical analysis suggests that reallocative shocks to liquidity can be an addi-
tional source of dynamics in aggregate credit. In our model, liquidity is reallocated across
the banking system at the instantaneous rate £. Following the realization of a liquidity shock
&, the liquidity allocated to a financier ceases to be available, and forces the financier into
bankruptcy whenever such liquidity is invested in entrepreneurial projects. Thus, the real-
ization of reallocative liquidity shocks may raise credit contraction and, with some delays,
may raise credit expansion. Since credit expansion is time consuming, aggregate credit tem-
porarily falls. Furthermore, the size of the impact of reallocative shocks on aggregate credit
depends on the percentage of liquidity invested in credit relationships, and is thus likely
to be more important in periods of fast net credit expansion. In the real world, interbank
markets are likely to alleviate the burden of reallocative shocks, by giving to financiers that
have illiquid, but solvent, positions the opportunity to borrow against their assets. How-
ever, we know that some banks, and those of lower size in particular, have not unlimited
access to the interbank market. Thus, we are convinced that the source of aggregate credit
dynamics emphasized by our paper is important, and future research should try to quantify
its empirical relevance.

In addition, as long as the interbank market provides only imperfect insurance against
liquidity shocks, our theoretical analysis suggests also that reallocative shocks lead to ineffi-
cient separations. Following a & shock, otherwise active, entrepreneurs cease production and
remain idle, and are forced to undergo a new round of screening. In such circumstances,
there would be obvious room for an exogenous injection of liquidity, and a roll-over of the
financial relationships that came to an abrupt halt.

Future research should try to address efficiency considerations related to gross credit

34



flows. The magnitude of gross credit reallocation depends clearly on the average duration of
financial contracts, and it is probably difficult to establish a link between rates of credit real-
location and efficiency measures in the banking system. However, we may still ask whether,
for a given average duration of financial contracts, larger rates of credit reallocation are in-
deed desirable. Our model suggest that liquidation costs limit the banks’ ability to recall the
invested capital, and leads to lower credit reallocation in equilibrium. Thus, measures aimed
at speeding up the liquidation process (e.g. improvements in bankruptcy laws, increased
enforcement of property rights) are likely to be welfare improving. Other things equal, the
lower is the liquidation costs, the higher is credit reallocation and the higher is the ability of
the banking system to reallocate liquidity from less productive to more productive projects.
One immediate consequence is for the analysis of banking crises. Countries characterized by
higher liquidation costs will suffer more when hit by aggregate and/or reallocative shocks.
Indeed, the amount of liquidity allocated to unproductive projects would be higher, with

direct consequences on banks’ health and aggregate output.

Appendix
A. Equilibrium Existence

The surplus function implied by

Solz) = ﬁ T —r— 3T — EB+ A / max[So(2) + T: 0] dF(z)  (28)
—aﬁ/max [So(2); 0] dF(z) — a(1 — B) max[Sp(x) » ;0] . (29)

does not satisfy the Blackwell conditions for a contraction. However, we can prove equilibrium existence
and uniqueness directly by applying the Contraction Mapping Theorem. Equation (28) implies as mapping
function T" : S — S; where S is a space of bounded real functions with a metric d defined by

dW,Y) = [W -Y| I/IW(Z) —Y(2)[dF(2). (30)

Ata
pHAE?

other parameters of the model. We can, then, state the following proposition that guarantees the existence

In addition, define a sort of discount factor, ¢ = depending on the actual discount factor, p, and

of a unique fixed point:
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Proposition 1 Ify <1, forany W, Y € R, 3 p € (0,1) such that |T(W) -T(Y)| < ||W -Y].
Proof. ;From Eq. (28) we can write for any x

[T(W(2)) - T(Y(2))] =

1 T
;:y:gA/fmeWd+ﬂﬂﬂ—mmh«@+Tmnww@

+aﬁ/}nmxpx@¢n—nmxnvgxm}dpg)

+a(1 = B) {max[Y(x); 0] — max[W (z); 0]}

by applying the triangular inequality, we obtain

[T(W(x)) = T(Y ()]

A
pHA+E

/ {max [W(z) 4+ T;0] —max [Y (z) + T;0]} dF(z)

«

B
P

a(l - p)
pHA+E

[ e (0] = masx [(2):0]} aF ()

+

Imax[Y (2); 0] — max[W(x); 0]| .

Now consider the first term on the rhs. By applying the triangular inequality again we can write

/ {max [W(z) + T;0] —max [Y(z) + T;0]} dF(z)

< / |max [W(z) + T;0] —max [Y(z) + T;0]| dF(2) .

Furthermore, we know that Vz
Imax [W(z) + T;0] —max [Y'(2) + T;0]] < [(W(2) + T) — (Y(2) + T)| = [W(2) = Y(2)|

that means

T

x

S/ﬁWdewMﬂd;

z

/ {max [W(z) + T;0] —max [Y(z) + T;0]} dF(z)

z

similarly, for the second term we have

x

g/ﬁW@—Y@MN@;

z

/hme@%m—meW%mhw@)

and for the third term,

Imax[Y (2); 0] — max[W(x); 0]| < [W(x) - Y (2)|.
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Finally, putting the three terms back together, we can write

1TV - T < /(p+§+§/vwa—Y@ww@>

p+A+£/| AN dF(:)
ol f) |
p+A+£IV@>—Y@>)wwa,
as 7dF(z) =1, it follows directly that
[Tw) T < p+A+§/' 2| dF ()
p+A+£/| )| dF ()

a1 5)
+p+A+§/ﬁV@)fY@NMWA,

and substituting from (30),

W(z) —Y(2) dF < )| dF
[ -velare < +A+£/| )| dF ()
)| dF
p+A+£/\ | dF ()
)| dF(z) .
p+A+£/\ | dF ()
Then a sufficient condition for T to be a contraction mapping is
A 1-—
af N a(l —3)

ptA+E p+A+E pHA+E

or
a<p+€.

qg.d.c. l
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B Monotonicity of the Surplus Functions
Proposition 2 If f(z) > 0 for any x € [z,7], the surplus function So(z) and Si(z) are increasing in .
Proof. We can write

So(z) = C(z)— D+ J(z)—-V(z),
Si(z) = So(z)+T,

and substituting using Equations (12), (13), (14), and (15), becomes

(p+A+8)So(x) = x—r—)\T—§B+)\/max[51(z);0]dF(z)

—af / max [So(2); 0] dF(2)

—a(1 — B) max[So(x); 0].

sFrom which it follows immediately that

Sh(@) = ¢ L vz | So(z) < 0

p+A+§)
and

1
(p+A+E+a(l—0))

Sy(z) = Va | So(x) > 0

which shows that the surplus So(x) an increasing function of x. Analogously, for Si(x) we have

, 1

Sl(l'):m VI|51(£L') <T
and
, _ 1
Sl(x)4p+/\+§+a(1fﬁ) Vo |Si(z) >T
g.d.c.

C Stochastic Dynamic Model

The system is described by 2n value functions for the surpluses S;(x) and Si(x) whose expression read

(n+ imij)Si(z) = x—1y—EB— AT + A/maX[Sf(z); 0]dF(z) (31)

—aﬁ/maX[Sé(z);O]dF(z) + ¥y max[S? (z); 0]
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and
(n+Sim)Si(z) = @—r)— §B+(p+§T+)\/maxS’() 0dF(2) (32)

—aﬁ/max[Sé(z); 0]dF (2) + gy max[S](x) + T 0]

for ¢ = 1...n. The 2n reservation productivity are defined as S{(xzi) = (0 and Sé(a:f:) =0fori=1..n.
Differentiating the previous expressions with respect to  shows that each surplus function is a piece wise
linear increasing function of x, with n kinks corresponding to the values of the reservation productivities.
The first step of the procedure is to solve the linear system obtained by differentiating equations (32) and

. . . . . . . 081
31) with respect to x. The solution to the linear system yields the partial derivative == = dj 1, and
p y y p 1

; ox
% = dk,o for k = 1..n. The expected values in the surplus function can then be computed as
!
d
/max [S¢(2); 0]dF(2) /S’dF Zd,ﬂ/ (1 — F(2))d(z)
and
zg Zh
/max (57 (2): 0)dF () = /S@dF Z d,w/ (1— F(2))d(2)
xl

c

The second step in the procedure requires solving for xé—mithe non linear system of (2n) equation given
by

k41

0 = :vil—rfi—£B+(p+§)T—§B+)\de;,1/:d (1—F(z))d(2)
k=1 Tg

Z o / (1 — F(2))d(2) + Sy max]S] (24); 0]

and

k+1

0 = xz—rg—gB_AT—gBHde,O/d (1—F(2))d(z)
k=1 g
k+1

Zd,“ / (1= F(2))d(2) + Sy max[Si(2.): 0]

foralli=1...n
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