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NON-TECHNICAL SUMMARY

During the latest recession in the European car industry the chairman of the
Board of the German tire giant Continental AG threatened to allocate half of
the production quota of its Austrian subsidiary Semperit Reifen AG to the
Czech plant Barum. Afraid of losing the production rights for two million tyres
per year (the former quota was four million) the managing director of Semperit
Austria promised cost savings of about 700 million ATS within two years. Only
a few months later the headquarters of the US-British brake giant Wabco-
Westinghouse used a similar strategy. It threatened to reduce the output
quota of its Austrian production facility a second time after having allocated
part of the Austrian quota to a British plant a year before. As in the
Continental-Semperit case the management of the Austrian Wabco-
Westinghouse plant reacted with a significant downward revision of projected
costs.

What can we learn from these examples? A first – fairly trivial – insight is that
the amount of capacity available within the boundaries of firms sometimes
exceeds the level required to produce the output demanded. Whenever this
happens to a multi-plant firm the headquarters has to decide how to allocate
the total quantity requirement among the different production facilities. A
second – more important – observation is that individual facilities are, in
general, keen to maintain or expand their activity levels. The headquarters of
multi-plant firms seem to know this and they play their facilities off one another
in an attempt to induce them to announce and realize substantial cost savings.

The popular press discusses the pressure multi-plant firms put on individual
facilities during downturns in prominent feature articles. This topic has not
been investigated in the academic literature, however.

The present Paper seeks to fill this gap. It studies the consequences of
headquarters’ pressure for the internal efficiency of multi-plant firms over the
business cycle. To do so, we investigate a model in which the demand for the
good produced by a multi-plant firm is stochastic; in which the facilities or
plants need capacities in order to produce; and in which asymmetric
information between the headquarters on the one hand, and the individual
facilities on the other, allows facilities to receive rents under any optimal
contract. These rents are then dissipated within the facilities in the form of
slacking, perquisites, empire building and other forms of at-the-expense-of-
the-firm behaviour. In other words, these rents cause internal inefficiencies, or
slack.

We show that in this model the per-unit amount of slack is pro-cyclical.
Indeed, as capacity constraints are relaxed in economic downturns, slack
decreases in downturns, because idle capacities foster in-house competition



among plants for higher production quotas. Exactly the opposite is true for
boom periods of the economy where demand exceeds the amount of capacity
available within the boundaries of the firm. In those periods, slack increases
because tight capacity constraints reduce the power of in-house competition.
Thus, during boom periods of the economy, firm profits tend to be high since
demand is high and capacity is fully utilized. In contrast, during downturns, the
firm is able to improve its profitability by concentrating on the cost side, that is,
by reducing organizational slack.

Also, during downturns, production is not necessarily assigned to the
cheapest plant. Indeed, a plant may be allowed to produce even if it is known
to always have the highest production cost and even if demand is so low that
the entire quantity could be produced without employing this facility. An
intuitive explanation for this result is that the systematic exclusion of a given
plant from the production assignment process impedes in-house competition
and that this impediment to competition increases the amount of slack in the
remaining plants.

Our first two results are for given capacities in the facilities. Next we determine
the optimal capacities. We compare them with the capacities in a benchmark
model without asymmetric information, and therewith without X-inefficiency, or
slack. We show that there exists a unique critical level of capacity cost for
which the optimal capacity choice in our model with X-inefficiency coincides
exactly with that of the first best benchmark. If capacity is relatively cheap, i.e.,
if its price is lower than this critical level, the headquarters over-invests in
capacity and vice versa for prices that are higher. An explanation for this result
is easily provided: Due to the slack at the plant level, the cost of output
provision is strictly higher in our model than in the benchmark. This implies
that fully-utilized capacity carries more value in the benchmark than in the
setting considered here. Exactly the opposite is true for idle capacity, which
fosters in-house competition and reduces slack. Now consider capacity prices.
If the price of capacity is too high, risking being left with idle capacity is too
costly; so the argument for fully utilized capacity applies, leading to under-
investment in capacity. By contrast, if capacity is relatively cheap, then ending
up with excess capacity is profitable in the benchmark, but even more
profitable in our model; thus, over-investment in capacity results.

Although our analysis narrowly focuses on a multi-plant firm context where a
central authority has the power to allocate production quotas among multiple
facilities, the intuition behind our central result about the amount of slack in the
firm over the business cycle is not confined to this framework. We argue that
basically the same result can be obtained in a decentralized model in which
several capacity-constrained single-plant managerial firms sell a
homogeneous product under Bertrand conditions, that is, competing in prices.



Our analysis sheds new light on several interesting empirical observations.
For instance, the observation that the extent of cost reductions realized in
many industries during recessions can hardly be explained by savings in
technological production costs. The explanation suggested by the present
analysis is that not only technological production cost but also internal slack is
reduced as capacity constraints are relaxed in recessions, because the power
of competition is increased. Or, the observation that multi-plant firms do not
always shut down their existing high-cost facilities after having installed
sufficient capacities in low-cost countries. The explanation suggested by the
present Paper is that the firms use their old facilities as a device to reduce
internal slack in the new plants.



1 Introduction

During the latest recession in the European car industry the chairman of the Board of

the German tire giant “Continental AG” threatened to allocate half of the production

quota of its Austrian subsidiary “Semperit Reifen AG” to the Czech plant “Barum”.1

Afraid of losing the production right for two million tires per year (the former quota

was four million) the managing director of Semperit Austria promised cost savings of

about 700 million ATS within two years. Only a few months later the headquarters of

the US-British brake giant “Wabco-Westinghouse” used a similar strategy. It threatened

to reduce the output quota of its Austrian production facility a second time after having

allocated part of the Austrian quota to a British plant a year before. As in the Continental-

Semperit case the management of the Austrian Wabco-Westinghouse plant reacted with

a significant downward revision of projected costs.2

What can we learn from these examples? A first – fairly trivial – insight is that the

amount of capacity available within the boundaries of firms sometimes exceeds the level

required to produce the output demanded. Whenever this happens to a multi-plant firm

the headquarters has to decide how to allocate the total quantity requirement among the

different production facilities. A second – more important – observation is that individual

facilities are, in general, keen to maintain or expand their activity levels. The headquarters

1With 13 production facilities in eleven European countries and brand names as “Continental”,

“Uniroyal”, “Semperit”, “Gislaved”, “Viking” and “Barum” the Continental group holds a share of 8%

in the world tire market. This market share makes it the fourth largest tire producer worldwide behind

Michelin (20%), Bridgestone (18%) and Goodyear (17%).
2The details of the Continental-Semperit example originate in articles in the Austrian printed media,

including the article “Reifenwechsel als Druckmittel” on July 6th, 1996 in the daily “Der Standard”, the

article “Das Drama Semperit” in issue 29/1996 of the weekly “Wirtschaftswoche”, and the article “Semper

it – wie lange noch?” in issue 29/1996 of the weekly “Profil”. For our second example see, for instance,

the article “Die Bremsen noch unter Kontrolle?” in issue 11/1996 of the Austrian business magazine

“Trend”.
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of multiplant firms seem to know this and they play their facilities off one another in an

attempt to induce them to announce and realize substantial cost savings.

The popular press discusses the pressure multiplant firms put on individual facilities during

downturns in prominent feature articles. This topic has not been investigated in the

academic literature, however. The present paper seeks to fill this gap. It studies the

consequences of headquarters’ pressure for the internal efficiency of multi-plant firms over

the business cycle. To do so, we investigate a model in which the demand for the good

produced by a multi-plant firm is stochastic, in which the facilities or plants need capacities

in order to produce, and in which asymmetric information between the headquarters on

the one hand and the individual facilities on the other, allows facilities to receive rents

under any optimal contract. These rents are then dissipated within the facilities in the

form of slacking, perquisites, empire building, and other forms of at-the-expense-of-the-

firm behavior. In other words, these rents cause internal inefficiencies, or slack.

Our first main result shows that the amount of slack per unit of output produced behaves

pro-cyclicaly in this model. Indeed, as capacity constraints are relaxed in economic down-

turns, slack decreases in downturns, because idle capacities foster in-house competition

among plants for higher production quotas. Exactly the opposite is true for boom periods

of the economy where demand exceeds the amount of capacity available within the bound-

aries of the firm. In those periods slack increases because tight capacity constraints reduce

the power of in-house competition. Thus, during boom periods of the economy firm-profits

tend to be high since demand is high and capacity is fully utilized. By contrast, during

downturns, where total demand falls short of total capacity, the firm is able to improve its

profitability by concentrating on the cost side, that is, by reducing organizational slack.

Next we show that during downturns of the economy production is not necessarily assigned

to the cheapest plant. Indeed, a plant may be allowed to produce even if it is known to

have always the highest production cost and even if demand is so low that the entire
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quantity could be produced without employing this facility. An intuitive explanation for

this result is that the systematic exclusion of a given plant from the production assignment

process impedes in-house competition, and that this impedement to competition increases

the amount of slack in the remaining plants.

Our first two results are for given capacities in the facilities. Next we determine the

optimal capacities. We compare them with the capacities in a benchmark model without

asymmetric information, and therewith without X-inefficiency, or slack. We show that

there exists a unique critical level of capacity cost for which the optimal capacity choice in

our model with X-inefficiency coincides exactly with that of the first best benchmark. If

capacity is relatively cheap, i.e., if its price is lower than this critical level, the headquarters

over-invests in capacity and vice versa for prices that are higher. An explanation for this

result is easily provided: Due to the slack at the plant level, the cost of output provision

is strictly higher in our model than in the benchmark. This implies that fully utilized

capacity carries more value in the benchmark than in the setting considered here. Exactly

the opposite is true for idle capacity which fosters in-house competition and reduces slack.

Now consider capacity prices. If the price of capacity is too high, risking being left with

excess capacity is too costly; so the argument for fully utilized capacity applies, leading

to under-investment in capacity. By contrast, if capacity is relatively cheap, then ending

up with excess capacity is profitable in the benchmark, but even more profitable in our

model; thus, over-investment in capacity results.3

Next we show that the range of capacity prices for which the headquarters over-invests

3Here and throughout the rest of the paper we use the term “over-investment” (or “under-investment”)

in capacity to describe an ex-ante (i.e., before demand has been realized) situation in which the solution

to the headquarters’ maximization problem in our model yields strictly more (or less) capacity than would

be optimal in the first-best benchmark. By contrast, the term “excess capacity” is used to describe an

ex-post situation, in which the amount of capacity available within the boundaries of the firm exceeds

the level which is necessary to produce the output demanded.
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in capacity is decreasing in uncertainty in demand. Loosely speaking, if demand becomes

more variable then over-investment in capacity becomes less likely. This result is driven by

the fact that second best capacity has a comparative advantage for intermediate demand

realization whereas first best capacity has its strength when demand is extremely high.

Since extreme realizations become more likely when volatility of demand increases, the

result follows.

The present paper relates to several strands of previous work: First and most impor-

tantly, the present paper is related to a line of research studying the impact of market

competition on internal efficiency of firms. In this literature it has been remarkably

hard to generate unambiguous results about competition reducing slack. Hart (1983) and

Scharfstein (1988), for instance, show in a hidden information model in which a common

shock is transmitted via the market price, that the (informational) effect of an increase

in competition by entrepreneurial (profit-maximizing) firms on the internal efficiency of

managerial firms crucially depends on the specification of managers’ preferences. Herma-

lin (1992) confirms the ambiguous informational effect of competition in a hidden action

model. Horn et al. (1994) study the strategic value of incentive contracts under differ-

ent market conditions. In their work an increase in the intensity of competition leads to

more X-inefficiency. A negative relation between intensity of competition and degree of

internal efficiency arises also in Martin’s (1993) Cournot principal-agent model, where the

principal’s marginal benefit of inducing the agent to minimize cost becomes smaller when

competition increases. More recently Schmidt (1997) analyses a model in which the basic

impact of an increase in competition is that it reduces the profits of firms. In this paper,

the overall effect of an increase in competition on the extent of operating slack is again

ambiguous: on the one hand, lower profits induce the management to work harder to avoid

liquidation; on the other hand, lower profits reduce the owner’s incentive to motivate the

management appropriately.

The main difference between this strand of literature and the present paper is not that this
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literature analyses the effect of product market competition on internal efficiency while

we study that of in-house competition.4 A key difference consists rather in the way in

which an increase in the intensity of competition is modeled. Hart and Scharfstein model

increased competition as a higher fraction of entrepreneurial firms. In the two papers

that followed (Hermalin 1992, and Horn et al. 1994) the intensity of competition increases

through a change in the nature of product market rivalry, from Cournot- to Bertrand-

competition. In the paper by Martin (1993) the degree of competition increases as the

number of Cournot firms in the market becomes larger. And Schmidt (1997) equates

increased competition with lower profits. By contrast, in the present paper the intensity

of rivalry among facilities increases when capacity constraints are relaxed in downturns.

Since the competitive pressure proceeding from idle capacities has not been analyzed in

this line of research, we see our paper primarily as a complement to this literature, that

is, to the earlier literature on the effects of competition on the internal efficiency of firms.

The virtues of bad times have also been recognized in the new growth theory. Aghion and

Saint-Paul (1998), for instance, study optimal productivity growth under demand fluctu-

ations in two alternative models, one in which productivity-improving activities are costly

in terms of current production, and a second in which the cost of productivity improve-

ments is independent of current production. They show that productivity improvements

are counter-cyclical in the first but pro-cyclical in the second model, and that the results

for the first model are consistent with empirical evidence whereas those for the second

are not. A key difference between this line of research and the present paper lies in the

forces driving the productivity improvements in downturns. In the empirically supported

new growth models5 productivity increases in downturns because the opportunity cost

4We argue in Section 4 below that basically the same pro-cyclical relation between industry demand

and amount of slack in the firm can be obtained in an decentralized hidden information model where

several capacity-constrained single-plant managerial firms supply a homogeneous good under Bertrand

conditions, i.e., competing in price.
5Besides the (first) Aghion and Saint-Paul model there are, among others, contributions by Davis and
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of investing capital and labor resources in productivity improving activities is low when

current production is low. By contrast, productivity increases in downturns in the present

work because idle capacities intensify competition, and because intensified competition

reduces slack.

From a modeling perspective the present work is also related to those papers in the

procurement and regulation literature that show that a carefully designed allocation

of production to plants can help to reduce information cost. For instance, Anton and

Gertler (1988) study optimal regulatory policy towards a firm that is a monopolist in an

“internal” market and can participate in an “external” market, the latter being outside

the regulator’s domain of concern. They show that the policy of excluding the regulated

firm from the profit opportunities created by the external market if it reports its cost to

be high can help to limit agency costs.6 Related observations have been made by other

authors.7 A major difference to the present paper is, that in this literature the quantity

to be produced is exogenously given and capacity choice is no issue. By contrast, demand

is random in the present work and the competition-fostering effect of idle capacities is one

of our main topics.

The issue of capacity has previously been studied by Riordan (1996). In a procurement

model in which the quantity to be produced is exogenously fixed, and in which the orderer

first decides about the number of potential suppliers and their capacities and then about

the division of production among them, he shows that the capacity of each of the poten-

tial suppliers exactly equals demand and that asymmetric information biases the market

Haltiwanger (1990), Gali and Hammour (1992), and Hall (1991).
6In a later paper Anton and Gertler (1994) examine regulation in a duopoly model of spatial competi-

tion. They show that the regulator can reduce information costs by increasing a relatively more efficient

firm’s market through a reassignment of consumers at the competitive fringe.
7Cf, for instance, Auriol and Laffont (1992), Dana and Spier (1994) and McGuire and Riordan (1995)

in the duopoly-versus-monopoly literature, and Laffont and Tirole (1987), McAfee and McMillan (1986)

and Riordan and Sappington (1987) in the auctioning literature.

6



structure in favour of more suppliers. The main difference between Riordan’s model and

ours is (a) that demand is random in the present paper, and (b) that the plants’ cost

distributions are asymmetric. Basically, feature (a) drives our first main result (on the re-

lationship between the business cycle and internal slack), and feature (b) the second (that

the firm uses high-cost facilities even when low-cost plants are not running at capacity).

Our result about the desirability of maintaining an inefficient plant has parallels in the

second-sourcing literature (see, e.g., Anton and Yao 1987, Demski et al. 1987, and Riordan

and Sappington 1989) where it has been shown that the occational replacement of a low-

cost supplier (or, a more efficient incumbent) by a high-cost supplier (a less efficient

entrant) might help to limit the informational rent of the former. Broadly similar effects

are also at work in asymmetric auctions where it is well known that it may pay the seller

to favour a low value bidder in order to encourage aggressive bidding by others (see, for

instance, Maskin and Riley 1985 and 1999, or Rothkopf et al. 1997).

Before proceeding let us give a short overview over the rest of the paper. The next section

(Section 2) introduces the model and offers a formal statement of the headquarters’ max-

imization problem. Section 3 characterizes optimal contracts and capacities and derives

the result that high-cost plants are allowed to produce even when low-cost facilities are

not running at capacity. The relationship between the business cycle and operational

slack is analyzed in Section 4. Section 5 studies the effects of uncertainty in demand on

capacities and shows that, in comparison to a benchmark without operational slack, the

headquarters either over- or underinvests in capacity. Section 6 concludes. All the proofs

are in the Appendix.

2 The Model

We consider a simple model of a firm that can sell at most X units of some final good at

the price px. X is a random variable that is uniformly distributed on some interval [X,X],

7



where 0 ≤ X < X <∞.8 The firm has the option to produce the final good in two facilities

indexed by A and B. The facilities are run as profit centers and each of them acts as a

single agent. In order to produce the facilities need capacities. Capacities are purchased

and installed by the headquarters at the outset.9 We denote the price per unit of capacity

by pk and the amount of capacity placed at the disposal of facility i by ki. Each unit of

capacity allows a facility to produce up to one unit of output at a constant cost ci. Each

ci a priori belongs to Ci = {ciL, ciH}, where ciH − ciL = ∆i > 0.10 The a priori probability

that ci = cim (m = H,L) is denoted by rim. The cost parameters cA and cB might be

positively but imperfectly correlated. That is, defining qim ≡ Prob{cj = cjL|ci = cim} for

{i, j} = {A,B} and m ∈ {L,H}, it is assumed that

Assumption 1: 1 > qiL ≥ qiH > 0 ∀i ∈ {A,B}.

The objective of each facility is to maximize the expected gain from dealing with the

headquarters. This gain, or surplus, is given by ti − cixi, where ti denotes the transfer

from the headquarters to facility i, while xi denotes the quantity produced by this facility.

We assume that the surplus appropriated by a facility is dissipated within this facility in

the form of slacking, perquisites, and other forms of at-the-expense-of-the-firm behavior.

In other words, this surplus causes slack, or X-inefficiency. We also assume that the

facilities are protected by limited liability so that their surplus is at least 0 ex-post.11

8The uniform distribution facilitates the proofs of Propositions 4 and 5. For the other results we use

only the fact that X has full support on some (nondegenerate) interval [X,X]. None of the results relies

on the uniform distribution.
9Capacity investments are assumed to be nonverifiable and very relation-specific (capacity has no

alternative-use value) here. Also the exact characteristics of the good to be delivered ex post are assumed

to be unknown ex ante. In such a context in-house ownership of both production facilities is an efficient

way of eliminating the potential for hold-up problems ex post, and thus, to induce an efficient amount of

investment ex ante (See e.g. Williamson (1975), or Grossman and Hart (1986)).
10The model can easily be extended to allow for more than two types. Although the exposition is

messier, the methods and results are essentially the same as for the simple binary model considered here.
11There is also a technical reason for introducing ex post individual rationality constraints: From
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The objective of the headquarters is to maximize expected profit. Profit is given by

min{xA + xB, X}px − tA − tB − (kA + kB)pk.

The time and information structure is as follows: The binary supports of the plant specific

cost parameters and the support of demand are common knowledge to all parties involved

and all share the same prior on CA × CB and on [X,X]. At Stage 1 the headquarters

purchases capacity and allocates it among the two facilities. Then she designs the contracts

specifying the production quotas assigned to the facilities and the associated transfers.

Later, at Stage 2, demand and unit costs are drawn from their respective distributions.

Demand becomes publicly observable and verifiable. Unit cost ci, however, is privately

observed by facility i. After having learned their cis the facilities simultaneously and

confidentially make cost reports to the headquarters.12 The headquarters collects the

reports and sends production recommendations (according to the contract) back to the

facilities. Now the facilities decide how much to produce. The quantities produced become

then publicly observable and verifiable and contractual terms are carried out.

What is the optimal contract to be offered by the headquarters at Stage 1? By the

revelation principle we can restrict attention, without loss of generality, to contracts of

the form {xi(ci, cj, X), ti(ci, cj, X)} for {i, j} = {A,B}, where ci ∈ Ci, cj ∈ Cj and

X ∈ [X,X].13 Here, xi(ci, cj, X) is the output level required of facility i if the cost reports

Demski and Sappington (1984) and Crémer and McLean (1985) we know that, with interim individual

rationality, any level of correlation in the cost parameters enables the headquarters to extract all the

informational rents. This is an artifact of the convenient assumptions of risk neutrality and unlimited

punishment. Our ex post constraints enable us to evade this aritificial result.
12Here and throughout this paper we assume that it is common knowledge that the facilities behave non-

cooperatively. If collusion among plants cannot be precluded the formal framework changes dramatically.

In the limit – when the facilities behave as a single entity – we get a single-agent model with two-

dimensional uncertainty.
13This is not totally correct since the headquarters might wish to offer contracts in which output levels

and transfers are stochastic functions of the agents’ reports. However, it can be shown that that pure

randomization is of no value in the setting considered here.
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are ci and cj and the demand realization is X; ti(ci, cj, X) is the associated transfer,

provided facility i obtains xi(ci, cj, X). To keep the notation symmetric, we adopt the

convention that the first cost-report argument in xi and ti is the report from plant i while

the second is the report from j. In the sequel we put the reports into subscripts and

omit demand as an argument in these functions (e.g., ximn = xi(cim, c
j
n, X)). No confusion

should result. With this convention and the additional definition uimn ≡ timn − cimx
i
mn,

wherem,n ∈ {L,H}, we can equivalently represent each contract by a vector of 8 functions

of the form:

(ui, xi) = ((uiLL, x
i
LL), . . . , (uiHH , x

i
HH)).

In what follows we denote a contract combination {(ui, xi)}|i∈{A,B} as (u, x).

We now turn to incentive compatibility, individual rationality, and capacity contraints.

Consider a contract (ui, xi). Suppose that facility j ∈ {A,B}, j 6= i, is known to truthfully

announce its private information. For type m of facility i to honestly reveal its private

information, we must have

(ICi
m) qimu

i
mL + (1− qim)uimH ≥ qim[uinL + (cin − cim)xinL] +

+ (1− qim)[uinH + (cin − cim)xinH ],

where {m,n} = {H,L}. That is, truth telling must be Bayesian Incentive Compatible

(IC) for the facility. As is typical in this kind of adverse selection problems the binding

IC constraint will be to prevent the low cost facility from pretending to have high cost.

A trivial solution to this problem is to shut down the facility if it claims to have high cost

(xiHm = 0 for m ∈ {L,H}). To evade this solution we impose the following assumption

on our problem:14

Assumption 2: px > ciH + ∆iriLq
i
L/r

i
Hq

i
H ∀i ∈ {A,B}.

14In a model with more realistic cost- (increasing marginal cost) and/or demand- (downward sloping

demand) conditions our results can be obtained without this assumption.
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If a facility declares bankrupt it gets a payoff of 0. Hence, for type m of facility i to

respect the contractual terms under all circumstances the inequality

(IRi
mn) uimn ≥ 0

must hold for all n ∈ {H,L}. That is, obeying the contractual terms must be ex-post

Individually Rational (IR) for facility i. Obviously, facility i can comply with contractual

terms only if

(Ki
mn) ki ≥ ximn

holds for all m,n ∈ {H,L}. That is, the quantity the facility is required to produce must

not exceed its capacity. The headquarters wishes to maximize net revenue (gross revenue

minus transfers to the facilities) under incentive compatibility, individual rationality and

capacity constraints. Formally, the headquarters’ contracting problem at Stage 1 is:

Max(u,x)NR =

=
∑

m∈{H,L}
rAm
[
qAm min{xAmL + xBLm, X}+ (1− qAm) min{xAmH + xBHm, X}

]
px −

−
∑

i∈{A,B}

∑
m∈{H,L}

rim
[
qim(cimx

i
mL + uimL) + (1− qim)(cimx

i
mH + uimH)

]

subject to (ICi
m), (IRi

mn) and (Ki
mn) hold for all i ∈ {A,B}, (m,n) ∈ {H,L}2 and

X ∈ [X,X].

Solving the headquarters’ contracting problem yields optimal values of uimn and ximn for all

i ∈ {A,B}, X ∈ [X,X] and (m,n) ∈ {H,L}2. If we substitute the values for a given X in

the net revenue function NR and subtract capacity costs we obtain a reduced form profit

function, conditional on X, kA and kB. The headquarters’ problem is then to choose kA

and kB to maximize expected profit over all realizations of X.
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3 Optimal Contracts and Capacities

The Contracting Problem

We begin the analysis with the headquarters’ contracting problem. To facilitate the expo-

sition we concentrate (with little loss of generality) on a setting where one of the facilities

(facility B) is at least as efficient as the second one. More precisely, we assume that

cAm ≥ cBm for m ∈ {L,H}. In this case optimal capacities are characterized by kA ≤ kB, as

we will see below. We therefore take this into consideration in dealing with the contracting

problem.15

Our first result (Lemma 1) characterizes the solution to this problem. In this result

reference is made to the variables ξ and δ. These variables are defined by ξ ≡ rAL (1 −

qAL )(cBH − cAL) + rBL q
B
L∆B and δ ≡ rAH(1− qAH)(cBH − cAH) + rBL (1− qBL )∆B − rAL (1− qAL )∆A.

Also, in our first result reference is made to 4 different regions in the demand space. These

regions (denoted by R1 to R4) are defined in Figure 1.

-

0

R1

kA

R2

kB

R3

kA + kB

R4

X

Figure 1: Capacities and Demand

Finally, in Lemma 1 reference is made to a symmetric and an asymmetric case. In the

symmetric case cAm = cBm and rAm = rBm for m ∈ {L,H}. In the asymmetric case cAm > cBm

for m ∈ {L,H}.

Lemma 1 The solution to the headquarters’ contracting problem is characterized by

15The formal proof for kA ≤ kB consists of solving the headquarters’ contracting problem under the

assumption kA ≥ kB and showing that this yields kA = kB .
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(i) uiHL = uiHH = 0 and qiLu
i
LL + (1− qiL)uiLH = [qiLx

i
HL + (1− qiL)xiHH ]∆i > 0 for

i = A,B;

(ii) xAmn as depicted in Table 1 for the symmetric and in Table 2 for the asymmetric

case, and xBmn = min{X − xAnm, kB}.

Lemma 1 indicates that a facility gets only a compensation for its production cost if it has

observed the high cost-parameter cH , while it earns a strictly positive surplus, or rent, in

the more favourable environment cL. The magnitude of the rent in the more favourable

environment positively depends upon the output quota assigned to the facility if it claims

to have high cost. This is easily understood. The low-cost plant gets a rent, since without

it, it would always have an incentive of mimicking the high-cost one. Reducing the output

quota assigned to the high-cost plant reduces the gain of the low-cost plant for mimicking

the high-cost one and therewith its rent. This property of optimal contracts is important

for our main results and we will return to it later.

xALL xALH xAHL xAHH

R1 [0, X] X 0 [0, X]

R2 [0, kA] kA 0 [0, kA]

R3 [X − kB, kA] kA X − kB [X − kB, kA]

R4 kA kA kA kA

Table 1: Output Allocation in the Symmetric Case

Let us turn to the allocation of production quotas. For the symmetric case this allocation

is depicted in Table 1 and associated Figure 1. Figure 1 defines 4 different regions for

demand. Depending on the phase of the business cycle, that is, on the realization of

demand, and on the capacities in the facilities the firm may either have idle capacities

(as in an extreme form in region R1, and in a milder form in regions R2 and R3), or be

capacity constrained (R4). In the presence of idle capacities the headquarters will always

13



allocate production to the least-cost plant and the higher-cost one will carry idle capacity.

That is, if one plant reports high costs and the other reports low costs all production up

to the capacity constraint is allocated to the low cost plant. And if both plants report

either high or low costs the distribution of production is indeterminate.

xALL xALH xAHL xAHH

ξ < 0 ξ > 0 ξ = 0 δ < 0 δ > 0 δ = 0

R1 0 0 X [0, X] 0 0 X [0, X]

R2 0 0 kA [0, kA] 0 0 kA [0, kA]

R3 X − kB X − kB kA [X − kB, kA] X − kB X − kB kA [X − kB, kA]

R4 kA kA kA kA kA kA kA kA

Table 2: Output Allocation in the Asymmetric Case

The asymmetric case (depicted in Table 2) behaves similarly, except that virtual rather

than real costs are compared. The virtual cost of a given type differs from its real cost in

that the informational rents paid to those types that jeopardize the given type are taken

into account. Type cm jeopardizes type cn if the headquarters has difficulty preventing

cm from mimicking cn. In the present context the high cost type is jeopardized by the

low cost one but not vice versa. So, the virtual cost of the low cost type is just its real

cost while the virtual cost of the high cost type is its real cost plus a term that measures

the additional rent that must be paid to the low cost type if the quantity produced by

the high cost one is increased by one unit. The rest is trivial: (i) If both plants report

low costs all production up to capacity is allocated to the more efficient plant B. (ii) If

both plants report high costs all production is given to the plant with the lowest virtual

cost (again up to its capacity constraint). (iii) If one plant reports high costs and the

other reports low costs all production up to the capacity constraint is allocated to the low

cost plant unless the underlying cost asymmetry so much favours the plant with the high

cost-report that it compensates for the increase in the informational rent induced by an

14



increase in the high-cost quantity.

Here note that plant A may be allowed to produce even if it is known to have the highest

production costs in each environment (i.e., even if cAL > cBH) and even if demand is so low

that the entire quantity could be produced without employing this facility. To see this

possibility suppose that ∆BrBL q
B
L /r

A
L (1 − qAL ) > cAL − cBH and (cA, cB) = (cAL , c

B
H). Then

producing in plant B is (in ex ante terms) more expensive than producing in A since

the cost difference to B’s favor is smaller than the additional rent he would get if xBHL

is increased by one unit. Thus, plant A is assigned to produce min{X, kA} while B gets

only the rest which is zero if X ≤ kA. We record this result as

Proposition 1 Plant A may be allowed to produce even if it is known to have always

higher production costs (cAL > cBH) and even if demand is so low that there remains excess

capacity in plant B (kB < X).

On an intuitive level an explanation for this result is that if the more efficient plant B

knows that it is allowed to produce no matter what its cost-report is, inducing truthful

revelation is quite difficult, i.e., a high rent is required to accomplish this. By contrast,

if production is awarded to the worse plant A if B claims to have high cost, competition

among the facilities for the right to produce limits the size of informational rents.

Note that this result – combined with the observation that capacity-investments are in

most cases to some degree sunk – may help to explain the observation that multinational

enterprises that build new plants in low-cost countries do not always shut down their old

facilities in high-cost countries even if the new facilities are large enough to produce the

quantity demanded under most favorable market conditions. The explanation suggested

by the preceding analysis is, that the headquarters use their old facilities as a credible

threat that output will be allocated back to those facilities if the reported production

costs in the new plants are too high.
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The Capacity Choice Problem

The next step is to determine the optimal capacity levels for the facilities. Optimal

capacities are found by setting the expected shadow value of a marginal unit of capacity

equal to the capacity price. The shadow value of additional units of capacity under

different demand realizations is as depicted in Table 4.

Corollary 1 The shadow value of a marginal unit of capacity is as depicted in Table 4.

Consider first the symmetric case. For the symmetric case Table 4 simplifies to Table 3.

This table is easily explained. In extreme downturns, that is, in Region 1, the headquarters

can produce the whole output in whichever facility she wants. Since capacity places no

restriction in this case, adding an additional unit of this resource to one of the facilities

creates no value.

Plant A

best realization benefit slack reduction benefit

R1 ↖ 0 ↑

R2&R3

︷ ︸︸ ︷
rAL (1− qAL )(cBH − cAL) +

︷ ︸︸ ︷
rBL q

B
L∆B

R4 px − rAL (cAL + ∆A)− rAHcAH

Table 3: Shadow Value of Capacity in the Symmetric Setting

If demand exceeds the capacity in plant A then the shadow value of an additional unit of

this resource crucially depends on whether demand is higher (in R4) or lower (in R2 and

R3) than total capacity. Let us assume first demand is lower. To see where the shadow

value of an additional unit of capacity in this case comes from let us return to Table 1.

If demand falls in Region 2 and both facilities report the same cost realization then the

headquarters is indifferent between carrying out production in facility A and producing in

plant B. An extra unit of capacity in A has therefore no value. The same holds if A has

drawn the high and B the low unit cost since the headquarters prefers to have the whole
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output produced in B in this case. An extra unit of capacity in A has, however, value if

A has drawn the low and B the high cost-parameter. In this case an additional unit of

capacity in facility A allows the headquarters to produce an additional unit of output in A

instead of producing it in B. This generates two kinds of benefits: First, a best-realization

benefit : production of an additional unit can be carried out at the low cost cAL rather than

the high cost cBH . Since the event that facility A has drawn the low and facility B the high

unit cost has probability rAL (1− qAL ), the impact of the best-realization benefit is given by

rAL (1 − qAL )(cBH − cAL).16 Idle capacities have a second, more interesting advantage which

we call the slack-reduction benefit. To understand this second benefit it is important to

remember the determinants of the rents received by the facilities. As we have seen earlier

the magnitude of the rent earned by the low cost facility positively depends upon the

production quota assigned to this facility if it reports its cost to be high. Where does the

slack reduction benefit of an extra unit of capacity in facility A now come from? This

benefit arises because the additional unit of capacity in plant A allows the headquarters

to reduce the production quota assigned to plant B, if B claims to have high cost. This

reduces the incentive of the low-cost realization of plant B to mimicke the high cost one

and therewith its rent. Since we are talking about a situation in which facility A reports

the low and facility B the high unit cost, the quantity of interest is xBHL, and reducing

this quantity by one unit leads to a reduction in B’s rent by qBL∆B as can be seen from

condition (i) of Lemma 1. Since the event that facility B gets a rent has probability rBL ,

the impact of the slack-reduction benefit of an additional unit of capacity in plant A is

16An effect that is closely related to our best realization benefit has earlier been identified by Auriol

and Laffont (1992) in a paper on the optimal structure of an industry. The authors show that one of

the merits of a duopoly (in comparison to a monopoly) is the increased sample-size that gives a higher

probability of drawing a low marginal cost for the industry. They refer to this as the sampling effect. A

difference to our best realization benefit is that the sampling effect requires an increase in the number of

draws (in our context, an increase in the number of plants) while our best realization benefit arises with

a given number of draws because a good draw (= low cost realization) can better be exploited.
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given by rBL q
B
L∆B.

Plant A Plant B

R1 0 0

R2 max{0, ξ}+ max{0, δ} 0

R3 max{0, ξ}+ max{0, δ} rBL (cAH − cBL ) + max{0,−ξ}+ max{0,−δ}

R4 px − rAL (cAL + ∆A)− rAHcAH px − rBL (cBL + ∆B)− rBHcBH

Table 4: Shadow Value of Capacity

The rest of Table 3 is easily explained: In boom periods of the economy, where demand

exceeds the amount of capacity available within the boundaries of the firm (Region 4),

an additional unit of capacity in any of the facilities allows the headquarters to produce

and sell an additional unit of output, a unit that would not have been produced (and sold)

otherwise. Thus, the benefit of this unit is simply the market price of output minus

production and information costs.

Allowing now for asymmetries, Table 4 shows, that an extra unit of capacity in plant A

can have positive value even in a situation in which this plant is known to have the

highest production cost for each realization of c = (cA, cB) and in which there is excess

capacity for sure: If cAL > cBH but ξ > 0 (or δ > 0) then the shadow value of capacity in

plant A is strictly positive even if X ≤ kA + kB. The reason for this is again the above

mentioned informational rent in facility B which is reduced by an increase in kA. In terms

of best-realization and slack-reduction benefits the situation is as follows: If cAL > cBH

and c = (cAL , c
B
H) then the best-realization benefit, rAL (1− qAL )(cBH − cAL), is unambiguously

strictly negative. The slack-reduction benefit, rBL q
B
L∆B, however, remains positive. So,

if in absolute terms, the slack-reduction effect exceeds the best-realization effect (ξ > 0)

then facility A is allowed to produce, and extra units of capacity in plant A have positive

value, despite the high production cost. The argument for the case c = (cAH , c
B
H) and δ > 0
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is similar.

Note, that in a first-best benchmark in which the facilities’ cost-parameters are observable

and verifiable the shadow value of capacity in plant A would be zero if cAL > cBH and

X ≤ kA + kB. Thus, setting kA equal to zero would be optimal in this benchmark if

cAL > cBH , irrespective of the price of capacity. In contrast to this, in our second-best world

there exists a range of capacity prices for which kA is strictly positive even if cAL > cBH (but

ξ > 0 or δ > 0).

Also note that Corollary 1 implies that optimal capacities are characterized by kA = kB in

the symmetric, and by kA < kB in the asymmetric case. To see this for the symmetric case

suppose to the contrary that (without loss of generality since the plants are otherweise

identical) kA < kB. Then a transfer of one unit of capacity from fracility B to facility A

results in an increase in the headquarters’ expected payoff by ξ > 0 if X falls in the interval

(kA, kB] and in no change in this payoff if X falls outside this range.17 The argument for

the asymmetric case is similar: Suppose kB ≤ kA. Then a reallocation of one unit of

capacity from plant A to plant B results even in the worst case (where ξ > 0 and δ > 0)

in an increase in the headquarters’ expected payoff if X > kB and in no change in this

payoff otherwise.18 Thus, the optimality of kA 6= kB is contradicted in the symmetric, and

the optimality of kB ≤ kA is contradicted in the asymmetric case.

To simplify the exposition we concentrate in the sequel on the symmetric case. We denote

the capacity level for this case by k (= kA = kB).

17Notice that in the symmetric case ξ = rAL (1 − qAL )(cBH − cAL) + rBL q
B
L∆B = rBL (1 − qBL )(cBH − cBL ) +

rBL q
B
L∆B = rBL (cAH − cBL ).

18To see this notice that for kB ≤ kA Table 4 looks exactly as the actual Table 4 except that Region 2

is defined by (kB , kA] (and Region 3 by (kA, kA + kB)) and that the shadow value of a marginal unit of

capacity in this region is 0 for plant A and rBL (cAH − cBL ) + max{0,−ξ} + max{0,−δ} for plant B. Also

notice that in the worst case (ξ > 0, δ > 0) the shadow value of capacity in Region 3 is rBL (cAH − cBL ) for

plant B and that rBL (cAH − cBL ) > rBL (cBH − cBL ) > rBL (cBH − cBL )− rBH(cAH − cBH) = ξ + δ, where the latter is

the shadow value of capacity for plant A.
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4 Organizational Slack and the Business Cycle

The goal of this section is to analyse the effect of variations in product demand on the

amount of internal slack, measured by the size of the rents dissipated within the facil-

ities. As mentioned earlier, earlier work from other authors had difficulty to generate

unambiguous results in this dimensions. By contrast, we get a sharp unambiguous result:

Proposition 2 Denote the (expected) amount of slack per unit of output produced by

φ(x). That is,

φ(x) ≡ 1

x

∑
i∈{A,B}

riL[qiLu
i
LL + (1− qiL)uiLH)],

where x = min{X, 2k}. Then φ(x) is increasing in x for all x and all k. Furthermore,

φ(x) is strictly increasing in x for all x ∈ (k, 2k).

Proposition 2 tells us that the per-unit slack is growing in the level of demand, i.e. is

pro-cyclical, for given capacities in the facilities. In other words, for given capacity levels,

X-inefficiency losses are less severe during downturns of the economy than in states of

high demand. This is simply a consequence of the slack-reduction benefit just discussed:

If demand is low then there exist idle capacities within the boundaries of the firm. Idle

capacities intensify in-house competition among plants for higher production quotas. This

intensified competition, in turn, reduces X-inefficiency. Here notice that this result doesn’t

depend on any correlation in the cost-parameters of the facilities. The driving force is

rather the facilities’ greediness for higher production quotas.

Although Proposition 2 has been derived in a multi-plant firm context where a central

authority, the headquarters, has the power to allocate production among multiple fa-

cilities the intuition behind this result extends well beyond this framework. Basically

the same pro-cyclical relationship between industry demand and amount of slack could

be obtained, for instance, in a decentralized model where several capacity-constrained

single-plant firms, each run by a manager with private information on unit cost, supply a
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homogeneous good under Bertrand conditions. In such a model a low-cost manager has

little incentive to misrepresent his private information during downturns because in down-

turns high-cost firms are unable to stand the market test. Things are different in boom

periods of the economy where demand exceeds the amount of capacity available within

the industry. In such periods X-inefficiency increases because tight capacity constraints

reduce the power of Bertrand competition.19

Proposition 2 sheds new light on the finding that in many industries substantial cost

savings are realized during downturns. Empirical evidence supportive of this finding is

provided by the literature on productivity growth and technical progress (cf., for instance,

Gali and Hammour 1992, or Malley and Muscatelli 1996). The finding is also supported by

casual observations. Schmidt (1997), for instance, reports that during the latest recession

in the car industry almost all suppliers reduced their cost by 20 to 30% within two years.

He argues that there has been no accompanying change in technology allowing for savings

in technological production-cost in that order. So, the question arises where these savings

stem from. The answer suggested by the present analysis is that internal efficiency has

improved during the last recession since idle capacities intensify competition, and since

intensified competition reduces slack.20

19Since Proposition 2 is for given capacities in the facilities it doesn’t matter that capacity decisions are

decentralized in a decentralized model. Rather important, however, is the production assignment process.

In the symmetric setting the headquarters’ production assignment in the present model (as depicted in

Table 1) is exactly the same as it would be under Bertrand competition, i.e., when firms compete in

prices.
20Schmidt (1997) explains the puzzle by the “threat of liquidation effect”: The decrease in profits

during recessions makes it more likely that firms that do not manage to reduce costs are driven out of the

market. This gives a direct incentive to managers to work harder. We view this and our own explanation

as complements not as substitutes.
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5 Capacity and Uncertainty of Demand

Having analysed how variations in product demand affect the amount of organizational

slack for given capacities in the facilities, we now turn to the choice of capacity for each

plant. Our first result here compares the optimal capacity in our model with X-inefficiency

– which we denote by k̂ – with that in a benchmark in which the cost parameters cA and

cB are observable and verifiable. We denote the optimal capacity level for this benchmark

by k∗.

Proposition 3 There exists a unique critical price of capacity p̃k for which k̂ = k∗. If

pk > p̃k, then k̂ < k∗. If pk < p̃k, then k̂ > k∗.

Proposition 3 tells us that there exists a unique critical price of capacity for which the

optimal capacity level in our model with X-inefficiency coincides exactly with that of the

first best benchmark. If capacity is relatively cheap, i.e., if its price is lower than this crit-

ical level, the headquarters over-invests in capacity (relative to the first best benchmark),

while the opposite is true for prices that are higher than the critical level. This result is

easily explained: Since idle capacities limit slack at the plant level, the shadow value of

an additional unit of idle capacity is strictly higher in our model than in the benchmark

without X-inefficiency. Exactly the opposite is true for fully utilized capacity: Due to

the absence of slack, the cost of output provision is strictly lower in the benchmark, the

shadow value of fully used capacity therefore higher. Now consider capacity cost. If the

cost of capacity is high, risking to be left with excess capacity is too expensive. So the

argument for fully utilized capacity applies, leading to under-investment in capacity. On

the other hand, if capacity is relatively cheap, running the risk of a situation in which ca-

pacity is not matched by demand is profitable in the benchmark but even more profitable

in our model. Thus, over-investment in capacity results.

The low capacity-cost part of Proposition 3 closely resembles an earlier result by Rior-

dan (1996). In a procurement model in which the quantity to be produced is exogenously
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fixed, and in which the orderer first decides about the number of potential suppliers and

their capacities and then about the division of production among them, he shows that

the capacity of each of the potential suppliers exactly equals demand and that asym-

metric information biases the market structure in favour of more suppliers. Together

these two facts imply an unambiguous over-investment result. That the current model

can also generate under-investment is not surprising given the difference in the modelling

assumptions: Riordan derives his results under the supposition that it is always optimal

to provide sufficient capacity to cover demand. Since the total quantity requirement of the

headquarters is driven by fluctuations in market demand in the present model, and since

the headquarters must decide about capacities before knowing which state of demand is

going to realize, such an assumption would be difficult to motivate in our work.

Note that our central result on the relationship between demand and the amount of slack

in the firm doesn’t depend on capacity costs and therewith also not on whether over- oder

under-investment in capacity prevails. What is needed to reduce organizational slack is

rather excess capacity. While over-investment in capacity refers to an ex ante situation in

which second best capacities exceed first best levels, excess capacity describes an ex post

situation in which capacity exceeds demand.21 Since demand is random in the present

model, excess capacity arises also in the under-investment range of capacity prices.

Up to now we have assumed that demand is uniformly distributed over a given interval

[X,X]. A next question of interest is, how our results change if we vary the “extent

of uncertainty in demand”, i.e., if we modify the bounds of this interval. To keep things

simple we consider mean preserving spreads of the form Xnew = X−µ and X
new

= X+µ,

where 0 ≤ µ ≤ X. Obviously, Lemma 1, Propositions 1 and 2, and Corollary 1 remain

unaffected by such a change. Proposition 3 holds in a slightly modified form in which

k̂, k∗ and p̃k are replaced by k̂(µ), k∗(µ) and p̃k(µ). An obvious question to ask is, how

21Ex ante here refers to a situation before demand has been realized.
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optimal first and second best capacities change if the volatility of demand increases. The

answer seems to be straightforward: There is an option value on each unit of capacity

for being able to choose the lower cost firm (in virtual cost terms) ex post. That option

value should increase with higher volatility. Thus, an increase in the volatility of demand

should increase both first and second best capacities. Furthermore, since the option value

of capacity is higher in our model with X-inefficiency than in the first best benchmark

the range of capacity prices for which over-investment in capacity prevails should increase

in uncertainty of demand, i.e., p̃k(µ) should be an increasing function. Things are more

complicated, however, as the following results show:

Proposition 4 The impact of an increase in the volatility of demand on optimal

capacities (i.e., the derivative of k̂(µ) and k∗(µ) with respect to µ) is ambiguous in sign.

Proposition 5 The critical price of capacity p̃k(µ) is decreasing in µ. Furthermore,

for each pair (X,X) there exists some ε ∈ [0,min{0, .75X − 0.25X}] such that p̃k(µ) is

strictly decreasing in µ for all µ ∈ [ε,X]. 22

What went wrong with our option value story? Consider first Proposition 4, i.e., the

impact of an increase in volatility of demand on optimal capacities. To explain this

result, let us return to Table 4 showing the shadow value of capacity for different demand

realizations. In the symmetric case considered here, the shadow value of capacity is zero

for X ≤ k, ξ = rL(1− qL)(cH − cL) + rLqL∆ for X ∈ (k, 2k), and pk − rL(cL + ∆)− rHcH

for X ≥ 2k. An optimal level of k is found by setting the expected shadow value of

capacity equal to the capacity price, pk. Suppose for the sake of the argument that

the price of capacity is fairly low; more precisely, suppose pk ∈ (0, ξ). Further suppose

that µ = 0. Then the optimal second best level of capacity for each facility, k̂, lies in

the interval (X,X), where the shadow value is zero with probability (k̂ − X)/(X − X)

22If X ≥ 3X then p̃k(µ) is strictly decreasing for all µ ∈ [0, X].
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and ξ with probability (X − k̂)/(X − X).23 For µ > 0 these probabilities change to

(k̂−X + µ)/(X −X + 2µ) and (X − k̂ + µ)/(X −X + 2µ). So, for the range of capacity

prices under consideration, the impact of µ on k̂ crucially depends upon which of these two

probabilities is increasing in µ. First suppose that pk is close to ξ implying that k̂ is close

to X. Then the first of these two probabilities is increasing, and k̂ therefore decreasing in

µ. Exactly the opposite is true for pk close to 0 (implying k̂ close to X). The story for

capacity prices exceeding ξ is similar. Again, the impact of an increase in the volatility

of demand on k̂ crucially depends upon which of the three shadow values of capacity in

Table 3 gets more probability weight as µ increases. And this depends upon the initial

level of k̂ and therewith on the prevailing price of capacity. Since the shadow value of

capacity for the first best benchmark is obtained by setting slack, represented by the term

∆ in the expressions in Table 3, equal to zero, the same is true for k∗.

Now consider Proposition 5 saying that the range of capacity prices for which we get

over-investment in capacity is decreasing in uncertainty in demand. Loosely speaking, if

“demand becomes more variable” (µ increases) then “over-investment in capacity becomes

less likely”. To see the intuition behind this result, recall that the shadow value of capacity

in our model with X-inefficiency exceeds that in the first best benchmark if X ∈ (k, 2k)

while the opposite is true for X > 2k. For X ≤ k, on the other hand, capacity carries the

same shadow value – namely zero – in both settings. So, for k̂ to be equal to k∗, both,

demand realizations in (k, 2k) and demand realizations exceeding 2k, must have strictly

positive probability weight. For this to be the case, capacities must lie in the interval

[.5(X − µ), .5(X + µ)]. Now, fix capacities in this interval and increase µ. Then the

probability that X exceeds 2k cannot decrease while the probability that X falls in the

intermediate range (k, 2k) cannot increase. Thus, the balance shifts to the benchmark’s

favour. To restore the balance, optimal capacities must increase and p̃k therefore decrease

in µ. To summarize: Proposition 5 is driven by the fact that first best capacity has

23Here we assume that 2X > X. The argument for the opposite case is similar.
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a comparative advantage for extreme demand realizations (X ≥ 2k) while second best

capacity has its strength when realized demand is at an intermediate level (X ∈ (k, 2k)).

Since extreme realizations become more likely when volatility of demand increases, the

result follows.

6 Concluding Remarks

This paper has studied the effect of variations of product demand on the amount of

organizational slack in multi-plant firms in a model in which plants can produce output

at a privately known cost up to a previously determined capacity level. The private

information on production costs allow facilities to receive rents which are dissipated within

the facilities in form of slacking, perquisites, and other forms of at-the-expense-of-the-firm

behavior. We have shown that in such a model, the amount of operating slack in the firm

is pro-cyclical. Indeed, as capacity constraints become tighter in booms, slack increases

in booms, because tight capacity constraints hamper competition among plants for higher

production quotas. The converse argument applies for downturns. In such periods slack

decreases because the intensity of rivalry for quota assignments increases when capacity

constraints are relaxed. Thus, during boom periods of the economy firm-profits tend to

be high since demand is high and capacity is fully utilized. By contrast, during downturns

the firm is able to improve its profitability by concentrating on the cost side, that is, by

reducing organizational slack.

We have also shown, that during downturns of the economy the firm may use high-cost

facilities even when low-cost plants are not running at capacity. The reason for the ex

post inefficient production assignment to a high-cost plant is, loosly speaking, the desire

to improve internal efficiency in low-cost plants. Regarding capacity we have seen that,

in comparison to a benchmark model without X-inefficiency, the firm has an incentive to

overinvest in capacity when capacity cost is low, while the opposite is true for high capacity
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prices. This result is due to the fact that fully utilized capacity has a higher shadow value

in the benchmark where average production cost is lower, while idle capacity is more

advantageous in our model where it reduces slack at the plant level.

Although our analysis has narrowly focused on a multi-plant firm context where a central

authority has the power to allocate production quotas among multiple facilities we don’t

think that the intuition behind our central result about the amount of slack in the firm

over the business cycle is confined to this framework. Indeed, we have argued that the

same result can be obtained in a decentralized model in which several capacity-constrained

single-plant managerial firms sell a homogeneous product under Bertrand conditions, that

is, competing in prices.

Our analysis sheds new light on several interesting empirical observations. For instance,

the observation that the extent of cost reductions realized in many industries during

recessions can hardly be explained by savings in technological production costs. The

explanation suggested by the present analysis is that not only technological production

cost but also internal slack is reduced as capacity constraints are relaxed in recessions,

because the power of competition is increased.24 Or, the observation that multi-plant firms

do not always shut down their existing high-cost facilities after having installed sufficient

capacities in low-cost countries. The explanation suggested by the present paper is that

the firms use their old facilities as a device to reduce internal slack in the new plants.

24An alternative explanation for this observation is provided by the new growth literature (cf., for

instance, Davis and Haltiwanger 1990, Hall 1992, Gali and Hammour 1992, and Aghion and Saint-

Paul 1998). In this literature productivity increases in recessions because the opportunity cost of

productivity-improving activities goes down in recessions by more than their return. We view this and

our own explanation as complements, not as substitutes.
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APPENDIX

Proof of Lemma 1

The proof begins by analysing a relaxed program in which the downward incentive con-

straints ICA
H and ICB

H are not included. Later we show that the solution to this relaxed

program admits a continuum of transfer prices which satisfy these constraints. First no-

tice that the upward incentive constraints ICA
L and ICB

L cannot be relaxed by increasing

production. Also, there is no other gain from producing output that cannot be sold. Our

original relaxed program is therefore equivalent to

Max(u,x)NR′ =

=
∑

i∈{A,B}

∑
m∈{H,L}

rim[qim(ximL(px − cim)− uimL) + (1− qim)(ximH(px − cim)− umH)]

subject to

(Dmn) X ≥ xAmn + xBnm,

(ICi
H), (IRi

mn) and (Ki
mn) hold for all i ∈ {A,B}, (m,n) ∈ {H,L}2 and X ∈ [X,X].

Letting βim, α
i
mn, γ

i
mn and λmn be the Lagrange multipliers associated with (ICi

m), (IRi
mn),

(Ki
mn) and (Dmn) the first order conditions for a solution to this problem include (we focus

on one plant and delete the i superscript):

(1) − rLqL + βLqL + αLL = 0

(2) − rL(1− qL) + βL(1− qL) + αLH = 0

(3) − rHqH − βLqL + αHL = 0

(4) − rH(1− qH)− βL(1− qL) + αHH = 0

Standard arguments reveal that βL, αHL and αHH are strictly positive while αLL = αLH =

0. From adding up (1) and (3) we get αHL = rLqL + rHqH . Also, from (2) and (4),

αHH = rL(1− qL) + rH(1− qH). Thus, βL = rL by (1).
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In addition, condition (5i) – (8i) have to be satisfied for i = A,B. In these conditions

λ+ = λLH and λ− = λHL if i = A and λ+ = λHL and λ− = λLH if i = B.

(5i) riLq
i
L(px − ciL)− γiLL − λLL ≤ 0, xiLL ≥ 0 and c.s.;

(6i) riL(1− qiL)(px − ciL)− γiLH − λ+ ≤ 0, xiLH ≥ 0 and c.s.;

(7i) riHq
i
H(px − ciH)− riLqiL∆i − γiHL − λ− ≤ 0, xiHL ≥ 0 and c.s.;

(8i) riH(1− qiH)(px − ciH)− riL(1− qiL)∆i − γiHH − λHH ≤ 0, xiHH ≥ 0 and c.s.

Four different cases are to be considered with respect to demand realization:

Case 1: kA+kB ≤ X. In this case conditions (Ki
LL) - (Ki

HH) are more demanding than

conditions (DLL) - (DHH) so that λLL = λLH = λHL = λHH = 0. Under Assumption 2 the

first inequality in (5i) - (8i) holds as an equation (note that, by Assumption 1, qiL/q
i
H ≥

1 ≥ (1− qiL)/(1− qiH)) and xiHL = xiHH = xiLL = xiLH = ki, for i = A,B.

Case 2: kB < X < kA + kB. In this case Assumption 2 guarantees that λmn > 0 for

all (m,n) ∈ {L,H}2: If λLL = 0, then γALL = rALq
A
L (px − cAL) [see Case 1] and xALL = kA.

Since the same argument holds for plant B condition (DLL) is violated, contrary to the

hypothesis. Similarly for λLH , λHL and λHH . Next observe, that λLL > 0 (together with

DLL and KB
LL) implies that xALL > 0. By a similar argument, ximn > 0 for all i ∈ {A,B}

and m,n ∈ {L,H}. This, in turn, implies that the first inequality in (5i) - (8i) holds

as an equation for i ∈ {A,B}.25 Next notice that γAHL = 0. To see this suppose to

the contrary that γAHL > 0. Then xAHL = kA. Furthermore, since condition (7A) must

hold with equality, condition (6B) can be satisfied only if γBLH > 0 (by the definition of

the conditional probabilities rAHq
A
H = rBL (1 − qBL ); by assumption cAH ≥ cBH > cBL ) so that

xBLH = kB. But xAHL = kA and xBLH = kB together violate (DLH). The fact that γAHL = 0, in

turn, implies that λHL = rAHq
A
H(px−cAH)−rALqAL∆A and γBLH = rBL (1−qBL )(cAH−cBL )+rALq

A
L∆A

so that xBLH = kB and xAHL = X − kB. Next notice that γALL = 0. To see this suppose to

25In the sequel we omit the phrase “the first inequality in” and refer to the first part of condition (Yi)

simply as condition (Yi).
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the contrary that γALL > 0. Then xALL = kA. Furthermore, since condition (5A) must hold

as an equation, condition (5B) can be met only if γBLL > 0 (notice that rALq
A
L = rBL q

B
L and

cAL ≥ cBL ) so that xBLL = kB. But xALL = kA and xBLL = kB together violate (DLL). The

fact that γALL = 0, in turn, implies that λLL = rALq
A
L (px − cAL) and γBLL = rBL q

B
L (cAL − cBL )

so that xBLL = kB and xALL = X − kB if cAL > cBL , and xBLL ∈ [X − kA, kB] and xALL =

X − xBLL otherwise (i.e., if cAL = cBL ). For the rest we have to distinguish between the

symmetric and the asymmetric case. In the symmetric case the above arguments can

be reversed to show that γBHL = 0 and γALH = rAL (1 − qAL )(cBH − cAL) + rBL q
B
L∆B implying

xALH = kA and xBHL = X − kA. Furthermore, γAHH = γBHH = 0 (since xAHH = kA and

xBHH = kB together violate (DHH)), and λHH = riH(1 − qiH)(px − ciH) − riL(1 − qiL)∆i so

that xAHH ∈ [X−kB, kA] and xBHH = X−xAHH . The asymmetric case is more complicated.

First consider conditions (8A) and (8B). Three different cases have to be considered.

If δ ≡ rAH(1 − qAH)(cBH − cAH) + rBL (1 − qBL )∆B − rAL (1 − qAL )∆A < 0, then γAHH = 0,

λHH = rAH(1− qAH)(px− cAH)− rAL (1− qAL )∆A and γBHH = |δ| by arguments similar to those

presented above. Thus, xBHH = kB and xAHH = X − kB. Symmetric arguments reveal that

γBHH = 0, λHH = rBH(1 − qBH)(px − cBH) − rBL (1 − qBL )∆B and γAHH = δ so that xAHH = kA

and xBHH = X − kA whenever δ > 0. Finally assume that δ = 0. Then γAHH = γBHH = 0

and λHH = rAH(1− qAH)(px − cAH)− rAL (1− qAL )∆A = rBH(1− qBH)(px − cBH)− rBL (1− qBL )∆B

so that xAHH ∈ [X − kB, kA] and xBHH = X − xAHH , since (8A) and (8B) holding as

equalities implies γAHH = γBHH in this case, and since γAHH > 0 and γBHH > 0 together

violate (DHH). Applying the same logic to conditions (6A) and (7B) reveals that γALH =

0, λLH = rAL (1 − qAL )(px − cAL), γBHL = |ξ|, xBHL = kB and xALH = X − kB whenever

ξ ≡ rAL (1− qAL )(cBH − cAL) + rBL q
B
L∆B < 0, that γBHL = 0, λLH = rBHq

B
H(px − cBH)− rBL qBL∆B,

γALH = ξ, xALH = kA and xBHL = X − kA if ξ > 0, and that γBHL = γALH = 0, λLH =

rAL (1− qAL )(px− cAL) = rBHq
B
H(px− cBH)− rBL qBL∆B, xALH ∈ [X − kB, kA] and xBHL = X −xALH

if ξ = 0.
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Case 3: kA < X ≤ kB. In this case we get again λmn > 0 for all (m,n) ∈ {L,H}2 (by

the arguments in the proof of Case 2). In addition, γBmn = 0 for all (m,n) ∈ {L,H}2

(to see this, suppose that γBmn > 0; then xBmn = kB, which violates the respective (D)

constraint) and xBmn > 0 for all (m,n) ∈ {L,H}2 (this follows from λmn > 0 for all

(l,m) ∈ {L,H}2 and from kA < X). Also, γALL = 0 (if γALL > 0 then xALL = kA > 0; this

implies that condition (5A) holds as an equation; if condition (5A) holds as an equation,

condition (5B) can be satisfied only if γBLL > 0; but this contradicts γBLL = 0) and γAHL = 0

(along similar lines of argument) so that λLL = rBL q
B
L (px − cBL ) ≥ rALq

A
L (px − cAL) and

λHL = rBL (1−qBL )(px−cBL ) > rAHq
A
H(px−cAH)−rALqAL∆A. This, in turn, implies that xAHL = 0

and xBLH = X. Furthermore, xBLL = X and xALL = 0 if cAL > cBL , and xBLL ∈ [X − kA, X]

and xALL = X − xBLL otherwise (i.e., if cAL = cBL ). For the rest we again have to distinguish

between the symmetric and the asymmetric case. In the symmetric case γALH > 0 (to see

this, suppose that γALH = 0; then follow the line of arguments presented in the proof of

γALH > 0 in Case 2 above) so that xALH = kA, xBHL = X−kA, λLH = rBHq
B
H(px−cBH)−rBL qBL∆B

and γALH = rAL (1−qAL )(cBH−cAL)+rBL q
B
L∆B. Furthermore, γAHH = 0, λHH = riH(1−qiH)(px−

ciH)− riL(1− qiL)∆i, xAHH ∈ [0, kA] and xBHH = X − xAHH . In the asymmetric case we have

again to distinguish lots of subcases. First consider conditions (6A) and (7B). From γBHL =

0, xBHL > 0 and xALH ≥ 0 we get λLH = rBHq
B
H(px−cBH)−rBL qBL∆B ≥ rAL (1−qAL )(px−cAL)−γALH .

If ξ < 0 then this relation implies that γALH = 0, xALH = 0 and xBHL = X. Similary, if

ξ > 0 then γALH = ξ, xALH = kA and xBHL = X − kA. And if ξ = 0 then γALH = 0,

the above relation holds as an equality and we get xALH ∈ [0, kA] and xBHL = X − xALH .

Next consider conditions (8A) and (8B). From γBHH = 0, xBHH > 0 and xAHH ≥ 0 we get

λHH = rBH(1− qBH)(px− cBH)−rBL (1− qBL )∆B ≥ rAH(1− qAH)(px− cAH)−rAL (1− qAL )∆A−γAHH .

If δ < 0 then this relation implies γAHH = 0, xAHH = 0 and xBHH = X. If δ > 0 then

γAHH = δ, xAHH = kA and xBHH = X − kA. And if δ = 0, then this relation holds as an

equation and xAHH ∈ [0, kA] and xBHH = X − xAHH .
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Case 4: X ≤ kA. In this case conditions (DLL) - (DHH) are more demanding than

conditions (Ki
LL) to (Ki

HH) so that γiLL = γiLH = γiHL = γiHH = 0 for i = A,B. Now

remember that cAm ≥ cBm for m ∈ {L,H}. Therefore, condition (6B) implies that con-

dition (7A) holds with strict inequality so that λHL = rBL (1 − qBL )(px − cBL ), xAHL = 0

and xBLH = X. For the rest we distinguish again between the symmetric and the asym-

metric case. In the symmetric case condition (6A) implies that condition (7B) holds as

a strict inequality so that λLH = rAL (1 − qAL )(px − cAL), xBHL = 0 and xALH = X. Under

Assumption 2 the other conditions hold as equations and we get λLL = riLq
i
L(px − ciL),

λHH = riH(1 − qiH)(px − ciH) − riL(1 − qiL)∆i, xAmm ∈ [0, X] and xBmm = X − xAmm for

m ∈ {L,H}. In the asymmetric case (cAL > cBL ) condition (5B) implies that condition (5A)

holds as a strict inequality so that λLL = rBL q
B
L (px− cBL ), xALL = 0 and xBLL = X. Carrying

out the same type of analysis with conditions (8A) and (8B) reveals that λHH = rBH(1−

qBH)(px−cBH)−rBL (1−qBL )∆B > rAH(1−qAH)(px−cAH)−rAL (1−qAL )∆A, xAHH = 0 and xBHH = X if

δ < 0, λHH = rAH(1− qAH)(px− cAH)− rAL (1− qAL )∆A > rBH(1− qBH)(px− cBH)− rBL (1− qBL )∆B,

xAHH = X and xBHH = 0 if δ > 0, and λHH = riH(1 − qiH)(px − ciH) − riL(1 − qiL)∆i,

xAHH ∈ [0, X] and xBHH = X − xAHH if δ = 0. Similarly, from conditions (6A) and (7B),

λLH = rBHq
B
H(px − cBH)− rBL qBL∆B > rAL (1− qAL )(px − cAL), xALH = 0 and xBHL = X if ξ < 0,

λLH = rAL (1−qAL )(px−cAL) > rBHq
B
H(px−cBH)−rBL qBL∆B, xALH = X and xBHL = 0 if ξ > 0, and

λLH = rAL (1− qAL )(px− cAL) = rBHq
B
H(px− cBH)− rBL qBL∆B, xALH ∈ [0, X] and xBHL = X−xALH

if ξ = 0.

It remains to be verified that at a solution to the relaxed program the missing “downward”

incentive constraints ICA
H and ICB

H are satisfied. To see this, first remember that αiHL > 0

and αiHH > 0 so that uHL = 0 and uHH = 0. Substititing into (ICH) and (ICL) and

taking into account that βiL > 0 yields

(9) qLuLL + (1− qL)uLH = [qLxHL + (1− qL)xHH ]∆ > 0;

(10) qHuLL + (1− qH)uLH ≤ [qHxLL + (1− qH)xLH ]∆.
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To be admissible as a solution to our problem, uLL and uLH have to satisfy (9), (10),

(IRLH) and (IRLL). It is straightforward to verify that there exists a continuum of

values for uLL and uLH which satisfy these conditions. In the symmetric solution to the

symmetric case, where xAmm = xBmm for m ∈ {L,H}, the desired outcome can even be

implemented in dominant strategies. This is accomplished by setting uLL = xHL∆ and

uLH = xHH∆. Conditions (9), (IRLL) and (IRLH) are obviously satisfied; and xLL > xHL

and xLH > xHH implies that qLxHL + (1 − qL)xHH < qHxLL + (1 − qH)xLH so that (10)

holds as a strict inequality.

Proof of Corollary 1

The shadow value of additional units of capacity is calculated by summing up the Lan-

grangian multipliers γimn over all (m,n) ∈ {L,H}2 for the different cases considered in the

proof of Lemma 1.

Proof of Proposition 2

Let xφ(x) denote the total expected rent paid from the headquarters to the agents if the

production level is x = xA + xB. Then,

xφ(x) =
∑

i∈{A,B}
riL[qiLu

i
LL + (1− qiL)uiLH ] =

∑
i∈{A,B}

riL[qiLx
i
HL + (1− qiL)xiHH ]∆i.

By symmetry, rAL = rBL = rL, qAL = qBL = qL and ∆A = ∆B = ∆. Inserting the optimal

values for xiHL and xiHH (i ∈ {A,B}) from Lemma 1 into φ(x) and taking into account

that kA = kB = k, say, yields the increasing function

φ(x) =


rL(1− qL)∆ for X ≤ k

rL(1− qL)∆ + rLqL∆2(X−k)
X

for k < X < 2k

rL(1− qL)∆ + rLqL∆ for 2k ≤ X

which is strictly increasing for X ∈ (k, 2k).
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Proof of Proposition 3

Substituting the optimal values for uimn and ximn for all i ∈ {A,B} and all (m,n) ∈ {L,H}2

in the objective functionNR and taking into account that kA = kB = k yields the following

reduced form profit function:

Π(X, k) =



X[px − (1− rH(1− qH))cL − rH(1− qH)cH − rL(1− qL)∆] for X ∈ [X, k]

pxX − rL(qLX + (1− qL)2k)cL − rH(qH2(X − k)+

(1− qH)X)cH − rL(qL2(X − k) + (1− qL)X)∆ for X ∈ (k, 2k)

2k[px − rL(cL + ∆)− rHcH ] for X ∈ [2k,X]

Taking the derivative with respect to k gives

Π′(X, k) =


0 for X ∈ [X, k]

2[rL(1− qL)(cH − cL) + rLqL∆] for X ∈ (k, 2k)

2[px − rL(cL + ∆)− rHcH ] for X ∈ [2k,X]

For future reference define

(11)
α = px − rL(cL + ∆)− rHcH ;

ξ = rL(1− qL)(cH − cL) + rlqL∆.

The next step is to take the expectation over [X,X]. We denote the resulting function by

Π′(k). Two different cases have to be considered:

Case 1: 2X ≥ X. In this case Π′(k) is given by

Π′(k) =



2α for 2k ≤ X

2[α(X − 2k) + ξ(2k −X)]/(X −X) for 2k ∈ [X,X]

2ξ for 2k ∈ [X, 2X]

2ξ(X − k)/(X −X) for 2k ∈ [2X, 2X]

0 for 2k ≥ 2X
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Case 2: 2X < X. In this case Π′(k) is given by

Π′(k) =



2α for 2k ≤ X

2[α(X − 2k) + ξ(2k −X)]/(X −X) for 2k ∈ [X, 2X]

2[α(X − 2k) + ξk]/(X −X) for 2k ∈ [2X,X]

2ξ(X − k)/(X −X) for 2k ∈ [X, 2X]

0 for 2k ≥ 2X

The corresponding function for the first best benchmark (we mark this function with an

asterisk) is obtained by setting the term ∆ in α and ξ (as defined in (11)) equal to zero. An

optimal value of k (denoted by k̂ or k∗, respectively) is found by setting Π′(k) (or Π∗′(k),

respectively) equal to 2pk
26. To verify the proposition, first notice that in both cases the

value of the function Π∗′(k) is strictly higher than the value of Π′(k) for all k ∈ [0, .5X] and

that the value of Π∗′(k) is strictly lower than that of Π′(k) for all k ∈ [.5X,X). Existence

of a critical price of capacity p̃k then follows from continuity of the Π′(·)’s and uniqueness

from the fact that the difference Π∗′(k)− Π′(k) is strictly decreasing for k ∈ (.5X, .5X).

Proof of Proposition 4

Adapting the derivate Π′(k) derived in the proof of Proposition 3 to allow for µ > 0 (we

denote the adapted derivate by Π′(k, µ))27, setting this derivate equal to 2pk, and solving

for k̂(pk, µ) yields

26Since Π∗′(0) > Π′(0) > 0 and Π∗′(2X) = Π′(2X) = 0 and since the Π′(·)’s are continuous, an interior

solution exists for all pk ∈ (0, α). Since the Π′(·)’s are only decreasing but not strictly decreasing the

solution might not be unique.
27The formulas in the proof of Proposition 3 can easily be adjusted by replacing X in the terms and

bounds by X − µ, and X by X + µ. For example, X −X changes to X −X + 2µ and X − (2 + qL)X to

X − (2 + qL)X + (3 + qL)µ.
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Case 1: 2(X − µ) ≥ X + µ.

k̂(pk, µ) =



∈ [0, .5(X − µ)] if pk = α

X(α−pk)+X(pk−ξ)+µ(α+ξ−2pk)
2(α−ξ) if pk ∈ (ξ, α)

∈ [.5(X + µ), X − µ] if pk = ξ

X(ξ−pk)+Xpk+µ(ξ−2pk)
ξ

if pk ∈ (0, ξ)

Case 2: 2(X − µ) < X + µ.

k̂(pk, µ) =



∈ [0, .5(X − µ)] if pk = α

X(α−pk)+X(pk−ξ)+µ(α+ξ−2pk)
2(α−ξ) if pk ∈ (αX−X(2α−ξ)+µ(3α−ξ)

X−X+2µ
, α)

X(α−pk)+Xpk+µ(α−2pk)
2α−ξ if pk ∈ [ ξ(X+µ)

2(X−X+2µ)
, αX−X(2α−ξ)+µ(3α−ξ)

X−X+2µ
]

X(ξ−pk)+Xpk+µ(ξ−2pk)
ξ

if pk ∈ (0, ξ(X+µ)

2(X−X+2µ))
)

The corresponding function for the first best benchmark is again obtained by setting

the term ∆ in the definition of α and ξ equal to zero. To verify the proposition, consider

Case 1. Here, the derivative of k̂(pk, µ) with respect to µ is strictly positive for pk ∈ (0, .5ξ),

strictly negative for pk ∈ (.5ξ, ξ), again positive for pk ∈ (ξ, .5(α+ ξ)) and again negative

for pk ∈ (.5(α + ξ), α). Case 2 behaves similarly.28

Proof of Proposition 5

Let k̃ be defined by the equation Π′(k̃) = Π∗′(k̃). Using the formulas derived in the

proof of Proposition 3 it is easily verified that for µ = 0, k̃ is uniqueley determined by

rL∆(X−2k̃) = rLqL∆(2k̃−X) if X < X(2+qL) and by rL∆(X−2k̃) = rLqL∆k̃ otherwise.

For µ > 0 the corresponding equations are rL∆(X − 2k̃ + µ) = rLqL∆(2k̃ − X + µ) if

X < X(2 + qL) − µ(3 + qL) and rL∆(X − 2k̃ + µ) = rLqL∆k̃ otherwise. Solving these

28In Case 2, four subcases have to be distinguished depending on whether the terms (X+µ)−3(X−µ)

and (α−ξ)(X+µ)−α(X−µ) are positive or negative. In each of these subcases the derivative of k̂(pk, µ)

with respect µ changes sign at least once.
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equations for k̃ yields

k̃ =


X+XqL+µ(1−qL)

2(1+qL)
if X + µ ≤ (X − µ)(2 + qL)

X+µ
2+qL

otherwise.

Substituting these expressions in the respective marginal benefit functions yields

p̃k(µ) =


ξ+αqL
1+qL

if X + µ ≤ (X − µ)(2 + qL)

ξ+αqL
2+qL

· X+µ

X−X+2µ
otherwise,

where α and ξ are as defined in (11). As is easily verified, p̃k(µ) is decreasing in µ for

all µ ∈ (0, X). It is strictly decreasing in µ if X > X(2 + qL) − µ(3 + qL). A simple

qualification under which this condition holds as a strict inequality for arbitrary (X,X)-

pairs is µ > .75X− .25X. If, on the other hand, X > X(2+ qL), then this condition holds

as a strict inequality for any µ ≥ 0.
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