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ABSTRACT

Extreme Correlation of International Equity Markets*

Testing the hypothesis that international equity market correlation increases in
volatile times is a difficult exercise and misleading results have often been
reported in the past because of a spurious relationship between correlation
and volatility. This Paper focuses on extreme correlation, that is to say the
correlation between returns in either the negative or positive tail of the
multivariate distribution. Using ‘extreme value theory’ to model the multivariate
distribution tails, we derive the distribution of extreme correlation for a wide
class of return distributions. Using monthly data on the five largest stock
markets from 1958 to 1996, we reject the null hypothesis of multivariate
normality for the negative tail, but not for the positive tail. We also find that
correlation is not related to market volatility per se but to the market trend.
Correlation increases in bear markets, but not in bull markets.
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NON-TECHNICAL SUMMARY

International portfolio investment has become more popular during the past
decades. For example, total assets of US pension funds surpassed $7 trillion
($6,000 billion) at the end of 1999, with over $600 billion invested abroad.
Back in 1973, these institutional investors basically held no foreign assets. In
Europe, a global approach to investment has long been a tradition. For
example, British institutional investors hold more than 25% of their assets in
non-British securities, and some Dutch pension funds have more than half of
their assets invested abroad.

Diversifying internationally may be justified by the mere size of foreign
markets, even for US investors. Indeed, no single market accounts for more
than half of world capitalization. From a theoretical point of view, in a fully
efficient, international capital market, buying the world market portfolio would
be the natural strategy. The argument often heard in favour of international
investment is that it strongly lowers risk without sacrificing return. Domestic
securities tend to move up and down together because they are similarly
affected by domestic conditions, such as money supply announcements,
movements in interest rates, budget deficits, and national growth. This creates
a strong positive correlation among all national securities — stocks and bonds
alike — traded in the same national market. Looking at international capital
markets may then be a good opportunity for investors searching for methods
to spread their risk and diversify away their national market risk.

One way to assess the degree of dependence of international capital markets
Is to compute the correlation coefficient. Correlation coefficients are always
much lower than unity. For example, over the last four decades, the historical
correlation between the US equity market and other major equity markets are:
0.52 with the UK, 0.44 with France, 0.39 with Germany, and 0.27 with Japan
(correlation coefficients much lower than those usually obtained between two
typical stocks of the same country). For investors, this means that there is
ample room for successful risk diversification.

Recently, academic studies have shown that correlation is not constant but
varies quite strongly over time. International equity markets are influenced by
domestic factors and worldwide factors. In some periods, when there are no
global socio-economic shocks, equity markets are primarily affected by
country-specific factors. Stock market performance is related to the national
business cycle and economic growth. National business cycles are not well
synchronized across countries. All markets then tend to move independently,
and even in opposite directions. In other periods, all equity markets are
globally affected by the same worldwide factors. This was the case for
example with the oil shock of 1974, the Gulf war of 1990 or more recently the
economic problems in emerging markets.



The level of correlation has also been related to the level of market volatility.
An often-raised question is whether international correlation increases in
periods of high turbulence. The dominance of global factors tends to be
associated with volatile markets (e.g. the oil crisis and the Gulf war). Recent
studies in international finance have shown that correlation of international
equity returns increases during volatile periods. However, the concept of
correlation should be used with great care. For example, a bivariate normal
distribution with constant correlation — a model commonly used for asset
returns — will have a correlation during volatile periods (large absolute returns)
that is higher than its correlation during tranquil periods (small absolute
returns) even though the true correlation is constant over time. In order to test
whether correlation increases during volatile periods, the distribution of the
correlation (conditional to the level of volatility) under the null hypothesis must
then be clearly specified.

This Paper focuses on extreme correlation, that is to say the correlation
between returns in either the negative or positive tail of the multivariate
distribution of asset returns. Using ‘extreme value theory’ to model the
multivariate distribution tails, we derive the distribution of extreme correlation
for a wide class of return distributions. Using monthly data on the five largest
stock markets from 1958 to 1996, we reject the null hypothesis of multivariate
normality for the negative tail, but not for the positive tail. We also find that
correlation is not related to market volatility per se but to the market trend.
Correlation increases in bear markets, but not in bull markets.



INTRODUCTION

International equity market correlation has been widely studied. Previous studies'
suggest that correlation is larger when focusing on large absolute-value returns, and that this
seems more important in bear markets. The conclusion that international correlation is much
higher in periods of volatile markets (large absolute returns) has indeed become part of the
accepted wisdom among practitioners and the financial press. However, one should exert great
care in testing such a proposition. The usual approach is to condition the estimated correlation
on the observed (or ex-post) realization of market returns. Unfortunately correlation is a
complex function of returns and such tests can lead to wrong conclusions, unless the null
hypothesis and its statistics are clearly specified. To illustrate our point, let us consider asimple
example where the distribution of returns on two markets (say U.S. and U.K.) is multivariate
normal with zero mean, unit standard deviation and a constant correlation of 0.50. Let us split
the sample in two fractiles (50%) based on absolute values of U.S. returns. The first fractile
consists of "small" returns (absolute returns lower than 0.674), the second fractile consists of
"large" returns (absolute returns higher than 0.674). Under the assumption of bivariate normality
with constant correlation, the conditional correlation® of small returnsis 0.21 and the conditional
correlation of large returns is 0.62. It would be wrong to infer from this large difference in
conditional correlation that correlation differs between volatile and tranquil periods, as
correlation is constant and equal to 0.50 by assumption. Boyer, Gibson and Loretan (1999)
further show that conditional corréelation is highly non-linear in the level of return on whichiitis
conditioned. They also indicate that a similar problem exists when the true data-generating
process is not multivariate normal but follows a GARCH mode.

An obvious implication is that one cannot conclude that the "true" correlation is
changing over time by ssmply comparing estimated correlations conditional on different values
of one (or both) return variable. First, the distribution of the conditional correlation that is
expected under the null hypothesis (e.g. a multivariate normal distribution) must be clearly
specified in order to test whether correlation increases in periods of volatile markets. This has
not be done so far.

In this paper we study the conditional correlation structure of international equity returns
and derive a forma datistica method, based on extreme vaue theory. We can derive the
asymptotic distribution of conditional tail correlation, which is not possible for other parts of the
distribution of the conditional correlation. Extreme value theory only provides asymptotic

! SeeLin, Engle and Ito (1994), Erb, Harvey and Viskanta (1994), Longin and Solnik (1995), Karolyi
and Stulz (1996), Solnik, Bourcrelle and Le Fur (1996), De Santis and Gérard (1997), Ramchmand and
Susmel (1998), Ang and Bekaert (1999) and Das and Uppal (1999).

2 Qur results are obtained from simulations of a multivariate normal distribution and can be easily
replicated. Forbes and Rigobon (1998) and Boyer, Gibson and Loretan (1999) provide some analytica
derivations.



results, but it offers the benefit that its asymptotic results hold for a wide range of parametric
distributions of returns, not only the multivariate normal. An attractive feature of the
methodology is that the asymptotic tail distribution is characterized by very few parameters
regardless of the actual distribution.

A first contribution of this paper is to provide a method to formally test whether these
correlations deviate from what would be expected under multivariate normality. More
importantly, this paper contributes to the debate on market correlations in periods of extreme
returns by providing a stark empirical distinction between bear and bull markets. High volatility
per se (i.e. large absolute returns) does not seem to lead to an increase in conditional correlation.
Correlation is mainly affected by the market trend. We find that it is only in bear markets that
conditional correlation strongly increases; conditiona correlation does not seem to increase in
bull markets. Our empirical distinction between bear and bull markets has potential implications
for asset alocation and portfolio construction, but we do not explore them here. While we do not
suggest the exact time-varying distribution that should be used, our results lead to the rejection
of alarge class of models that would be inconsistent with our findings. This is the case of the
multivariate normal distribution with constant volatility and correlation. It is aso the case of a
multivariate GARCH process with time-varying volatilities but constant correlation, in which
extreme returns can be generated by different volatility regimes. Furthermore, Ang and Bekaert
(1999) show that a fairly-general asymmetric GARCH?® also cannot reproduce the asymmetric
correlations that we document. On the other hand, regime-switching models as proposed by Das
and Uppal (1999) or Ang and Bekaert (1999) could be consistent with our empirical findings.
The asymmetric correlation pattern should become a key property for any multivariate equity
return model to match.

The paper is organized as follows:. the first section presents some theoretical results
about the extremes of univariate and multivariate random processes. It summarizes the main
results of extreme value theory and draws the implications for the correlation of extreme returns.
The second section presents the econometric methodology and the third section the empirical
results.

® Our simulations lead to similar conclusions. Analytical results cannot be derived except for the simplest
distributions (normal).



1. CORRELATION OF EXTREME RETURNS: THEORY

Extreme value theory involves two modeling aspects:. the tails of the margina
distributions and the dependence structure of extreme observations.

1.1 Theunivariate case: modeling of the distribution tails

Let us cal R the return on a portfolio and Fgr the cumulative distribution function of R.
The lower and upper endpoints of the associated density function are denoted by (I, u). For
example, for a variable distributed as the normal, I=-0 and u=+c. In this paper, extreme returns
are defined in terms of exceedances with reference to a threshold denoted by 6. For example,
positive 6-exceedances correspond to all observations of R greater than the threshold 6 (results
for negative exceedances can be deduced from those for positive exceedances by consideration
of symmetry). A return Ris higher than 6 with probability p and lower than 6 with probability 1-
p. The probability p being linked to the threshold 6 and the distribution of returns Fr by the
relation: p=1-Fg(0). We focus on the case (R>6) which defines the (right) tail of the distribution
of returns.

The cumulative distribution of 6-exceedances, denoted by F. and equal to (Fr(X)-
Fr(0))/(1-Fgr(0)) for x>0, is exactly known if the distribution of returns Fg is known. However,
in most financial applications, the distribution of returns is not precisely known and, therefore,
neither is the exact distribution of return exceedances. For empirical purposes, the asymptotic
behavior of return exceedances needs to be studied. Extreme value theory addresses this issue by
determining the possible non-degenerate limit distributions of exceedances as the threshold 6
tends to the upper point u of the distribution. In statistical terms, a limit cumulative distribution
function denoted by Gy satisfies the following condition: Iim sup|FE(x) - G&(¥)| = 0.

f<x<u

Bakemaand De Haan (1974) and Pickands (1975) show that the generalized Pareto distribution

(GPD) is the only non-degenerate distribution which approximates the distribution of return
exceedances F . Thelimit distribution function G isgiven by:

GY(x) = 1-(1+&-(x=0)/0)"", )
where o, caled the dispersion parameter, depends on the threshold 6 and the distribution of
returns Fg, and &, called the tail index, isintrinsic to the distribution of returns Fg (the + operator
givesthe positive part of the expression in parentheses).

The tail index & gives a precise characterization of the tail of the distribution of returns.
Distributions with a power-declining tail (fat-tailed distributions) correspond to the case £>0,
distributions with an exponentially-declining tail (thin-tailed distributions) to the case £=0, and
distributions with no tail (finite distributions) to the case £<0.

For a particular return distribution, the parameters of the limit distribution can be
computed (see Embrechts, KllUppelberg and Mikosch (1997)). For example, the normal and log-

normal distributions commonly used in finance lead to a GPD with &=0. The Student-t
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distributions and stable Paretian laws lead to a GPD with >0 and the uniform distribution
belongs to a GPD with £<0. The extreme value theorem has aso been extended to processes
which are not i.i.d.. Leadbetter, Lindgren and Rootzén (1983) consider various processes based
on the norma distribution: autocorrelated normal processes, discrete mixtures of normal
distributions and mixed diffusion jump processes. All have thin tails so that they lead to a GPD
with £=0. De Haan, Resnick, Rootzén and De Vries (1989) show that if returns follow the
GARCH process, then the extreme return has a GDP with £<0.5.

To summarize the univariate case, extreme vaue theory shows that the distribution of
return exceedances can only converge toward a generalized Pareto distribution. This result is
robust asit is aso obtained for non-i.i.d. return processes commonly used in finance. Hence, for
a given threshold, the distribution tail in the univariate case is perfectly described by three
parameters: the tail probability, the dispersion parameter and the tail index.

1.2 Multivariate case: modeling of the dependence structure

Let us consider a g-dimensional vector of random variables denoted R=(Ry, Ry, ..., Ry).
Multivariate return exceedances correspond to the vector of univariate return exceedances
defined with a g-dimensional vector of thresholds 6=(6, 0o, ..., 8). As for the univariate case,
when the return distribution is not exactly known, we need to consider asymptotic results. The
possible limit non-degenerate distributions G2 satisfying the limit condition must satisfy two
properties:

1) Its univariate marginal distributions Gg!, Gg, ..., Gg: are generaized Pareto

distributions.
2) There exists a function called the dependence function denoted by D, , defined

from R%into R which satisfies the following condition:

G %% e, :ed— DGR(—ll log Gl (%) 1/ 10gG(x,), ... -1/ Iongg(xl))). )
Like in the univariate case, the generalized Pareto distribution plays a centra role. However,

unlike the univariate case, the multivariate asymptotic distribution is not completely specified as
the shape of the dependence function Dg, isnot known.

* See Ledford and Tawn (1997). A general presentation of multivariate extreme vaue theory can be
found in Galambos (1978) and Resnick (1987). Specific results for the bivariate case are given in Tawn
(1988).



When the components of the multivariate distribution of extreme returns are
asymptotically independent, the dependence function D, ischaracterized by:

11 1
e, (Yar YoresYo) = [71+72+"'+y_)’ ®
q

where y =-1/ IogGg'(x). Actually, asymptotic independence of extreme returns is reached in

many cases. Of course, when the components of the return distribution themselves are
independent, exact independence of extreme returns is obtained. But more surprisingly,
asymptotic independence is often reached when the components of the return distribution are not
independent. An important example is the multivariate normal distribution (see Galambos
(1978, pp 257-58) and Embrechts, McNeil and Straumann (1998)).

Asymptotic independence and multivariate normality
If al correlation coefficients between any two components of a multivariate normal process are
different from 1, then the return exceedances of all variables tend to independence as the
threshold used to define the tails tends to the upper endpoint of the distribution of returns (+eo
for the normal distribution). In particular, the asymptotic correlation of extreme returns is equal
to zero. For example, considering a bivariate normal process with standard mean and variance
and a correlation of 0.80, the correlation is equal to 0.48 for return exceedances one standard
deviation away from the mean, 0.36 for return exceedances two standard deviations away from
the mean, 0.24 for return exceedances three standard deviations away from the mean and 0.14
for return exceedances four standard deviations away from the mean. It goes to zero for extreme
returns.

At first, the result of asymptotic independence may seem counterintuitive and at odds
with the traditional view of bivariate normdlity. ® It al depends on how conditioning is
conducted. A dight difference isintroduced by conditioning on values in the two series, as done
in extreme value theory, or on values in a single series, as done in the introduction of this paper
and in most empirical studies. But the major source of difference comes from the conditioning
on absolute values (two-sided) versus the conditioning on signed values (one-sided). If we
condition on the absolute value of realized returns, the conditional correlation of a bivariate
normal distribution trivially increases with the threshold, as mentioned in the introduction. As
the normal distribution is symmetric, the truncated distribution retains the same mean as the total
distribution. But a large positive (respectively negative) return in one series tends to be
associated with alarge positive (respectively negative) return in the other series, so the estimated
conditional correlation is larger than the "true" constant correlation. Conditional correlation
increases with the threshold (see also Forbes and Rigobon (1998) and Boyer, Gibson and
Loretan (1999)). Here, we condition on signed extremes (e.g. positive or negative). The mean of

®> Weare grateful to an anonymous referee for providing useful insights on thisissue.
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the truncated distribution is not equal to the mean of the total distribution. As indicated above,
the conditional correlation of a multivariate normal distribution decreases with the threshold and
reaches zero for extreme returns. A false intuition would be that extreme returns in two series
appear highly correlated as they are large compared with the mean of all returns. Extreme value
theory says that two extreme returns are not necessarily correlated as they may not aways be
large compared with the mean of extreme returns.

The general case
For the general case with asymptotically-dependent components for the multivariate distribution
of extreme returns, the form of the dependence function is not known, and it has to be modeled. ®
A model commonly used in the literature is the logistic function proposed by Gumbel (1961). ’
The dependence function denoted by D; is given by:

DYy Vo ¥e) = (W¥ + 93 by ) @
where parameter o controls the level of dependence between extreme returns. In the bivariate
case (g=2), the correlation coefficient p of extremes is related to the coefficient o by: p=1-0
(Tiago de Oliveira, 1973). The specia cases o=1 and o=0 correspond respectively to asymptotic
independence (p=0) and total dependence (p=1).

While arbitrary, the logistic model used in engineering studies presents severa
advantages: it includes the specia cases of asymptotic independence and total dependence, and it
is parsimonious as only one parameter is needed to model the dependence among extremes. An
attractive feature of the methodology is that the asymptotic tail distribution is characterized by
very few parameters regardless of the actual conditional distribution.

To summarize the multivariate case, extreme value theory shows that the distribution of
extreme returns can only converge toward a distribution characterized by generalized Pareto
margina distributions and a dependence function. The shape of this function is not well-defined.
Consistent with the existing literature, we will use the logistic function to model the dependence
between extreme returns of different markets. The case where returns are multivariate normal
leads to a limit case of the logistic function where the asymptotic correlation of extreme returns
is equa to zero. We will estimate the dependence function and test whether the correlation of
extreme returnsis equal to zero.

® The properties of the asymptotic distribution can be worked only out in very special cases.
" See also Tawn (1990) and Straetmans (1998).



2. CORRELATION OF EXTREME RETURNS: ESTIMATION
PROCEDURE

The choice of the threshold value is first discussed. The estimation method for the
parameters of the modd is then presented.

2.1 Optimal threshold values

The theoretical result about the limit distribution of return exceedances exactly holds
when the threshold 6 goes to the upper endpoint u of the distribution of returns. In practice, as
the database contains a finite number of return observations, the threshold used for the
estimation of the modd is finite. The choice of its value is a critica issue. On the one hand,
choosing a high vaue for 6 leads to few observations of return exceedances and implies
inefficient parameter estimates with large standard errors. On the other hand, choosing a low
value for 6 leads to many observations of return exceedances but induces biased parameter
estimates as observations not belonging to the tails are included in the estimation process. To
optimize this trade-off between bias and inefficiency, we use a Monte Carlo simulation method.
Return time-series are smulated from a known distribution for which the tail index can be
computed. For each time-series, the tail index value is estimated for different threshold levels.
The choice of the optimal value is based on the mean square error (M SE) criterion which alows
one to take into account the trade-off between bias and inefficiency. The procedure is detailed in
Appendix 1.

2.2 Estimation of the model

The model presented in the previous section is multivariate. In the empirical study, we
deal with bivariate models. This choice is justified by a theoretical result which demonstrates
that multivariate independence can be tested using bivariate pairs of variables (see Tiago de
Oliveira (1962) and Reiss (1989, pp 234-237)).

2.2.1 Modding of thetailsof the marginal distributions

Following Davison and Smith (1990) and Ledford and Tawn (1997), the limiting result
about the distribution of exceedances presented in Section 1 is taken to derive a model of the
tails of each marginal distribution. Considering return exceedances defined from returns R, and
R. in two markets with thresholds 6; and 6, the tail of the distribution of each return R, denoted
by Fg' fori=1and 2 ismodeled asfollows:

_ _ -V
Fe(x) = (1-p)+p-Ga(x)= 1-p-(1+& (x -6)/c;) 5)
which simply expresses that areturn R, either does not belong to the tail with probability 1-p; or
is drawn from the limit univariate distribution Ggi of positive return 6;-exceedances with

probability p;. In other words, for a return which does not exceed the threshold 6; the only

7



relevant information it conveys to the mode is that it occurs below the threshold, not its actual
vaue. In the construction of the likelihood function, a return R, below 6; is considered as
censored at the threshold.

2.2.2 Modding of the dependence structure

Following Ledford and Tawn (1997), the dependence function associated with the

distribution of returns Fgr is modeled with the logistic function D, given by equation (4). The
model F? of the bivariate distribution of return exceedancesis given by:

Fo (%, %)= exp(— D (— 1/log Fg:(x,),~1/ log Fy? (xz))) (6)

For given thresholds 6, and 0, the bivariate distribution of return exceedances is then
described by seven parameters: the tail probabilities (p; and py), the dispersion parameters (o1
and 6,) and the tail indexes (&; and &) for each variable, and the dependence parameter of the
logistic function (o) or equivalently the correlation of extreme returns (p). The parameters of the
model are estimated by the maximum likelihood method. Details of the construction of the
likelihood function are given in Appendix 2.

3. CORRELATION OF EXTREME RETURNS: EMPIRICAL EVIDENCE

We egtimate the multivariate distribution of return exceedances and test the null
hypothesis of normality focusing on the correlation of extreme returns.

3.1 Data

We use monthly equity index returns for five countries: the United States (U.S.), the
United Kingdom (U.K.), France (FR), Germany (GE) and Japan (JA). Data for the period
January 1959 to December 1996 (456 observations) come from Morgan Stanley Capita
International (MSCI). A description of the data can be found in Longin and Solnik (1995).

3.2 Threshold values

We consider return exceedances defined with various predetermined threshold levels:
+0%, 3%, £5%, +8% and +10% (percentage points) away from the empirical mean of each
country. In selecting large thresholds, we are constrained by the fact that there are very few
monthly observations below -10% or above +10%.

We also consider return exceedances defined with optimal thresholds (see Appendix 1).
Optima threshold values are different for the left tail and the right tail of the return distribution.
For example, considering the U.S, it is optima to use 25 negative tail observations
corresponding to a threshold of -6.12% for the left tail, and 18 positive tail observations defining
a threshold of +7.21% for the right tail. Optimal threshold values also depend on the country.
For example, considering the left tail, the following numbers of negative tail observations with



the corresponding threshold values in parentheses are: 25 (-6.12%) for the U.S., 16 (-9.68%) for
the UK., 18 (-8.38%) for France, 16 (-7.84%) for Germany and 16 (-8.53%) for Japan. On
average, around 20 to 30 tail observations are used representing a proportion of 4-5% of the total
number of return observations (456).

3.3 Estimation of the parameters of the model

We use a bivariate framework, looking at the correlation of the U.S. market with the
other four markets separately. Hence, we have four country pairs. US'UK, US/FR, US/GE and
USJA. We start with a maximum-likelihood univariate estimation for each country. The
estimated parameters, plus the sample unconditional correlation, are then used as starting values
in the maximum-likelihood bivariate estimation.

Tables 1 to 4 present the estimation of the bivariate distribution of return exceedances of
predetermined and optimal values for the threshold 6. Estimated coefficients are presented in
Panel A for negative return exceedances (return lower than the threshold 6) and in Panel B for
positive return exceedances (returns higher than the threshold 0). The estimate of the tail
probability p is close to the empirical probability of returns being lower or higher than the
threshold considered. For example, the estimated value of the probability p”° of U.S. monthly
returns lower than 6=-3% is equal to 0.194 with a standard error of 0.018 while, over the period
January 1959 - December 1996, there are 86 out of 456 monthly returns under -3%, leading to an
empirical frequency of 0.189. The dispersion parameter and the tail index are not estimated with
great precison. The sign of the tail index for high threshold values gives some indication
regarding the type of asymptotic distribution of extreme returns: the estimates of the tail index
are mostly positive for the U.S., U.K. and French markets,? and mostly negative for the German
and Japanese markets. However, neither of these results can be considered as Statistically
significant.

Results for the correlation coefficient of return exceedances are particularly interesting:
the correlation seems to be influenced both by the size and the sign of the thresholds used to
define the extremes. It is aso different from the usua correlation, that is to say the correlation
computed using al the observations of returns. We will describe the results using the USUK
pair as an example. The usual correlation of monthly returns is equal to 0.519 for the USUK
pair. The correlation of return exceedances tends to increase when we look at negative return
exceedances defined with lower thresholds: it is equal to 0.530 for 6=-0% (negative semi-
correlation), 0.579 for 6=-3%, 0.553 for 6=-5%, 0.600 for 6=-8% and up to 0.676 for 6=-10%
(Table 1, Panel A). On the other hand, correlation tends to decrease with the level of the
threshold when we look at positive return exceedances. it is equal to 0.415 for 6=+0% (positive

8 Jansen and De Vries (1991), Loretan and Phillips (1994) and Longin (1996) obtained similar resultsin
univariate studiesfor the U.S..



semi-correlation), 0.353 for 6=+3%, 0.360 for 6=+5%, 0.293 for 6=+8%, and only 0.189 for
6=+10% (Table 1, Pand B). The correlation p goes up with the absolute size of the threshold if
it is negative and goes down with the threshold if positive. This is illustrated graphicaly on
Figure 1 which depicts the relation between the corrdation of return exceedances and the
threshold used to define them. The solid line indicates the estimated correlation as a function of
the threshold. It starts at the (negative or positive) semi-correlation for a threshold of 6=-0% or
6=+0%. A similar conclusion obtains for the other country-pairs as seen in Tables and Figures 2,
3and 4.

The asymmetry between negative and positive return exceedances is confirmed by
results obtained with optimal thresholds. As shown on the last lines of Tables 1 to 4, for al
country-pairs, the correlation between negative return exceedances is always greater than the
correlation between positive return exceedances. On average, the former is equal to 0.505 while
the latter isequal to 0.124. The differenceis Satistically significant at the 5% confidence level in
3 cases out of 4 (US/UK, US/FR and US/GE). For example, considering the US/UK pair, the
correlation between negative return exceedances (with the standard error in parentheses) is equal
to 0.578 (0.121) while the correlation between positive return exceedances is equa to 0.226
(0.120). The value of at-test between the two correlation coefficients is equal to 2.066 with ap-
value of 0.039 (independence between negative and positive return exceedances is assumed to
compute the t-test).

3.4 Test of normality
We aso test the null hypothesis of normdity Ho: p =p,, , where pnor Stands for the

correlation between normal return exceedances. Under the null hypothesis of normality, this
correlation coefficient tends to zero as the threshold value goes to infinity (see Section 1). Aswe
work with afinite sample, we can only use finite threshold values. Two cases are then formally
considered: the asymptotic case and the finite-sample case. In the asymptotic case, the
correlation of normal return exceedances of thresholds tending to infinity, denoted by p3Y, is

theoretically equa to O. In the finite-sample case, the correlation of return exceedances over a
given finite threshold 6, denoted by p!°(8), is computed by simulation. We compute the
correlation between normal return exceedances for the predetermined threshold vaues
considered above and for optimal threshold values. This is done by using a smulated bivariate
normal process with means and covariance matrix equal to their empirical counterparts. Given
these parameters which fully describe a multivariate normal process, there is only one theoretical
value for the correlation of return exceedances a a given threshold level. As indicated in the
theoretical section, this "normal” correlation coefficient decreases with the absolute size of the
threshold. For example, for the USUK pair, the "normal” correlation of positive return
exceedances computed numerically decreases with the threshold: it is equal to 0.51 for 6=+0%,
0.44 for 6=+3%, 0.39 for 6 =+5%, 0.29 for 6 =+8% and only 0.21 for 6 =+10%. In each figure,
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the dotted line plots the "normal™ correlation as a function of the threshold. As seenin Figure 1,
the USIUK correlation of return exceedances is close to its "norma" vaue for postive
thresholds, but is markedly larger for negative thresholds.

Formal tests of the null hypothesis of normality are provided in the last columns of
Tables 1 to 4. First, a likelihood ratio test between the constrained model (corresponding to
normality) and the unconstrained model is carried out. Second, a Wald test on the correlation
coefficient is done. For a given threshold, the Wald test compares the estimated correlation of
return exceedances to its theoretical value under the hypothesis of norma returns. Both the
asymptotic and finite-sample cases are considered. For al country-pairs, the null hypothesis of
normality is always rejected for high negative thresholds at the 5% confidence level. Taking as
example the pair US'UK and the threshold 6=-5%, the likelihood ratio test strongly rejects the
null hypothesis of normality. The test value is equal to 73.143 with a negligible p-value for the
asymptotic case, and to 5.243 with a p-value equal to 0.022 for the finite-sample case (Table 1,
Panel A). Similarly, the Wald test on the correlation coefficient itself strongly rejects the null
hypothesis of normality. The test value is equal to 7.681 with a negligible p-value for the
asymptotic case, and to 2.236 with a p-value equa to 0.025 for the finite-sample case. So the
difference in correlation is economically large (0.55 instead of 0.39) and Htatistically significant
(asimilar conclusion is obtained when exceedance returns are defined with optimal thresholds).
This phenomenon isillustrated graphically for each pair of countriesin Figures 1 to 4. For high
negative threshold values, the solid line representing the estimated correlation of return
exceedances moves away from the dotted line representing the theoretical correlation under
normality. It should be noted that this result does not depend on one outlier, such as the October
1987 crash. Over the 38-year span, the British market, for example, had 29 monthly returns
below -8% and 19 below -10%.

To summarize, the correlation structure of large returns is asymmetric. Correlation tends
to decrease with the absolute size of the threshold for positive returns, as expected in the case of
multivariate normality, but tends to increase for negative returns. So the probability of having
large losses simultaneously on two markets is much larger than would be suggested under the
assumption of multivariate normality. It appearsthat it is a bear market, rather than volatility per
se, that isthe driving forcein increasing international correlation.
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CONCLUSON

We use extreme value theory to study the dependence structure of internationa equity
markets. We explicitly model the multivariate distribution of large returns (beyond a given
threshold) and estimate the correlation for increasing threshold levels. Under the assumption of
multivariate normality with constant correlation, the correlation of large returns (beyond a given
threshold) should asymptotically go to zero as the threshold level increases. Thisis not the case
in our estimation based on 38 years of monthly data for the five largest stock markets, at least for
large negative returns. The correlation of large negative returns does not converge to zero but
tends to increase with the threshold level and rgection of multivariate normality is highly
significant tatistically. On the opposite, the correlation of large positive returns tends to
decrease and to converge to zero with the threshold level and the assumption of multivariate
normality cannot be rgjected. In other words, our results favor the explanation that correlation
increasesin bear markets, but not in bull markets.

The conclusion that volatility per se does not affect correlation in bull marketsis at odds
with some previous findings. One explanation provided above is that the null hypothesis of
multivariate normality with constant correlation must be properly specified when conditioning
on some redized level of return or volatility. Under the assumption of multivariate normality
(with constant correlation), correlation conditioned on the level of volatility (absolute value of
return) is expected to markedly increase with the level of volatility. So, tests of normality should
model this feature in the null hypothesis. Here, we focus on the tail of the distribution whose
asymptotic properties can be modeled and we derive a formal satistical method, based on
extreme value theory, to test whether the correlation of large returns is higher than expected
under the assumption of multivariate normality. An attractive feature of the methodology is that
the asymptotic tail distribution is characterized by very few parameters regardless of the actual
distribution. Asymptotic conditional correlation should be equal to zero for awide class of return
distributions. While we do not suggest the exact time-varying distribution that should be used,
our results lead to the rgjection of a large class of models that would be inconsistent with our
findings. This is the case of the multivariate normal distribution. It is also the case of a
multivariate GARCH with constant correlation. Simulations for such a model cdibrated to the
data show that the conditional correlation goes to zero for extreme returns. More importantly,
Ang and Bekaert (1999) show that a fairly-general asymmetric GARCH aso cannot reproduce
the asymmetric correlations that we document. While GARCH models seem ill-suited to derive
implications for bear and bull markets that are consistent with our findings, other models can.
For example Ang and Bekaert (1999, page 17) indicate that a regime-switching return-
generating process is able to reproduce our asymmetric findings. The disadvantage of our
approach is that we do not explicitly specify the class of return-generating processes that are
rejected. The advantage of our approach is that the empirical results do not depend on a specific
return-generating process and are therefore fairly robust.

12



The next step would be to assess whether these findings materially affect international
portfolio choices. Some recent papers are explicitly using return-generating processes that
exhibit a regime-switching correlation increasing with volatility, and they study the portfolio
choice implications. Ang and Bekaert (1999) and Das and Uppa (1999) develop different
regime-switching models and reach different conclusions about portfolio implications. Ang and
Bekaert (1999, abstract) conclude that "the costs of ignoring regime switching are small for
moderate levels of risk aversion”, while Das and Uppa (1999, abstract) state that "there are
substantial differences in the portfolio weights across regimes'. The difference in conclusion

may come from the return-generating process postulated, especialy how correation increasesin
bear and bull markets.
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APPENDIX 1
Computation of optimal threshold levels

An optima threshold level can be obtained by optimizing the trade-off between bias and
inefficiency. To solve this problem, we use a Monte Carlo simulation method inspired by Jansen
and de Vries (1991).° This appendix describes the procedure in detail.

A particular model for returns is assumed. For each simulated time-series of returns, the
optimal number of return exceedances (or equivalently the optimal threshold level) is computed.
The MSE of smulated optimal numbers of return exceedances is then computed to derive the
number of return exceedances for the observed time-series. As explained by Theil (1971, pp 26-
32), the MSE criterion alows one to take explicitly into account the two effects of bias and
inefficiency. The mean square error of S simulated observations )~(S of the estimator of a

parameter X can be decomposed as follows:

MSIE(()?SLLS, x) =(X-X)* +é251(>25— X)

S=

2
’

where X represents the mean of S simulated observations. The first part of the decomposition
measures the bias and the second part the inefficiency.

The procedure can be decomposed in four steps:

1) First we smulate S time-series containing T return observations from Student-t
distributions with k degrees of freedom, the integer k ranging from 1 to K. The class
of the Student-t distributions is chosen to consider different degrees of tail fatness.
The lower the degree of freedom, the fatter the distribution as the tail index & is
related to k by E=1/k. For the smulations, we take: S=1,000, T=456 and K=10.

2) For different numbers n of return exceedances, we obtain a tail index estimate
Es(n, k) corresponding to the s" simulated time-series and to the Student-t

distribution with k degree of freedom. In order to identify the optima number of
return exceedances, we focus on the tail index as this parameter models the
distribution tails. We choose the values of n ranging from 0.01-T to 0.20-T such that
proportions from 1% to 20% of the total number T of return observations are used in
the estimation procedure.

3) For a Student-t distribution with k degree of freedom and for each number n of return
exceedances, we compute the MSE of the S tall index estimates, denoted by
MSE((E,(n,k)) ;) - As explained by Jansen and de Vries (1991), there is a U-

shaped relation between MSE((gs(n, kK))e1s) and n, which expresses the trade-off

between bias and inefficiency. For high values of n, the incluson of many
observations such that some do not belong to the tail but to the center of the
distribution makes the bias part of the MSE dominate the inefficiency part. On the
opposite, for low vaues of n, the inclusion of few observations makes the inefficiency

® See also Beirlant, Vynckier and Teugels (1996) and Huisman, K oedijk, Kool and Palm (1998).
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part of the MSE dominate the bias part as the tail index is badly estimated. We then
select the number of return exceedances which minimizes the MSE. This number,
denoted by n"(K), is optimal for a Student-t distribution with k degrees of freedom. *°

4) For the K optima numbers of return exceedances previously obtained by simulation,
(n"(K))ke1x, We compute the tail index estimates of the observed time-series of actual
returns, denoted by E (n" (k)) for kranging from 1 to K. We then select the number of
return exceedances for which the corresponding tail index estimate is statistically the
closest to the tail index defined in the simulation procedure, that is to say Lk (we
consider the p-value of the t-test of the following hypothesis: g(n* (k))=1/k). This
number, denoted by n', is considered as the optimal number of return exceedances for
the distribution of actua returns. In the estimation of the model, we use the optimal
threshold 6" associated with the optimal number of return exceedancesn .

1% The optimal number of return exceedances is an increasing function of the fatness of the simulated
Student-t distribution. For example, it is equal to 64 for a Student-t distribution with one degree of
freedom and 25 for a Student-t distribution with five degrees of freedom. The fatter the distribution, the

higher the number of return exceedances used in the estimation of the tail index as more extreme
observations are available.
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APPENDIX 2
Derivation of the maximum likelihood function

The parameters of the model presented in Section 2 are estimated by the maximum
likelihood method developed by Ledford and Tawn (1997). This appendix presents the
construction of the likelihood function in detail.

The method is based on a set of assumptions. Returns are assumed to be independent.
The thresholds 6; and 6, used to select return exceedances (or equivaently the tail probabilities
p; and py) are independent of returns and time. The method is also based on a censoring
assumption. For thresholds 61 and 6,, the space of return values is divided into four regions
given by {A,; j=1(R>6,), k=1(R,>8,)}, where I is the indicator function. The method

treats return observations below threshold as censored data. Finally, the dependence between
extreme returns is modeled using alogistic function denoted by D;.
The likelihood contribution corresponding to the observation of returnsat timet (Ry;, Rx)
falling in region A is denoted by Lj(Rut, Rax) and given by:
Loo(Re R ) = F3 (R Re ) = @0~ D, (¥,,%,)),
IFS(R,,Ry)
LOl( th ’ RQt) = % = exp(_ DI (Ylizz))
t
oFg(Ry Ry )
IRy

oD,
R,
oD,
R,

(Yl,ZZ)-KZ,

LlO(th’RZt) = = exp(— DI(Zl’YZ)) (Zl’Yz)' Ky,

'—11(Rn ) th) = m = exp(— D) (21’22)) '(E(szz)ﬂ(zvzz) 82D| (Zl’zz)]‘ K- K,

IR, IR, oR, OR, ~ 9R,R,
wherethevariablesY;, Z; and K; for i=1 and 2 are defined by:

Y, =-1/logF{ (e,),

Z =-1/logFy (R,),
K =-p -0 (1+& (R -6,)/c,) "™ . 22 exp(1/ Z,).

The likelihood contribution from the observation of returns at time t (R, Rx) for the
bivariate distribution of return exceedances described by a set of parameters @ = (p1, p2, 61, 2,
&1, &2, ) isgiven by:

L(Ri R ®)= 2 LiRyiRa)-1(Re Ra),

j.ke{0,2}
where (R, Re)=l{(Ru, Rx)e Ax}. Hence the likelihood for a set of T independent
observations of returnsis given by:

L({Rn,Ra}tzﬂ,@):g (R R, ®)
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Figures1to 4. Correlation between return exceedances.

These figures represent the correlation structure of return exceedances between the U.S. and four other
countries: U.K. (Figure 1), France (Figure 2), Germany (Figure 3) and Japan (Figure 4). The solid line
represents the correlation between actual return exceedances obtained from the estimation of the
bivariate distribution modeled with the logistic function (see results in Tables 1 to 4). The dotted line
represents the theoretical correlation between simulated normal return exceedances, pnor, @suming a
multivariate-normal return distribution with parameters equal to the empirically-observed means and
covariance matrix of monthly returns. The value of the threshold 6 used to define return exceedances
ranges from -10% to +10% (percentage points). For a given estimation, the same value of 0 is taken for
all pairs of countries: 8=0"°=0"*="=0°=0". The usua correlation using all returns s represented by a
large dot on the vertical axis.

Figure 1. Correlation between U.S. and U.K. return exceedances.
1.00T

0.80+

Correlation of return exceed

0.00

-10% -8% -6% -4% -2% 0% 2% 4% 6% 8% 10%
Threshold used to define return exceedances

Figure 2. Correlation between U.S. and French return exceedances.
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Correlation of return exceed

Figure 3. Correlation between U.S. and German return exceedances.
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Figure 4. Correlation between U.S. and Japanese return exceedances.
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Table 1. Estimation of the bivariate distribution of U.S. and U.K. return exceedances.

This table gives the maximum likelihood estimates of the parameters of the bivariate distribution of U.S. and U.K. return
exceedances (Panel A for negative return exceedances and Panel B for positive return exceedances). Return exceedances are
defined with a threshold 6. Both fixed and optimal levels are used for 6. Fixed levels (defined as percentage points) are: 0%,
+3%, £5%, +8% and +10% away from the empirically-observed means of monthly returns (the same value of 6 is then taken
for the two countries: 6=0"5=6"%). Optimal levels are computed by the procedure described in Appendix 1. They are given for
the U.S. and the U.K. on the last line of each panel. Seven parameters are estimated: the tail probability p, the dispersion
parameter ¢, thetail index & for each country and the correlation of return exceedances p of the logistic function used to mode!
the dependence between extreme returns. Standard errors are given below in parentheses. The null hypothesis of normality Ho:
P = P,o ISas0 tested. Two cases are considered: the asymptotic case and the finite-sample case. In the asymptotic case, the

correlation of normal return exceedances of thresholds tending to infinity, denoted by pZ , is theoretically equal to 0. In the

nor ’

finite-sample case, the correlation of return exceedances over a given finite threshold 6, denoted by p, s () , is computed by

nor
simulation assuming that monthly returns follow a bivariate-normal distribution with parameters equal to the empirically-

observed means and covariance matrix of monthly returns. Both alikelihood ratio test (LR test) between the constrained model
(p=p2Y =0 intheasymptotic case and p = pnfo'rs'(e) in the finite-sample case) and the unconstrained model, and a Wald

nor

test (W test) on the correlation coefficient are carried out. The p-value of the tests are given below in brackets.

Panel A: Negativereturn exceedances

Threshold Parameters of the model Hop = p2¥ = Ho p = p,.=(0)

nor

0 pvs o%s gus p o gUC pUSUK | Rtes Wtest  LRtest  Wtedt

10% 0016 1480 0672 0040 3188 0246 0676 36465 5160 11382 3573
(0.006) (0.962) (0.697) (0.009) (1.238) (0.311) (0.131) [0.000]  [0.000]  [0.001]  [0.000]

-8% 0034 2733 0149 0062 3520 0146 0600 44138 5310 7.653 2.708
(0.008) (0.901) (0.240) (0.011) (L074) (0.244) (0.113) [0.000] [0.000]  [0.006]  [0.007]

5% 0106 2349 0157 0160 2997 0151 0553 73143  7.681 5.243 2.236
(0014) (0.490) (0.154) (0.017) (0527) (0.129) (0.072) [0.000] [0.000]  [0.022]  [0.025]

-3% 0194 3075 0013 0194 3698 0037 0579 102882 10527  6.261 2.564
(0.018) (0.403) (0.080) (0.018) (0.459) (0.083) (0.055) [0.000] [0.000]  [0.012]  [0.010]

0% 0476 3437 -0044 0476 4195 -0017 0530 120057 11778 0484 0.444
(0023) (0276) (0.043) (0.023) (0.372) (0.060) (0.045) [0.000] [0.000]  [0.487]  [0.657]

-612% 0056 2428 0178 0036 2951 0286 0578 36393 4777 4.606 2,012
-968%  (0.011) (0.681) (0.219) (0.009) (1.374) (0.414) (0.121) [0.000]  [0.000]  [0.032]  [0.044]

Panel B: Positivereturn exceedances

Threshold Parameters of the model Hop = p2¥ =0 Ho p = p, > ()
) pYs oYs gus pK oW EUC pUSUK | Rte  Wtest  LRtest  Wtest
0% 0534 3402 -0156 0524 3934 0012 0415 57.186 8.137 4.297 -1.863
(0.023) (0.262) (0.045) (0.023) (0.262) (0.038) (0.051) [0.000]  [0.000] [0.038] [0.062]

+3% 0217 1911 0105 0254 2853 0159 0353 35244 5.431 2.045 -1.308
(0.019) (0.309) (0.127) (0.020) (0.363) (0.081) (0.065) [0.000]  [0.000] [0.153] [0.191]

+5% 0072 319 -0199 0132 2475 0310 0360 24.018 4.000 0.205 -0.356
(0.012) (0.732) (0.153) (0.016) (0.492) (0.142) (0.090) [0.000]  [0.000] [0.651] [0.722]

+8% 0023 28389 -0274 0046 2483 0543 0293 9.775 2.093 0.001 -0.007
(0.007) (1.261) (0.302) (0.010) (0.951) (0.325 (0.140) [0.002]  [0.036] [0.994] [0.994]

+10% 0013 0976 0317 0023 4468 0390 0189 4521 1.092 0.010 -0.110
(0.005) (0.911) (0.687) (0.007) (2444) (0458) (0.173) [0.033]  [0.279] [0.920] [0.913]

+721% 0039 3020 -0256 0096 2449 0423 0226 7.638 1.886 0.612 -0.714
+6.70%  (0.009) (0.925) (0.191) (0.015 (0.546) (0.364) (0.120) [0.006]  [0.059] [0.434] [0.475]
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Table 2. Estimation of the bivariate distribution of U.S. and French return exceedances.

This table gives the maximum likelihood estimates of the parameters of the bivariate distribution of U.S. and French return
exceedances (Panel A for negative return exceedances and Panel B for positive return exceedances). Return exceedances are
defined with a threshold 6. Both fixed and optimal levels are used for 6. Fixed levels (defined as percentage points) are: 0%,
+3%, £5%, +8% and +10% away from the empirically-observed means of monthly returns (the same value of 6 is then taken
for the two countries: 6=6"°=6). Optimal levels are computed by the procedure described in Appendix 1. They are given for
the U.S. and France on the last line of each pand. Seven parameters are estimated: the tail probability p, the dispersion
parameter ¢, thetail index & for each country and the correlation of return exceedances p of the logistic function used to mode!
the dependence between extreme returns. Standard errors are given below in parentheses. The null hypothesis of normality Ho:
P = P,o ISas0 tested. Two cases are considered: the asymptotic case and the finite-sample case. In the asymptotic case, the

correlation of normal return exceedances of thresholds tending to infinity, denoted by pZ , is theoretically equal to 0. In the

nor ’

finite-sample case, the correlation of return exceedances over a given finite threshold 6, denoted by p, s () , is computed by

nor
simulation assuming that monthly returns follow a bivariate-normal distribution with parameters equal to the empirically-

observed means and covariance matrix of monthly returns. Both alikelihood ratio test (LR test) between the constrained model
(p=p2Y =0 intheasymptotic case and p = pnfo'rs'(e) in the finite-sample case) and the unconstrained model, and a Wald

nor

test (W test) on the correlation coefficient are carried out. The p-value of the tests are given below in brackets.

Panel A: Negativereturn exceedances

Threshold Parameters of the model Hop = p2¥ = Ho p = p,.=(0)

nor

0 pvs o%s gus pe oR ErR pUSR | Rtet  Wtest  LRtest  Wtedt

0% 0016 1542 0744 0029 4275 0072 0845 55227 982 25610 7.826
(0.006) (1062) (0.612) (0.008) (2226) (0.400) (0.086) [0.000]  [0.000]  [0.000]  [0.000]

-8% 0035 2459 0188 0057 3130 0137 0617 44458 5274  10.268 3.197
(0.009) (0.800) (0.202) (0.011) (0.988) (0.243) (0.117) [0.000]  [0.000]  [0.001]  [0.001]
5% 0111 2113 0150 0186 2582 0107 0474 59431 6237 5.169 2.145
(0015) (0.404) (0.128) (0.018) (0.394) (0.106) (0.076) [0.000] [0.000]  [0.023]  [0.032]
-3% 0202 3204 0010 0307 3367 0005 0512 7932 8393 4.968 2492
(0019) (0.446) (0.084) (0.021) (0.361) (0.071) (0.061) [0.000] [0.000]  [0.026]  [0.013]
0% 0437 3652 -0052 0504 5020 -0128 0493 96261 10271 0536 1.146

(0.023) (0.310) (0.049) (0.023) (0.384) (0.041) (0.048) [0.000]  [0.000]  [0.464]  [0.252]

-612% 0053 2384 0172 0040 3256 0167 0652 53308 6311 14.156 3.958
-838%  (0.010) (0.657) (0.200) (0.009) (1289) (0.333) (0.103) [0.000]  [0.000]  [0.000]  [0.000]

Panel B: Positivereturn exceedances

Threshold Parameters of the model Hop = p2¥ =0 Ho p = p, > ()
0 pUS GUS gUS pFR GFR &FR pUSFR LR test W test LR test W test
0% 0.525 3436  -0.158  0.496 5589 -0215 0347 36.513 6.196 2.886 -1.625
(0.023) (0.270) (0.047) (0.023) (0.429) (0.040) (0.056) [0.000]  [0.000]  [0.089] [0.104]

+3% 0.216 1.904 0.104 0.311 3.570 0.069 0.264 20.709 4.000 2.031 -1.455
(0.019) (0.310) (0.128) (0.022) (0.391) (0.067) (0.066) [0.000]  [0.000]  [0.154]  [0.146]

+5% 0.071 3.186 -0.201 0.186 2.660 0.074 0.247 12.535 2.807 0.512 -0.727
(0012) (0.734) (0.156) (0.018) (0.429) (0.116) (0.088) [0.000]  [0.005]  [0.474]  [0.467]

+8% 0.024 2803 -0.277  0.061 3.037 0.029 0.134 3.658 1.196 0.819 -0.973
(0.007) (1217) (0.293) (0.011) (0.868) (0.213) (0.112) [0.056] [0.232]  [0.365]  [0.330]

+10% 0.013 0.986 0.320 0.034 2.006 0.348 0.159 3.699 1.053 0.006 -0.086
(0.005) (0.872) (0.697) (0.008) (0.995) (0.433) (0.151) [0.054] [0.292]  [0.938] [0.931]

+7.21% 0.041 2878 -0.263  0.041 2.840 0.095 0.116 3.068 1111 0.695 -0.874

+990%  (0.010) (0.909) (0.207) (0.009) (1116) (0.317) (0.105) [0.080]  [0.267]  [0.405]  [0.382]
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Table 3. Estimation of the bivariate distribution of U.S. and German return exceedances.

This table gives the maximum likelihood estimates of the parameters of the bivariate distribution of U.S. and German return
exceedances (Panel A for negative return exceedances and Panel B for positive return exceedances). Return exceedances are
defined with a threshold 6. Both fixed and optimal levels are used for 6. Fixed levels (defined as percentage points) are: 0%,
+3%, £5%, +8% and +10% away from the empirically-observed means of monthly returns (the same value of 6 is then taken
for the two countries: 6=6"°=9°F). Optimal levels are computed by the procedure described in Appendix 1. They are given for
the U.S. and Germany on the last line of each panel. Seven parameters are estimated: the tail probability p, the dispersion
parameter ¢, thetail index & for each country and the correlation of return exceedances p of the logistic function used to mode!
the dependence between extreme returns. Standard errors are given below in parentheses. The null hypothesis of normality Ho:
P = P,o ISas0 tested. Two cases are considered: the asymptotic case and the finite-sample case. In the asymptotic case, the

correlation of normal return exceedances of thresholds tending to infinity, denoted by pZ , is theoretically equal to 0. In the

nor ’

finite-sample case, the correlation of return exceedances over a given finite threshold 6, denoted by p, s () , is computed by

nor
simulation assuming that monthly returns follow a bivariate-normal distribution with parameters equal to the empirically-

observed means and covariance matrix of monthly returns. Both alikelihood ratio test (LR test) between the constrained model
(p=p2Y =0 intheasymptotic case and p = pnfo'rs'(e) in the finite-sample case) and the unconstrained model, and a Wald

nor

test (W test) on the correlation coefficient are carried out. The p-value of the tests are given below in brackets.

Panel A: Negativereturn exceedances

Threshold Parameters of the model Hop = p2¥ = Ho p = p,.=(0)

nor

0 pvs o%s gus poe o%F EGE pUSGE | Rtex  Wtest  LRtest  Wtedt

10% 0016 1533 0554 0024 5802 -0147 0656 20221 4100 11966 3.375
(0.006) (1524) (1255) (0.007) (4.939) (0.877) (0.60) [0.000]  [0.000]  [0.001]  [0.001]

-8% 0031 2476 0185 0053 2090 0404 0512 34515  4.096 8.365 2576
(0.008) (0.859) (0.206) (0.010) (0.869) (0.375) (0.125) [0.000] [0.000]  [0.004]  [0.010]
5% 0110 2432 0129 0132 3083 0092 0507 58560 6418 10012 3.127
(0015) (0521) (0.142) (0.016) (0551) (0.126) (0.079) [0.000] [0.000]  [0.002]  [0.002]
-3% 0201 2786 0016 0254 2884 0090 0440 63744 6984 4596 2.048
(0019) (0.346) (0.065) (0.020) (0.404) (0.105) (0.063) [0.000] [0.000]  [0.032]  [0.041]
0% 0503 3176 -0034 0489 4155 -0065 0435 8L706  8.878 1.488 1.204

(0.023) (0.245) (0.041) (0.023) (0.347) (0.050) (0.049) [0.000]  [0.000]  [0.223]  [0.229]

-612% 0060 2367 0153 0043 3102 0260 0482 32161  3.891 5.645 2210
-784%  (0.015) (0.652) (0.187) (0.009) (1910) (0.674) (0.124) [0.000]  [0.000]  [0.018]  [0.027]

Panel B: Positivereturn exceedances

Threshold Parameters of the model Hop = p2¥ =0 Ho p = p, > ()
0 pUS GUS gUS pGE GGE &GE pUSGE LR test W test LR test W test
0% 0511 3.593 -0.172 0511 4434 -0.140 0.276 190.448 4.600 4.115 -1.667
(0.023) (0.295) (0.048) (0.023) (0.397) (0.065) (0.060) [0.000]  [0.000]  [0.042] [0.096]

+3% 0.229 1.766 0.122 0.257 3628 -0105 0.165 7.465 2.500 4774 -2.212
(0.020) (0.275) (0.117) (0.020) (0.482) (0.099) (0.066) [0.006]  [0.012]  [0.029]  [0.027]

+5% 0.068 3376 -0219 0143 3320 -0.093  0.189 6.098 2.124 0.637 -0.798
(0011) (0.823) (0.172) (0.016) (0.628) (0.146) (0.089) [0.014] [0.034]  [0425]  [0.425]

+8% 0.026 2670 -0.226  0.053 4069 -0373  0.020 0.001 0.192 2482 -1.635
(0.008) (1.127) (0.328) (0.010) (L192) (0.223) (0.104) [0.998]  [0.848]  [0.115]  [0.102]

+10% 0.014 0.939 0.376 0.031 3928 -0511  0.000 0.001 0.000 1545 -0.314
(0.006) (0.812) (0.795) (0.009) (L574) (0.302) (0.370) [0.999]  [0.999]  [0.214] [0.754]

+7.21% 0.040 3174 -0243 0.042 4888 -0533 0.078 0.7484 0.757 0.740 -0.904

+001%  (0.009) (0.950) (0.176) (0.009) (1510) (0.242) (0.104) [0.387]  [0.449]  [0.390]  [0.366]
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Table4. Estimation of the bivariate distribution of U.S. and Japanese return exceedances.

This table gives the maximum likelihood estimates of the parameters of the bivariate distribution of U.S. and Japanese return
exceedances (Panel A for negative return exceedances and Panel B for positive return exceedances). Return exceedances are
defined with a threshold 6. Both fixed and optimal levels are used for 6. Fixed levels (defined as percentage points) are: 0%,
+3%, £5%, +8% and +10% away from the empirically-observed means of monthly returns (the same value of 6 is then taken
for the two countries: 6=6"°=6"). Optimal levels are computed by the procedure described in Appendix 1. They are given for
the U.S. and Japan on the last line of each panel. Seven parameters are estimated: the tail probability p, the dispersion
parameter ¢, thetail index & for each country and the correlation of return exceedances p of the logistic function used to mode!
the dependence between extreme returns. Standard errors are given below in parentheses. The null hypothesis of normality Ho:
P = P,o ISas0 tested. Two cases are considered: the asymptotic case and the finite-sample case. In the asymptotic case, the

correlation of normal return exceedances of thresholds tending to infinity, denoted by pZ , is theoretically equal to 0. In the

nor ’

finite-sample case, the correlation of return exceedances over a given finite threshold 6, denoted by p, s () , is computed by

nor
simulation assuming that monthly returns follow a bivariate-normal distribution with parameters equal to the empirically-

observed means and covariance matrix of monthly returns. Both alikelihood ratio test (LR test) between the constrained model
(p=p2Y =0 intheasymptotic case and p = pnfo'rs'(e) in the finite-sample case) and the unconstrained model, and a Wald

nor

test (W test) on the correlation coefficient are carried out. The p-value of the tests are given below in brackets.

Panel A: Negativereturn exceedances

Threshold Parameters of the model Hop = p2¥ = Ho p = p,.=(0)
0 pvs o%s gus p*h o g pUS™  LRtet  Wtest  LRtest ~ Wtest
-10% 0.016 1581 0.762 0.036 3346  -0073  0.400 13.262 2.516 7.380 2.145
(0.006) (1.124) (0.667) (0.008) (1.044) (0.186) (0.159) [0.000]  [0.012]  [0.007] [0.032]

-8% 0.034 2.742 0.169 0.064 3791 -0.095  0.309 13.072 2512 3.934 1.715
(0.008) (0.959) (0.238) (0.011) (0.970) (0.160) (0.123) [0.000] [0.012]  [0.047] [0.086]

-5% 0.100 2.356 0.178 0.158 3.215 0.018 0.326 25.036 4.025 4.888 2123
(0.014) (0520) (0.164) (0.017) (0562) (0.127) (0.081) [0.000]  [0.000]  [0.027] [0.034]

-3% 0.195 3.085 0.014 0.239 4092  -0.082  0.298 25.644 4.319 1.404 1.304
(0.019) (0.432) (0.084) (0.020) (0.518) (0.084) (0.069) [0.000]  [0.000]  [0.236] [0.192]

0% 0.487 3516 -0047 0491 4385 -009% 0281 29.781 5.018 0.040 0.375

(0.023) (0.296) (0.047) (0.023) (0.378) (0.055) (0.056) [0.000]  [0.000]  [0.842]  [0.708]

-612% 0050 2660 0158 0043 4006 -0149 0311 14625  2.669 3.127 1511
-853%  (0.009) (0.759) (0.173) (0.009) (1187) (0.170) (0.117) [0.000]  [0.008]  [0.077]  [0.131]

Panel B: Positivereturn exceedances

Threshold Parameters of the model Hop = p2¥ =0 Ho p = p, > ()
) p’s o%s gus ph o gn pUS® LRttt  Wtest LR test W test
0% 0511 3256 -0145 0509 4530 -0174 0171  10.743 3.000 1.563 -1.561
(0.023) (0.252) (0.046) (0.023) (0.381) (0.053) (0.056) [0.001]  [0.003] [0.211] [0.118]

+3% 0208 1829 0112 0250 3713 -0105 0153 7.695 2.468 0.460 -0.887
(0.019) (0.291) (0.121) (0.020) (0.509) (0.100) (0.062) [0.006]  [0.014] [0.497] [0.375]

+5% 0070 3270 -0199 0136 3927 -0174 0183 6.100 2.080 0.126 0.330
(0.012) (0.793) (0.177) (0.016) (0.733) (0.140) (0.088) [0.014]  [0.038] [0.723] [0.742]

+8% 0025 295 -0292 0059 3875 -0306 0072 0.631 0.643 0.038 -0.232
(0.007) (1.270) (0.324) (0.011) (1.014) (0185 (0.112) [0.427]  [0.520] [0.845] [0.816]

+10% 0014 1040 0324 0033 3540 -0365 0.091 0.645 0.636 0.055 0.224
(0.005) (0.866) (0.757) (0.008) (1.274) (0.269) (0.143) [0.422]  [0.525] [0.815] [0.823]

+721% 0037 3257 -0208 0039 3286 -0276 0077 1.032 0.788 0.175 -0.569
+10.27% (0.008) (0.793) (0.251) (0.009) (1.142) (0.269) (0.099) [0.310]  [0.430] [0.675] [0.569]
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Figure 2. Correlation between U.S. and French return
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Figure 3. Correlation between U.S. and German return
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Figure 4. Correlation between U.S. and Japanese return
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