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ABSTRACT

Idiosyncratic Investments, Outside Opportunities and the
Boundaries of the Firm*

This Paper adopts the incomplete contracting perspective to study a firm’s
continuous choice between producing an essential input in-house (full
integration), contracting part of the production out (tapered integration), and
contracting all of the production out (non-integration), when (i) an idiosyncratic
capacity investment is required to produce the essential input and (ii) under
non-integration, outside opportunities are better. We show that the firm’s
boundary choice depends crucially on its commitment power. If the firm can
pre-commit to a particular provision mode, tapered integration will be chosen
more frequently. Also, with commitment power the firm will never subcontract
only a small portion of its input needs.

In-house capacity is in general smaller and outside capacity larger if the firm
can pre-commit. Total capacity is never larger in the commitment than the
non-commitment case.
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NON-TECHNICAL SUMMARY

Until the mid-1990s, most of the buns used by McDonald’s in Austria were
imported from Germany. The long distance of transportation and the resulting
logistical problems were a thorn in the flesh of Andreas Hacker, then active
head of McDonald’s-Austria. He urged the small Austrian baker Kurt Mann
into a daring investment. Mann was supposed to build a complete new burger-
buns-factory near Vienna at the cost of 140 million Austrian schilling (at that
time about 14 million dollars). The catch was that the 140 million ATS capacity
investment was highly idiosyncratic and McDonald’s refuses to make binding
commitments with its suppliers on principle: no contract, no guarantees for
purchasing, not even a written commitment guaranteeing not to
quasi-expropriate the future subcontractor ex post with future investments in
capacity by McDonald’s itself. To cite Martin Knoll, the current chief of
McDonald’s-Austria: ‘Contracts are hollow words, we do not like to deal with
voluminous contracts’. Mann had to take an enormous risk. However, he
decided in favour of the investment. Today his firm has about 320 employees,
it delivers about 90 million buns per year to McDonald’s and its yearly turnover
amounts to 300 million ATS (about 22 million dollars).

The McDonald’s example raises several interesting questions. Among others:
Why has no contract been agreed upon, specifying in advance the quantity
and quality of buns to be delivered for all realizations of demand? Why did the
future subcontractor trust in McDonald’s to keep its non-enforceable promise
not to provide additional capacities itself to produce buns in the future? And
finally: Why did McDonald’s not make this idiosyncratic investment itself?

The present Paper focuses on the last of these questions. It studies a firm’s
choice between producing an essential input in-house (full integration), buying
it from an outside supplier (non-integration) and doing a combination of both
(tapered integration) in presence of idiosyncratic investments in capacities. To
capture the situation described above we adopt the incomplete contracting
perspective of Grossman and Hart (1986) and Hart and Moore (1988). That is,
we assume (1) that high transaction costs prevent the parties from writing
detailed ex ante contracts contingent on the quantity and quality of the input to
be delivered or on the idiosyncratic capacity investment to be made; (2) that
ex ante profit-sharing agreements are infeasible since the relevant choice
variables are unverifiable; and (3) that ex post trading decisions are
contractible.

In such a situation it is well known that ex post bargaining involves the threat
of hold-up leading to insufficient ex ante investment in the relationship-specific
capital. Thus, idiosyncratic investment together with contractual
incompleteness provides an internalization advantage. So, for subcontracting



to be optimal in some circumstances there must be an offsetting cost of in-
house production.

In the example above, the offsetting cost of integration seems to be that,
under non-integration, outside opportunities are better: Mann uses idle
capacities (that is, capacity units not employed to satisfy McDonald’s input
requirement) in cooperation with the Austrian sausage producer Trunkel. This
cooperation supplies burger-like food to chain stores. It is hardly imaginable
that McDonald’s could do the same without provoking a significant negative
impact on the demand of its own burgers. Direct demand interdependencies
are only one possible reason for the loss-of-outside-opportunities cost of
integration. Another possible reason is that idle capacities can only be used to
produce an alternative, low margin input, which is useless outside the
respective industry. Then a vertically integrated firm would have to sell the
input to rival firms that may be reluctant to buy from an integrated competitor
especially if the quality of the input has the characteristics of experience
goods.

In the present Paper we do not explicitly formalize the loss-of-the-outside-
opportunities cost of integration, although this could easily be done. Instead,
we use the short-cut assumption that the independent subcontractor (but not
the integrated firm) has access to an intermediate good market where he can
sell the input at a constant price. We use the resulting trade-off between
transaction cost benefits and outside opportunity losses of vertical integration
to study how changes in the subcontractor’s bargaining power and his outside
opportunities affect a firm’s boundary choice.

We show that for each price at the intermediate good market there exists a
unique critical level of bargaining power such that full integration prevails if the
subcontractor’s bargaining power is smaller than this critical level and tapered
integration whenever it is larger. Non-integration, although always the socially
optimal provision mode, never emerges as an equilibrium outcome.

Also, neither the firm’s nor the subcontractor’s profit is monotone in the
subcontractor’s bargaining power: if the subcontractor’s bargaining power is
very low (very high, respectively) a Pareto improvement can be obtained by
raising (reducing) it. In an intermediate range, the subcontractor may prefer to
have less power while the firm would prefer that the subcontractor is tougher!

Other details depend upon whether the firm can pre-commit to a particular
provision mode or not. If it can do so, then tapered integration will be chosen
more frequently. Also, with commitment power, the firm will never subcontract
only a small portion of its input needs. In-house capacity is smaller and
outside capacity larger if the firm can pre-commit. Total capacity is never
larger in the commitment than in the non-commitment case.





1 Introduction

Until the mid-nineties, most of the buns used by McDonald’s in Austria were

imported from Germany. The long way of transportation and the resulting

logistical problems were a thorn in the flesh of Andreas Hacker, then active

head of McDonald’s-Austria. He urged the small Austrian baker Kurt Mann

into a daring investment. Mann was supposed to build a complete new

burger-buns-factory near Vienna (Austria) at the cost of 140 million Austrian

Schilling (at that time about 14 million Dollar). The catch was: The 140

million ATS capacity investment was highly idiosyncratic (the alternative use

value of standardized McDonald’s buns is fairly low)1 and McDonald’s refuses

to make binding commitments with its suppliers on principle: no contract, no

guarantees for purchasing, not even a written commitment guaranteeing not

to quasi expropriate the future subcontractor ex post with future investments

in capacity by McDonald’s itself. To cite Martin Knoll, the current chief of

McDonald’s-Austria: “Contracts are hollow words, we do not like to deal with

voluminous contracts”.2 Mann had to take an enormous risk. However, he

decided in favor of the investment. Today his firm has about 320 employees,

it delivers about ninety million buns per year to McDonald’s and its yearly

turnover amounts to 300 million ATS (about 22 million Dollar).

1McDonald’s buns are a high-tech product and very special machines are needed for

their production: The maximal deviation from the exact directories for the buns height is

one millimeter. Each bun must weigh exactly 60 grams, etc.
2The original German cite (“Verträge sind Schall und Rauch, wir beschäftigen uns nicht

gern mit voluminösen Verträgen”) and many other details of our story in the main text

originate in an article by Karl Riffert with the title “Mann o Mann” in issue 2/2000 of the

Austrian business magazine “Trend”.
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The McDonald’s example raises several interesting questions. Among others:

Why has no contract been agreed upon, specifying in advance the quantity

and quality of buns to be delivered for all realizations of demand? Why

did the future subcontractor trust in McDonald’s to keep its non-enforceable

promise not to provide additional capacities itself to produce buns in the

future? And finally: Why did McDonald’s not make this idiosyncratic in-

vestment itself?

The present paper focuses on the last of these questions: It studies a firm’s

choice between producing an essential input in-house (full integration), buy-

ing it from an outside supplier (non-integration) and doing a combination

of both (tapered integration) in presence of idiosyncratic investments in ca-

pacities. To capture the situation described above we adopt the incomplete

contracting perspective of Grossman and Hart (1986) and Hart and Moore

(1988).3 That is, we assume (1) that high transaction costs prevent the par-

ties from writing detailed ex ante contracts contingent on the quantity and

quality of the input to be delivered or on the idiosyncratic capacity invest-

ment to be made; (2) that ex ante profit sharing agreements are infeasible

since the relevant choice variables are unverifiable; and (3) that ex post trad-

ing decisions are contractable.

In such a situation it is well known that ex post bargaining involves the

threat of hold-up leading to insufficient ex ante investment in the relationship-

3See Hart and Moore (1999) and Maskin and Tirole (1999) for a beginning of a rigorous

foundation of the theory of incomplete contracts based on the assumption that complicated

states of nature cannot be verified.
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specific capital.4 Thus, idiosyncratic investment together with contractual

incompleteness provides an internalisation advantage. So, for subcontracting

to be optimal in some circumstances there must be an offsetting cost of in-

house production.

In the example above the offsetting cost of integration seems to be that under

non-integration outside opportunities are better: Mann uses idle capacities

(that is, capacity units not employed to satisfy McDonald’s input require-

ment) in a cooperation with the Austrian sausage producer Trunkel. This

cooperation supplies burger-like food to chain stores. It is hardly imaginable

that McDonald’s could do the same without provoking a significant negative

impact on the demand of its own burgers. Direct demand interdependencies

are only one possible reason for the loss-of-outside-opportunities cost of in-

tegration. Another possible reason is that idle capacities can only be used to

produce an alternative, low margin input which is useless outside the respec-

tive industry. Then a vertically integrated firm would have to sell the input

to rival firms which may be reluctant to buy from an integrated competi-

tor especially if the quality of the input has the characteristics of experience

goods.5

In the present paper we do not explicitly formalize the loss-of-the-outside-

opportunities cost of integration, although this could easily be done along the

4See e.g. Klein, Crawford and Alchian (1978), or Williamson (1979, 1985).
5Suppose a producer can lower the quality of the standardized input without cost. Then

integration may cause a firm to supply its downstream competitors with lower quality

than a technologically inferior independent producer would supply. In such a situation

integration leads non-integrated downstream firms to shift their purchases away from the

integrated firm.
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lines described in Footnote 5 above. Instead, we use the short-cut assumption

that the independent subcontractor (but not the integrated firm) has access

to an intermediate good market where he can sell the input at a constant

price. We use the resulting trade-off between transaction cost benefits and

outside opportunity losses of vertical integration to study how changes in

the subcontractor’s bargaining power and his outside opportunities affect a

firm’s boundary choice.

It turns out that another important factor affects a firm’s boundary choice.

Namely, whether the firm can precommit to a particular capacity level or

not. In the McDonald’s example reputational effects seem to allow the firm

to effectively precommit itself to a certain capacity level: McDonald’s faces

the same situation repeatedly in many different countries. In such a context

it is well known that the firm may be willing to incur the short-run cost

of not adjusting its capacity ex post to get the Stackelberg payoff in future

relationships.

This paper studies a firm’s boundary choice, both for the commitment (or

Stackelberg) and the non-commitment (or Cournot-Nash) case. The main

features of our model are as follows: A downstream firm, the manufacturer,

has a stochastic requirement for a particular input. The needed quantity of

the input can either be produced internally or a part or all of it can be bought

from an upstream firm, the subcontractor. Both, the manufacturer and the

subcontractor, have access to the same input technology. This technology

requires an idiosyncratic capacity investment. If a firm has a certain capac-

ity level, it can produce any quantity of the input not exceeding capacity

at constant marginal cost. The subcontractor has access to an intermediate
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good market where he can sell the input at a constant price. To capture

the idea that the capacity is specifically designed for producing the input

needed by the manufacturer (idiosyncratic investment) we assume that the

subcontractor is unable to recover his cost by serving only the intermedi-

ate good market.6 When nature has determined the manufacturer’s input

requirement, the two firms bargain on whether some amount of the input

will be delivered from the subcontractor to the manufacturer, and if yes,

how many units will be traded and at which price. If trade takes place the

surplus made in the trade is divided among the parties according to their

bargaining power.

In our model the bargaining power of the parties plays a crucial role in

the boundary decision: We show that for each price at the intermediate

good market there exists a unique critical level of bargaining power for the

subcontractor. Full integration prevails if the subcontractor’s bargaining

power is smaller than this critical level and tapered integration whenever it

is larger. Non-integration, although always the socially optimal provision

mode, never emerges as an equilibrium outcome.

Also, neither the manufacturer’s nor the subcontractor’s profit is monotone

in the subcontractor’s bargaining power: If the subcontractor’s bargaining

power is very low (very high, respectively) a Pareto improvement can be

obtained by raising (reducing) it. In an intermediate range, the subcontractor

may prefer to have less power while the manufacturer would prefer that the

6This assumption has the implication that the subcontractor would not invest in ca-

pacity, but for the prospect of selling a significant amount of the input to the downstream

firm. Williamson (1985, p.95) calls this kind of asset specificy “dedicated asset specificy”.
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subcontractor is tougher!

Other details depend upon whether the manufacturer has commitment power

or not. If she has, then tapered integration will be chosen more frequently.

Also, with commitment power the firm will never subcontract only a small

portion of its input needs. In-house capacity is smaller and outside capac-

ity larger if the firm can precommit. Total capacity is never larger in the

commitment than in the non-commitment case.

The present paper is related to several strands of previous work. The idea

that independent subcontractors have better outside opportunities than ver-

tically integrated firms has been around in literature at least since Arrow

(1975). In a large part of the literature this basic idea is hidden behind other

assumptions: Porter (1980), Williamson (1985) and Lewis and Sappington

(1991), for example, assume that outside subcontractors have a production

cost advantage compared to fully integrated firms. This production cost ad-

vantage is motivated by the argument that subcontractors are often able to

aggregate diverse demands, thereby realizing economies of scale and scope.

This argument assumes, of course, that vertically integrated firms are unable

to do the same, i.e., that their outside opportunities are worse.

A model of the boundaries of the firm displaying a similar basic trade-off

as our model (namely that between governance cost advantages and produc-

tion cost disadvantages of vertical integration) has earlier been studied by

Williamson (1985). A main difference to the present work is that Williamson

does not explicitly deal with the parties’ investment decisions. These deci-

sions enter rather indirectly through the specification of governance costs.

By contrast, we explicitly model the strategic interactions of the parties at

6



the investment stage of the game thereby deriving the “governance costs”

endogenously.

The present paper is also related to Grossman and Hart (1986) and Hart and

Moore (1990)’s incomplete contracting theory of the firm. Consistent with

this work we identify a firm with the assets that its owner controls and take

the position that ownership confers residual rights of control, i.e., the right

to decide how the firm’s assets are to be used if no ex ante contract has been

signed. We depart from the Grossman, Hart and Moore (GHM) framework

by assuming that outside opportunities change by bringing assets inside the

firm. Another major difference concerns the investment/integration deci-

sions. While in the GHM framework the degree of vertical integration is co-

operatively determined ex ante followed by the non-cooperative investments

of the two parties, the non-cooperative investments themselves determine the

degree of vertical integration in our model. Also, investments are strategic

complements in the GHM framework while they are strategic substitutes in

the model studied in the present paper.

The rest of the paper is organized as follows: Section 2 introduces the basic

model. Section 3 derives the profit functions and discusses the resulting

properties of the reaction functions. Section 4 presents the main results.

The paper ends with some concluding remarks in Section 5. Some proofs are

given in the appendix.
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2 The Model

A downstream firm has exclusive access to a final good market. On this

market it can sell a maximum quantity of X at a constant price p. The

quantity X is a random variable uniformly distributed on the interval [X, X̄]

with 0 ≤ X < X̄ < ∞.7 Production of the final good requires an essential

input that the downstream firm, M (for manufacturer), can either provide

internally or buy from an upstream firm, S (for subcontractor). Both M

and S have access to the same input technology. This technology requires

an idiosyncratic capacity investment. Capacity can be purchased from a

competitive outside market at a constant price q > 0. If firm i ∈ {M,S}

has a certain capacity level, it can produce any quantity of the input not

exceeding capacity at a constant cost which is normalized to zero. For ease

of exposition, we assume that M needs exactly one unit of the input (in

addition to other inputs) to produce one unit of the final good and that

M ’s cost of transforming the input into the final good is zero. Furthermore,

p > q, so that installation of sufficient capacity and carrying out production

would always be worthwhile if M knew the quantity demanded at the outset.

S (but not M) has access to an intermediate good market. At this market

he can sell the input at a constant price φ > 0. To capture the idea that

capacity is specific to the production of the input needed by M we assume

that φ is strictly smaller than q.

7To motivate this assumption, one can imagine that the firm is a monopolist facing a

demand curve made up of unit demands. Potential customers have one of two possible

valuations for one unit of the good: either 0 or p. The number of customers with valuations

p is the random variable X mentioned in the text.
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The assumed time and information structure is as follows: At stage 1 M and

S choose their capacity levels kM and kS. We consider two different cases.

In the first case each firm i ∈ {M,S} chooses its capacity level taking the

capacity level of the second firm as given. We refer to this as the Cournot-

Nash case, emphasizing the simultaneous nature of the underlying game and

its formal similarity to the model of Cournot competition. The second model

considered is Stackelberg leadership by M . Here, the assumption is that M

can commit to a given capacity level while anticipating the optimal response

of S. In both cases both firms know the distribution of X but not its ac-

tual realization when making their capacity decision. Later, at stage 2, X

is realized and becomes publicly observable. Then bargaining takes place

between the two firms on whether inputs will be delivered from S to M and,

if yes, how many units and at which price. Bargaining takes the following

form: With probability α, S makes a take-it-or-leave-it offer to M ; with

probability 1− α, M makes a take-it-or-leave-it offer to S. This bargaining

procedure implies that S obtains, on average, a fraction α of the bargaining

surplus. The latter is defined as the value in excess of the threat point pay-

offs. We take the non-cooperative solution in which M relies exclusively on

internal provision and where S serves only the intermediate good market as

the threat point in the bargaining process.8 Production takes place in stage

3. If an agreement between M and S was reached in stage 2, this agreement

is carried out. Then markets are served.

8See De Meza and Lockwood (1998) and Chiu (1999) for a different interpretation of

threat points and outside options in bargaining.
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3 Preliminary Results

To solve the firms’ stage 1 capacity choice problem we first look at the stage

2 bargaining problem taking the capacity levels of the two parties as given.

3.1 The Stage Two Bargaining Problem

Let the subcontractor’s stage 2 stand-alone payoff for a given price at the

intermediate good market be denoted by AS(kS|φ) . This payoff is given by

AS(kS|φ) = φkS. Similarly, the manufacturer’s stage 2 stand-alone payoff

is given by AM(kM |p,X) = pmin{X, kM}. To determine the bargaining

surplus, denoted by B(kM , kS|φ, p,X), we have to distinguish three different

regions in the demand space. These regions (denoted by R1 to R3) are defined

in Figure 1.

Insert Figure 1

Consider first Region 1. If demand falls in this region, then M can produce

the whole input requirement internally. Hence, the bargaining surplus in this

region is zero. In Region 3, on the other hand, M is able to buy kS units of

the essential input from S that couldn’t have been produced in-house. Thus,

in Region 3 the bargaining surplus is the market price of the final good minus

the price at the intermediate good market times S’s capacity level. A similar

reasoning for the intermediate range R2 reveals that the bargaining surplus

10



at stage 2 is

B(kM , kS|φ, p,X) =


0 for X in R1

(p− φ)(X − kM) for X in R2

(p− φ)kS for X in R3.

Given our assumption on the outcome of the bargaining process the payoffs

of the two firms at stage 2 are

AS(kS|φ) + αB(kM , kS|φ, p,X) (1)

for the subcontractor and

AM(kM |p,X) + (1− α)B(kM , kS|φ, p,X) (2)

for the manufacturer.

3.2 The Subcontractor’s Capacity Choice Problem

If we substitute the values for AS(kS|φ) and B(kM , kS|φ, p,X) in the sub-

contractor’s stage 2 payoff function (1), take the expectation with respect to

X (taking into account that X̄ is in R3
9), and subtract S’s capacity costs

qkS we obtain S’s stage 1 profit function denoted by ΠS(kM , kS|φ, α, p, q).

Whenever there is no risk of confusion we will use the shorthand nota-

tion ΠS(kM , kS|φ, α). As is easily verified, for α ∈ [0, 1] and φ ∈ (0, q),

9That X̄ is in R3 follows from the fact that (a) kM is necessarily smaller than X̄ since

capacity units in excess of X̄ are costly for the manufacturer without providing her with

any benefit, and (b) choosing kS > X̄ − kM can never be optimal for the subcontractor

since capacity-costs exceed the profit opportunities at the outside market.
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ΠS(kM , kS|φ, α) is given by

ΠS(kM , kS|φ, α) = α(p− φ)(X̄ − kM − kS

2
)
kS

X̄
− (q − φ)kS.

Setting the derivative with respect to kS equal to 0, solving for kS and taking

into account that S’s capacity cannot be negative yields S’s reaction function

kS(kM |φ, α) =

[
α(p− φ)− (q − φ)

α(p− φ)
X̄ − kM

]+

, (3)

where [y]+ stands for max{0, y}. According to this reaction function, the

subcontractor will either invest zero, or he will choose the difference between

the amount of capacity he would buy if he was allowed to serve all the

demand at the final good market and the amount of capacity provided by

the manufacturer by herself.

3.3 The Manufacturer’s Capacity Choice Problem

If we substitute the values for AM(kM , p,X) and B(kM , kS, φ, p,X) in the

manufacturer’s stage 2 payoff function (2), take the expectation with respect

to X and subtract M ’s stage 1 capacity costs qkM we obtain M ’s stage 1

profit function. We denote this function by ΠM(kM , kS|φ, α, p, q) and use the

shorthand notation ΠM(kM , kS|φ, α). It is given by

ΠM(kM , kS|φ, α) = p(X̄ − kM

2
)k

M

X̄
− qkM

+(1− α)(p− φ)(X̄ − kM − kS

2
)k

S

X̄
.

(4)

3.3.1 The Cournot-Nash Case

In the Cournot-Nash case, the manufacturer chooses her capacity level taking

the subcontractor’s capacity investment as given. Setting the partial deriva-

tive of ΠM(kM , kS|φ, α) with respect to kM equal to 0, solving for kM and

12



taking into account that M ’s capacity cannot be negative yields M ’s reaction

function

kM(kS|φ, α) =

[
p− q
p

X̄ − (1− α)
p− φ
p

kS
]+

. (5)

That is, for any given vector (φ, α), kM(kS|φ, α) gives the manufacturer’s

optimal response to the subcontractor’s capacity choice. A pair (kM , kS)

satisfying (3) and (5) is a Cournot-Nash equilibrium of the simultaneous-

move capacity game, which we denote by (k̃M(φ, α), k̃S(φ, α)). It has:

k̃M(φ, α) =


X̄ − αq−(1−α)(q−φ)

α(α(p−φ)+φ)
X̄ if α ≥ α̃(φ)

X̄ − q
p
X̄ otherwise

k̃S(φ, α) =


α(p−φ)q−p(q−φ)
α(p−φ)(α(p−φ)+φ)

X̄ if α ≥ α̃(φ)

0 otherwise,

(6)

where

α̃(φ) :=
p(q − φ)

q(p− φ)
. (7)

Note that k̃M(φ, α) ∈ (0, X̄).10 Also, note that limφ→q α̃(φ) = 0 and

limφ→0 α̃(φ) = 1.

3.3.2 Stackelberg Leadership

In the Stackelberg case the manufacturer commits to a capacity level an-

ticipating the subcontractor’s optimal response. Hence, M ’s problem is to

maximize ΠM(kM , kS(kM |φ, α)|φ, α) with respect to kM , where kS(kM |φ, α)

is as in (3).

10For α ≤ α̃(φ) this is obvious. For α > α̃(φ), the first part (k̃M (φ, α) > 0 for α > α̃(φ))

follows since q−φ < p−φ and 0 ≤ (1−α)2 implies that qα−(1−α)(q−φ) < α(α(p−φ)+φ);

the second part (k̃M (φ, α) < X̄) is true since k̃M (φ, α) < p−q
p X̄ < X̄ by (5).
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If kS(kM |φ, α) is replaced by zero we get M ’s stand-alone profit function

ΠM(kM , 0|φ, α), which, of course, is independent of φ and α. Setting the

derivative with respect to kM equal to 0 and solving for kM yields the M ’s

stand-alone capacity level denoted by kM1 :

kM1 =
p− q
p

X̄. (8)

M ’s optimal stand-alone profit thus equals

ΠM(kM1 , 0) =
(p− q)2

2p
X̄. (9)

If kS(kM |φ, α) is replaced by the term inside the brackets in (3) we get M ’s

profit function in an interior solution. Setting the derivative with respect to

kM equal to 0 and solving for kM yields M ’s optimal capacity choice in an

interior Stackelberg equilibrium. We denote this capacity level by kM2 (φ, α).

It is given by

kM2 (φ, α) = X̄ − q

α(p− φ) + φ
X̄. (10)

By (3), S’s best response to kM2 (φ, α) is

kS2 (φ, α) =
q

α(p− φ) + φ
X̄ − q − φ

α(p− φ)
X̄ =

φ(α(p− φ)− (q − φ))

α(p− φ)(α(p− φ) + φ)
X̄, (11)

where kS2 (φ, α) ≥ 0 iff α ≥ α̂(φ) and where

α̂(φ) :=
q − φ
p− φ

. (12)

Note that limφ→0 α̂(φ) = q
p
< 1 and limφ→q α̂(φ) = 0.

The next step is to compare ΠM(kM1 , 0|φ, α) with ΠM(kM2 (φ, α), kS2 (φ, α)|φ, α).

If ΠM(kM1 , 0|φ, α) > ΠM(kM2 (φ, α), kS2 (φ, α)|φ, α) then the Stackelberg equi-

librium, denoted by (k̂M(φ, α), k̂S(φ, α)), is given by (kM1 , 0). Otherwise an
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interior Stackelberg equilibrium prevails and (k̂M(φ, α), k̂S(φ, α)) is given by

(kM2 (φ, α), kS2 (φ, α)).11

4 Equilibrium Capacities

In the sequel we distinguish three different provision modes: Under full in-

tegration (mode F) the manufacturer relies entirely on internal provision of

the essential input; that is, only the manufacturer makes a strictly positive

capacity investment at stage 1 and the subcontractor remains inactive. Ta-

pered integration (mode T) refers to a situation in which both firms are able

to produce at stage 2; that is, both kM and kS are strictly positive. Under

non-integration (mode N) only the subcontractor makes a positive capacity

investment at stage 1 and the manufacturer has to satisfy her input needs

from outside.

Let us begin the analysis by considering the problem from a social planner’s

point of view. Since the subcontractor can do anything the manufacturer can

and since the subcontractor has in addition the option to sell the input at

the intermediate good market, the unique socially optimal provision mode in

our model is non-integration. However, as the following result shows, egoistic

motives do never guide the parties toward the socially optimal provision mode

(not to mention the socially optimal capacity levels!).

11Note that kS2 (φ, α) > 0 whenever ΠM (kM2 , kS2 |φ, α) > ΠM (kM1 , 0|φ, α) since oth-

erwise ΠM (kM2 , kS2 |φ, α) ≤ maxkM {p(X̄ − kM

2 )k
M

X̄
} = ΠM

1 . The reverse statement

“(k̂M (φ, α), k̂S(φ, α)) = (kM2 (φ, α), kS2 (φ, α)) whenever α ≥ α̂(φ)” is not true, however,

as will become clear later.
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Proposition 4.1 Under the assumptions of our model neither the Stackel-

berg nor the Cournot-Nash equilibrium involves non-integration (mode N).

Proof: In mode N, kM = 0 and kS = kS(0) =
[
α(p−φ)−(q−φ)

α(p−φ)
X̄
]+

which

is strictly positive iff α > α̂(φ). Consider the Stackelberg case first. Here,

kM2 (φ, α) equals zero iff α ≤ α̂(φ). But then kS = 0 too, implying that

ΠM(0, 0) = 0, which cannot be optimal for M since she has always the option

to choose her stand-alone capacity level guaranteeing a payoff of at least

ΠM
1 (kM1 , 0) > 0. Next, consider the Cournot case. Here, the manufacturer’s

optimal capacity level is always positive, as we have shown in Footnote 10

above.

2

An explanation for this result is readily provided: If the manufacturer knew

her input requirement with certainty in advance, she would always prefer

to produce this quantity in-house rather than purchasing it from the sub-

contractor as in-house production prevents her from being exploited by the

subcontractor in the bargaining process. The same logic applies in our prob-

abilistic framework. Here, the manufacturer has an incentive to invest in

in-house capacity to satisfy the demand which will arise with high probabil-

ity. The subcontractor will also invest in capacity and satisfy any greater

demand which will arise with lower probability iff (i) he is sufficiently more

efficient than the manufacturer in bearing the risk of excess capacity, and

(ii) his bargaining power guarantees a sufficiently large share of the efficiency

gain for him. For a given level of bargaining power this is the case if the

price at the intermediate good market is high enough. This is confirmed by
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the following result:

Proposition 4.2 In both, the Cournot-Nash and the Stackelberg case, for

each φ ∈ (0, q) there exists a unique αI(φ) ∈ [α̂(φ), α̃(φ)] such that full in-

tegration (mode F) prevails for all α ≤ αI(φ) and tapered integration (mode

T) prevails for all α > αI(φ). In the Cournot-Nash case αI(φ) = α̃(φ) as de-

fined in (7). In the Stackelberg case αI(φ) =: αST (φ) ∈ (α̂(φ), α̃(φ)). In both

cases, the range of values of α for which mode F prevails is decreasing in φ;

that is, αI(·) is a strictly decreasing function. Furthermore, limφ→0 α
I(φ) = 1

and limφ→q α
I(φ) = 0.

Proof: In the Appendix.

Insert Figure 2

If α equals 1 the entire bargaining surplus goes to the subcontractor. An-

ticipating this, the manufacturer chooses her stand-alone capacity level kM1 .

In determining this capacity level, M sets her stage 1 shadow value of an

additional unit of capacity equal to the capacity cost. For α = 1 the stage 1

shadow value of an additional unit of capacity in firm S necessarily exceeds

that of capacity in M for all φ > 0: If the unit is used to satisfy M ’s input

needs, S nets the same surplus as M would earn if she employs her own

in-house capacity. If a capacity unit is not used to satisfy M ’s input require-

ment, it idles in M ’s firm; yet, in S’s firm it is used to serve the intermediate

good market. Hence, for α = 1 we have kM = kM1 > 0 and kS > 0 for

all φ > 0, implying that mode T prevails. Now consider the other extreme.

If α = 0 the subcontractor cannot expect to extract any surplus in dealing

with the manufacturer. Since the price at the intermediate good market
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doesn’t cover capacity cost, he will not invest. Hence, for α = 0 we have

kM = kM1 > 0 and kS = 0, implying that mode F prevails. For intermediate

values of α the Cournot-Nash and the Stackelberg case behave qualitatively

differently: While αI(φ) = α̃(φ) in the Cournot-Nash case, α̂(φ) < αI(φ)

in the Stackelberg case. This implies that capacities are changing contin-

uously in α and φ at the boundary between mode F and mode T in the

Cournot-Nash, but that there is a discontinuous jump in capacity levels in

the Stackelberg case. We will discuss this jump in more detail bellow.

Proposition 4.2 has interesting implications. For each φ, define αM(φ) =

arg maxα∈[0,1]{ΠM(kM(φ, α), kS(φ, α))}, where (kM(φ, α), kS(φ, α)) are the

respective equilibrium capacities. In the same way, for each φ, define αS(φ) =

arg maxα∈[0,1]{ΠS(kM(φ, α), kS(φ, α))}, where (kM(φ, α), kS(φ, α)) are the re-

spective equilibrium capacities. Since the subcontractor’s capacity is strictly

positive if and only if α > αI(φ) we know that αS(φ) ∈ (αI(φ), 1]. Also,

since ΠM(·) exceeds M’s stand alone profit for α ∈ (αI(φ), 1), αM(φ) must

lie in (αI(φ), 1). So, for all α ≤ αI(φ), or more precisely for all α <

min{αM(φ), αS(φ)}, a strict Pareto improvement can be obtained by rais-

ing α to min{αM(φ), αS(φ)}. The possibility of a Pareto improvement arises

since the increase in α has a positive impact on joint surplus. The manufac-

turer profits since the increase in total surplus more than compensates her

for getting a smaller part of it. And the subcontractor is better off since

both the joint surplus and his share in it are augmented. Similarly, for all

α > max{αM(φ), αS(φ)} a strict Pareto improvement can be obtained by

reducing α to max{αM(φ), αS(φ)}. In this range the subcontractor bene-

fits from a decrease in α since the impact from the increase in the cake
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exceeds that from the decrease in his share in it. The manufacturer, on

the other hand, profits from both, the increase in the cake and the increase

of her share in the cake. For levels of α between min{αM(φ), αS(φ)} and

max{αM(φ), αS(φ)} one player prefers a lower, the other a higher level of α.

Intuitively one would expect that the subcontractor’s optimal α lies above

the manufacturer’s, since α determines the share of total surplus that goes

to S. This needs not be the case, however, as the example below shows. In

this example there exists a range of values for α where the subcontractor

would prefer to have less power while the manufacturer would prefer that

the subcontractor is tougher!

Example: Consider the Stackelberg case and let p = 10 and q = 2. Then

αI(φ), αM(φ) and αS(φ) are as follows:

Insert Table 1

Our next result deals with capacities under tapered integration.

Lemma 4.1 In both, the Cournot-Nash and the Stackelberg case total capac-

ity in mode T is independent of the manufacturer’s capacity investment. It is

strictly increasing in α and in φ and equals the manufacturer’s stand-alone

capacity kM1 iff α = α̃(φ) as defined in (7).

Proof: The first claim is an immediate consequence of (3). To prove the

rest note that by (3), total capacity, denoted by k(φ, α), equals

k(φ, α) =
α(p− φ)− (q − φ)

α(p− φ)
X̄.

Taking the derivative with respect to α and with respect to φ confirms the

first part of the second claim and a comparison with (8) the second. 2
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Given the reaction function of the subcontractor as recorded in (3) the first

claim in Lemma 4.1 is not surprising. In mode T the subcontractor buys that

amount of capacity which he would buy if he were allowed to deliver the whole

quantity demanded at the final good market minus the amount provided by

the manufacturer herself. The reason is simple: The subcontractor knows

that for any given demand at the final good market the manufacturer will

first employ her in-house capacity. Thus, in determining his own capacity

investment kS, the subcontractor will compare his (gross) shadow value of

the (kM + kS)st unit of capacity with capacity cost.

How will this shadow value change in φ and in α? For a given level of

bargaining power an increase in the price at the intermediate good market

has two effects on the subcontractor’s shadow value of capacity and therewith

on the amount of capacity the subcontractor would buy if he were allowed

to serve all the demand at the final good market. First, capacity that is not

used to serve the manufacturer’s final good market has a higher value; that

is, a high price at the intermediate good market insures the subcontractor

against low demand on the manufacturer’s end product market. We call this

the insurance effect. Second, an increase in the price at the intermediate good

market improves the subcontractor’s threat point in the ex post bargaining

with the manufacturer and thereby his bargaining position. We call this

second effect the bargaining position effect. For the subcontractor both, the

insurance and the bargaining position effect, are strictly positive since both,

the profit for selling to the manufacturer and the profit for selling to the

outside market, are increased. Thus, total capacity in mode T will increase

in φ. An increase in α, on the other hand, increases the subcontractor’s share
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in the joint surplus and therewith again his incentive to increase the cake.

Lemma 4.2 In the Cournot-Nash case the manufacturer’s capacity choice

in mode T is equal to her stand-alone capacity iff α = α̃(φ) or α = 1 and

strictly smaller otherwise. It is first decreasing and then increasing in α and

always decreasing in φ. In the Stackelberg case the manufacturer’s capacity

choice in mode T is equal to her stand-alone capacity level iff α = 1 and

strictly smaller otherwise. It is strictly increasing in α and in φ.

Proof: In the Appendix.

Insert Figure 3

Figure 3 traces the equilibrium capacities as a function of the subcontractor’s

bargaining power (α) holding the price at the intermediate good market (φ)

constant. The behavior of the Cournot-Nash equilibrium correspondence

is depicted in thickly dotted, that of the Stackelberg equilibrium in bold

lines. In the Cournot-Nash equilibrium M’s capacity level in mode T is

first decreasing and then increasing in S’s bargaining power. This is quite

surprising since it is often argued that an increase in the subcontractor’s

bargaining strength will decrease the manufacturer’s share in the joint surplus

and thereby increase her incentive to invest in in-house capacity. Yet, there is

a second effect. Ceteris paribus, an increase in his bargaining power increases

the subcontractor’s investment incentive for each φ and this decreases M’s

incentive to invest since capacity investments are strategic substitutes. In the

Cournot-Nash case the two effects point in opposite directions and the overall

impact is ambiguous. In the Stackelberg case, the manufacturer takes into

account that the subcontractor is prepared to hold a higher capacity level if
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α is high even if kM is relatively high too. He therefore adjusts his capacity

accordingly. Increasing her capacity is profitable for M since buying from S

becomes more expensive when his bargaining power improves.

Insert Figure 4

The effect of an increase in the price at the intermediate good market on

equilibrium capacities is shown in Figure 4. In the Cournot-Nash equilibrium

the manufacturer’s capacity level in mode T is strictly decreasing in the

price at the intermediate good market, while it is strictly increasing in the

Stackelberg equilibrium. The reason for the striking difference in the reaction

to changes in φ is similar to that discussed for changes in α. The insurance

effect mentioned earlier decreases M’s incentive to invest in in-house capacity

since S is prepared to hold a higher capacity level even if his share in the joint

surplus is relatively low. The bargaining position effect, however, increases

M’s incentive to invest to avoid being exploited in the bargaining process. In

the Cournot-Nash case the insurance effect dominates the bargaining position

effect and k̃M is decreasing in φ. In the Stackelberg case, on the other hand,

the manufacturer takes into account that with a high φ the subcontractor

is prepared to hold a higher capacity even if kM is high too and she adjusts

her capacity level accordingly. Increasing her capacity is profitable for M

since buying from S becomes more expensive when his bargaining position

improves.

Our next result reveals more about the discontinuity of capacity choices and

profits at the boundary between mode F and mode T in the Stackelberg case:
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Proposition 4.3 In the Stackelberg case a move from full integration (mode

F) to tapered integration (mode T) is accompanied by (i) a discontinuous

downward jump of k̂M ; (ii) a discontinuous upward jump of k̂S; (iii) a dis-

continuous downward jump of k̂M + k̂S; (iv) a continuous increase of ΠM ;

(v) a discontinuous upward jump of ΠS.

Proof: Using that the change from mode F to mode T takes place at

α = αST (φ) ∈ (α̂(φ), α̃(φ)), (i) follows from the fact that k̂M(φ, αST (φ)) <

k̂M(φ, α̃(φ)) < kM1 by Proposition 4.2 and Lemma 4.2. Property (ii) follows

from the fact that k̂S(φ, αST (φ)) > k̂S(φ, α̂(φ)) = 0 since αST (φ) > α̂(φ).

To show (iii) we use Lemma 4.1. The claim then follows from the fact that

k(φ, αST (φ)) < k(φ, α̃(φ)) = kM1 . Property (iv) is obvious, and (v) follows

from the fact that αST (φ) > α̂(φ) and therefore k̂S(φ, αST (φ)) > 0 since

k̂(φ, α) > 0 whenever α > α̂(φ) by definition of α̂(φ) and by (11).

2

Proposition 4.3 tells us that, in contrast to the Cournot-Nash case, in the

Stackelberg case neither the manufacturer’s nor the subcontractor’s capac-

ity level is continuous in the price at the intermediate good market. The

driving force behind this result is a discontinuity in the marginal benefit of

an additional unit of capacity from the manufacturer’s point of view: In a

full integration environment (kM > 0 and kS = 0) an extra unit of capacity

yields the manufacturer an extra payoff (in ex ante terms) of p X̄−k
M

X̄
. In

a tapered integration environment her marginal value of an additional unit

of capacity is necessarily strictly smaller for any α < 1 since any capacity-

increase by the manufacturer is accompanied by a capacity-decrease by the
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subcontractor. Hence, from M’s point of view, there is a downward jump in

the marginal value of capacity when moving from mode F to mode T. This

implies that for any α < 1 the maximal amount of capacity provided by

the manufacturer under mode T is distinctly smaller than her stand-alone

capacity level chosen under mode F. But then the subcontractor’s capacity

level under mode T cannot be arbitrarily small, since otherwise M’s profit

under T would be smaller than that under F, contradicting the presumption

that T is the chosen mode in equilibrium.

Proposition 4.4 For any pair (φ, α), the amount of capacity provided by

the manufacturer in the Stackelberg equilibrium is never larger than the cor-

responding level provided by her in the Cournot-Nash equilibrium. For values

of α with α > αST (φ) the difference in the manufacturer’s capacity choices,

denoted by ∆kM(φ, α) := k̃M(φ, α) − k̂M(φ, α), is decreasing in α and in φ

and approaches zero if one of these variables approaches its upper bound.

Proof: For α > α̃(φ), the difference between the manufacturer’s capacity

choice in the Stackelberg case and the corresponding level in the Cournot-

Nash case is ∆kM(φ, α) = 1−α
α

q−φ
α(p−φ)+φ

, This expression is strictly positive

for α < 1 and φ < q and approaches zero if one of these variables approaches

its upper bound. Taking the derivative with respect to α leads to

∂∆kM(φ, α)

∂α
= − q − φ

α2(α(p− φ) + φ)2
((2− α)α(p− φ) + φ) < 0.

Taking the derivative with respect to φ yields

∂∆kM(φ, α)

∂φ
= −1− α

α

(1− α)q + αp

(α(p− φ) + φ)2
< 0.
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For α ∈ [αST (φ), α̃(φ)] the claim follows from Proposition 4.2 and from

Lemma 4.2. And for α < αST (φ) the result is a triviality.

2

Proposition 4.4 is quite intuitive. If the manufacturer has commitment power

she takes into account that any capacity increase by her is accompanied by

a capacity decrease by the subcontractor. She therefore commits to a lower

capacity level anticipating a higher response by the subcontractor. That

having commitment power becomes less important as α and φ grow larger is

not surprising given the result recorded in Lemma 4.1: For any given kM the

subcontractor’s capacity investment is strictly increasing in these variables.

If the subcontractor’s capacity level is high anyway inducing an even higher

response is less profitable. And that the difference in the manufacturer’s

capacity choices approaches zero if either α or φ approaches its upper bound

is also obvious. If α approaches 1 the manufacturer does not benefit from the

subcontractor’s presence. She will therefore choose her stand-alone capacity

level in both the Cournot-Nash and the Stackelberg case. And if φ approaches

q the subcontractor will adjust his capacity such that total capacity equals

X̄. Knowing this, the manufacturer’s trade-off in her boundary choice is

between (i) investing in in-house capacity at a cost of q per unit risking that

capacity will remain idle if demand is too low, and (ii) spending q+α(p− q)

per unit only if demand is sufficiently high. Facing this trade-off she will

choose kM = X̄ − q
α(p−q)+q)X̄ independently of whether she can precommit

to a particular capacity level or not.
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Proposition 4.5 Total capacity in the Stackelberg equilibrium is less than

or equal to total capacity in the Cournot-Nash equilibrium.

Proof: By Proposition 4.2 and Lemma 4.1 total capacity in the Stackelberg

equilibrium equals total capacity in the Cournot-Nash equilibrium for α ≥

α̃(φ) and for α < α̂(φ). Consider therefore the range α ∈ (α̂(φ), α̃(φ)). If α ∈

(α̂(φ), αST (φ)] then k̃M(φ, α) = k̂M(φ, α) = kM1 and k̃S(φ, α) = k̂S(φ, α) =

0. If, however, α ∈ (αST (φ), α̃(φ)) then (k̃M(φ, α), k̃S(φ, α)) = (kM1 , 0)

and (k̂M(φ, α), k̂S(φ, α)) = (kM2 (φ, α), kS2 (φ, α)) with kM2 (φ, α) + kS2 (φ, α) =

k(φ, α) < kM1 . 2

Proposition 4.5 can best be discussed by means of Figure 3. If α falls short

of αST (φ) then full integration (with kM = kM1 and kS = 0) prevails both

in the Cournot-Nash and the Stackelberg case. Tapered integration is the

chosen provision mode in both environments if α exceeds α̃(φ). In this case

the manufacturer’s capacity level is strictly larger in the Cournot-Nash than

in the Stackelberg case. However, the subcontractor adjusts his capacity

choice such that total capacity is the same in both environments. We are left

with the interval (αST (φ), α̃(φ)). If α falls in this interval then full integra-

tion prevails in the Cournot-Nash and tapered integration in the Stackelberg

case. In the latter the manufacturer uses her commitment power to choose a

relatively low capacity level in order to induce a relatively high response by

the subcontractor. Together the two parties provide less capital than would

be optimal under full integration.
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5 Concluding Remarks

This paper has studied a firm’s continuous choice between full integration,

different degrees of tapered integration and non-integration in a model that

combines elements of Williamson (1979, 1985)’s transaction cost- and Gross-

man and Hart (1986)’s incomplete contracting theory of vertical integration.

We have shown that the firm’s boundary choice depends crucially on its

commitment power. If the firm can precommit to a particular provision

mode, tapered integration will be chosen more frequently. Also, with com-

mitment power the firm will never subcontract only a small portion of its

input needs. In-house capacity is smaller and outside capacity larger if the

firm can precommit. Total capacity is never larger in the commitment than

in the non-commitment case.

In both, the commitment and the non-commitment case, there exists a unique

critical level of bargaining power for the subcontractor such that full inte-

gration prevails if the subcontractor’s bargaining power is smaller than this

critical level and tapered integration whenever it is larger. This critical level

of bargaining power for the subcontractor is strictly decreasing in his out-

side opportunities. Non-integration – although the socially optimal provision

mode for all combinations of bargaining power and outside opportunities –

can never emerge as an equilibrium outcome.

Other interesting results concern the profits of the involved parties. We have

shown that neither the firm’s nor the subcontractor’s profit is monotone in the

subcontractor’s bargaining power: If the subcontractor’s bargaining power is

very low, a Pareto improvement can be obtained by raising it. Similarly,
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if the subcontractor’s bargaining power is very high, a Pareto improvement

can be obtained by reducing it. In an intermediate range the subcontrac-

tor may prefer to have less power while the manufacturer would prefer the

subcontractor to be tougher!
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6 Appendix

Proof of Proposition 4.2 for the Cournot-Nash Case

In the Cournot-Nash case αI(φ) = α̃(φ). This follows from (6) and (7). To

verify the second claim, note that

∂α̃(φ)

∂φ
= − p(p− q)

q(p− φ)2
< 0.

The rest follows from the definition of α̃(φ).

2

Proof of Proposition 4.2 for the Stackelberg Case

In the Stackelberg case the manufacturer chooses mode T iff ΠM(kM2 , k
S
2 |φ, α) >

ΠM(kM1 , 0) =: ΠM
1

12. First note that by (4), ΠM(kM2 (φ, 1), kS2 (φ, 1)|φ, 1) =

ΠM
1 . Next note that at α = 1 we have d

dα
ΠM(kM2 (φ, α), kS2 (φ, α)|φ, α) < 0

for any φ. To see this first observe that dΠM

dkM
= 0 for kM = kM2 (φ, α) and

kS = kS(kM2 (φ, α)|φ, α) = kS2 (φ, α) by the first order condition of the opti-

mization problem. Therefore, for α = 1

dΠM

dα
(kM2 (φ, α), kS2 (φ, α)|φ, α)

= ∂ΠM

∂α
+
(
∂ΠM

∂kM
+ ∂ΠM

∂kS
∂kS2
∂kM

)
∂kM2
∂α

+ ∂ΠM

∂kS
∂kS2
∂α

= ∂ΠM

∂α
+ ∂ΠM

∂kS
∂kS2
∂α

= −(p− φ)(X̄ − k̂M2 −
k̂S2
2

)
k̂S2
X̄
< 0

since ∂ΠM

∂kS
= 0 for α = 1. Hence, for any φ ∈ (0, q), there must exist values for

α such that the manufacturer’s profit is higher in the mode T than in mode

12Whenever there is no risk of confusion we use the shorthand notation kM2 and kS2

instead of kM2 (φ, α) and kS2 (φ, α).
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F. Furthermore, using that kS2 (φ, α̂(φ)) = 0 and kM2 (φ, α̂(φ)) = 0 we have

ΠM(kM2 (φ, α̂(φ)), kS(φ, α̂(φ))|φ, α̂(φ)) = 0 < ΠM
1 . Thus, there must exist at

least one α ∈ (α̂(φ), 1) such that ΠM
1 = ΠM(kM2 (φ, α), kS2 (φ, α)|φ, α). Next

we show that this α is unique. By (4), ΠM(kM2 , k
S
2 |φ, α) = ΠM

1 is equivalent

to (
p(2X̄−kM1 −k

M
2 )

2X̄
− q

)
(kM1 − kM2 ) = (1− α)(p− φ)(X̄ − kM2 −

kS2
2

)
kS2
X̄
.

To determine the left hand side of this equation first notice that

kM1 − kM2 = q(1−α)(p−φ)
p(α(p−φ)+φ)

X̄.

Also,

2X̄−kM1 −k
M
2

2X̄
= q

2

(
α(p−φ)+p+φ
p(α(p−φ)+φ)

)
by (8) and (10). Thus, the left hand side of the above equation equals

1
2p

(
q(1−α)(p−φ)
α(p−φ)+φ

)2
X̄.

To determine the right hand side note that

X̄ − kM2 −
kS2
2

= q
2(α(p−φ)+φ)

X̄ + q−φ
2α(p−φ)

X̄.

Therefore, the right hand side of the above equation is given by

(1− α)(p− φ)1
2

[(
q

α(p−φ)+φ

)2
−
(

q−φ
α(p−φ)

)2
]
X̄

= (1− α)(p− φ)1
2

(qα(p−φ))2−((q−φ)(α(p−φ)+φ))2

(α(p−φ)(α(p−φ)+φ))2 X̄.

Putting these pieces together and dividing by (1−α)(p−φ)
2

X̄ we observe that

“ΠM(kM2 , k
S
2 |φ, α) = ΠM

1 for α 6= 1” is equivalent to:

q2(1−α)(p−φ)
p

= (qα(p−φ))2−((q−φ)(α(p−φ)+φ))2

(α(p−φ))2

= q2 − (q−φ)2(α(p−φ)+φ)2

(α(p−φ))2
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which again is equivalent to

(α(p−φ)+φ)q2

p
= (q−φ)2(α(p−φ)+φ)2

(α(p−φ))2 .

Dividing by α(p− φ) + φ > 0 we deduce that αST (φ) is uniquely determined

by the two relations

αST (φ)2(p− φ)2q2 = p(q − φ)2(αST (φ)(p− φ) + φ)

αST (φ) > α̂(φ) > 0.
(13)

Since M has always the option to choose the Cournot equilibrium capacities

we also have αST (φ) ≤ α̃(φ). To show that αST (φ) < α̃(φ) for φ ∈ (0, q) we

replace αST (φ) in (13) by α̃(φ) to see that this does not solve the equation.

This completes the proof of the first claim. To prove the second claim we

take the derivative of both sides of (13). We get

(2αST (φ)(p− φ)2q2 − p(q − φ)2(p− φ))∂α
ST (φ)
∂φ

=[
2(p− φ)q2αST (φ)2 − 2(q − φ)p(αST (φ)(p− φ) + φ)

]
+ (1− αST (φ))p(q − φ)2.

Replacing (p − φ)q2αST (φ)2 by the respective expression derived from (13)

the right hand side of this equation can be rewritten as

p(q − φ))2
[
2(αST (φ)(p− φ) + φ)( 1

p−φ −
1

q−φ) + (1− αST (φ))
]

=

p(q − φ)2
[
− (p−q)

(p−φ)(q−φ)
2αST (φ)p+ (1− αST (φ))

(
1− 2 φ(p−q)

(p−φ)(q−φ)

)]
.

Taking into account that 1 − 2 φ(p−q)
(p−φ)(q−φ)

< 1 and that αST (φ) > α̂(φ) this

must be smaller than p(q − φ)2
[
1−

(
(p−q)2p

(p−φ)(q−φ)
+ 1

)
α̂(φ)

]
which is smaller

than zero since α̂(φ) = q−φ
p−φ by definition. Hence, ∂αST (φ)

∂φ
< 0 whenever

2αST (φ)(p − φ)2q2 > p(q − φ)2(p − φ). Again replacing (p − φ)2q2αST (φ)

by the respective expression derived from (13) this is equivalent to 2p(q −

φ)2((p − φ) + φ
αST (φ)

) > p(q − φ)2(p − φ). Dividing by p(q − φ)2 we get
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(p − φ) + 2 φ
αST (φ)

> 0 which is always true. This proves the second claim.

The last claim is obvious since for φ = 0 we have α̃(0) = 1 and kS2 (0, α) = 0

and kS2 (0, α) = kM1 . For φ = q we have α̃(q) = α̂(q) = 0.

2

Proof of Lemma 4.2

First notice that by (5) the difference between the manufacturer’s stand-alone

capacity kM1 and her capacity choice in an interior equilibrium for α ≥ α̃(φ)

is kM1 − k̃M(φ, α) = (1 − α) (p−φ)
p
k̃S(α, φ), which is zero for α = α̃(φ) and

for α = 1 and strictly positive otherwise. The derivative of k̃M(φ, α) with

respect to α is

∂k̃M (φ,α)
∂α

= (p−φ)(2q−φ)
α2(α(p−φ)+φ)2h

M(α)X̄,

where hM(α) = α2 − 2α q−φ
2q−φ −

φ(q−φ)
(p−φ)(2q−φ)

. Hence, k̃M(φ, α) is increasing

in α whenever hM(α) > 0 and decreasing in α whenever hM(α) < 0. The

quadratic function hM(α) is negative for α = 0 and has a minimum at α =

q−φ
2q−φ > 0. To prove that k̃M(φ, α) is first decreasing and then increasing in

α we therefore have to show that hM(α̃(φ)) < 0 and hM(1) > 0. The first

requirement is equivalent to p(q−φ)(qp−φ(p− q)) < q(p−φ)(qp−φ(p− q))

which is true since α̃(φ) < 1 and qp > φ(p − q). The second requirement is

equivalent to (p− φ)q > (q − φ)p which is true since p > q.

The derivative of k̃M(φ, α) with respect to φ is

∂k̃M (φ,α)
∂φ

= −1−α
α

(1−α)q+α(p−q)
(α(p−φ)+φ)2 X̄ < 0.

To verify the last claim first notice that kM2 (φ, α) = kM1 −
q(1−α)(p−φ)
p(α(p−φ)+φ)

X̄, by
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(8) and (10). The derivative of kM2 (φ, α) with respect to α is

∂kM2 (φ,α)

∂α
= (p−φ)q

(α(p−φ)+φ)2 X̄ > 0.

The derivative of kM2 (φ, α) with respect to φ is

∂kM2 (φ,α)

∂φ
= (1−α)q

(α(p−φ)+φ)2 X̄ > 0.

2
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Abstract

This paper adopts the incomplete contracting perspective to study a firm’s

continuous choice between producing an essential input in-house (full in-

tegration), buying it from an outside supplier (non-integration) and doing

a combination of both (tapered integration), when (i) an idiosyncratic ca-

pacity investment is required to produce the essential input and (ii) under

non-integration outside opportunities are better. It is shown that the firm’s

boundary choice depends crucially on its commitment power. If the firm can

precommit to a particular provision mode, tapered integration will be chosen

more frequently. Also, with commitment power the firm will never subcon-

tract only a small portion of its input needs. In-house capacity is smaller and

outside capacity larger if the firm can precommit. Total capacity is never

larger in the commitment than in the non-commitment case.

JEL Classifications: D23, L14, L22, L23

Keywords: Boundary Choice, Relation Specific Investment, Incomplete Con-

tracts, Commitment Power, Transaction Costs
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Figure 1: Capacities and Demand
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Figure 2: Equilibrium Provision Modes

φ α̂(φ) α̃(φ) αST (φ) αM (φ) αS(φ)

0.05 0.20 0.98 0.96 0.98 0.96

0.25 0.18 0.90 0.81 0.90 0.81

0.45 0.16 0.81 0.67 0.80 0.67

0.65 0.14 0.72 0.55 0.71 0.55

0.85 0.13 0.63 0.44 0.61 0.49

1.05 0.11 0.53 0.34 0.51 0.46

1.25 0.09 0.43 0.25 0.41 0.43

1.45 0.06 0.32 0.17 0.31 0.39

1.65 0.04 0.21 0.11 0.21 0.35

1.85 0.02 0.09 0.04 0.11 0.30

Table I: Numerical Example
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Figure 3: Equilibrium Capacities for a Given Outside Price φ
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