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ABSTRACT

Extreme Correlation of International Equity Markets*

Testing the hypothesis that international equity market correlation increases in
volatile times is a difficult exercise and misleading results have often been
reported in the past because of a spurious relationship between correlation
and volatility. This Paper focuses on extreme correlation, that is to say the
correlation between returns in either the negative or positive tail of the
multivariate distribution. Using ‘extreme value theory’ to model the multivariate
distribution tails, we derive the distribution of extreme correlation for a wide
class of return distributions. Using monthly data on the five largest stock
markets from 1958 to 1996, we reject the null hypothesis of multivariate
normality for the negative tail, but not for the positive tail. We also find that
correlation is not related to market volatility per se but to the market trend.
Correlation increases in bear markets, but not in bull markets.
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NON-TECHNICAL SUMMARY

International portfolio investment has become more popular during the past
decades. For example, total assets of US pension funds surpassed $7 trillion
($6,000 billion) at the end of 1999, with over $600 billion invested abroad.
Back in 1973, these institutional investors basically held no foreign assets. In
Europe, a global approach to investment has long been a tradition. For
example, British institutional investors hold more than 25% of their assets in
non-British securities, and some Dutch pension funds have more than half of
their assets invested abroad.

Diversifying internationally may be justified by the mere size of foreign
markets, even for US investors. Indeed, no single market accounts for more
than half of world capitalization. From a theoretical point of view, in a fully
efficient, international capital market, buying the world market portfolio would
be the natural strategy. The argument often heard in favour of international
investment is that it strongly lowers risk without sacrificing return. Domestic
securities tend to move up and down together because they are similarly
affected by domestic conditions, such as money supply announcements,
movements in interest rates, budget deficits, and national growth. This creates
a strong positive correlation among all national securities – stocks and bonds
alike – traded in the same national market. Looking at international capital
markets may then be a good opportunity for investors searching for methods
to spread their risk and diversify away their national market risk.

One way to assess the degree of dependence of international capital markets
is to compute the correlation coefficient. Correlation coefficients are always
much lower than unity. For example, over the last four decades, the historical
correlation between the US equity market and other major equity markets are:
0.52 with the UK, 0.44 with France, 0.39 with Germany, and 0.27 with Japan
(correlation coefficients much lower than those usually obtained between two
typical stocks of the same country). For investors, this means that there is
ample room for successful risk diversification.

Recently, academic studies have shown that correlation is not constant but
varies quite strongly over time. International equity markets are influenced by
domestic factors and worldwide factors. In some periods, when there are no
global socio-economic shocks, equity markets are primarily affected by
country-specific factors. Stock market performance is related to the national
business cycle and economic growth. National business cycles are not well
synchronized across countries. All markets then tend to move independently,
and even in opposite directions. In other periods, all equity markets are
globally affected by the same worldwide factors. This was the case for
example with the oil shock of 1974, the Gulf war of 1990 or more recently the
economic problems in emerging markets.



The level of correlation has also been related to the level of market volatility.
An often-raised question is whether international correlation increases in
periods of high turbulence. The dominance of global factors tends to be
associated with volatile markets (e.g. the oil crisis and the Gulf war). Recent
studies in international finance have shown that correlation of international
equity returns increases during volatile periods. However, the concept of
correlation should be used with great care. For example, a bivariate normal
distribution with constant correlation – a model commonly used for asset
returns – will have a correlation during volatile periods (large absolute returns)
that is higher than its correlation during tranquil periods (small absolute
returns) even though the true correlation is constant over time. In order to test
whether correlation increases during volatile periods, the distribution of the
correlation (conditional to the level of volatility) under the null hypothesis must
then be clearly specified.

This Paper focuses on extreme correlation, that is to say the correlation
between returns in either the negative or positive tail of the multivariate
distribution of asset returns. Using ‘extreme value theory’ to model the
multivariate distribution tails, we derive the distribution of extreme correlation
for a wide class of return distributions. Using monthly data on the five largest
stock markets from 1958 to 1996, we reject the null hypothesis of multivariate
normality for the negative tail, but not for the positive tail. We also find that
correlation is not related to market volatility per se but to the market trend.
Correlation increases in bear markets, but not in bull markets.
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INTRODUCTION
International equity market correlation has been widely studied. Previous studies1

suggest that correlation is larger when focusing on large absolute-value returns, and that this

seems more important in bear markets. The conclusion that international correlation is much

higher in periods of volatile markets (large absolute returns) has indeed become part of the

accepted wisdom among practitioners and the financial press. However, one should exert great

care in testing such a proposition. The usual approach is to condition the estimated correlation

on the observed (or ex-post) realization of market returns. Unfortunately correlation is a

complex function of returns and such tests can lead to wrong conclusions, unless the null

hypothesis and its statistics are clearly specified. To illustrate our point, let us consider a simple

example where the distribution of returns on two markets (say U.S. and U.K.) is multivariate

normal with zero mean, unit standard deviation and a constant correlation of 0.50. Let us split

the sample in two fractiles (50%) based on absolute values of U.S. returns. The first fractile

consists of "small" returns (absolute returns lower than 0.674), the second fractile consists of

"large" returns (absolute returns higher than 0.674). Under the assumption of bivariate normality

with constant correlation, the conditional correlation2 of small returns is 0.21 and the conditional

correlation of large returns is 0.62. It would be wrong to infer from this large difference in

conditional correlation that correlation differs between volatile and tranquil periods, as

correlation is constant and equal to 0.50 by assumption. Boyer, Gibson and Loretan (1999)

further show that conditional correlation is highly non-linear in the level of return on which it is

conditioned. They also indicate that a similar problem exists when the true data-generating

process is not multivariate normal but follows a GARCH model.

An obvious implication is that one cannot conclude that the "true" correlation is

changing over time by simply comparing estimated correlations conditional on different values

of one (or both) return variable. First, the distribution of the conditional correlation that is

expected under the null hypothesis (e.g. a multivariate normal distribution) must be clearly

specified in order to test whether correlation increases in periods of volatile markets. This has

not be done so far.

In this paper we study the conditional correlation structure of international equity returns

and derive a formal statistical method, based on extreme value theory. We can derive the

asymptotic distribution of conditional tail correlation, which is not possible for other parts of the

distribution of the conditional correlation. Extreme value theory only provides asymptotic

                                                
1  See Lin, Engle and Ito (1994), Erb, Harvey and Viskanta (1994), Longin and Solnik (1995), Karolyi
and Stulz (1996), Solnik, Bourcrelle and Le Fur (1996), De Santis and Gérard (1997), Ramchmand and
Susmel (1998), Ang and Bekaert (1999) and Das and Uppal (1999).

2  Our results are obtained from simulations of a multivariate normal distribution and can be easily
replicated. Forbes and Rigobon (1998) and Boyer, Gibson and Loretan (1999) provide some analytical
derivations.
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results, but it offers the benefit that its asymptotic results hold for a wide range of parametric

distributions of returns, not only the multivariate normal. An attractive feature of the

methodology is that the asymptotic tail distribution is characterized by very few parameters

regardless of the actual distribution.

A first contribution of this paper is to provide a method to formally test whether these

correlations deviate from what would be expected under multivariate normality. More

importantly, this paper contributes to the debate on market correlations in periods of extreme

returns by providing a stark empirical distinction between bear and bull markets. High volatility

per se (i.e. large absolute returns) does not seem to lead to an increase in conditional correlation.

Correlation is mainly affected by the market trend. We find that it is only in bear markets that

conditional correlation strongly increases; conditional correlation does not seem to increase in

bull markets. Our empirical distinction between bear and bull markets has potential implications

for asset allocation and portfolio construction, but we do not explore them here. While we do not

suggest the exact time-varying distribution that should be used, our results lead to the rejection

of a large class of models that would be inconsistent with our findings. This is the case of the

multivariate normal distribution with constant volatility and correlation. It is also the case of a

multivariate GARCH process with time-varying volatilities but constant correlation, in which

extreme returns can be generated by different volatility regimes. Furthermore, Ang and Bekaert

(1999) show that a fairly-general asymmetric GARCH3 also cannot reproduce the asymmetric

correlations that we document. On the other hand, regime-switching models as proposed by Das

and Uppal (1999) or Ang and Bekaert (1999) could be consistent with our empirical findings.

The asymmetric correlation pattern should become a key property for any multivariate equity

return model to match.

The paper is organized as follows: the first section presents some theoretical results

about the extremes of univariate and multivariate random processes. It summarizes the main

results of extreme value theory and draws the implications for the correlation of extreme returns.

The second section presents the econometric methodology and the third section the empirical

results.

                                                
3 Our simulations lead to similar conclusions. Analytical results cannot be derived except for the simplest
distributions (normal).
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1. CORRELATION OF EXTREME RETURNS: THEORY

Extreme value theory involves two modeling aspects: the tails of the marginal

distributions and the dependence structure of extreme observations.

1.1 The univariate case: modeling of the distribution tails

Let us call R the return on a portfolio and FR the cumulative distribution function of R.

The lower and upper endpoints of the associated density function are denoted by (l, u). For

example, for a variable distributed as the normal, l=-∞ and u=+∞. In this paper, extreme returns

are defined in terms of exceedances with reference to a threshold denoted by θ. For example,

positive θ-exceedances correspond to all observations of R greater than the threshold θ (results

for negative exceedances can be deduced from those for positive exceedances by consideration

of symmetry). A return R is higher than θ with probability p and lower than θ with probability 1-

p. The probability p being linked to the threshold θ and the distribution of returns FR by the

relation: p=1-FR(θ). We focus on the case (R>θ) which defines the (right) tail of the distribution

of returns.
The cumulative distribution of θ-exceedances, denoted by FR

θ  and equal to (FR(x)-

FR(θ))/(1-FR(θ)) for x>θ, is exactly known if the distribution of returns FR is known. However,

in most financial applications, the distribution of returns is not precisely known and, therefore,

neither is the exact distribution of return exceedances. For empirical purposes, the asymptotic

behavior of return exceedances needs to be studied. Extreme value theory addresses this issue by

determining the possible non-degenerate limit distributions of exceedances as the threshold θ
tends to the upper point u of the distribution. In statistical terms, a limit cumulative distribution

function denoted by GR
θ  satisfies the following condition: lim sup ( ) ( ) .

θ θ→ < <
−

u x u
R RF x G x  =  θ θ 0

Balkema and De Haan (1974) and Pickands (1975) show that the generalized Pareto distribution

(GPD) is the only non-degenerate distribution which approximates the distribution of return
exceedances FR

θ . The limit distribution function GR
θ  is given by:

( ) ( )( )G x  =  xR
θ ξξ θ σ1 1

1− + ⋅ −
+

/ ,
/

(1)

where σ, called the dispersion parameter, depends on the threshold θ and the distribution of

returns FR, and ξ, called the tail index, is intrinsic to the distribution of returns FR (the + operator

gives the positive part of the expression in parentheses).

The tail index ξ gives a precise characterization of the tail of the distribution of returns.

Distributions with a power-declining tail (fat-tailed distributions) correspond to the case ξ>0,

distributions with an exponentially-declining tail (thin-tailed distributions) to the case ξ=0, and

distributions with no tail (finite distributions) to the case ξ<0.

For a particular return distribution, the parameters of the limit distribution can be

computed (see Embrechts, Klüppelberg and Mikosch (1997)). For example, the normal and log-

normal distributions commonly used in finance lead to a GPD with ξ=0. The Student-t
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distributions and stable Paretian laws lead to a GPD with ξ>0 and the uniform distribution

belongs to a GPD with ξ<0. The extreme value theorem has also been extended to processes

which are not i.i.d.. Leadbetter, Lindgren and Rootzén (1983) consider various processes based

on the normal distribution: autocorrelated normal processes, discrete mixtures of normal

distributions and mixed diffusion jump processes. All have thin tails so that they lead to a GPD

with ξ=0. De Haan, Resnick, Rootzén and De Vries (1989) show that if returns follow the

GARCH process, then the extreme return has a GDP with ξ<0.5.

To summarize the univariate case, extreme value theory shows that the distribution of

return exceedances can only converge toward a generalized Pareto distribution. This result is

robust as it is also obtained for non-i.i.d. return processes commonly used in finance. Hence, for

a given threshold, the distribution tail in the univariate case is perfectly described by three

parameters: the tail probability, the dispersion parameter and the tail index.

1.2 Multivariate case: modeling of the dependence structure

Let us consider a q-dimensional vector of random variables denoted R=(R1, R2, ..., Rq).

Multivariate return exceedances correspond to the vector of univariate return exceedances

defined with a q-dimensional vector of thresholds θ=(θ1, θ2, …, θq). As for the univariate case,

when the return distribution is not exactly known, we need to consider asymptotic results. The
possible limit non-degenerate distributions GR

θ  satisfying the limit condition must satisfy two

properties: 4

1)  Its univariate marginal distributions GR1

1θ , GR2

2θ , …, GRq

qθ  are generalized Pareto

distributions.
2)  There exists a function called the dependence function denoted by GR

D , defined

from ℜq into ℜ which satisfies the following condition:

            ( ) ( ) ( ) ( )( )( )G x x x D G x G x G xR q G R R R qR q

qθ θ θ θ1 2
1 2 1 21 1 1

1 2
, , ..., exp / log , / log , ..., / log .  = − − − − (2)

Like in the univariate case, the generalized Pareto distribution plays a central role. However,

unlike the univariate case, the multivariate asymptotic distribution is not completely specified as
the shape of the dependence function 

RGD  is not known.

                                                
4 See Ledford and Tawn (1997). A general presentation of multivariate extreme value theory can be
found in Galambos (1978) and Resnick (1987). Specific results for the bivariate case are given in Tawn
(1988).
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When the components of the multivariate distribution of extreme returns are
asymptotically independent, the dependence function 

RGD  is characterized by:

( )D y , y y  =  
y y yG q

q
R 1 2

1 2

1 1 1
,..., ... ,+ + +









 (3)

where ( )y G xi R ii

i=−1/ log .θ  Actually, asymptotic independence of extreme returns is reached in

many cases. Of course, when the components of the return distribution themselves are

independent, exact independence of extreme returns is obtained. But more surprisingly,

asymptotic independence is often reached when the components of the return distribution are not

independent. An important example is the multivariate normal distribution (see Galambos

(1978, pp 257-58) and Embrechts, McNeil and Straumann (1998)).

Asymptotic independence and multivariate normality

If all correlation coefficients between any two components of a multivariate normal process are

different from ±1, then the return exceedances of all variables tend to independence as the

threshold used to define the tails tends to the upper endpoint of the distribution of returns (+∞
for the normal distribution). In particular, the asymptotic correlation of extreme returns is equal

to zero. For example, considering a bivariate normal process with standard mean and variance

and a correlation of 0.80, the correlation is equal to 0.48 for return exceedances one standard

deviation away from the mean, 0.36 for return exceedances two standard deviations away from

the mean, 0.24 for return exceedances three standard deviations away from the mean and 0.14

for return exceedances four standard deviations away from the mean. It goes to zero for extreme

returns.

At first, the result of asymptotic independence may seem counterintuitive and at odds

with the traditional view of bivariate normality. 5 It all depends on how conditioning is

conducted. A slight difference is introduced by conditioning on values in the two series, as done

in extreme value theory, or on values in a single series, as done in the introduction of this paper

and in most empirical studies. But the major source of difference comes from the conditioning

on absolute values (two-sided) versus the conditioning on signed values (one-sided). If we

condition on the absolute value of realized returns, the conditional correlation of a bivariate

normal distribution trivially increases with the threshold, as mentioned in the introduction. As

the normal distribution is symmetric, the truncated distribution retains the same mean as the total

distribution. But a large positive (respectively negative) return in one series tends to be

associated with a large positive (respectively negative) return in the other series, so the estimated

conditional correlation is larger than the "true" constant correlation. Conditional correlation

increases with the threshold (see also Forbes and Rigobon (1998) and Boyer, Gibson and

Loretan (1999)). Here, we condition on signed extremes (e.g. positive or negative). The mean of

                                                
5  We are grateful to an anonymous referee for providing useful insights on this issue.
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the truncated distribution is not equal to the mean of the total distribution. As indicated above,

the conditional correlation of a multivariate normal distribution decreases with the threshold and

reaches zero for extreme returns. A false intuition would be that extreme returns in two series

appear highly correlated as they are large compared with the mean of all returns. Extreme value

theory says that two extreme returns are not necessarily correlated as they may not always be

large compared with the mean of extreme returns.

The general case

For the general case with asymptotically-dependent components for the multivariate distribution

of extreme returns, the form of the dependence function is not known, and it has to be modeled. 6

A model commonly used in the literature is the logistic function proposed by Gumbel (1961). 7

The dependence function denoted by Dl is given by:

( ) ( )D y , y y  =  y y y ,l q q1 2 1
1

2
1 1,..., .../ / /− − −+ + +α α α

α
(4)

where parameter α controls the level of dependence between extreme returns. In the bivariate

case (q=2), the correlation coefficient ρ of extremes is related to the coefficient α by: ρ=1-α2

(Tiago de Oliveira, 1973). The special cases α=1 and α=0 correspond respectively to asymptotic

independence (ρ=0) and total dependence (ρ=1).

While arbitrary, the logistic model used in engineering studies presents several

advantages: it includes the special cases of asymptotic independence and total dependence, and it

is parsimonious as only one parameter is needed to model the dependence among extremes. An

attractive feature of the methodology is that the asymptotic tail distribution is characterized by

very few parameters regardless of the actual conditional distribution.

To summarize the multivariate case, extreme value theory shows that the distribution of

extreme returns can only converge toward a distribution characterized by generalized Pareto

marginal distributions and a dependence function. The shape of this function is not well-defined.

Consistent with the existing literature, we will use the logistic function to model the dependence

between extreme returns of different markets. The case where returns are multivariate normal

leads to a limit case of the logistic function where the asymptotic correlation of extreme returns

is equal to zero. We will estimate the dependence function and test whether the correlation of

extreme returns is equal to zero.

                                                
6  The properties of the asymptotic distribution can be worked only out in very special cases.

7  See also Tawn (1990) and Straetmans (1998).
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2.  CORRELATION OF EXTREME RETURNS: ESTIMATION
PROCEDURE

The choice of the threshold value is first discussed. The estimation method for the

parameters of the model is then presented.

2.1 Optimal threshold values

The theoretical result about the limit distribution of return exceedances exactly holds

when the threshold θ goes to the upper endpoint u of the distribution of returns. In practice, as

the database contains a finite number of return observations, the threshold used for the

estimation of the model is finite. The choice of its value is a critical issue. On the one hand,

choosing a high value for θ leads to few observations of return exceedances and implies

inefficient parameter estimates with large standard errors. On the other hand, choosing a low

value for θ leads to many observations of return exceedances but induces biased parameter

estimates as observations not belonging to the tails are included in the estimation process. To

optimize this trade-off between bias and inefficiency, we use a Monte Carlo simulation method.

Return time-series are simulated from a known distribution for which the tail index can be

computed. For each time-series, the tail index value is estimated for different threshold levels.

The choice of the optimal value is based on the mean square error (MSE) criterion which allows

one to take into account the trade-off between bias and inefficiency. The procedure is detailed in

Appendix 1.

2.2 Estimation of the model

The model presented in the previous section is multivariate. In the empirical study, we

deal with bivariate models. This choice is justified by a theoretical result which demonstrates

that multivariate independence can be tested using bivariate pairs of variables (see Tiago de

Oliveira (1962) and Reiss (1989, pp 234-237)).

2.2.1 Modeling of the tails of the marginal distributions

Following Davison and Smith (1990) and Ledford and Tawn (1997), the limiting result

about the distribution of exceedances presented in Section 1 is taken to derive a model of the

tails of each marginal distribution. Considering return exceedances defined from returns R1 and

R2 in two markets with thresholds θ1 and θ2, the tail of the distribution of each return Ri denoted

by FRi

iθ  for i=1 and 2 is modeled as follows:

( ) ( ) ( )F x  =  p p G xR i i i R ii

i

i

iθ θ1− + ⋅ ( )( )=  p xi i i i i

i

1 1
1

− ⋅ + ⋅ −
+

−
ξ θ σ

ξ
/ ,

/
(5)

which simply expresses that a return Ri either does not belong to the tail with probability 1-pi or
is drawn from the limit univariate distribution GRi

iθ  of positive return θi-exceedances with

probability pi. In other words, for a return which does not exceed the threshold θi the only
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relevant information it conveys to the model is that it occurs below the threshold, not its actual

value. In the construction of the likelihood function, a return Ri below θi is considered as

censored at the threshold.

2.2.2 Modeling of the dependence structure

Following Ledford and Tawn (1997), the dependence function associated with the

distribution of returns FR is modeled with the logistic function Dl given by equation (4). The
model FR

θ  of the bivariate distribution of return exceedances is given by:

( ) ( ) ( )( )( )F x x D F x F xR l R R
θ θ θ

1 2 1 21 1
1

1

2

2, exp / log , / log .= − − − (6)

For given thresholds θ1 and θ2, the bivariate distribution of return exceedances is then

described by seven parameters: the tail probabilities (p1 and p2), the dispersion parameters (σ1

and σ2) and the tail indexes (ξ1 and ξ2) for each variable, and the dependence parameter of the

logistic function (α) or equivalently the correlation of extreme returns (ρ). The parameters of the

model are estimated by the maximum likelihood method. Details of the construction of the

likelihood function are given in Appendix 2.

3. CORRELATION OF EXTREME RETURNS: EMPIRICAL EVIDENCE

We estimate the multivariate distribution of return exceedances and test the null

hypothesis of normality focusing on the correlation of extreme returns.

3.1 Data

We use monthly equity index returns for five countries: the United States (U.S.), the

United Kingdom (U.K.), France (FR), Germany (GE) and Japan (JA). Data for the period

January 1959 to December 1996 (456 observations) come from Morgan Stanley Capital

International (MSCI). A description of the data can be found in Longin and Solnik (1995).

3.2 Threshold values

We consider return exceedances defined with various predetermined threshold levels:

±0%, ±3%, ±5%, ±8% and ±10% (percentage points) away from the empirical mean of each

country. In selecting large thresholds, we are constrained by the fact that there are very few

monthly observations below -10% or above +10%.

We also consider return exceedances defined with optimal thresholds (see Appendix 1).

Optimal threshold values are different for the left tail and the right tail of the return distribution.

For example, considering the U.S., it is optimal to use 25 negative tail observations

corresponding to a threshold of -6.12% for the left tail, and 18 positive tail observations defining

a threshold of +7.21% for the right tail. Optimal threshold values also depend on the country.

For example, considering the left tail, the following numbers of negative tail observations with
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the corresponding threshold values in parentheses are: 25 (-6.12%) for the U.S., 16 (-9.68%) for

the U.K., 18 (-8.38%) for France, 16 (-7.84%) for Germany and 16 (-8.53%) for Japan. On

average, around 20 to 30 tail observations are used representing a proportion of 4-5% of the total

number of return observations (456).

3.3 Estimation of the parameters of the model

We use a bivariate framework, looking at the correlation of the U.S. market with the

other four markets separately. Hence, we have four country pairs: US/UK, US/FR, US/GE and

US/JA. We start with a maximum-likelihood univariate estimation for each country. The

estimated parameters, plus the sample unconditional correlation, are then used as starting values

in the maximum-likelihood bivariate estimation.

Tables 1 to 4 present the estimation of the bivariate distribution of return exceedances of

predetermined and optimal values for the threshold θ. Estimated coefficients are presented in

Panel A for negative return exceedances (return lower than the threshold θ) and in Panel B for

positive return exceedances (returns higher than the threshold θ). The estimate of the tail

probability p is close to the empirical probability of returns being lower or higher than the

threshold considered. For example, the estimated value of the probability pUS of U.S. monthly

returns lower than θ=-3% is equal to 0.194 with a standard error of 0.018 while, over the period

January 1959 - December 1996, there are 86 out of 456 monthly returns under -3%, leading to an

empirical frequency of 0.189. The dispersion parameter and the tail index are not estimated with

great precision. The sign of the tail index for high threshold values gives some indication

regarding the type of asymptotic distribution of extreme returns: the estimates of the tail index

are mostly positive for the U.S., U.K. and French markets,8 and mostly negative for the German

and Japanese markets. However, neither of these results can be considered as statistically

significant.

Results for the correlation coefficient of return exceedances are particularly interesting:

the correlation seems to be influenced both by the size and the sign of the thresholds used to

define the extremes. It is also different from the usual correlation, that is to say the correlation

computed using all the observations of returns. We will describe the results using the US/UK

pair as an example. The usual correlation of monthly returns is equal to 0.519 for the US/UK

pair. The correlation of return exceedances tends to increase when we look at negative return

exceedances defined with lower thresholds: it is equal to 0.530 for θ=-0% (negative semi-

correlation), 0.579 for θ=-3%, 0.553 for θ=-5%, 0.600 for θ=-8% and up to 0.676 for θ=-10%

(Table 1, Panel A). On the other hand, correlation tends to decrease with the level of the

threshold when we look at positive return exceedances: it is equal to 0.415 for θ=+0% (positive

                                                
8 Jansen and De Vries (1991), Loretan and Phillips (1994) and Longin (1996) obtained similar results in
univariate studies for the U.S..
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semi-correlation), 0.353 for θ=+3%, 0.360 for θ=+5%, 0.293 for θ=+8%, and only 0.189 for

θ=+10% (Table 1, Panel B). The correlation ρ goes up with the absolute size of the threshold if

it is negative and goes down with the threshold if positive. This is illustrated graphically on

Figure 1 which depicts the relation between the correlation of return exceedances and the

threshold used to define them. The solid line indicates the estimated correlation as a function of

the threshold. It starts at the (negative or positive) semi-correlation for a threshold of θ=-0% or

θ=+0%. A similar conclusion obtains for the other country-pairs as seen in Tables and Figures 2,

3 and 4.

The asymmetry between negative and positive return exceedances is confirmed by

results obtained with optimal thresholds. As shown on the last lines of Tables 1 to 4, for all

country-pairs, the correlation between negative return exceedances is always greater than the

correlation between positive return exceedances. On average, the former is equal to 0.505 while

the latter is equal to 0.124. The difference is statistically significant at the 5% confidence level in

3 cases out of 4 (US/UK, US/FR and US/GE). For example, considering the US/UK pair, the

correlation between negative return exceedances (with the standard error in parentheses) is equal

to 0.578 (0.121) while the correlation between positive return exceedances is equal to 0.226

(0.120). The value of a t-test between the two correlation coefficients is equal to 2.066 with a p-

value of 0.039 (independence between negative and positive return exceedances is assumed to

compute the t-test).

3.4 Test of normality

We also test the null hypothesis of normality H0: ρ = ρnor , where ρnor stands for the

correlation between normal return exceedances. Under the null hypothesis of normality, this

correlation coefficient tends to zero as the threshold value goes to infinity (see Section 1). As we

work with a finite sample, we can only use finite threshold values. Two cases are then formally

considered: the asymptotic case and the finite-sample case. In the asymptotic case, the
correlation of normal return exceedances of thresholds tending to infinity, denoted by ρnor

asy , is

theoretically equal to 0. In the finite-sample case, the correlation of return exceedances over a
given finite threshold θ, denoted by ρ θnor

f s. . ( ) , is computed by simulation. We compute the

correlation between normal return exceedances for the predetermined threshold values

considered above and for optimal threshold values. This is done by using a simulated bivariate

normal process with means and covariance matrix equal to their empirical counterparts. Given

these parameters which fully describe a multivariate normal process, there is only one theoretical

value for the correlation of return exceedances at a given threshold level. As indicated in the

theoretical section, this "normal" correlation coefficient decreases with the absolute size of the

threshold. For example, for the US/UK pair, the "normal" correlation of positive return

exceedances computed numerically decreases with the threshold: it is equal to 0.51 for θ=+0%,

0.44 for θ=+3%, 0.39 for θ =+5%, 0.29 for θ =+8% and only 0.21 for θ =+10%. In each figure,
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the dotted line plots the "normal" correlation as a function of the threshold. As seen in Figure 1,

the US/UK correlation of return exceedances is close to its "normal" value for positive

thresholds, but is markedly larger for negative thresholds.

Formal tests of the null hypothesis of normality are provided in the last columns of

Tables 1 to 4. First, a likelihood ratio test between the constrained model (corresponding to

normality) and the unconstrained model is carried out. Second, a Wald test on the correlation

coefficient is done. For a given threshold, the Wald test compares the estimated correlation of

return exceedances to its theoretical value under the hypothesis of normal returns. Both the

asymptotic and finite-sample cases are considered. For all country-pairs, the null hypothesis of

normality is always rejected for high negative thresholds at the 5% confidence level. Taking as

example the pair US/UK and the threshold θ=-5%, the likelihood ratio test strongly rejects the

null hypothesis of normality. The test value is equal to 73.143 with a negligible p-value for the

asymptotic case, and to 5.243 with a p-value equal to 0.022 for the finite-sample case (Table 1,

Panel A). Similarly, the Wald test on the correlation coefficient itself strongly rejects the null

hypothesis of normality. The test value is equal to 7.681 with a negligible p-value for the

asymptotic case, and to 2.236 with a p-value equal to 0.025 for the finite-sample case. So the

difference in correlation is economically large (0.55 instead of 0.39) and statistically significant

(a similar conclusion is obtained when exceedance returns are defined with optimal thresholds).

This phenomenon is illustrated graphically for each pair of countries in Figures 1 to 4. For high

negative threshold values, the solid line representing the estimated correlation of return

exceedances moves away from the dotted line representing the theoretical correlation under

normality. It should be noted that this result does not depend on one outlier, such as the October

1987 crash. Over the 38-year span, the British market, for example, had 29 monthly returns

below -8% and 19 below -10%.

To summarize, the correlation structure of large returns is asymmetric. Correlation tends

to decrease with the absolute size of the threshold for positive returns, as expected in the case of

multivariate normality, but tends to increase for negative returns. So the probability of having

large losses simultaneously on two markets is much larger than would be suggested under the

assumption of multivariate normality. It appears that it is a bear market, rather than volatility per

se, that is the driving force in increasing international correlation.
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 CONCLUSION
We use extreme value theory to study the dependence structure of international equity

markets. We explicitly model the multivariate distribution of large returns (beyond a given

threshold) and estimate the correlation for increasing threshold levels. Under the assumption of

multivariate normality with constant correlation, the correlation of large returns (beyond a given

threshold) should asymptotically go to zero as the threshold level increases. This is not the case

in our estimation based on 38 years of monthly data for the five largest stock markets, at least for

large negative returns. The correlation of large negative returns does not converge to zero but

tends to increase with the threshold level and rejection of multivariate normality is highly

significant statistically. On the opposite, the correlation of large positive returns tends to

decrease and to converge to zero with the threshold level and the assumption of multivariate

normality cannot be rejected. In other words, our results favor the explanation that correlation

increases in bear markets, but not in bull markets.

The conclusion that volatility per se does not affect correlation in bull markets is at odds

with some previous findings. One explanation provided above is that the null hypothesis of

multivariate normality with constant correlation must be properly specified when conditioning

on some realized level of return or volatility. Under the assumption of multivariate normality

(with constant correlation), correlation conditioned on the level of volatility (absolute value of

return) is expected to markedly increase with the level of volatility. So, tests of normality should

model this feature in the null hypothesis. Here, we focus on the tail of the distribution whose

asymptotic properties can be modeled and we derive a formal statistical method, based on

extreme value theory, to test whether the correlation of large returns is higher than expected

under the assumption of multivariate normality. An attractive feature of the methodology is that

the asymptotic tail distribution is characterized by very few parameters regardless of the actual

distribution. Asymptotic conditional correlation should be equal to zero for a wide class of return

distributions. While we do not suggest the exact time-varying distribution that should be used,

our results lead to the rejection of a large class of models that would be inconsistent with our

findings. This is the case of the multivariate normal distribution. It is also the case of a

multivariate GARCH with constant correlation. Simulations for such a model calibrated to the

data show that the conditional correlation goes to zero for extreme returns. More importantly,

Ang and Bekaert (1999) show that a fairly-general asymmetric GARCH also cannot reproduce

the asymmetric correlations that we document. While GARCH models seem ill-suited to derive

implications for bear and bull markets that are consistent with our findings, other models can.

For example Ang and Bekaert (1999, page 17) indicate that a regime-switching return-

generating process is able to reproduce our asymmetric findings. The disadvantage of our

approach is that we do not explicitly specify the class of return-generating processes that are

rejected. The advantage of our approach is that the empirical results do not depend on a specific

return-generating process and are therefore fairly robust.
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The next step would be to assess whether these findings materially affect international

portfolio choices. Some recent papers are explicitly using return-generating processes that

exhibit a regime-switching correlation increasing with volatility, and they study the portfolio

choice implications. Ang and Bekaert (1999) and Das and Uppal (1999) develop different

regime-switching models and reach different conclusions about portfolio implications. Ang and

Bekaert (1999, abstract) conclude that "the costs of ignoring regime switching are small for

moderate levels of risk aversion", while Das and Uppal (1999, abstract) state that "there are

substantial differences in the portfolio weights across regimes". The difference in conclusion

may come from the return-generating process postulated, especially how correlation increases in

bear and bull markets.
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APPENDIX 1
Computation of optimal threshold levels

An optimal threshold level can be obtained by optimizing the trade-off between bias and

inefficiency. To solve this problem, we use a Monte Carlo simulation method inspired by Jansen

and de Vries (1991).9 This appendix describes the procedure in detail.

A particular model for returns is assumed. For each simulated time-series of returns, the

optimal number of return exceedances (or equivalently the optimal threshold level) is computed.

The MSE of simulated optimal numbers of return exceedances is then computed to derive the

number of return exceedances for the observed time-series. As explained by Theil (1971, pp 26-

32), the MSE criterion allows one to take explicitly into account the two effects of bias and
inefficiency. The mean square error of S simulated observations 

~
X s  of the estimator of a

parameter X can be decomposed as follows:

( )( ) ( ) ( )MSE X , X
~ ~

,
,s s S s

s

S

X X
S

X X
=

=
= − + −∑1

2 2

1

1

where X  represents the mean of S simulated observations. The first part of the decomposition

measures the bias and the second part the inefficiency.

The procedure can be decomposed in four steps:

1)  First we simulate S time-series containing T return observations from Student-t

distributions with k degrees of freedom, the integer k ranging from 1 to K. The class

of the Student-t distributions is chosen to consider different degrees of tail fatness.

The lower the degree of freedom, the fatter the distribution as the tail index ξ is

related to k by ξ=1/k. For the simulations, we take: S=1,000, T=456 and K=10.

2)  For different numbers n of return exceedances, we obtain a tail index estimate
~

( , )ξ s n k corresponding to the sth simulated time-series and to the Student-t

distribution with k degree of freedom. In order to identify the optimal number of

return exceedances, we focus on the tail index as this parameter models the

distribution tails. We choose the values of n ranging from 0.01·T to 0.20·T such that

proportions from 1% to 20% of the total number T of return observations are used in

the estimation procedure.

3)  For a Student-t distribution with k degree of freedom and for each number n of return

exceedances, we compute the MSE of the S tail index estimates, denoted by

MSE(( )
~

( , )) ,ξs s Sn k =1 . As explained by Jansen and de Vries (1991), there is a U-

shaped relation between MSE(( )
~

( , )) ,ξs s Sn k =1  and n , which expresses the trade-off

between bias and inefficiency. For high values of n, the inclusion of many

observations such that some do not belong to the tail but to the center of the

distribution makes the bias part of the MSE dominate the inefficiency part. On the

opposite, for low values of n, the inclusion of few observations makes the inefficiency

                                                
9 See also Beirlant, Vynckier and Teugels (1996) and Huisman, Koedijk, Kool and Palm (1998).
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part of the MSE dominate the bias part as the tail index is badly estimated. We then

select the number of return exceedances which minimizes the MSE. This number,

denoted by n*(k), is optimal for a Student-t distribution with k degrees of freedom. 10

4)  For the K optimal numbers of return exceedances previously obtained by simulation,

(n*(k))k=1,K, we compute the tail index estimates of the observed time-series of actual

returns, denoted by 
~

( ( ))*ξ n k  for k ranging from 1 to K. We then select the number of

return exceedances for which the corresponding tail index estimate is statistically the

closest to the tail index defined in the simulation procedure, that is to say 1/k (we

consider the p-value of the t-test of the following hypothesis: 
~

( ( )) /*ξ n k k= 1 ). This

number, denoted by n*, is considered as the optimal number of return exceedances for

the distribution of actual returns. In the estimation of the model, we use the optimal

threshold θ* associated with the optimal number of return exceedances n*.

                                                
10 The optimal number of return exceedances is an increasing function of the fatness of the simulated
Student-t distribution. For example, it is equal to 64 for a Student-t distribution with one degree of
freedom and 25 for a Student-t distribution with five degrees of freedom. The fatter the distribution, the
higher the number of return exceedances used in the estimation of the tail index as more extreme
observations are available.
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APPENDIX 2
Derivation of the maximum likelihood function

The parameters of the model presented in Section 2 are estimated by the maximum

likelihood method developed by Ledford and Tawn (1997). This appendix presents the

construction of the likelihood function in detail.

The method is based on a set of assumptions. Returns are assumed to be independent.

The thresholds θ1 and θ2 used to select return exceedances (or equivalently the tail probabilities

p1 and p2) are independent of returns and time. The method is also based on a censoring

assumption. For thresholds θ1 and θ2, the space of return values is divided into four regions

given by { }A j I R k I Rjk ; ( ), ( ) ,  = > = >1 1 2 2θ θ where I is the indicator function. The method

treats return observations below threshold as censored data. Finally, the dependence between

extreme returns is modeled using a logistic function denoted by Dl.

The likelihood contribution corresponding to the observation of returns at time t (R1t, R2t)

falling in region Ajk is denoted by Ljk(R1t, R2t) and given by:

( ) ( ) ( )( )L R R F R R D Yt t R t t l00 1 2 1 2 1 2, , exp ,Y ,= = −θ
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where the variables Yi, Zi and Ki for i=1 and 2 are defined by:

( )Y Fi R ii

i= −1 / log ,θ θ

( )Z F Ri R iti

i= −1 / log ,θ

( ) ( )K p R Z Zi i i i it i i i i
i i= − ⋅ ⋅ + ⋅ − ⋅ ⋅−

+

− +σ ξ θ σ ξ ξ1 1 21 1( ) / exp / .
( )/

The likelihood contribution from the observation of returns at time t (R1t, R2t) for the

bivariate distribution of return exceedances described by a set of parameters Φ = (p1, p2, σ1, σ2,

ξ1, ξ2, α) is given by:

( ) ( ) ( )
{ }

L R R L R R I R Rt t jk t t jk t t
j k

1 2 1 2 1 2
0 1

, , , , ,
, ,

Φ = ⋅
∈
∑

where Ijk(R1t, R2t)=I{(R1t, R2t)∈ Ajk}. Hence the likelihood for a set of T independent

observations of returns is given by:

{ }( ) ( )L R R L R Rt t t T t t
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T
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Figures 1 to 4. Correlation between return exceedances.
These figures represent the correlation structure of return exceedances between the U.S. and four other
countries: U.K. (Figure 1), France (Figure 2), Germany (Figure 3) and Japan (Figure 4). The solid line
represents the correlation between actual return exceedances obtained from the estimation of the
bivariate distribution modeled with the logistic function (see results in Tables 1 to 4). The dotted line
represents the theoretical correlation between simulated normal return exceedances, ρnor, assuming a
multivariate-normal return distribution with parameters equal to the empirically-observed means and
covariance matrix of monthly returns. The value of the threshold θ used to define return exceedances
ranges from -10% to +10% (percentage points). For a given estimation, the same value of θ is taken for
all pairs of countries: θ=θUS=θUK=θFR=θGE=θJA. The usual correlation using all returns is represented by a
large dot on the vertical axis.

Figure 1. Correlation between U.S. and U.K. return exceedances.
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Figure 2. Correlation between U.S. and French return exceedances.
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Figure 3. Correlation between U.S. and German return exceedances.
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Figure 4. Correlation between U.S. and Japanese return exceedances.
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Table 1. Estimation of the bivariate distribution of U.S. and U.K. return exceedances.

This table gives the maximum likelihood estimates of the parameters of the bivariate distribution of U.S. and U.K. return
exceedances (Panel A for negative return exceedances and Panel B for positive return exceedances). Return exceedances are
defined with a threshold θ. Both fixed and optimal levels are used for θ. Fixed levels (defined as percentage points) are: 0%,
±3%, ±5%, ±8% and ±10% away from the empirically-observed means of monthly returns (the same value of θ is then taken
for the two countries: θ=θUS=θUK). Optimal levels are computed by the procedure described in Appendix 1. They are given for
the U.S. and the U.K. on the last line of each panel. Seven parameters are estimated: the tail probability p, the dispersion
parameter σ, the tail index ξ for each country and the correlation of return exceedances ρ of the logistic function used to model
the dependence between extreme returns. Standard errors are given below in parentheses. The null hypothesis of normality H0:
ρ = ρnor  is also tested. Two cases are considered: the asymptotic case and the finite-sample case. In the asymptotic case, the

correlation of normal return exceedances of thresholds tending to infinity, denoted by ρnor
asy , is theoretically equal to 0. In the

finite-sample case, the correlation of return exceedances over a given finite threshold θ, denoted by ρ θnor
f s. . ( ) , is computed by

simulation assuming that monthly returns follow a bivariate-normal distribution with parameters equal to the empirically-
observed means and covariance matrix of monthly returns. Both a likelihood ratio test (LR test) between the constrained model
(ρ = ρnor

asy = 0  in the asymptotic case and ρ = ρ θnor
f s. . ( )  in the finite-sample case) and the unconstrained model, and a Wald

test (W test) on the correlation coefficient are carried out. The p-value of the tests are given below in brackets.

Panel A: Negative return exceedances
Threshold Parameters of the model H0:ρ = ρnor

asy = 0 H0: ρ = ρ θnor
f s. . ( )

θ pUS σUS ξUS pUK σUK ξUK ρUS/UK LR test W test LR test W test

-10% 0.016
(0.006)

1.480
(0.962)

0.672
(0.697)

0.040
(0.009)

3.188
(1.238)

0.246
(0.311)

0.676
(0.131)

36.465
[0.000]

5.160
[0.000]

11.382
[0.001]

3.573
[0.000]

-8% 0.034
(0.008)

2.733
(0.901)

0.149
(0.240)

0.062
(0.011)

3.520
(1.074)

0.146
(0.244)

0.600
(0.113)

44.138
[0.000]

5.310
[0.000]

7.653
[0.006]

2.708
[0.007]

-5% 0.106
(0.014)

2.349
(0.490)

0.157
(0.154)

0.160
(0.017)

2.997
(0.527)

0.151
(0.129)

0.553
(0.072)

73.143
[0.000]

7.681
[0.000]

5.243
[0.022]

2.236
[0.025]

-3% 0.194
(0.018)

3.075
(0.403)

0.013
(0.080)

0.194
(0.018)

3.698
(0.459)

0.037
(0.083)

0.579
(0.055)

102.882
[0.000]

10.527
[0.000]

6.261
[0.012]

2.564
[0.010]

0% 0.476
(0.023)

3.437
(0.276)

-0.044
(0.043)

0.476
(0.023)

4.195
(0.372)

-0.017
(0.060)

0.530
(0.045)

120.057
[0.000]

11.778
[0.000]

0.484
[0.487]

0.444
[0.657]

-6.12%
-9.68%

0.056
(0.011)

2.428
(0.681)

0.178
(0.219)

0.036
(0.009)

2.951
(1.374)

0.286
(0.414)

0.578
(0.121)

36.393
[0.000]

4.777
[0.000]

4.606
[0.032]

2.012
[0.044]

Panel B: Positive return exceedances
Threshold Parameters of the model H0:ρ = ρnor

asy = 0 H0: ρ = ρ θnor
f s. . ( )

θ pUS σUS ξUS pUK σUK ξUK ρUS/UK LR test W test LR test W test

0% 0.534
(0.023)

3.402
(0.262)

-0.156
(0.045)

0.524
(0.023)

3.934
(0.262)

0.012
(0.038)

0.415
(0.051)

57.186
[0.000]

8.137
[0.000]

4.297
[0.038]

-1.863
[0.062]

+3% 0.217
(0.019)

1.911
(0.309)

0.105
(0.127)

0.254
(0.020)

2.853
(0.363)

0.159
(0.081)

0.353
(0.065)

35.244
[0.000]

5.431
[0.000]

2.045
[0.153]

-1.308
[0.191]

+5% 0.072
(0.012)

3.196
(0.732)

-0.199
(0.153)

0.132
(0.016)

2.475
(0.492)

0.310
(0.142)

0.360
(0.090)

24.018
[0.000]

4.000
[0.000]

0.205
[0.651]

-0.356
[0.722]

+8% 0.023
(0.007)

2.889
(1.261)

-0.274
(0.302)

0.046
(0.010)

2.483
(0.951)

0.548
(0.325)

0.293
(0.140)

9.775
[0.002]

2.093
[0.036]

0.001
[0.994]

-0.007
[0.994]

+10% 0.013
(0.005)

0.976
(0.911)

0.317
(0.687)

0.023
(0.007)

4.468
(2.444)

0.390
(0.458)

0.189
(0.173)

4.521
[0.033]

1.092
[0.275]

0.010
[0.920]

-0.110
[0.913]

+7.21%
+6.70%

0.039
(0.009)

3.020
(0.925)

-0.256
(0.191)

0.096
(0.015)

2.449
(0.546)

0.423
(0.364)

0.226
(0.120)

7.638
[0.006]

1.886
[0.059]

0.612
[0.434]

-0.714
[0.475]
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Table 2. Estimation of the bivariate distribution of U.S. and French return exceedances.

This table gives the maximum likelihood estimates of the parameters of the bivariate distribution of U.S. and French return
exceedances (Panel A for negative return exceedances and Panel B for positive return exceedances). Return exceedances are
defined with a threshold θ. Both fixed and optimal levels are used for θ. Fixed levels (defined as percentage points) are: 0%,
±3%, ±5%, ±8% and ±10% away from the empirically-observed means of monthly returns (the same value of θ is then taken
for the two countries: θ=θUS=θFR). Optimal levels are computed by the procedure described in Appendix 1. They are given for
the U.S. and France on the last line of each panel. Seven parameters are estimated: the tail probability p, the dispersion
parameter σ, the tail index ξ for each country and the correlation of return exceedances ρ of the logistic function used to model
the dependence between extreme returns. Standard errors are given below in parentheses. The null hypothesis of normality H0:
ρ = ρnor  is also tested. Two cases are considered: the asymptotic case and the finite-sample case. In the asymptotic case, the

correlation of normal return exceedances of thresholds tending to infinity, denoted by ρnor
asy , is theoretically equal to 0. In the

finite-sample case, the correlation of return exceedances over a given finite threshold θ, denoted by ρ θnor
f s. . ( ) , is computed by

simulation assuming that monthly returns follow a bivariate-normal distribution with parameters equal to the empirically-
observed means and covariance matrix of monthly returns. Both a likelihood ratio test (LR test) between the constrained model
(ρ = ρnor

asy = 0  in the asymptotic case and ρ = ρ θnor
f s. . ( )  in the finite-sample case) and the unconstrained model, and a Wald

test (W test) on the correlation coefficient are carried out. The p-value of the tests are given below in brackets.

Panel A: Negative return exceedances
Threshold Parameters of the model H0:ρ = ρnor

asy = 0 H0: ρ = ρ θnor
f s. . ( )

θ pUS σUS ξUS pFR σFR ξFR ρUS/FR LR test W test LR test W test

-10% 0.016
(0.006)

1.542
(1.062)

0.744
(0.612)

0.029
(0.008)

4.275
(2.226)

0.072
(0.400)

0.845
(0.086)

55.227
[0.000]

9.826
[0.000]

25.610
[0.000]

7.826
[0.000]

-8% 0.035
(0.009)

2.459
(0.800)

0.188
(0.202)

0.057
(0.011)

3.130
(0.988)

0.137
(0.243)

0.617
(0.117)

44.458
[0.000]

5.274
[0.000]

10.268
[0.001]

3.197
[0.001]

-5% 0.111
(0.015)

2.113
(0.404)

0.150
(0.128)

0.186
(0.018)

2.582
(0.394)

0.107
(0.106)

0.474
(0.076)

59.431
[0.000]

6.237
[0.000]

5.169
[0.023]

2.145
[0.032]

-3% 0.202
(0.019)

3.204
(0.446)

0.010
(0.084)

0.307
(0.021)

3.367
(0.361)

0.005
(0.071)

0.512
(0.061)

79.326
[0.000]

8.393
[0.000]

4.968
[0.026]

2.492
[0.013]

0% 0.437
(0.023)

3.652
(0.310)

-0.052
(0.049)

0.504
(0.023)

5.020
(0.384)

-0.128
(0.041)

0.493
(0.048)

96.261
[0.000]

10.271
[0.000]

0.536
[0.464]

1.146
[0.252]

-6.12%
-8.38%

0.053
(0.010)

2.384
(0.657)

0.172
(0.200)

0.040
(0.009)

3.256
(1.289)

0.167
(0.333)

0.652
(0.103)

53.308
[0.000]

6.311
[0.000]

14.156
[0.000]

3.958
[0.000]

Panel B: Positive return exceedances
Threshold Parameters of the model H0:ρ = ρnor

asy = 0 H0: ρ = ρ θnor
f s. . ( )

θ pUS σUS ξUS pFR σFR ξFR ρUS/FR LR test W test LR test W test

0% 0.525
(0.023)

3.436
(0.270)

-0.158
(0.047)

0.496
(0.023)

5.589
(0.429)

-0.215
(0.040)

0.347
(0.056)

36.513
[0.000]

6.196
[0.000]

2.886
[0.089]

-1.625
[0.104]

+3% 0.216
(0.019)

1.904
(0.310)

0.104
(0.128)

0.311
(0.022)

3.570
(0.391)

0.069
(0.067)

0.264
(0.066)

20.709
[0.000]

4.000
[0.000]

2.031
[0.154]

-1.455
[0.146]

+5% 0.071
(0.012)

3.186
(0.734)

-0.201
(0.156)

0.186
(0.018)

2.660
(0.429)

0.074
(0.116)

0.247
(0.088)

12.535
[0.000]

2.807
[0.005]

0.512
[0.474]

-0.727
[0.467]

+8% 0.024
(0.007)

2.803
(1.217)

-0.277
(0.293)

0.061
(0.011)

3.037
(0.868)

0.029
(0.213)

0.134
(0.112)

3.658
[0.056]

1.196
[0.232]

0.819
[0.365]

-0.973
[0.330]

+10% 0.013
(0.005)

0.986
(0.872)

0.320
(0.697)

0.034
(0.008)

2.006
(0.995)

0.348
(0.433)

0.159
(0.151)

3.699
[0.054]

1.053
[0.292]

0.006
[0.938]

-0.086
[0.931]

+7.21%
+9.90%

0.041
(0.010)

2.878
(0.909)

-0.263
(0.207)

0.041
(0.009)

2.840
(1.116)

0.095
(0.317)

0.116
(0.105)

3.068
[0.080]

1.111
[0.267]

0.695
[0.405]

-0.874
[0.382]
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Table 3. Estimation of the bivariate distribution of U.S. and German return exceedances.

This table gives the maximum likelihood estimates of the parameters of the bivariate distribution of U.S. and German return
exceedances (Panel A for negative return exceedances and Panel B for positive return exceedances). Return exceedances are
defined with a threshold θ. Both fixed and optimal levels are used for θ. Fixed levels (defined as percentage points) are: 0%,
±3%, ±5%, ±8% and ±10% away from the empirically-observed means of monthly returns (the same value of θ is then taken
for the two countries: θ=θUS=θGE). Optimal levels are computed by the procedure described in Appendix 1. They are given for
the U.S. and Germany on the last line of each panel. Seven parameters are estimated: the tail probability p, the dispersion
parameter σ, the tail index ξ for each country and the correlation of return exceedances ρ of the logistic function used to model
the dependence between extreme returns. Standard errors are given below in parentheses. The null hypothesis of normality H0:
ρ = ρnor  is also tested. Two cases are considered: the asymptotic case and the finite-sample case. In the asymptotic case, the

correlation of normal return exceedances of thresholds tending to infinity, denoted by ρnor
asy , is theoretically equal to 0. In the

finite-sample case, the correlation of return exceedances over a given finite threshold θ, denoted by ρ θnor
f s. . ( ) , is computed by

simulation assuming that monthly returns follow a bivariate-normal distribution with parameters equal to the empirically-
observed means and covariance matrix of monthly returns. Both a likelihood ratio test (LR test) between the constrained model
(ρ = ρnor

asy = 0  in the asymptotic case and ρ = ρ θnor
f s. . ( )  in the finite-sample case) and the unconstrained model, and a Wald

test (W test) on the correlation coefficient are carried out. The p-value of the tests are given below in brackets.

Panel A: Negative return exceedances
Threshold Parameters of the model H0:ρ = ρnor

asy = 0 H0: ρ = ρ θnor
f s. . ( )

θ pUS σUS ξUS pGE σGE ξGE ρUS/GE LR test W test LR test W test

-10% 0.016
(0.006)

1.533
(1.524)

0.554
(1.255)

0.024
(0.007)

5.802
(4.939)

-0.147
(0.877)

0.656
(0.160)

29.221
[0.000]

4.100
[0.000]

11.966
[0.001]

3.375
[0.001]

-8% 0.031
(0.008)

2.476
(0.859)

0.185
(0.206)

0.053
(0.010)

2.090
(0.869)

0.404
(0.375)

0.512
(0.125)

34.515
[0.000]

4.096
[0.000]

8.365
[0.004]

2.576
[0.010]

-5% 0.110
(0.015)

2.432
(0.521)

0.129
(0.142)

0.132
(0.016)

3.083
(0.551)

0.092
(0.126)

0.507
(0.079)

58.560
[0.000]

6.418
[0.000]

10.012
[0.002]

3.127
[0.002]

-3% 0.201
(0.019)

2.786
(0.346)

0.016
(0.065)

0.254
(0.020)

2.884
(0.404)

0.090
(0.105)

0.440
(0.063)

63.744
[0.000]

6.984
[0.000]

4.596
[0.032]

2.048
[0.041]

0% 0.503
(0.023)

3.176
(0.245)

-0.034
(0.041)

0.489
(0.023)

4.155
(0.347)

-0.065
(0.050)

0.435
(0.049)

81.706
[0.000]

8.878
[0.000]

1.488
[0.223]

1.204
[0.229]

-6.12%
-7.84%

0.060
(0.015)

2.367
(0.652)

0.153
(0.187)

0.043
(0.009)

3.102
(1.910)

0.260
(0.674)

0.482
(0.124)

32.161
[0.000]

3.891
[0.000]

5.645
[0.018]

2.210
[0.027]

Panel B: Positive return exceedances
Threshold Parameters of the model H0:ρ = ρnor

asy = 0 H0: ρ = ρ θnor
f s. . ( )

θ pUS σUS ξUS pGE σGE ξGE ρUS/GE LR test W test LR test W test

0% 0.511
(0.023)

3.593
(0.295)

-0.172
(0.048)

0.511
(0.023)

4.434
(0.397)

-0.140
(0.065)

0.276
(0.060)

19.448
[0.000]

4.600
[0.000]

4.115
[0.042]

-1.667
[0.096]

+3% 0.229
(0.020)

1.766
(0.275)

0.122
(0.117)

0.257
(0.020)

3.628
(0.482)

-0.105
(0.099)

0.165
(0.066)

7.465
[0.006]

2.500
[0.012]

4.774
[0.029]

-2.212
[0.027]

+5% 0.068
(0.011)

3.376
(0.823)

-0.219
(0.172)

0.143
(0.016)

3.320
(0.628)

-0.093
(0.146)

0.189
(0.089)

6.098
[0.014]

2.124
[0.034]

0.637
[0.425]

-0.798
[0.425]

+8% 0.026
(0.008)

2.670
(1.127)

-0.226
(0.328)

0.053
(0.010)

4.069
(1.192)

-0.373
(0.223)

0.020
(0.104)

0.001
[0.998]

0.192
[0.848]

2.482
[0.115]

-1.635
[0.102]

+10% 0.014
(0.006)

0.939
(0.812)

0.376
(0.795)

0.031
(0.009)

3.928
(1.574)

-0.511
(0.302)

0.000
(0.370)

0.001
[0.999]

0.000
[0.999]

1.545
[0.214]

-0.314
[0.754]

+7.21%
+9.01%

0.040
(0.009)

3.174
(0.950)

-0.243
(0.176)

0.042
(0.009)

4.888
(1.510)

-0.533
(0.242)

0.078
(0.104)

0.7484
[0.387]

0.757
[0.449]

0.740
[0.390]

-0.904
[0.366]
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Table 4. Estimation of the bivariate distribution of U.S. and Japanese return exceedances.

This table gives the maximum likelihood estimates of the parameters of the bivariate distribution of U.S. and Japanese return
exceedances (Panel A for negative return exceedances and Panel B for positive return exceedances). Return exceedances are
defined with a threshold θ. Both fixed and optimal levels are used for θ. Fixed levels (defined as percentage points) are: 0%,
±3%, ±5%, ±8% and ±10% away from the empirically-observed means of monthly returns (the same value of θ is then taken
for the two countries: θ=θUS=θJA). Optimal levels are computed by the procedure described in Appendix 1. They are given for
the U.S. and Japan on the last line of each panel. Seven parameters are estimated: the tail probability p, the dispersion
parameter σ, the tail index ξ for each country and the correlation of return exceedances ρ of the logistic function used to model
the dependence between extreme returns. Standard errors are given below in parentheses. The null hypothesis of normality H0:
ρ = ρnor  is also tested. Two cases are considered: the asymptotic case and the finite-sample case. In the asymptotic case, the

correlation of normal return exceedances of thresholds tending to infinity, denoted by ρnor
asy , is theoretically equal to 0. In the

finite-sample case, the correlation of return exceedances over a given finite threshold θ, denoted by ρ θnor
f s. . ( ) , is computed by

simulation assuming that monthly returns follow a bivariate-normal distribution with parameters equal to the empirically-
observed means and covariance matrix of monthly returns. Both a likelihood ratio test (LR test) between the constrained model
(ρ = ρnor

asy = 0  in the asymptotic case and ρ = ρ θnor
f s. . ( )  in the finite-sample case) and the unconstrained model, and a Wald

test (W test) on the correlation coefficient are carried out. The p-value of the tests are given below in brackets.

Panel A: Negative return exceedances
Threshold Parameters of the model H0:ρ = ρnor

asy = 0 H0: ρ = ρ θnor
f s. . ( )

θ pUS σUS ξUS pJA σJA ξJA ρUS/JA LR test W test LR test W test

-10% 0.016
(0.006)

1.581
(1.124)

0.762
(0.667)

0.036
(0.008)

3.346
(1.044)

-0.073
(0.186)

0.400
(0.159)

13.262
[0.000]

2.516
[0.012]

7.380
[0.007]

2.145
[0.032]

-8% 0.034
(0.008)

2.742
(0.959)

0.169
(0.238)

0.064
(0.011)

3.791
(0.970)

-0.095
(0.160)

0.309
(0.123)

13.072
[0.000]

2.512
[0.012]

3.934
[0.047]

1.715
[0.086]

-5% 0.100
(0.014)

2.356
(0.520)

0.178
(0.164)

0.158
(0.017)

3.215
(0.562)

0.018
(0.127)

0.326
(0.081)

25.036
[0.000]

4.025
[0.000]

4.888
[0.027]

2.123
[0.034]

-3% 0.195
(0.019)

3.085
(0.432)

0.014
(0.084)

0.239
(0.020)

4.092
(0.518)

-0.082
(0.084)

0.298
(0.069)

25.644
[0.000]

4.319
[0.000]

1.404
[0.236]

1.304
[0.192]

0% 0.487
(0.023)

3.516
(0.296)

-0.047
(0.047)

0.491
(0.023)

4.385
(0.378)

-0.096
(0.055)

0.281
(0.056)

29.781
[0.000]

5.018
[0.000]

0.040
[0.842]

0.375
[0.708]

-6.12%
-8.53%

0.050
(0.009)

2.660
(0.759)

0.158
(0.173)

0.043
(0.009)

4.006
(1.187)

-0.149
(0.170)

0.311
(0.117)

14.625
[0.000]

2.669
[0.008]

3.127
[0.077]

1.511
[0.131]

Panel B: Positive return exceedances
Threshold Parameters of the model H0:ρ = ρnor

asy = 0 H0: ρ = ρ θnor
f s. . ( )

θ pUS σUS ξUS pJA σJA ξJA ρUS/JA LR test W test LR test W test

0% 0.511
(0.023)

3.256
(0.252)

-0.145
(0.046)

0.509
(0.023)

4.530
(0.381)

-0.174
(0.053)

0.171
(0.056)

10.743
[0.001]

3.000
[0.003]

1.563
[0.211]

-1.561
[0.118]

+3% 0.208
(0.019)

1.829
(0.291)

0.112
(0.121)

0.250
(0.020)

3.713
(0.509)

-0.105
(0.100)

0.153
(0.062)

7.695
[0.006]

2.468
[0.014]

0.460
[0.497]

-0.887
[0.375]

+5% 0.070
(0.012)

3.270
(0.793)

-0.199
(0.177)

0.136
(0.016)

3.927
(0.733)

-0.174
(0.140)

0.183
(0.088)

6.100
[0.014]

2.080
[0.038]

0.126
[0.723]

0.330
[0.742]

+8% 0.025
(0.007)

2.956
(1.270)

-0.292
(0.324)

0.059
(0.011)

3.875
(1.014)

-0.306
(0.185)

0.072
(0.112)

0.631
[0.427]

0.643
[0.520]

0.038
[0.845]

-0.232
[0.816]

+10% 0.014
(0.005)

1.040
(0.866)

0.324
(0.757)

0.033
(0.008)

3.540
(1.274)

-0.365
(0.269)

0.091
(0.143)

0.645
[0.422]

0.636
[0.525]

0.055
[0.815]

0.224
[0.823]

+7.21%
+10.27%

0.037
(0.008)

3.257
(0.793)

-0.208
(0.251)

0.039
(0.009)

3.286
(1.142)

-0.276
(0.269)

0.077
(0.099)

1.032
[0.310]

0.788
[0.430]

0.175
[0.675]

-0.569
[0.569]



Figure 1. Correlation between US and UK return 
exceedances.
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Figure 2. Correlation between U.S. and French return 
exceedances.
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Figure 3. Correlation between U.S. and German return 
exceedances.
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Figure 4. Correlation between U.S. and Japanese return 
exceedances.
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