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ABSTRACT

The Generalized Dynamic Factor Model: Representation Theory*

This Paper, along with the companion paper Forni, Hallin, Lippi and Reichlin
(1999), introduces a new model — the generalized dynamic factor model — for
the empirical analysis of financial and macroeconomic data sets characterized
by a large number of observations, both cross-section and over time. This
model provides a generalization of the static approximate factor model of
Chamberlain (1983) and Chamberlain and Rothschild (1983) by allowing serial
correlation within and across individual processes, and of the dynamic factor
model of Sargent and Sims (1977) and Geweke (1977) by allowing for non-
orthogonal idiosyncratic terms. While the companion paper concentrates on
identification and estimation, here we give a full characterization of the
generalized dynamic factor model in terms of observable spectral density
matrices, thus laying a firm basis for empirical implementation of the model.
Moreover, the common factors are obtained as limits of linear combinations of
dynamic principal components. Thus the Paper reconciles two seemingly
unrelated statistical constructions.
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NON-TECHNICAL SUMMARY

The dynamic factor model or index model (Sargent and Sims, 1977, Geweke,
1977) is a powerful tool for the analysis of economic data sets with many
observations both over time and across sections.

Each variable is represented as the sum of a common component — i.e. a term
depending, possibly with heterogeneous dynamic responses, on a small
number of unobserved factors which are common to all variables — and an
idiosyncratic component, which is orthogonal at any lead and lag both to the
common factors and to the idiosyncratic components of all the other variables.

Such a representation is very convenient from a statistical point of view, in that
it provides a fair compromise between flexibility and parsimony of the
parameterization. Moreover, it is well-suited for a number of interesting
economic applications, e.g. the construction of leading and coincident
indicators, the analysis of the business cycle, the measurement of insurable
(idiosyncratic) and uninsurable (common) risk, the study of co-movements
among different regions or sectors, prediction of macroeconomic indicators.
Some recent references are Forni and Reichlin (1998), Forni and Lippi (1997),
Forni, Hallin, Lippi and Reichlin (1999), Stock and Watson (1999).

On the other hand, a severe limitation of the traditional index model is the
demanding assumption that the idiosyncratic components are mutually
orthogonal at any lead and lag. Such an assumption rules out the case of
shocks having important effects on a small number of cross-sectional units — a
case which is likely to occur in many practical situations (think for instance of
local events affecting directly more than one area or technological shocks
affecting a few sectors).

In this Paper, and the companion paper Forni, Hallin, Lippi and Reichlin
(1999), a new model, that we call the generalized dynamic factor model, is
introduced and analysed. In this model the orthogonality assumption is
relaxed and both contemporaneous and lagged correlation between the
idiosyncratic terms is allowed. This is done by introducing a new logical
distinction between the concepts of ‘common’ and ‘idiosyncratic’, which
requires an infinite cross-sectional dimension. For this reason, the model is
well-suited for the analysis of large cross-sections of time series.

While in the companion paper the estimation of the model is the central issue,
here we deal with representation theory. First, we characterize the existence
of a generalized dynamic factor structure in terms of observable spectral
density matrices. This characterization, which provides a dynamic
generalization of a key result in Chamberlain and Rothschild (1983), lays a
firm basis for the empirical implementation of the model. Second, we prove
that the common and the idiosyncratic terms are uniquely identified and



therefore can in principle be estimated. Finally, we show that the dynamic
principal component representation (Brillinger, 1981) is deeply related to the
dynamic factor representation, since the former converges to the latter as the
number of cross-sectional units goes to infinity. This result, besides being
interesting from a theoretical point of view, provides the basic intuition for the
dynamic principal component estimator proposed in the companion paper.



1. Introduction

1.1 Data sets with many data points both over time and across sections are becoming in-
creasingly available. Think for instance of macroeconomic series on output or employment
which are observed for a large number of countries, regions or sectors, or of financial time
series such as the returns on many different assets. Such data sets typically present a good
deal of regularity along the time dimension, so that each time series, taken in isolation, can be
successfully handled by using standard stationary models or their extensions. By contrast,
along the cross sectional dimension, data do not have a natural ordering and correlations
do not present any regular structure. Yet, the series are strongly dependent on each other,

implying that univariate modeling would waste information.

We do not have a satisfactory theoretical framework for extracting and analyzing the
enormous amount of information embedded in such large cross sections of time series. VAR
models would be suitable for a small subset of time series, but are inadequate for the whole
data set, because of the huge number of parameters to estimate. The dynamic factor analytic
or index model (Sargent and Sims, 1977, Geweke, 1977) is much better suited, since it is both
flexible and parsimonious: each variable is represented as the sum of a common component—
i.e. a term depending, possibly with heterogeneous dynamic responses, on a small number
of unobserved factors which are common to all variables—and an idiosyncratic component,
which is orthogonal at any lead and lag both to the common factors and to the idiosyncratic

components of all the other variables.

This feature, mutual orthogonality of the idiosyncratic components at any lead and
lag, represents a serious weakness of the index model. The assumption is necessary for
identification, but is severely restrictive. As a first example, consider the output of different
industries linked to each other by input-output relations. The output of sector A may well
be related to the output of sector B in a way which is intimately ‘cross-regressive’, so that
an idiosyncratic shock originated in B propagates, possibly with a lag, to sector A. Similar
local interactions can also arise when there are ‘intermediate’ shocks, i.e. shocks which are
neither common nor strictly idiosyncratic, such as local events affecting directly more than
one area or technological shocks affecting a few sectors. Finally, consider a data set including
both employment and income for many regions, and assume that each variable is driven

by a national and a regional shock, the second being orthogonal to the first. The regional
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components of employment and income, while being orthogonal for different regions, are likely
to be correlated for the same region. In such a case, although employment, or income, taken
in isolation would satisfy the orthogonality assumption, the index model could not be used
to handle the whole data set.

In this paper, and in the companion paper Forni, Hallin, Lippi and Reichlin (1999),
a new model, that we will call the generalized dynamic factor model, is introduced and
analyzed. The model has three important features: (1) it is a finite dynamic factor model,
i.e. the variables depend on a finite number of factors with a quite general lag structure;
(2) it is based on an infinite sequence of variables and is therefore specifically designed for
the analysis of large cross sections of time series; (3) it allows for both contemporaneous and
lagged correlation between the idiosyncratic terms, and is therefore more general than the

traditional index model.

1.2 Let us briefly summarize the results of the paper. In Section 2 we give our basic definitions
and assumptions. We start with a double sequence of stochastic variables {x;+, i € N, t € Z}.
We assume that {x;;, t € Z} is stationary for any ¢ and costationary with {z;;, t € Z} for
any j. We do not assume an ARMA structure for the x’s. We only require the existence of
a spectral density matrix X2 for the vector (1, T3 -+ Tny ).

In Section 3 we introduce idiosyncratic sequences. To give a simple illustration of the
definition of idiosyncratic sequences adopted here, let us consider a sequence {y;, i € N}
of mutually orthogonal variables, such that var(y;) = 2. Taking a sequence of averages
Y, = > | aniyi, the variance var (Y;,) = 02> a2, tends to zero if and only if >, ; a2,
tends to zero; this occurs typically with the arithmetic mean, a,; = 1/n. Now, the property
of a vanishing variance for sequences of averages whose squared weights tend to zero does
not require that the y’s be mutually orthogonal: for example, if y; and y; are correlated with
the correlation declining as e~1“=7l then var(Y;) vanishes asymptotically. This vanishing
variance of averages, not orthogonality, is precisely what we need in our construction. Thus,

in our definition, the sequence of the x’s is idiosyncratic if convergence to zero occurs for any

weighted average, both cross-section and over time,
n k
Z Z AnihTit—h,
i=1 h=—Fk
provided that the sum of the squared weights tends to zero. We prove, Theorem 1, that x;
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is idiosyncratic if and only if the maximum eigenvalue of 37 is dominated by an essentially
bounded function defined on © and independent of n.
In Section 4 we introduce our generalized dynamic factor model, i.e. a sequence {x, i €

N, t € Z} such that
Ty = b (L)ury + bio(L)uge + - - - + big(L)ugs + it

where b;;(L) is a square-summable filter, (ui; wo -+ ug )" is an orthonormal vector
white noise, &;; is idiosyncratic and orthogonal to the w’s at any lead and lag, with the
filters b;;(L) fulfilling a condition ensuring that no representation with a smaller number of
“common factors” is possible. We prove in Theorem 2 that a sequence has a generalized
dynamic factor structure with ¢ factors if and only if: (I) the (¢ + 1)-th eigenvalue of 3%, in
decreasing order, is dominated for any n by an essentially bounded function of the frequency
0; (II) as n tends to infinity, the ¢-th eigenvalue diverges for # almost everywhere in ©.
Thus the unobservable factor structure is completely characterized in terms of proper-
ties of the observable matrices 3. This result, besides its theoretical interest, has a very
important consequence for empirical analysis, as it provides the theoretical basis for heuristic
criteria or formal tests in which the sequence of nested matrices 3% is employed to determine
whether the model has a finite dynamic factor structure and what is the number of factors.
More precisely, evidence in favor of conditions (I) and (IT), with the eigenvalues computed
from estimated spectral density matrices, can be interpreted, given the “if” part of Theorem
2, as evidence that, firstly, the variables follow a generalized dynamic factor model, and,
secondly, that the number of factors is q. This is the main contribution of the present with
respect to the companion paper, mentioned above, in which a generalized dynamic factor
model for the z’s is assumed to concentrate on identification and estimation of common and
idiosyncratic components, and on criteria to detect the number of common factors.
Theorems 3 and 4 establish uniqueness of the idiosyncratic component &; and of the
common component Y;z: = ; — &;. It must be pointed out that this identifiability result
holds for the whole infinite sequence of the variables x;;, not for its finite subsets: otherwise
stated, identifiability occurs in the limit, when the size of the cross-section tends to infinity.
Moreover, note that identification of y;; does not imply identification of the w’s or of the filters
b;; (L), that might be achieved only by imposing further, economically motivated, restrictions.

Such an issue will not be discussed in this paper. Finally, in Theorem 5 we show that the
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common component of x;; can be recovered as the limit of the projection of x;; on the dynamic
principal components. This result provides a firm basis for estimation theory. Moreover, it
is interesting from a theoretical point of view, in that, by unveiling the intimate relationship
linking common factors to principal components, it provides a reconciliation between two
important chapters of statistical analysis.

The case in which the a’s are either difference or trend stationary is shortly discussed in

Section 5.

1.3 Correlated idiosyncratic factors, along with infinite cross sectional size, have been in-
troduced in a static model for asset markets by Chamberlain (1983) and Chamberlain and
Rothschild (1983). Our Theorem 2 is a generalization to stochastic processes of results proved
in the static case by Chamberlain and Rothschild. Also, the link between principal compo-
nent and factor analysis has been observed by Chamberlain and Rothschild in the static case.
Related models can also be found in Quah and Sargent (1993), Forni and Reichlin, (1996,
1998), Forni and Lippi (1997), Stock and Watson (1999).

2. Notation, Basic Definitions and Lemmas

2.1 Given a complex matrix D, finite or infinite, we denote by D the complex conjugate
of the transpose of D. Inner product and norm in C*® are the usual Euclidean entities
(v,w) =30, viw; and |v| = /> ;_; [vi]? respectively. Moreover © denotes the real interval
[—7, 7).

Let P = (2, F, P) be a probability space and let La(P,C) be the linear space of all
complex-valued, zero-mean, square-integrable random variables defined on 2. We recall that
Ly (P,C), with the inner product defined as (r,y) = E(xy) = cov(z,y), and the norm as
|z|| = \/E(|z]?) = y/var(z), is a complex Hilbert space. If Q is a subset of Ly(P,C) we

denote by span(Q)) the minimum closed linear subspace of Ls(P,C) containing Q. If V is a
closed linear subspace of Lo(P,C) and x € Ly(P,C), we denote by proj(z|V) the orthogonal

projection of x on V.

The paper will deal with a double sequence
x={xy, i €N, t € Z},

where z;; € La(P,C). We adopt the following notation:
(a) X = span(x).



(b) x; is the infinite column vector (x1+ ot -+ Xy - )/.
(¢c) Xp¢ is the n-dimensional column vector (x1; @2 -+ Tpy )/.
(d) X,, =span({zst—x, s=1,2,...,n, k € Z}). Obviously X,, C X.
Often, when no confusion can arise, we speak of the process z;, meaning the process

{2, t € Z}. Moreover, considering an m-dimensional vector process

y={(y1e y2x - Ymz), t€L},

we say that y belongs to W C Lo (P, C) if y;; belongs to W for any j and ¢. In the same
way, we use span(y) to indicate span({y;;, j =1,2,...,m, t € Z}).

Assumption 1. For anyn € N: (1) the process X,,; is covariance stationary; (2) the spectral
measure of X, is absolutely continuous (with respect to the Lebesque measure on © ), i.e. X

has a spectral density (see Rozanov, 1967, pp. 19-20).

Assumption 1 will be the basis for all definitions and results below and will be tacitly
supposed to hold throughout the paper. We denote by 37 the spectral density matrix of
X+ and recall that 37 is Hermitian, non-negative definite for any § € ©, integrable, and
that E(XptXnt—k) = % [fw % (0)dh. Lastly, £* denotes the infinite matrix whose n x n

top-left submatrix is 37 .

Remark 1. Note that our definition of the spectral density is equal to the usual definition
(see e.g. Brockwell and Davis, 1991, p. 120; Rozanov, 1967, p. 19-20) times the factor 2.
This is a convenience, having the effect that all the orthonormal s-dimensional white-noise

vectors appearing in Section 4 will have spectral density I, instead of I/27.

If a denotes the infinite row vector (a1 as -+ an apt1 -+ ), we denote by alnl
the infinite row vector (a7 as -+ a, 0 0 --- ) and by a'™} the n-dimensional row
vector (ay as -+ ap).

We denote by L5°(0,C,37) the complex linear space of all infinite row vectors f =
(fi fo -+ fao --- ), such that (i) f; is a measurable complex function defined on ©,
(i) J7_£(0)B=(0)F(0)d0 = lim, [T_£1"}(0)22(0)f{")(0)df < co. f and g are to be con-
sidered as identical if 7 (f(6) — g(0)X*(0)(F(0) — g(#))dd = 0. Defining the inner prod-
uct as (f,g)s= = 5= [7_£(0)2"(0)g(h)dh, and the norm as |[|f||z- = V/(£,f)s=, the space
L$°(0,C,%7") is a Hilbert space.



The space L5°(0,C) is defined as above with X% replaced by the infinite identity matrix
(i.e. the matrix having I, as the n x n top-left submatrix). Inner product and norm in
L3°(0,C) are indicated by (f, g) and ||f|| respectively. We will also refer to the Banach space
L$°(©,C), whose elements are infinite row vectors such that > 57, [T _|f;(6)]d6 < oo, with
norm ||f][y = 5= 372, ["_|fi(9)|df. The definition of the spaces L5(0,C, %), L5 (6, C) and
L1(0,C) is obvious, with n-dimensional in place of infinite-dimensional vector functions.

We denote by L the Lebesgue measure on R. Let us recall that an extended real function
f : © — R is essentially bounded if there exists a real ¢ and a subset D of © such that
L(D) = 0 and |f(#)| < ¢ for § € ® — D. Moreover, for any real function f, esssup(f) =
inf{M: L{y: f(y) > M}) =0} (Royden, 1988, p. 119). Obviously f is essentially bounded
if and only if esssup(f) < co. We denote by L% (©,C) the complex linear space of all n-
dimensional row vectors f = (f1 fa--- fn), with f; measurable, such that |f| is essentially
bounded.

Lastly, the space L5'**(©,C,X), where X is an s X s spectral density matrix, is the
set of all m X s matrices A such that AXA is integrable. If A € LT"*(0,C,X), then
each row of A belongs to L§(0,C,X). Analogously for Ly**(©,C). By L7**(©,C) we
denote the set of the matrix functions whose entries are essentially bounded. Obviously

L7*5(0,C) C Ly (0,C)N Ly *(0,C, X) for any X.

The following lemma shows that L3°(0,C, 3%) is the straightforward generalization of
the vector-function space occurring in the spectral representation of finite-dimensional vector

stochastic processes.

Lemma 1. Let X = UX X, and L = U, L3, where L§ = {fl¥] : f € Lg(0,C,%%)}.

Define € : X — L§° as the linear extension of

Qzpe) =€ (dpy dpo -+ dpe - ), (1)
where dp, = 1if h =k, dpp = 0if h £ k. The map Q2 can be extended in a unique way into
amap Q : X — L$°(0,C,3X%). Moreover, £ is an isomorphism, i.e. one-to-one, onto and
norm-preserving.

Proof. € is an isomorphism between X, and ig (see Rozanov, 1967, p.32). This implies
that €2 is an isomorphism between X and L$°. The conclusion follows from the fact that X

and L3°(0,C, X%) are the closure of X and L§° respectively. =
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The following lemma ensures that all vector stochastic processes belonging to X and

costationary with the x’s have a spectral density.

Lemma 2. Assume that the s-dimensional vector process y = {y:, t € Z} belongs to X and
is costationary with the z’s. Then: (1) there exist a sequence of integers k,, and coefficients
Cjmkn, independent of ¢, such that y;; = lim,, Y " _, ZZ’;_kn CimknTmi—k; (2) y has a spectral
density, i.e. there exists a Hermitian, non-negative definite, integrable s X s matrix 3¥ such
that E(y,y:—x) = 5= | e*%v(0)dd.

Proof. Statement (1) is a trivial consequence of the definition of X and the costationarity
assumption. To prove (2), Let ¥¥ be the matrix whose (7, j) entry is Q(yit)Exfl(yjt), call it
S(yit, y;¢;0). By the definition of €, and by statement (1), S(yst,y;¢+; 0) is independent of ¢.

Note that 3% is Hermitian, non-negative definite and integrable. By the definition of €2 and

Lemma 1,
_ | Y
E(yudjt—1) = Yit, Yjt—k) = (QYit), Qe 1)) 5= = x| € S (it yje; 0)do
(S(Yit,yje; 0) is usually referred to as the cross-spectrum between y;; and y;;). n

Definition 1. As usual, we denote by L the lag operator, defined on X by linear extension

of Lxiyy = wjp—1. Given £ € LP(0,C,X%), we define £(L)x: by:

£(L)x, = Q71 (fe't). 2)

The spectral density of the process {f(L)x;, t € Z} is £ £*f. The expression f(L) must be
used carefully. Suppose that 3 = I,, (x,+ is an orthonormal white noise). Then the Fourier
expansion f(6) =377 FLe ™% where Ff = ;L [T £(0)e’*?df, converges in L5°(O,C, %)
(which is equal to L5°(0, C)). In this case we can define f(L) as the linear filter > 7> FfL*
with

f(L)x; = lim Z Fix, (3)
k=—s

being of finite variance and therefore making sense in X. However, in general f(L)x;, although
the limit of finite linear combinations of the variables x;:_, cannot be represented as the sum
of a series like in (3). In other words, in general f(L) does not admit a separate definition

as a filter, and makes sense only within the expression f(L)x;, defined in (2). Given f €
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L3 (0,C,3%), £(L)x,;: is defined using the isomorphism €2,, between X,, and L% (0, C,X7),
where €, is defined, mutatis mutandis, as Q in (1), Lemma 1.

If y; is an s-dimensional vector belonging to X and costationary with the x’s, and
A € L7*°(©,C,XY), the m-dimensional vector A (L)y; is defined applying Q;l to each row
of Ae®, where Q, is defined as € in (1), Lemma 1. If A is m x s and B is n x m, and BA
belongs to Ly**(0,C,X¥), then we write B(L)A(L)y; for BA(L)y;. Lastly, in expressions
like C(L) or C(L)y, it must be understood that firstly C' is transformed by ~ and secondly
__is applied.

Remark 2. Given y € X, by definition, y = lim, Y _, Zil—l@n Amin L 0, for some
coefficients a,nky,. Defining v, = lim, > _, ZZlfkn Apmpn LExyy, the process {y;, t € Z}
belongs to X, is costationary with the x’s and contains y (actually it is easily seen that it
is the only process with these properties). With the above argument in mind, the generic
element of X will often be referred to as v, 2z:, etc., rather than y, z, etc., where y;, 2z, etc.
are costationary and costationary with the x’s. Analogous considerations hold if we consider

a vector y belonging to X.

2.2 Now we give some definitions and results on eigenvalues and eigenvectors of the spectral

density matrices 37 .

Definition 2. Fori=1,2,...,n, let \7, : © — R be defined as the function associating with
0 € O the i-th eigenvalue, in descending order, of 3% (0). The functions X%, will be called the

dynamic eigenvalues of 3.

Remark 3. We use “dynamic” for eigenvectors and eigenvalues of 37 to insist on the
difference between the dynamic analysis developed here and the static approach, based on
the eigenvalues of variance-covariance matrices. On eigenvalues and eigenvectors of spectral

density matrices, and related filters, see Brillinger (1981), Chapter 9.
The following lemma is an elementary consequence of well-known results.

Lemma 3. The functions A5, are Lebesgue-measurable and integrable in © for any n € N
and i <n.

Proof. Measurability is a consequence of (a) continuity of the eigenvalues of ¥¥ with re-
spect to @ (for continuity of the roots of a polynomial see, e.g., Ahlfors, 1987, pp. 300-6);

(b) measurability of the entries of 37 as functions of § (recall that 37 is integrable); (c¢) mea-
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surability of a continuous function of a measurable function (see, for the real case, Royden,
1988, p. 71, Problem 25; extension to the complex case is immediate). For integrability,
note that for any n, i < n and 6, 0 < X2,(0) < 3" | A2 (0) = trace (X%(0)), and that
5= |7 _trace (22(0)) df = E(|xn|?) < 0. u

Let us recall some properties of the eigenvalues of Hermitian non-negative definite ma-

trices.

Fact M. (a) Let D and E be m x m Hermitian non-negative definite, and F = D+E. Then
ACSATHAM, X SAV N, AT 2N AT 2N (4)

for any s =1,2,...,m. (b) Let D be as in (a) and let G be the top-left (m — 1) x (m — 1)
submatriz of D. Then AP >\ for s =1,2,....m — 1.

Proof. Since (D+M¥1,,)—F = MI,,—E and F—D = E are Hermitian non-negative definite,
the first and third inequalities in (4) follow from Lancaster and Tismenetsky (1985), p. 301,
Theorem 1; analogously for the second and fourth; statement (b) follows from Corollary 1,

p. 293. m
Since the spectral density matrices X7 are nested as in Fact M, statement (b), then:

Lemma 4. Given i, for n > i, X*,(0) is non-decreasing as a function of n for any 6 € ©,

i Ani(0) < A5 L(0).
A consequence of Lemma 4 is that lim, A7 () exists for any ¢ and 6, and equals
sup, X2, (6).

Definition 3. For any i we define the function Xf by AF(0) = sup,, A7, (6).

It must be pointed out that A is an extended real function, i.e. its value may be
infinite. Note also that A¥ is measurable (see Royden, 1988, p. 68, Theorem 20), and that
{60 : A\?(6) = oo} may be of null or positive measure, and even coincide with ©.

Now consider the system of equations

p(0)[35(0) — X1 (0)1.] = 0, [p(0)] = 1. ()

Since the functions A7, are measurable by Lemma 3, the coefficients of (5) are measurable.

Determining a solution to (5), that is continuous with respect to the coefficients, and therefore
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measurable with respect to 6, is a simple exercise. Call pi; such a solution. Recursively, for

t > 1, we can determine p7, as a measurable solution to
p(0)[Z5(0) = X5 (0)La] = 0, p(0)p;;(0) =0, 1 <j <i, |p(0)]=1.
Thus:
Lemma 5. There exist n functions pt,, i = 1,2,...,n, belonging to L (0, C), and therefore
to Ly (0,C,%X*) N Ly (0,C), such that
(1) [py:(0)] =1, for any 6 € ©;
(2) Prs(0)Pr;(0) =0, for i # j and any 6 € ©;
(3) Pri(0) X5 (0) = X5 (0)py;(0) for any 0 € ©.
Definition 4. An n-tuple of functions p}, fulfilling (1), (2) and (3) of Lemma 5 will be
called a set of dynamic eigenvectors associated with X,,;.
Definition 5. If the functions py;, j =1,2,...,n, form a set of dynamic eigenvectors, then
Bfw‘ (L)xpnt, 7 =1,2,...,n, is a set of dynamic principal components associated with X,;.

Remark 4. Note that dynamic eigenvectors and dynamic principal components associated

with x,; are not unique.

3. Dynamic averaging sequences, aggregation space, idiosyncratic variables
In the Introduction we have considered averages of the x’s in which the sum of the squared
weights tends to zero. The function spaces introduced in Section 2 permit now a precise

definition.

Definition 6. Let a,, € L§°(0,C) N Ls°(O,C,%*) for n € N. {a,, n € N} is a dynamic
averaging sequence, DAS henceforth, if lim, ||a,|| =0, i.e. if a,, converges to zero in the

norm of L3 (©,C).

Example 1. Define L as {f["! : f € L3°(©,C), fi*} € L (©,C)}. Note that L5°(0,C) N

L$e(0,C, %) D ﬁ’;o for any n, and is therefore never trivial. In particular, the sequence

dy=—(1 1 -+ 10 0 ---),

producing arithmetic averages, belongs to ﬁgo and is obviously a DAS.
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Definition 7. Let y, € X. We say that y; is an aggregate if there exists a DAS {a,,, n € N}
such that lim, a,, (L)x; = y;. The set of all the aggregates will be denoted by G(x) and called
the aggregation subspace of X.

Lemma 6. The set G(x) is a closed subspace of X.

L)x;, where

Proof. Assume that z; = lim,, Yme, with y,: € G(x). Let ype = lim, a,,,,(

{amn, n € N} is a DAS for any m. Let m; be such that ||z — ym,¢|| < 1/¢ and n; such that
l|am,n, || < 1/i and ||ym,e — &,, . (L)X¢|| < 1/i. The sequence

—MM; M,
{ Aminy  Amang }

is a DAS and

126 = 0, (L)Xl | < {126 = Yt || + [Ymiz = @, (D)2 < 2/

Definition 8. Consider the projection equation
w44 = proj(ws|G(x)) + . (6)

Decomposition (6) will be called the canonical decomposition of x.

Definition 9. We say that x is idiosyncratic if lim, a,(L)x; = 0 for any DAS {a,,, n €
N}.
If x is idiosyncratic then obviously G(x) = {0} and the canonical decomposition is trivial

with 8;; = x;;. However, as the next example shows, the converse does not hold.

Example 2. Assume that ;; | x;;_j for any 7 # j and any k € Z, that x;; is a white noise

for any i, and that ||z4||*> = i. Define

n= —— 1
c \/ﬁ(o 0 0100 --)

n

The sequence {c,, n € N} is a DAS. Moreover ||c,x:||> = 1, so that x is not idiosyncratic.

Now let y; be an aggregate, so that

Y = hTangn(L)xt = hTILn ZQnJ(L)xﬁ = ]1}512 Z AnikTjt—Iy
j=1

=1 k=—o0

11



where {a,, n € N} is a DAS. Since y; € X and the z;;’s are mutually orthogonal white

noises, then

ve=_ D biwje i (7)

j=1k=—o0
Moreover, representation (7) is unique and lim,, a,;r = bji for any j and k. On the other
hand, since {a,, n € N} is a DAS, lim,, Y7 | > |an;|> = 0, so that bj, = 0 for any j

and k, i.e. y; = 0. Thus G(x) = {0} although x is not idiosyncratic.

If the vector x,,; is a white noise for any n, i.e. if the matrix 3% and its eigenvalues
are constant as functions of €, then x is idiosyncratic if and only if A\Z, is bounded as a
function of n (see Chamberlain, 1983, Chamberlain and Rothschild, 1983). The theorem

below generalizes this result to any x fulfilling Assumption 1.
Theorem 1. The following three statements are equivalent:
(a) x is idiosyncratic.

(b) A} is essentially bounded.

(c) L°(O,C) C L§°(O,C,3X7%), and the embedding map X : L3 (0,C) — L°(0,C,3X7")
defined as Y (f) = f, is continuous.

Proof. We need two preliminary results.

(A) Ifa € L3 (©,C), then

o [ a5 0a0)d0 < 5 [ [aO)PA )60 < [lal Pess sup(¥)

—T J =T

For the first inequality see Lancaster and Tismenetsky, 1985, p. 285, Exercise 1. The second
is trivial. Note that the left-hand side integral may be infinite.

(B) If o < esssup(\Y), then there exist an integer s and f € L§°(0,C) N Le(O,C, %)
such that fl*! = £, ||f|| = 1 and [|f(L)x¢||?> = ||f||. > «. For, suppose that there exists
& < esssup(Ay) such that L£({0: A% (0) > &}) = 0 for any s. Then esssup(A%) < & for any
s, so that

esssup(A7) = esssup(lim A3} ) = limesssup(A\y;) < &,
8 8
which is a contradiction. Thus taking a < esssup(Ay), there exists an integer s such that

pe=LHO: X5 (6) > a}) > 0.
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Define h, by

ha(6) = { V2 s if X5 (6) 2 a
0 otherwise.

Then define f = h,p, with p = pl* and p{*} = p?,. We have ||f|| = 1 and ||f(L)x:||? > a.
Now suppose that (b) holds and that f € L3°(0,C). By (A),

1 [" . -
1€ — £S5 = o [ (£71(0) — £171(0)) 7 (0) (£ (0) — £ (0)

T J-x (8)

< J|f) — £1m|Zess sup(AT).
Since f € L$°(0,C), ||f") — £fImI||? tends to zero as n and m tend to co. Thus, by (8),
fl7l is a Cauchy sequence in L$°(0,C, %), so that f belongs to L(0,C,X%). We have
proved that (b) implies L3°(©,C) C L3°(0,C,X%). Moreover, (A) implies that [|f["[|Z, <

||£["][|2ess sup(A\?). Taking the limit for n — oo,
I£[15 = [IT(E)|[%= < [If]]*esssup(AT), (9)

so that Y is bounded and therefore continuous (Royden, 1988, p. 220, Proposition 2). Thus
(b) implies (c). On the other hand, defining ||Y|| = sup||YX(f)||s- for ||f|| = 1, (c) implies
|| Y]] < co (again, Royden, 1988, p. 220). Since ||f||x= = ||X(f)||x= < ||X]|||f]|, (c) implies
(a). Lastly we prove that (a) implies (b). Assume that A{ is not essentially bounded. Then
by (B) there exists a sequence mys and a sequence f; € L3°(0,C) N L (O, C,37%), such that
flmel = f,, [|[fs]] = 1 and ||f,(L)x¢||* > as, with o, — oo. This implies that the sequence
gs = £ /||£,(L)x:]| is a DAS. Since [|g_(L)x:|| = 1, x is not idiosyncratic. "
A consequence of (9) is that ||X[|? < esssup(Af). On the other hand, (B) implies the
opposite inequality, so that ||Y|| = \/esssup(\}).
Corollary. If x is idiosyncratic then

sup Ar1(0)df = lim Arq1(8)df < oo.

n J—-m J =T

Proof. Since \{ is essentially bounded, we have fjﬂ A7 (0)dO < oo. Moreover, A%, converges
monotonically a.e. in © to A7. Thus, by the Monotone Convergence Theorem (Royden, 1988,
p. 87),

im [ A (0)d0 = /7r N (0)dO < .

n
J =T -7
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The following example shows that the converse of the Corollary is false.

Example 3. Assume that x;; is orthogonal to x;;_, for any k and any i # j, and suppose that
the spectral density of the stationary process x;; is any non-negative function f, independent
of i, with f € L1(0,R) — Loo(©,R). In this case the matrix X¥ is diagonal, A = f, which is
not essentially bounded. Thus x is not idiosyncratic, even though sup,, [*_AZ,(0)df < cc.
Note also that the inclusion of Theorem 1, Statement (c), can be strict, as the following

example shows.

Example 4. Let 32(0) = |1 — e~%|2I,,. In this case x is idiosyncratic, so that L$°(0,C) C
L$°(0,C, X*). However, the opposite inclusion relation does not hold. Consider for instance

f0)=(1—-e®)1(1 0 0 --- ). fbelongs to L§(O,C,X*) but not to L5(6,C).

4. A Finite Number of Dynamic Common Factors
4.1 Note that dynamic averaging of x, according to Definition 6, is nothing other than
averaging simultaneously both in the cross-section and the time dimension. It is easy to
show that the same aggregation space would result by taking finite averages in one of the two
dimensions or in both. In particular, if y € G(x), then there exists a sequence of integers s,,
and a sequence {a,, n €N, a, € Ly"(6,C)NL3*(0,C, X7 )} such that lim, ||a,|| = 0, and
lim, a,(L)xs,: = y. Thus an equivalent definition of a DAS, which will be used in the present
section, is that of a sequence a,, € L3"(0,C) N L3 (©,C, X7 ) such that lim, ||a,|| = 0.

Let us now give a formal definition of the generalized dynamic factor model and state

our main results.

Definition 10. Let q be a non-negative integer. The double sequence x is a g-dynamic
factor sequence, q-DFS henceforth, if La(P,C) contains an orthonormal q-dimensional

white-noise vector process
u={(u ugt --- uqt)/, teZy=A{uw, teZ},
and a double sequence & = {&;, i € N, t € Z} fulfilling Assumption 1, such that:
(i) for any i € N,
Tit = Xit + it

Xit = by (L)ure + byg(L)ugs + -+ +b

(L)ugr = b,;(L)uy,
where b; € L(©,C).
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(i) For any i € N, j = 1,2,...,q, and k € Z, we have & L wj_. As a consequence
it L xst—k foranyi €N, s e N and k € Z.

(iii) )é is essentially bounded, i.e. & is idiosyncratic.

(iv) Putting x = {xit, i € N, t € Z}, \X(0) = 00 a.e. in ©.

The double sequences x and & are referred to as the common and the idiosyncratic component

of representation (10).

Theorem 2. The double sequence x is a q-DFS if and only if:
(1) X+, is essentially bounded;
(II) N = oo a.e. in ©.

Remark 5. Forni, Hallin, Lippi and Reichlin (1999) propose a heuristic criterion to determine
in empirical cases the number ¢ such that (I) and (II) hold. Since they only rely on the ‘only
if’ part of Theorem 2, their criterion provides evidence on the number of common factors,
under the assumption of a generalized dynamic factor model. Once the ‘if’ part is proved,
evidence that for some ¢ (I) and (II) hold becomes evidence both that the series follow a

generalized dynamic factor model, and that the number of factors is q.

Theorem 3. If x is a q-DFS with representation (10) then

span(x) = span(u) = G(x).

Moreover

Xit = Proj(z|G(x))- (11)

An immediate but very important consequence of (11) is that if x is a ¢-DFS then the

components Y;+ and &;; are uniquely determined. Precisely:

Theorem 4. Suppose that x is a g-DFS with representation (10). Suppose further that there
exists an s-dimensional orthonormal white-noise vector process v, with v;y € Lo(P,C), such

that
Tip = Wit + Ciz

wit = ¢;(L)vs,
where ¢; € L3(0,C), and that X and X¢ fulfill, respectively, conditions (iii) and (iv) of

Definition 10. Then s = q, wy = Xt and (i = &y
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Several observations are in order.

Remark 6. Theorem 3 implies that both x;; and &;; belong to X. Theorem 4 implies that
no representation fulfilling Definition 10 is possible with the common or the idiosyncratic

component not belonging to X.

Remark 7. It must be pointed out that the components are unique, not u; or the filters
b,(L). Precisely, if (10) holds, all possible representations of x;; are obtained by setting
xit = d;(L)w;, wi = C(L)us, d; = b;C, where C € LE*9(0,C) and CC =1,.

Remark 8. Since u is an orthonormal white noise the function b,(L)u; € La(P,C) if
and only if b; € L(0©,C). As a consequence b;(L) has a representation as a filter (see
Section 2.1). Note that Definition 10 does not exclude that the filters b,;(L) are two-sided. If
representation (10) must have a structural interpretation then it is reasonable to assume that

the filters b;;(L) are one-sided. However, one-sidedness of the b,;(L) has no consequences on

the eigenvalues \); or A%, nor fulfillment of conditions (T) and (II) has implications on the
existence of one-sided representations of the common component. In this paper we deal only
with the number of common shocks, i.e. the dimension of u;, which is uniquely determined
(Theorems 2, 3, 4), and with the reconstruction of x;+ and & (Theorem 5). Existence and

identification of one-sided representations of the common component are left to further study.

Remark 9. The result s = q in Theorem 4 can be restated by saying that if x is a ¢-DFS,
then ¢ is minimal, i.e. no representation fulfilling Definition 10 is possible with a smaller
number of factors. It is important to point out that this is no longer true if condition (iv) in

Definition 10 does not hold. For example, suppose that
Tit = biur + &it,

with £ idiosyncratic and 3 |b;|* < co. In this case A\{' < co. As a consequence, byuy + & is

idiosyncratic, so that a representation with zero factors is possible.

Remark 10. Suppose that x,; is a vector white noise for any n, so that the model is
“isomorphic” to the static model in Chamberlain and Rothschild (1983). Then the eigenvalues
Ay, are constant as functions of 6. As a consequence, if A < oo, the model has g factors, with
q < s. Unfortunately, in the general dynamic case, there exist cases where A\Z is essentially

bounded, but the sequence does not fulfill Definition 10 for any ¢ < s. Consider
i = b(L)uy + &t

16



with & idiosyncratic and

0 otherwise.

Here A% (0) is essentially bounded, but A7 () is infinite only for 8 € [—1,1], finite elsewhere.

The analysis of such cases is left to further work.

The proof of Theorems 2 and 3 will require several steps. In Section 4.2 we introduce
an additional assumption on x and show that it does not imply any loss of generality. In
Section 4.3 we prove that conditions (I) and (II) are necessary for a ¢-DFS, which is very easy.
The converse is much more complicated. In 4.4 we prove that G(x) contains a g-dimensional
orthonormal white-noise vector process z, so that G(x) D Span(z). In 4.5 we prove that

actually G(x) = span(z), so that the canonical decomposition has the form
x4y = proj(wy|G(x)) + b = ¢;(L)2¢ + 0.

Lastly, in 4.6 we show that § is idiosyncratic, thus completing the proof of Theorem 2. In

4.7 we prove Theorem 3.
4.2 Theorems 2 and 3 will be proved supposing that
Assumption 2. For anyn €N, j<n and 0 € ©, \;.(0) > 1.

To show that Assumption 2 does not imply any loss of generality, observe that, possibly
by embedding P into a larger probability space, we can assume that Ls(P,C) contains a
stationary sequence {éit, i € N, t € Z} such that éit 1 X for any i and t, Var(éit) =1 for
any 7 and ¢ , and éz‘t 1 éjt_k for any ¢ and i # j. Now define y = {z; +éit, ieN, teZ},
and suppose that Theorems 2 and 3 have been proved under Assumption 2. We have:
(a) 3y = X7 +1,, A\, = A%, + 1. Thus if conditions (I) and (II) hold for x, then they hold
for y as well. By Theorem 2 y is a ¢-DFS with representation y;; = X+ + éit. By Theorem
3, Xit = proj(yi|G(y)). But the definitions of & and y imply that Y; = proj(zs|G(x)).
Therefore
T = proj(x:|G(x)) + (€ — Eit)- (12)
Since éz-t is orthogonal to X and & —é is idiosyncratic, then (12) is a ¢-DFS representation.

Thus if (I) and (II) hold for x, then x has a ¢-DFS representation.

(b) If x has the ¢-DFS representation z;; = x4+ + &, then y has the ¢-DFS representation
Yvie = Xat + (& + ézt) Applying Theorem 2 to y, we obtain conditions (I) and (II) for
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A= A7 + 1 and )\Z +1 = Ag41 T 1 and therefore for A7 and A7, ;. In conclusion, if Theorems

2 and 3 hold under Assumption 2, then Theorem 2 holds in general.

(c) In the same way, applying Theorems 2 and 3, supposedly proved under Assumption 2, to

y, Theorem 3 can be proved in general.

4.3 Let us prove that if x is a ¢-DFS then (I) and (II) hold. By Definition 10, ¥%(0) =
¥X(0) + X5(0). By Fact M, third inequality in (4), A%, (6) > AX (), so that (II) is proved.
Moreover, by the first inequality in (4),

ngt1(0) < A5.41(0) + )‘21(9) = )\fﬂ(e)a (13)
so that (I) is proved. Note that (13) implies the following interesting inequality:
v1(0) < X5(0) (14)

(the opposite inequality is proved in 4.7).

4.4 Now we start assuming (I) and (IT). Firstly we prove that G(x) contains a g-dimensional
white-noise vector. The proof goes as follows. We start with a g-dimensional orthonormal
white noise, call it 1), whose entries are linear combinations of the m-th order principal
components Efnj (L)X, for j =1,2,...,q, t € Z. Then we project 1, on the space spanned
by the n-th order principal components sz(L)xnt, j=12....q,t € Z, for n > m, call
y: the projection. We show that when m and n become large the distance between 1; and
y: becomes small. This leads to the construction of a sequence of ¢-dimensional white noise
vectors whose components are Cauchy sequences and converge to G(x).

The proofs would be considerably easier if we could assume that Aj (6) > a;, a.e. in ©,

where lim,, a,,, = co. However, this condition is false in this 1-factor model:
xip = (1 — L)uy + &, (15)

with 3¢ = I,,, in which 3% is continuous and ¥%(0) = I,, for any n. Unfortunately, to
include cases like (15) our proofs must be carried over piecewise on O.

For ¢ < n, we denote by P,, the ¢ x n matrix

(p% P - pe),
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Le. the matrix having the dynamic eigenvectors py,;, j = 1,2,...,q, on the rows, and by Q,,
the (n — ¢q) x n matrix

(piq—&-l/ piq—&-Ql e pin/ )/ .
Moreover, let us call A;, the g x g diagonal matrix having on the diagonal the eigenvalues A7 .,
j=12,...,q, and by ®,, the (n —¢) x (n — ¢) diagonal matrix having on the diagonal the

eigenvalues \*

njo

j=q+1,...,n. The matrices 3F and I,, can be rewritten in their spectral

decomposition form (see Lancaster and Tismenetsky, 1985, p. 175, Exercise 5):

Since A, ! is bounded in © by Assumption 2, A" 1P, € L"X"(0,C), so that the definition

Y= (v s e vn) = A YA(D)P, (L)X

makes sense and i’ is an orthonormal white noise. Note that the processes 7%, j =
1,2,...,q, are the first ¢ dynamic principal components, rescaled so that the spectral density

is equal to I,,.

Definition 11. Let M C ©. We denote by K the subset of L1X1(0,C) whose elements C
are such that (i) C(0) = 0, for 8 ¢ M, (ii) C(6)C(0) =1, for 6 € M.

In the sequel, in order not to complicate notation, we write matrix products AB in
which the number of columns of A is smaller than the number of rows of B. In this case we
implicitly assume that A has been augmented with columns of zeros to match the number
of rows of B. For example, we write P,,(L)x,: for n > m, this meaning nothing other than
P, (L)X In the same way, we have equations with a 1 X m matrix on one side and a 1 xn
matrix on the other, with m < n, this meaning that the 1 X m matrix has been augmented
with zeros.

Now let C € Ky, so that C(L)w;™" makes sense as a vector belonging to X. We want
to determine the (element by element) orthogonal projection of the vector C(L)w}" on the
space

span({¢7, j = 1,2,....q, t € Z})

for n > m. From (16) we get

Xpt = P (L)P,,(L)xn: + Q (L)Q_(L)xXne = P, (LAY (L)Y} +Q (L)Q, (L)xme  (17)
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(note that integrability of the eigenvalues, Lemma 3, implies that P,AY? € Ly*(0,0)).
Since Q,,(0)3% ()P, (0) = ®,,(0)Q,.(0)P,,(#) = 0 for any 0, the two terms on the right-hand
side of (17) are orthogonal at any lead and lag element by element, so that the first is the pro-
jection of x,; on span({v'%;, j = 1,2,...,q, t € Z}) and the second is the residual vector. The
required projection equation is then obtained by applying on both sides C(L)A,,}*(L)P,, (L)
and noting that A-Y2(L)P, (L)%Xn: = A7V (L), (L) Xme = Y7, L.

C(L)¢" = D(L)3; + R(L)Xnt,

where

D = CA;'/?P,P,AY/2 R =CA;'?P,.Q.Q,. (18)

n

Note that R belongs to L4X"(0,C) and therefore to L3*" (0, C, $%). Moreover, since A'/2 €
L?*9(©,C) and CA,,"/*P,,P,, € LT¥9(0,C), then D € LI*9(O, C). Note also that D, as well
as A, H and F, which are defined below, depend on C, m and n. However, as no confusion

can arise, we do not explicit this dependence for notational simplicity. The following result

holds.

Lemma 7. Suppose that (I) and (II) hold. Let n > m, M C O and C € K. Consider

again the projection equation
C(L)Y;" = D(L)3;' + R(L)Xns, (19)

where D and R are defined as in (18), and call pu(0) the first eigenvalue of the spectral density
matriz of the residual R(L)Xn;. Then p(0) < A5, 1(0)/2,,(0).

Proof. The matrix I, —Q, Q,, is non-negative definite by (16) and Aj,, Q.Q.—Q.®,Q, is
non-negative definite by the definition of ®,,, so that A7 1, — Q. ®,,Q., is also non-negative

definite. Premultiplying by CA;LU ’P,, and postmultiplying by lsmAfnl/ 2C it is seen that
A2 CALIC —REIR

is also non-negative definite. The desired inequality follows from Fact M, third and fourth

inequality in (4). "

Now let us begin the construction of our converging sequence. Note that, under assump-

tions (I) and (II), there exists a set II C © and a real W such that © — II has null measure
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and, for € II: (1) A;,41(0) < W for any n € N and any ¢ € II; (2) AJ(0) = oo for ¢ € II.
Obviously, if a statement holds a.e. in II, then it holds a.e. in ©, and vice versa.

Let M be a positive measure subset of II such that A} (6) > a, for & € M, where
{an, n € N} is a real positive non-decreasing sequence satisfying lim,, o, = 0.

Consider (19) and assume C € Kj;. Taking the spectral density of both sides we get,
for 0 € M,

I, = D(0)D(8) + R(A)=Z(A)R(H). (20)

Applying Lemma 7 we obtain u(0) < A% . 1(0)/25,,(0) < W/ay, for § € M. Hence by Fact

M, calling A;(0), j =1,2,...,q, the eigenvalues of D(0)D(#) in descending order, we have
1>A,00)>1—W/a, (21)
for any 6 in M. Thus, if m* is such that
W/, <1,

we have

Ag(0) > 1 —W/ame >0 (22)

everywhere in M for any m > m*.

Now assume m > m*. Denote by A the diagonal matrix having A; in place (j,7) and
by H(6) a matrix which is measurable in M and fulfills for any 8 € M: (a) H(0)H(9) = 1,
(b) H(O)A(9)H(#) = D(A)D(6). Inequality (22) ensures that 1/\/m is bounded in M
for j =1,2,...,q, so that the definition

F(0) = {H(9>A(0)1/2ﬁ(9)D(9) if 0 € M

0,if 0 ¢ M (23)

makes sense. Note that F belongs to K.

Lemma 8. Suppose that (1) and (II) hold. Let M be a positive measure subset of II and
{an, n € N} a real positive non-decreasing sequence such that lim,, a,, = co. Assume that
(a) C € Ku;

(b) X2y (0) >, for 0 € M;

Then, given T, such that 2 > T > 0, there exists an integer m, such that, firstly, W/o,,. <1,

and, secondly, for n >m > m., the first eigenvalue of the spectral density matriz of

C(L)" — E(L)y
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is less than 7 for any 0 € II, where F is defined as in (23), with D defined as in (18).
Proof. From (19) we get

C(L)¢" = E(L); = R(L)xnt + (D(L) — E(L)) ¢y’

The terms on the right-hand side are orthogonal at any lead and lag, so that the spectral
density matrix of the sum is equal to the sum of the spectral density matrices. Hence, calling

S the spectral density matrix on the left-hand side and using (20), we see that, for 6 € M,
S =2I, - DF — FD = 21, — 2HAY?H = 2H(I, — AY?)H,

whose largest eigenvalue is 2—2,/A(#), which is less than or equal to 2[1—-A,(0)] < 2W/a,,
by (21). Thus, in order for F to make sense and the statement of the lemma to hold we need

2W/ty,, < min(2,7). Since 7 < 2, m, must fulfill
2W/ o, <T. (24)

The following lemma will be repeatedly employed. Its proof is a consequence of the

following statement.

Fact L. Suppose that {f,, n € N} is a sequence of functions belonging to L (©,C), with k
equal to 1 or 2, which is convergent in the norm of Ly(©,C). Then there exists an increasing

sequence s; such that lim; fs.(0) = f(0) a.e. in © (see Apostol, 1974, p. 298).

Lemma 9. Suppose that A = {Ant, t € Z} and B = {Bn:, t € Z} belong to X, are
costationary with the x’s, and that lim,, An; = Az and lim, B,; = B;. Then, for a sequence
of integers s;,

limS(AsitaBsit; 9) = S(At;Bt§ 9);

(S has been defined in the proof of Lemma 2) a.e. in O.

Proof. (A, Bn:) = %ffw S(Apt, Bnt; 0)d0 (see the proof of Lemma 2). Continuity
of the inner product implies that %[fw |S(Ant, Bnt;0) — S(Ay, By; 6)|d6 — 0, i.e. that
S(Ant, Bnt; 0) converges to S(As, Bt; 0) in L1(0,C). The result follows from Fact L. n

Lemma 10. Suppose that (I) and (II) hold and let M and {c,, n € N} be as in Lemma 8.

There exists a q-dimensional vector process v such that
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(a) vjs is an aggregate for j =1,2,...,q;

(b) the spectral density matriz of v equals I, for 6 a.e. in M, 04 for 6 ¢ M.

Proof. Let F; be any element of Kj;. Set 7 = 1/2% and s; = m,, where m, satisfies (24).
Then set G; = F1Ag, 1/QPS1 and V% = G, (L)xn:. It is easily seen that the spectral density
matrix of vi equals I, for § € M, 0, for 6 ¢ M.

Now set 7 = 1/2* and so = m,, where m., satisfies (24) and m, > s;. Then determine
D as in (18), with F; in place of C, so in place of n and s; in place of m, and determine Fy
as in (23). Finally set Go = F2A;21/2Ps2 and v? = G5(L)xn:. The spectral density matrix
of v equals I, for § € M, 0, for § ¢ M. Moreover, by the definition of s; and Lemma 8,
calling A; the first eigenvalue of the spectral density matrix of vi —vZ, we have A;(0) < 1/22
for any 6 € 11, so that |jv}, — v},|| <1/2, for j =1,2,...,q.

By recursion, set 7 = 1/22¥ and s;, = m,, where m, satisfies (24) and m, > s,_1. Then
determine D as in (18), with Fj_; in place of C, s in place of n and s;_; in place of m, and
determine Fy, as in (23). Finally set G, = FiAs, 12p P, and vf = G, (L)x,;. The spectral
density matrix of v} equals I, for € M, 0, for § ¢ M. Moreover, by the definition of s;_1
and Lemma 8, calling Aj_1 the first eigenvalue of the spectral density matrix of vf_l — vk

we have Ag_;(0) < 1/22=D for any 6 € 11, so that vat_l -l <1/28 1 forj=1,2,...,q.

Since we have
[0, — ol < ok — OB - [l = ol < 128,

then each component of {vF, k € N} is a Cauchy sequence. Call v; the vector of the limits.

To prove (a), we have to show that each row of {G,,, n € N} is a DAS. We have
G (0)Gn(6) = Fr(0) A7 (O)F(6),

whose diagonal entries |g,;(0)|* cannot be larger than 1/A? () since Fy,(0) € Kps. The
latter ratio converges to zero a.e. in © and is less than 1 by Assumption 2, so that its integral
on O converges to zero by the Lebesgue Convergence Theorem (Royden, 1988, p. 91).
Finally, (b) follows from Lemma 9 and the fact that the spectral density matrix of v¥
equals I, for § € M, 0, for 0 ¢ M. n

Lemma 11. Suppose that (1) and (II) hold. There exists a q-dimensional orthonormal white-

notse vector process z such that zj; is an aggregate for j =1,2,...,q.
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Proof. Define My = II. Then, by recursion, define v,, a € N, as the smallest among the
integers m such that

LH{O € My_1, X\, (0) >a})>7

mq

and

My, ={0€ My 1, X;_,(0) > a}.

The measure of the set

Ni=MNMN---NM,N---

is not less than 7. Now define Ny starting with IT — N7 instead of II, and using £(IT — Ny)/2
instead of w, Ny, b > 2, starting with Il — N3 — Ng — - -+ — Ny and using L(IT — N; — N —
<+ — Np_1)/2, etc. Setting N = Ny UNy U ---, we have

L(N)=L(N1)+ L(N2) + -+ L(Np) + - -- = 2.

Lemma 10 can be applied to the subset N, with the sequence «,, defined as «,, = a, where
a is the only integer such that v, < n < v4y1. We obtain a ¢g-dimensional vector v? =
(vb, vl - Wb )" such that (i) b, is an aggregate for j = 1,2,...,¢; (i) its spectral
density matrix is I, a.e. in Ny, 0, for 0 ¢ Ny. Now set z; = Y o, v2. It is easily seen that
the spectral density matrix of z; is I, a.e. in ©, so that z is a g-dimensional orthonormal

white noise process. m

4.5 We now prove that the space spanned by z is G(x). Let y; be an aggregate and consider

the projection
Yyt = proj(y:|span(z)) + r.
We want to show that 7, is necessarily zero. Consider the (¢ + 1)-dimensional vector process

z; 7). Its spectral density, call it W, is diagonal with I, in the ¢ X ¢ upper-left submatrix,
q
so that

det W(0) = S(r¢,14;0).

Since z;; and ry belong to G(x), there exist DAS’s {a,,;, n € N}, for j =1,2,...,¢+1

such that
hql;Ilgn](L)XSnt = Zjt, for .7 = 17 27 <-4,

lima,,, 41 (L)Xs, s = 7t.
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Moreover: (1) [jﬂ |a,,;(0)]?d0 converges to zero for j = 1,2,...,q+ 1, so that a subsequence
of a,; converges to zero a.e. in © (Fact L); (2) calling Z,, the spectral density matrix of the
vector process

(gnl(L)XSnt gnQ(L)XSnt U gnq—&—l(L)XSnt ) 9

a subsequence of Z,, converges to W a.e. in © (Lemma 9). Thus, with no loss of generality

we can assume that a,,; converges to zero and Z,, converges to V¥ a.e. in ©.

Now, for j =1,2,...,q+1, set f,,; = a,;P,, and g,; = a,; — f,;P,,, so that
anj = £n;Ps, + 8nj

and

;i ()% = [£0; ()] + |gns (0]

Since a,; converges to zero a.e. in ©, then g,; converges to zero a.e. in ©. Moreover, the

definition of g,,; and f,,; implies that
gnj (L)Xsnt = ﬁnj (L)Bsn (L)Xsnt + gnj (L)Xsnt

is the orthogonal projection of the left-hand side on the space spanned by p! k(L)xsnt, for
k=1,2,...,q and t € Z. As a consequence, the spectral density matrix Z,, is equal to the

spectral density matrix of

(LB, (L)Xt £o(L)B, (L)Xsnt -+ Engia (DB, (L)Xet)

=nl = Sn =n

call it Z! plus the spectral density matrix of

(L)Xsnt gnQ(L)xs”ﬂt [ gnq+1

(8 (L)Xst ),

2nl

call it Z2: Z, = Z} + Z2.
Now observe firstly that Z! is singular for any 6. Secondly, since g,,;(f) is orthogonal
to pgscnk(ﬂ), for k=1,2,...,q, then

8nj (0)E5, (0)8n;(0) < X7 4111805 (O)°

(Lancaster and Tismenetsky, 1985, p. 287, Exercise 1). Essential boundedness of Ag41 along

with convergence to zero a.e. of g,; imply that Z2 converges to zero a.e. in ©. This implies

25



that det Z,, converges to zero a.e. in © and therefore that det W(6) = S(r¢,7r+;0) = 0 a.e. in
O, so that r, = 0.

4.6 So far we have proved that if (I) and (II) hold then the canonical decomposition is
Tit = Vit + Oit
Yit = proj(zi|G(x)) = ¢;(L)zt,

where z is a ¢g-dimensional orthonormal white noise, and ¢; € LZ(0,C). Suppose that d is
idiosyncratic. By Fact M, (a), A}, (0) > X2 (0) — A1 (0), so that XJ(0) = oo a.e. in ©. Thus,
to complete the proof of Theorem 2 we must only show that § is idiosyncratic.

We need some additional preliminary results. Suppose that v = {v;, t € Z} and w =
{wy, t € Z} are orthonormal ¢-dimensional white-noise vectors belonging to X. Moreover,
suppose that v and w are costationary with the x’s and therefore with one another. Let A
be the matrix whose (h, k) entry is the cross-spectrum S(vp:, wi; 0). Note that all the entries
of A have modulus bounded by 1 for 8 a.e. in ©. The orthogonal projection, element by
element, of v; on the process w is A(L)w;, while A(L)vt is the orthogonal projection of w;

on the process v.

Definition 12. Forn =1,2,...,00, let v,, = {vy, t € Z} be a sequence of q-dimensional
orthonormal white-noise vectors belonging to X and costationary with the x’s, so that v,, and

V. are costationary for any n and m. Consider the orthogonal projection
Vit = Amn(L)Vnt + p;nn, (25)

and let D™ be the spectral density of pi*™. The sequence {v,,, n € N} generates a Cauchy
sequence of spaces if, given € > 0, for 0 a.e. in © there exists an integer me(0) such that

for nym > me(0), trace(D™"(0)) < e.

Remark 11. Note that, if v,,; converges, it generates a Cauchy sequence of spaces, because,
denoting by £™"(0) the spectral density matrix of v,,; — vz, we have trace(D™"(0)) <
trace(E™™(0)). By contrast, the converse does not necessarily hold. As we show below, the
normalized principal components ¥} generate a Cauchy sequence of spaces. However, they do
not converge in general: for example, take ¢ = 1 and assume that 1} is a normalized principal
component converging to 1;; then (—1)™)} is also a normalized principal component which

does not converge.
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Lemma 12. Assume that (1) {v,, n € N} belongs to X, is costationary with the xz’s
and generates a Cauchy sequence of spaces; (2) y = {y, t € Z} belongs to X and is
costationary with the x’s. Let Y,; be the orthogonal projection of y, on the process v,,, i.e.
Yot = proj(y:|span(vy,)). Then Y,: converges in X.

Proof. We have
Yt = Yot + 7t = b, (L) Vit + e

Yt = Yot + Tt = B, (L) Vit + Tt
where bs(0) € L5(0,C). Hence

hn(L)Vnt - bm, (L)th =Tmt — Tnt-

The spectral density of the left-hand side is the cross spectrum between the left and the right-
hand side. The latter, due to the definition of r,,; and 7.+, is the sum of the cross spectrum
between 7,,; and b,,, (L) V., call it S1, and the cross spectrum between 7,,+ and b,, (L) v, call
it Sy. Using (25), & is the cross spectrum between 7,; and b,,,(L)A™"(L)v,: +b,,, (L) pi™",
which reduces to the cross spectrum between 7, and b,, (L)p{*", call it C,y,. Now observe
that both the spectral density of r,; and the squared entries of b,,, are bounded in modulus
by the spectral density of y;. Thus, since {v,,, n € N} generates a Cauchy sequence of spaces,
Cinn converges to zero a.e. in © as m,n — oco. The same argument holds for Sy, so that
the spectral density of Y,; — Y,,: converges to zero a.e. in © as m,n — oco. Since both
the spectral densities of Y,,; and of Y,,; are dominated by the spectral density of y;, by the
Lebesgue Convergence Theorem (Royden, 1988, p. 91), the integral of the spectral density

of Y,,; — Y,,; also converges to zero as m,n — 0o, so that Y,,; is a Cauchy sequence. ]

Lemma 13. The sequence {¢", n € N} generates a Cauchy sequence of spaces.

Proof. For n > m consider (19) for C = 1:
i =D + pi™. (26)

Calling D™ the spectral density of pJ*", convergence to zero of trace(D™"(0)) for 6 a.e. in

O and n > m is a consequence of Lemma 7. On the other hand,
v =D(L)$" + pi™. (27)
From (26) and (27) we get
I, = D(6)D(0) + D™ () = D()D(6) + D"™(6)
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a.e. in ©. By taking the trace on both sides and noting that the trace of D(0)D(0) is
equal to the trace of D()D(6) we get trace (D" ()) = trace (D""(6)) a.e. in ©. Finally

D™™(0) = 0. Thus trace(D™"(0)) converges to zero a.e. in © for any diverging n and m. =

Now let us go back to equation (17) and concentrate on a single line, i.e. the orthogonal
decomposition obtained by projecting x;+ on the normalized principal components ¢7,, j =
1,2,...,q. Calling «r, (L) the i—th (g-dimensional) row of P, (L) and q (L) the i-th row of
gn (L), we get

2y =, (LAY (L)Y} +q (L)Q (L)Xt

The following theorem, besides being useful to show that 4 is idiosyncratic, is important
per se, because of its implications for the estimation of common and idiosyncratic components

(see Forni, Hallin, Lippi and Reichlin, 1999).

Theorem 5. The sequence of projections v = 7, ;(L)AY*(L)y? = x,,(L)P,,(L)Xpe, n € N
converges in mean square to y;x = proj(z;|G(x)), for anyi.

Proof. By Lemmas 12 and 13 «}; converges in mean square to an element 7}, in X. Therefore
the sequence of the residuals 6}, = x;; — ]} also converges to an element ¢, in X. Moreover,
v is an aggregate, since m,;P,, is a DAS. To see this, consider that the spectral density

of v, i.e. mp; ATy, is not smaller than m,;7,;A7 , and is bounded above by the spectral

nqo
density of w;, call it oy, implying m,;(0)7.:(0) < 0:(0)/)5,(0). The latter ratio converges
to zero a.e. in O and is bounded above by ¢;(6) by Assumption 2, so that the Lebesgue
Convergence Theorem (Royden, 1988, p. 91) applies.

Lastly, by construction, 6}, is orthogonal to %} , for any k € Z. Since G(x) = Span(z),
and since the process z has been obtained by taking limits of linear combinations of the

Y’s (Lemmas 7, 8, 10, 11), continuity of the inner product implies that 6, L G(x). The

conclusion follows from uniqueness of the orthogonal decomposition. m
The following Lemma concludes the proof of Theorem 2.

Lemma 14. ¢ is idiosyncratic.

Proof. Let us fix m and denote by 3¢ the spectral density matrix of the vector process
Omt = (61t G2t -+ Ot )/. We want to show that the first eigenvalue of such matrix, i.e.
AJ,1(0), cannot be larger than sup, AZ, |, (f) = A%, (6) for any 6 € ©. Let 28 n >m, be

the spectral density matrix of 67, = (867, 6% --- 67,) and A\’), be its first eigenvalue.
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By Theorem 5 ¢ converges to ¢;; in mean square for ¢ = 1,2,...,m, so that, by Lemma 9,
a subsequence of 39" converges to 3¢ a.e. in ©. Assuming that lim, 3" = 3¢ a.e. in ©
avoids further complication in notation and does not imply any loss of generality. Continuity

of the eigenvalues as functions of the matrix entries (Ahlfors, 1987, pp. 300-6) implies that
lim Afy1 (0) = Aoy (6), (28)

a.e. in ©. Moreover, note that 3%" is the m x m upper-left submatrix of ¥2", so that, by
Fact M, (b),
A1 (8) < X01(0) = Nigir (0)

for any n > m and any 6 in ©. Hence by (28) A5, (6) < AZ,(6). Since this is true for any m,
A(0) < X514(0), (29)

so that ¢ is essentially bounded. The statement follows from Theorem 1. L]
4.7 Now we prove Theorem 3. Assume that x fulfills Definition 10, so that

Tit = Xit + &t

Xit = b;(L)u,

where u is g-dimensional. As we have proved in Section 4.5, x has also the canonical repre-

sentation
Tie = Vit + Ou

Yit = proj(zit|G(x)) = ¢;(L)z,
where z is ¢-dimensional and span(z) = G(x). Since £ is idiosyncratic then G(x) C span(x),
and obviously span(x) C span(u), so that span(z) C span(u). Since both u and z are ¢-
dimensional white-noise processes, then span(z) = span(u), so that

G(x) = spari(x) = Span(u).

This implies that y;; € G(x) and &; L G(x), so that y;; = proj(z;|G(x)) and &z = by.

Remark 12. Since we have proved that §;z = &;¢, (14) and (29) imply that

X2 (6) = XS(0)

a.e. in ©.
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5. Non-stationary variables

The case of trend stationary or difference stationary variables can be easily accommodated in
our model. Assuming that the nature of non-stationarity is correctly detected, then, in the
first case, i.e. x; = Ty + 2, where T is a deterministic trend, our results should be applied
to the stationary components z;;. In the second case, assume, for the sake of simplicity, that
the variables z;; are I(1). Consider the differences y;; = (1 — L)x;+ and suppose that (I) and

(IT) hold for Ay, ; and A} respectively. Then we have the representation

(1 — L)wit = Xt + it

Xit = b;(L)u,
where u; is g-dimensional and € is idiosyncratic. Now observe that the vectors x,: and &,
are unique, and so are the spectral density matrices 33X and 3¢ . Therefore all the information
necessary to determine whether the x’s, or the ¢’s, are I(1) or I1(0), and whether cointegration

relationships hold among the x’s or the £’s, can be recovered starting with the spectral density

matrices of the x’s.
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