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ABSTRACT

Subjective Discount Factors*

This Paper describes the equilibrium of a discrete-time exchange economy in
which consumers with arbitrary subjective discount factors and quasi-
homothetic period utility functions follow linear Markov consumption and
portfolio strategies. Explicit expressions are given for state prices and
consumption—wealth ratios. If utility is logarithmic or endowment growth is
Ii.d., then this economy is observationally equivalent to one in which
consumers discount geometrically. We provide analytically convenient
continuous-time approximations and examine the effects of non-geometric
subjective discount factors in an economy in which log endowments are
subject to temporary and permanent shocks that are governed by a Feller
(1951) square-root process. Hyperbolic and quasi-hyperbolic discount factors
can significantly increase the volatility of aggregate wealth and raise the
expected excess return on aggregate wealth.
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NON-TECHNICAL SUMMARY

This Paper examines an economy populated by consumers whose
preferences are time-inconsistent. These are consumers who may, for
instance, prefer one pound today to two pounds tomorrow, while at the same
time preferring two pounds a year and a day from today to one pound a year
from today. More generally, these consumers discount future utilities using
subjective rates of time preference that may not be constant. An important
implication of these preferences is that the course of action preferred by an
agent today need not coincide with the one he or she would like to implement
tomorrow. As a result, self-control and the degree to which agents can commit
to future choices become central issues for decision-making. In the absence
of a perfect commitment technology, individual choices of consumers with
these types of preferences can be viewed as the outcome of an ‘intra-personal
game’ in which at any date the current incarnation of an individual consumer
plays a game against future incarnations of the same consumer.

If consumers can perfectly commit to a sequence of consumption choices,
then the term structure of interest rates will reflect the rates at which
consumers discount utility at different horizons. Given that the term structure
of interest rates is typically upward sloping, this would imply that consumers
discount utility at lower rates over the short term than they do over the long
term. This is in contrast to evidence collected by psychologists that suggests
that subjective rates of time preference decrease as a function of the horizon
over which utility is evaluated.

In this Paper, we consider an exchange economy in which markets are
frictionless and consumers cannot commit themselves in advance to future
consumption and portfolio choices.

A first contribution of this Paper is to show how to construct a competitive
equilibrium in which consumer choices are the outcome of such a game. Our
construction relies on a class of preferences that generates linear decision
rules. We obtain explicit formulas for the prices of state-contingent claims and
for equilibrium consumption—wealth ratios. Because consumer choices result
from the strategic interaction between current and future incarnations of the
same consumer, standard arguments that rule out bubbles on long-lived
assets do not apply. We provide an example in which the presence of a long-
lived asset that is in positive net supply is required to ensure existence of a
competitive equilibrium. We give conditions on endowment growth and
subjective discount rates that rule out bubbles. These conditions cover most
interesting applications.



In addition, we derive analytically convenient expressions for interest rates
and risk premia by letting the length of a period go to zero. In the resulting limit
economy, we show that the ratio between the instantaneous expected return
and volatility is not affected by rates at which consumers discount utility.

Short-term interest rates in this economy depend on a utility-weighted average
of subjective rates of time-preference. If utility is expected to grow at a
constant rate, then the relevant utility weights are constant and the economy
is observationally equivalent to one in which consumers are time-consistent.
On the other hand, fluctuations in the growth rate of consumption affect these
utility weights. This causes interest rates to move in ways that differ from the
standard model. In particular, changes in expected future growth rates of
consumption affect the current short-term risk-free rate. In standard versions
of economies with time-consistent preferences, short-term interest rates would
only depend on the one-period ahead growth rate of consumption.

Psychologists have argued that, as in the example mentioned above,
subjective rates of time preference are higher at nearby horizons than at
distant horizons. To reconcile the low level of interest rates observed in the
data with the high short-run subjective discount rates emphasized by
psychologists we need to assume that long-run subjective discount rates are
quite low. For the preferences we consider, wealth—consumption ratios and
expected discounted utility growth are proportional. Low discount rates for
distant utilities tend to make expected discounted utility (and therefore wealth)
more sensitive to shocks that predict changes in future endowment growth
rates. This raises the volatility of aggregate wealth. In turn, the increased
volatility of wealth raises the risk premium on aggregate wealth.

Using numerical simulations we show that if consumers discount utility in this
way, aggregate wealth can be significantly more volatile relative to
consumption than is the case when consumers discount utility at a constant
rate. This may be part of an explanation for the empirical evidence that
suggests that important components of aggregate wealth, such as the stock
market, are too volatile.



1. INTRODUCTION

Most explicit dynamic equilibrium models in macroeconomics and finance are based
on the assumption that consumers have time and state separable preferences and
discount future utilities exponentially. This implies that subjective discount rates are
constant, and thus that consumer choices are dynamically consistent.

Psychologists have questioned the validity of the assumption of exponential dis-
counting on the basis of experimental evidence (Herrnstein (1961), Ainslie (1975,
1992)). These studies suggest instead that subjective discount functions are approx-
imately hyperbolic. According to this literature, events in the near future tend to
be discounted at a higher rate than events that occur in the long-run. This creates
a conflict between an individual agent’s preferences at different points in time. The
course of action preferred today by a hyperbolic agent does not coincide with the
one he knows he would like to implement tomorrow. As a result, self-control and the
degree to which agents are able to commit to future choices become central issues for
decision making.

If consumers can perfectly commit to a sequence of consumption choices, then
standard consumer theory applies, whether subjective discount factors are geometric
or not. Consider for example an exchange economy with time-invariant period utility
functions, constant aggregate endowments, and date-zero markets for consumption
at all future dates and in all future states. In this economy, the term structure
of interest rates coincides with the term structure of the representative consumer’s
rates of time preference. As Loewenstein and Prelec (1992) have suggested, the
experimental evidence would then lead one to expect higher yields on short-maturity
bonds than on long-maturity bonds. Empirical studies on the term structure of
interest rates indicate that on average the opposite is true.

In this paper, we assume instead that consumers have no means through which
they can commit to future consumption choices. Under this assumption, we examine
an exchange economy with a sequence of markets. In every period, consumers can
trade in a complete set of one-period state contingent claims (and possibly in some
long-lived securities as well.) These contracts can be perfectly enforced, so that
consumers can be allowed to borrow up to the present value of their endowments.
In contrast, there are no enforceable contracts that allow consumers to commit to a
particular sequence of consumption choices.

The only restriction we impose on subjective discount factors is that the utility
of aggregate endowments is finite. Following Pollak (1968), Phelps and Pollak (1968)
and many others since, we take individual consumption and portfolio choices to be
the outcome of an “intrapersonal game” in which the same individual consumer is
represented by a different player at every date.! Consumers are assumed to have
the same constant relative risk aversion (CRRA) preferences. Endowments processes
may differ across consumers.

We consider competitive equilibria in which consumers all follow intrapersonal

IBeyond the consumption-savings problem, the “multiple selves” methodology has been applied
to a broad set of self-control issues. See for instance Akerlof (1991), Benabou and Tirole (1999),
Carrillo and Mariotti (1997), O’Donoghue and Rabin (1996, 1997).



strategies that give rise to consumption and portfolio choices that are linear in wealth.
We give conditions under which there exists a competitive equilibrium in which these
types of strategies constitute a Markov perfect equilibrium in the intrapersonal game.
The linearity of the individual decision rules implies that standard aggregation results
apply. We obtain explicit expressions for the consumption and portfolio strategies, as
well as for the equilibrium prices of state contingent claims. The fact that individual
behavior is the outcome of a game implies that standard derivations of a transversality
condition do not apply. We provide conditions on preferences and endowments that
nevertheless rule out bubbles on long-lived assets.

An important first question is to what extent subjective rates of time preference
can be inferred from market data. We generalize the observational equivalence result
of Barro (1999) to the case of an economy with uncertainty. Subjective discount
functions cannot be inferred from state prices or consumption-wealth ratios if the
period utility function is logarithmic, or if the conditionally expected growth rate
of utility is constant. In these circumstances, the representative agent consumes a
constant fraction of wealth in each period, irrespective of the shape of the subjective
discount function. It follows that state prices will be the same as if consumers were
discounting utilities exponentially.?

Although we obtain explicit expressions for state prices, the effect of non-geometric
discounting on interest rates and risk premia is not easy to analyze in a discrete-time
economy. We derive formulas for the risk-free rate, the market price of risk, and the
risk premium on aggregate wealth in a limit economy obtained by letting the length
of a period go to zero. We show how interest rates depend on a utility-weighted
average of subjective discount rates, and establish that the market price of risk in the
limit economy does not depend on the subjective discount function.

This continuous-time limit allows us to further examine the impact of time-
inconsistency on asset prices in an economy in which log endowment growth is gov-
erned by a Feller (1951) square-root process. Log-endowments may be either trend-
stationary or difference-stationary. The square-root process generates persistence in
the volatility of endowment growth, and possibly in mean endowment growth as well.
As a result of this persistence, geometric and non-geometric discount factors are no
longer observationally equivalent.

In this environment, we show that the type of discount functions suggested by
experimental studies make aggregate wealth more volatile. The intuition is that
the high subjective discount rates for near-future utilities typically generated by hy-
perbolic discount functions must be matched by low or even significantly negative
subjective discount rates for long-run utilities, or else interest rates would be too
high compared to what is observed in the data. For the type of endowment processes
we consider, these low or negative discount rates at long horizons make wealth more
sensitive to new information, thereby increasing volatility. Since the market price of
risk is unaffected by consumer rates of time preference, this raises the risk premium

2In the presence of market frictions such as transaction costs or borrowing constraints, consump-
tion will typically not be a constant fraction of wealth, even if endowment growth is i.i.d or if
preferences are logarithmic. This allows one to distinguish between geometric and non-geometric
subjective discount factors. See Harris and Laibson (1999).



on aggregate wealth. We provide two numerical examples to illustrate that these
effects can be quantitatively significant, with the risk premium on aggregate wealth
increasing by several percentage points per annum.?

These results suggest that variable subjective rates of time preference may be part
of an explanation for the high volatility and risk premia observed in historical data on
stock returns (LeRoy and Porter (1981), Shiller (1981), Mehra and Prescott (1985)).

Related Literature Strotz (1956) and Phelps and Pollak (1968) are early authors
who considered additively time-separable preferences with non-geometric discounting.
The discrete-time “quasi-hyperbolic” discount function introduced by Phelps and
Pollak in a model of imperfect intergenerational altruism was later used by Laibson
(1994) to capture the qualitative features of hyperbolic discounting for an individual
consumer. Laibson (1997) shows that a partially illiquid asset may be used as a
commitment device by consumers with time-inconsistent preferences. Harris and
Laibson (1999) study the dynamic choices of a quasi-hyperbolic consumer facing a
constant risk-free interest rate and subject to borrowing constraints. They derive an
Euler equation that depends not only on the level of consumption at two dates, but
also on the marginal propensity to consume out of wealth. Krusell and Smith (1999)
consider a version of the economy in Mehra and Prescott (1985) with quasi-hyperbolic
discount factors in which observational equivalence does not obtain, and argue that
consumers must have negative rates of time-preference for nearby utilities in order to
account for the low level of interest rates observed in US data.

Gul and Pesendorfer (1999a) have proposed an axiomatic derivation of prefer-
ences for commitment that does not rely on non-geometric discounting. The recur-
sive structure of the resulting “dynamic self-control” preferences allows them to apply
standard dynamic programming techniques to determine optimal consumer choices,
thereby avoiding the multiplicity of equilibria typically associated with the multiple
selves interpretation of individual behavior. They study the impact of such prefer-
ences for competitive equilibrium in Gul and Pesendorfer (1999b), and argue that an
increase in the cost of self-control of consumers can raise the equity premium.

Outline of the Paper The economy is described in Section 2. In Section 3, we
analyze the intrapersonal game faced by a typical consumer and derive competitive
equilibrium prices. Section 4 derives expressions for interest rates and risk premia in
a limiting economy obtained by letting the length of a period go to zero. In Section 5,
we assess the quantitative impact of time-inconsistent preferences when endowment
growth exhibits serial dependence. Section 6 contains concluding remarks. Readers
mainly interested in our quantitative experiments can focus on Section 3.3 together
with equations (10), (15)-(16) and (23), compare (23) with the continuous-time results
(32)-(34), and then continue with Section 5.

3Habit persistence also makes the shape of the subjective discount function matter for asset
prices by generating predictability in period utilities. We have experimented with the preferences
proposed by Campbell and Cochrane (1999), assuming, as they do, that log-endowment growth is
i.1.d. Quasi-hyperbolic subjective discount factors in this economy can raise the risk premium on
aggregate wealth by as much as 3% per annum.



2. AN EXCHANGE EcoNOMY

2.1. Environment

We consider a discrete-time, infinite-horizon economy. Time is labelled by t =
0,1,2,...

Information Uncertainty is described by a probability space endowed with a fil-
tration {F;}2,. For each ¢, we denote by Ei[| the conditional expectation operator
with respect to F;. Throughout, random variables indexed by ¢ are taken to be
Fi-measurable.

Endowments There is a single good available for consumption in every period.
The representative consumer’s non-negative endowments of this good are denoted by
{n:}2,- One interpretation is that the consumer supplies labor inelastically and has
access to a linear technology that converts labor into consumption goods. There are
also k_; > 0 units of a long-lived asset that produces non-negative dividends {d;}°,.
Aggregate endowments are denoted by e; = ny + dik_1. We assume that aggregate
endowments are strictly positive at all dates, with probability one.

Preferences Following Strotz (1956), we view the individual consumer as composed
of a sequence of autonomous temporal incarnations, hereafter called date-t consumers,
indexed by their period of control over consumption and portfolio decisions, t =
0,1,2,... The date-t consumer evaluates current and future consumption according

to a utility function:
Z 5nu(ct+n)] ) (1)
n=0

where §p = 1 and 8, > 0.* The sum of the §, may or may not be finite. The
consumer’s preferences are time-inconsistent if ¢,,,1/6, is not a constant function of
n. Throughout, we assume that the period utility function u(-) is given by:

Ui({cstozy) = By

=

u(c) = T

for some v > 0, v # 1. We take v = 1 to mean u(z) = In(z).
It is possible to modify (1) to incorporate exogenous subsistence levels {¢,}°, by
letting the period utility function in period ¢ be:

(c— Qt)1_7
T (2)

instead of u(c). If we assume that n; > ¢, then consumers can achieve subsistence
without participating in markets. In this case, all results presented below will continue

4Most of what follows in this section generalizes easily to the case in which the date-t consumer
uses stochastic subjective discount factors {8¢14n }o2 g With 6 ¢4y In Frpp.



to apply, without further conditions, if throughout we replace ¢;, n; and e; by ¢; —¢;,
ns — ¢, and e; — ¢, respectively. The assumption n; > ¢, implies that e, — ¢, > d;k_;.
Therefore net-of-subsistence endowments will be positive, and the present value of the
dividends generated by the long-lived asset is guaranteed to be finite if the present
value of net-of-subsistence endowments is finite.

Example 1 Standard geometric discounting is equivalent to 6,, = 3" for some 3 > 0.
The implied rate of time preference is constant and equal to — In(g3).

Example 2 Experimental studies by psychologists (see Herrnstein (1961), and, for
a survey, Ainslie (1992)) and economists (Thaler (1981)) suggest that rates of time
preference tend to decline as a function of the horizon over which utility is discounted.
Loewenstein and Prelec (1992) have proposed an axiomatic justification for the fol-
lowing “generalized hyperbolic” discount function:

bn = (1+Cn)¥/¢,

where ¢ and £ are both positive. This generalizes the hyperbolic discount function
proposed by Ainslie (1975) to account for the reversal over time of preferences for
rewards at different horizons. The corresponding discount rate & (1 + ¢ n)_l declines
hyperbolically with the horizon n. The limit case, as ¢ — 0, is the geometric discount
function 6,, = exp(—¢&n).

Example 3 Phelps and Pollak (1968), and more recently Laibson (1997) and Har-
ris and Laibson (1999), among others, have considered what is now called “quasi-
hyperbolic” discounting, following Laibson (1994):

68" if n<N
5, = .
§Ng i n> N

Laibson (1994), considering the case N = 1 and § < 1, has argued that this pro-
vides a good approximation to the hyperbolic discount function given in the previous
example. More generally, the parameter N can be used to construct a kink in the sub-
jective discount function at different horizons. This may be useful when considering
alternative assumptions about the length of a period.

2.2. Markets

Our main assumption is that markets are complete.

Assets One-period ahead state-contingent claims are traded at every date and in
every state. For any date ¢, we denote by b, the portfolio of such claims purchased
by the date-t consumer and maturing at date ¢ + 1. There are no claims outstanding
at date 0: by = 0. The long-lived asset or “stock” is traded at every date t at an
ex-dividend price s;.



The Budget Set At date ¢, the date-t consumer can choose non-negative consump-
tion ¢, a stock portfolio k;, and a portfolio of state-contingent claims b; 1, subject to
the period-t budget constraint:

T¢Ct + Et [7Tt+1bt+1] + ﬂ-tst]{:t S Tt + 7Ttbt + 7Tt(8t + dt>l{3t_1. (3)

The {m: }2, are strictly positive probability-weighted state contingent prices. We will
usually take my = 1, making consumption at date 0 the numeraire. In addition, at
every date t, the consumer faces the borrowing constraint:

> Wsns] . (4)

s=t+1

i1 b1 + (Se41 + dig1)ke] > —Era

Part of the definition of a competitive equilibrium will be that the right-hand side of
(4) is finite. We shall assume that consumers who hold a positive amount of the stock
can freely dispose of it if the stock price happens to be negative. In any equilibrium,
therefore, s, must be non-negative.

Arbitrage Since we assume that there are one-period claims for every contingency,
it must be the case that:

St = By (i1 (Se1 + diga)]

for all t > 0, or else the date-t consumer would be able to construct an arbitrage.’
Together with the fact that stock prices must be non-negative, this implies that:

i T edg

s=t+1

TSt = By + T2, (5)

where {z:}°, is a non-negative sequence of random variables that satisfies:
Tz = By [T12641] (6)

for all ¢ > 0. This says that the value of the stock must be equal to the present
value of dividends, plus a non-negative “bubble.” In any equilibrium, the price of the
stock must be finite, and thus the present value of the dividends must be finite in
equilibrium.® Using (5) and (6), together with the definition of e;, we can define the
consumer’s wealth w; at date ¢ to be:

o)
E 7T868

s=t

TiWy = Et + Wt(bt + Ztkt—l)- (7)

5 A priori, it might be possible to construct subgame-perfect equilibria of the intrapersonal game
in which such arbitrage opportunities are not exploited. We will not consider this possibility here.

6 An arbitrage strategy that attempts to exploit a situation in which s; exceeds the present value
of future dividends by selling the stock short and using part of the proceeds to finance dividend
payments will at some date violate the borrowing constraint (4). The inequality in (4) will be strict
in equilibrium and we will give conditions under which z; =0 if k_; > 0.

6



In the absence of arbitrage opportunities, the portfolio decision in each period amounts
to a choice of the amount of state contingent wealth available in the next period. The
set of budget-feasible consumption choices defined by (3)-(4) is therefore equivalent
to the set of sequences {¢;}7°, that for some sequence {wy,1}:2, satisfy:

Tic + Ey[mpp1wign] Wy, (8)

<
cp, Wy 2> 0

for all ¢ > 0, where wy is given by (7). Note that wg is completely determined by
state prices if k_; = 0. If k_; > 0, then the initial value of the bubble on the stock
also affects the consumer’s initial wealth. Note also that the stochastic process of
endowments {e;}:°, only affects the consumer’s set of feasible consumption choices
via wp, unlike in models with borrowing constraints that are tighter than (4), such
as Harris and Laibson (1999). This means that there is no commitment value to
changing the process of {e;}$2,, using, for instance, pension commitments that are
not directly tradable.

2.3. Intrapersonal and Competitive Equilibrium

Throughout, we maintain the assumption that consumers are price takers. In the
absence of any commitment technology, the consumer’s individual behavior is the
outcome of a strategic interaction between his successive temporal incarnations, and
not of a single optimization problem as in the standard theory of consumer demand.
In the resulting intrapersonal game, each date-t consumer chooses his current con-
sumption and a portfolio of assets, taking as given a sequence of prices {m, s:}:°,
and the strategies of his successors.

The Intrapersonal Game Given a sequence of prices {m, s;:}2°,, a strategy for
the date-t consumer in the intrapersonal game is a mapping (Ci(-), Wiy1(+)) that
specifies, for any history h; of the game up to date t:

(i) A consumption level at date t, ¢; = Cy(hy);

(ii) A state contingent wealth level at date ¢ + 1, w1 = Wipi(hy),

such that the budget constraints (8) are satisfied given the wealth level w; at date t.
The history h; consists of all events observed by the date-t consumer, including the
realizations of endowments and prices, as well as past consumption and wealth choices.
Given a price sequence {7y, s;:}72,, an intrapersonal equilibrium is a subgame-perfect
equilibrium of the intrapersonal game played by the sequence of date-t consumers.

Competitive Equilibrium A competitive equilibrium of the representative agent
economy is given by a strategy profile {(Cy(+), Wii1(+)) }52, in the intrapersonal game
and a price sequence {7, s;}:2, such that

(1) {me, st}2, satisfies the arbitrage conditions (5)-(6);



(ii) Initial wealth wyq is finite at prices {m, $:}7°;
(iil) {(Cy(:), Wit1(+))}52, is an intrapersonal equilibrium at prices {m, s;:}520;
(iv) On any intrapersonal equilibrium path, the goods market clear at any date.

It follows from the price-taking assumption that when evaluating the payoff of a
deviation from the intrapersonal equilibrium, each date-t consumer takes into account
the impact of prevailing prices on the continuation equilibrium. In particular, markets
need not clear following a deviation.

3. EQUILIBRIUM

For an infinitely-lived consumer, the coordination problem between his temporal in-
carnations may lead to the existence of multiple intrapersonal equilibria. In particu-
lar, bootstrap strategies may be used very naturally in a multi-self context to miti-
gate the consumer’s self-control problem (Laibson (1994)). We study these equilibria
in Luttmer and Mariotti (1999). As a benchmark, we focus here on intrapersonal
Markov equilibria in which the consumption and portfolio choices of the consumer at
any date will depend only on his wealth and on exogenous variables.” In the following,
we first characterize the linear intrapersonal Markov equilibria. We then construct a
competitive equilibrium for the representative agent economy.®

3.1. Intrapersonal Equilibrium

We shall construct a subgame perfect equilibrium for the intrapersonal game in which
a date-t consumer who starts with wealth w chooses consumption ¢;(w) and next-
period wealth w1 (w) according to the following linear rule:

c(w) = ¢w (9)

W (w) = ¢t+1w

for some time and state dependent coefficients ¢, and 1), that do not depend on
wealth. These strategies are Markov strategies in the sense that the choices of the
date-t consumer are only influenced by past actions through the state variable wealth.

Given the strategies (9), let ¢;¢in(w) denote consumption at date ¢ + n when
wealth at the beginning of date t is given by w. Define:

Vt(w) =L

> 5n+lu<ct,t+n(w))] : (10)

"This is also the perspective adopted by Phelps and Pollak (1968) and Harris and Laibson (1999).
See Maskin and Tirole (1998) for a thorough investigation of the Markov perfect equilibrium concept.

8The derivations we present in this section only cover the case v # 1. Analogous derivations
can be performed for the case of logarithmic preferences. They show that our formulas for wealth-
consumption ratios and state prices ((21) and (23) below) continue to apply.



(Note that the first subjective discount factor in V;(w) is 6;.) Then (9) yields:

Vitw) = 4 ().

where:

o n Iy
Av=Ep | bniadyiyy) (H m) (11)
n=0 k=1
To construct a subgame perfect equilibrium we need to determine the best response
of the date-t consumer when the date-t + n consumers consume a fraction ¢, ,, of
their wealth and let wealth grow at a rate v, ,,, for all n > 1. Given wealth w;, this
best response is the solution to:

1—
¢ !
ctyawi41>0 | 1 — y

max + By [Vig1(wisr)] = meey + Eympwi] < Wtwt} )

The first-order conditions for this maximization can be written as:’

-
Te+1 A Wi+1

= A¢+1 .
T Ct

Together with the budget constraint this yields optimal choices for ¢; and w; . It is
not difficult to see that these choices are again of the form (9). The coefficients ¢,
and 1), ; that describe the best response of the date-t consumer are determined by:

(12)

- _ T\ -1
. 14+ E Ti+1 o Al/'y
¢ = + L P t41 (13)
i 1-1/y 1\ 1/
Ti+1 1/ A
= 1+ F A . 14
¢t+1 ( " ( Tt ) o ) (7Tt+1/7Tt) ( )

A subgame perfect equilibrium for the intrapersonal game is now given by the strate-
gies (9) and a sequence {Ay, ¢,, 10,1152, that satisfies (11) and (13)-(14). Explicit
solutions for {A, ¢, 1, 1 }i2, are easily obtained in the case of time-consistent pref-
erences or if the period utility function is logarithmic. When v # 1, the system of
equations linking together { Ay, ¢, 1, 1 }72 is non-linear. Given arbitrary state prices,
typically no explicit solutions are available, although one can show that there exists
a unique and constant solution for {Ay, ¢,, ¥, 1 }520 if v > 1 and {m1/m }52, is i.i.d.
Nevertheless, explicit solutions can be obtained at equilibrium prices.

3.2.
State prices {m:}$2,, together with strategies for the intrapersonal game that satisfy
(9), (11) and (13)-(14), form a competitive equilibrium if and only if the implied
consumption choices clear goods markets at all dates and in all states.

Competitive Equilibrium

9A precise justification is given in the proof of Proposition 1.
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The first step in constructing an equilibrium will be to use the market clearing
conditions to express A; in terms of the endowment process. To simplify the resulting
formulas, define:

. -
€tin
r, = E Z5n( :) ] (15)
| n=0 t
- et—i—n it
A= B |D bua |~ : (16)
| n=0 t

and note that I'; and A, are related via:

<et7:1)17 Am] . (17)

Of course, we shall need to assume that the subjective discount factors and endow-
ments are such that I'; and A, are finite. It is immediate from (15) that this is true
if and only if the discounted utility from the aggregate endowments is finite from the
perspective of every date-t consumer.

It follows from the linear consumption and portfolio strategies (9) that market
clearing at all dates and in all states is equivalent to:

Ft:1+Et

€y — qu’UJ[) (18)
together with:
€41 _ ¢t+1¢t+1 (19)
€¢ th

for all £ > 0 and in all states. Using (19) and the definitions (11) and (16) of A; and
A; one can verify that A; must therefore satisfy:

oo n 1=y
A=Y b (22 [0 | | =0t (20)
n=0 O k=1
in any equilibrium. At ¢, = e;, the first-order condition (12) can be written as

o1 /T = Ari1d) 1 (erp1/e) 7. Together with (13) this gives:

1— -1
- (€
Cbt = <1 + B At+1¢t+(} " <;_+1> ]) .
t
In combination with (17) and (20) this implies that ¢, must be given by:
1

= — 21

¢t Ft ( )

in any equilibrium. For these consumption-wealth ratios, portfolio choices 1), ; must
satisfy:
ery1ly1

22
o, (22)

¢t+1 =
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to ensure that consumption grows at the rate required by (19). Note from (20) and
(21) that A;¢] = A,/T. State prices must therefore be given by:

41 _ At+1 <€t+1>7 (23)

Tt Ft+1 €¢

At this point, we have constructed consumption-wealth ratios (21), portfolio choices
(22), and state prices (23), for which the growth rate of consumption is equal to the
growth rate of endowments in all states and at all dates t > 1. It remains to show
that the goods market clears at date 0.

It follows from (18), (21), and the definition (7) of wealth at date 0 that market
clearing at date 0 requires that:

To = — &, Zok‘ .
To€o

Z Tt€
Given our construction of state prices, we shall argue that the first term on the right-
hand side of this equation is finite and no greater than I'g. If £_; > 0, this establishes
that an equilibrium exists: one can simply adjust zy > 0 to make up the difference
between egl'y and the present value of endowments. If zg > 0 is required, then there
is a bubble on the long-lived asset. We shall give conditions that ensure that egl’y is
actually equal to the present value of endowments. These conditions then imply that
there can, in fact, be no bubble on the long-lived asset. Furthermore, these conditions
ensure that an equilibrium also exists if £_; = 0.

To see why egl'y cannot be less than the present value of endowments, note that
the solution for state prices (23) together with (17) implies:

T, =14 E, KM) Pm} .

€t

Because state prices and endowments are positive we can thus write:

+ lim E[) |:(7TT6T) FT:| .

Since I'; is positive by construction, the limit term on the right-hand side of this equa-
tion is non-negative, and thus egl'y must dominate the present value of endowments.

To rule out bubbles and ensure existence of equilibrium in case k_; = 0 we there-
fore need to show that (using (23)):

Hrt : <€t 1>1_1 =0. (24)

This does not follow simply from assuming that A; and I'; are finite at all dates
and in all states. We shall consider two assumptions under which (24) holds. These
conditions cover our applications in Section 5.

lim EO

T—o0
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Condition A Thereis a k € (0,1) such that kI'; € (0, 1] at all dates and in all states.

Condition B There is some 3 > 0 such that 6,41/6, < [ for all n > 0, and for

which:
o0 e 177
> () ] < o0 (25)
n=0 €t

Ey

at all dates and in all states.

Condition A is equivalent to stating that the equilibrium consumption-wealth ratio
is bounded away from zero. This ensures that consumers do not over-accumulate
wealth. Condition B is a simple way to translate arguments that rule out bubbles in
economies in which consumers discount geometrically to economies with more com-
plicated subjective discount factors. One application of Condition B is an economy
with v > 1 and 6,41 < d,, and with endowments that are expected to grow exponen-
tially in the long run, following every date and state. In this case we can simply take
(B = 1. The proof of the following proposition is given in Appendix A.

Proposition 1 If at least one of Conditions A or B holds, then there is an equilibrium
and there is no bubble on the long-lived asset if it is in positive net supply.

In Luttmer and Mariotti (1999) we consider the N = 1 case of the quasi-hyperbolic
preferences introduced in Example 3. For this case, we show that there is always a
unique linear Markov equilibrium, provided I’y is finite.!”

A Bubble Example Proposition 1 implies that there can be no bubble if prefer-
ences are time-consistent, since in that case Condition B applies. If Conditions A
and B do not hold, then a linear Markov equilibrium may not exist when k_; = 0, or
there may be a bubble on the long-lived asset when k_; > 0. As an example, consider
an economy with v # 1 and endowments given by ey > 0 and:

G e/

€t—1
for some € > 0 and for all ¢ > 1. These endowment growth rates are so large
that utility will not be finite for any geometric subjective discount function. No
equilibrium would exist if consumers were time consistent, and Condition B must
be violated. Suppose instead that the representative consumer’s subjective discount

factors are given by:
/Bn 1-‘1—8
n!
where 3 is positive and smaller than one. These subjective discount factors decline

fast enough to ensure that:
A i B+ )\
b (n+ 1)lt!

n=0

10Tf § < 1 in Example 3, this follows directly from Proposition 1 as Condition B is then satisfied.
If 6 > 1, a separate argument is needed as Condition B may not hold.
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is finite.!! Clearly, A, is increasing and unbounded in ¢. Recall from (17) that

[y =1+ (e;/es—1)'7As. So Condition A must be violated, and:
ﬁ A (i)l7 _ (er/er1) " A
paley Iiop \ei1 1+ (et/et_l)k7 A,

(&:/&:—1)177 Ay
I+ (et/et—1>1_7 A

1
l——].
1( 1_|_A0t1+a>

This converges to a positive number as T — oo, since € and A, are both strictly
positive. Hence, (24) is violated, and this economy has no linear Markov equilibrium
if there is no long-lived asset in positive net supply. If £_; > 0, such an equilibrium
exists, but there must be a bubble on the long-lived asset.

AV
s T B

o+
Il

Average Subjective Discount Factors As can be seen from the equation for
state prices (23), the two variables that determine state prices in this economy are
endowment growth and the ratio A;/T';. If consumers discount geometrically, the
ratio A;/I'; is constant and equal to the subjective discount factor 3. For general
subjective discount factors, the ratio A;/T"; can be expressed as a weighted average

Of O y1/6n:
At o - 6n+1
T, an,t< ;. ) (26)

n=0

where the weights w,, ; are given by:

by, = E, [5n (et—i-n/et)l_’q )
" E, [Zzo:o b (et—i-n/et)l_’q

These weights are proportional to the expected utility of date-t + n consumption
from the perspective of the date-t consumer. In the special case of quasi-hyperbolic
discounting, 6o = 1 and 6,, = 64" for all n > 1, this yields the “generalized Euler

equation:”
Tt+1 1-¢6 €41 -
= 1-— — 27
wop(i- 1) (%) (21)

of Harris and Laibson (1999). More generally, consider the properties of (26) if
subjective discount rates are relatively high at nearby horizons, and low at distant
horizons. The discount rates implied by A;/T"; will then depend on the timing of
endowment growth. If v > 1, high early endowment growth lowers the weights on
Ont1/0n for small values of n and this lowers the discount rate implied by A, /T. If

"'Note that Y o2, 3" (t_1L+’L) = (1 — B)~*. From this one can compute A;at € = 0. The result
then follows for € > 0 since all but finitely many of the terms in the series that defines A; must be

smaller than one.
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the same amount of endowment growth is delayed, more weight is put on 8,,.1/6,, for

small values of n. Delayed growth therefore increases the discount rate implied by

Identification The characteristic feature of non-geometric discounting is the fact
that A;/T’; replaces the usual geometric subjective discount factor. This implies that
it is not possible to distinguish non-geometric discount factors from geometric ones if
A/T; happens to be constant. This will be the case if conditionally expected utility
growth, E;[(e;11/e:)'™7], is constant. For any subjective discount function, one can
then construct an alternative economy with a geometric subjective discount factor
given by 3 = A,/I';. State prices will be the same in both economies. It is not difficult
to verify that the wealth-consumption ratio in the alternative economy is again equal
to expected utility growth discounted using the geometric subjective discount factor
3. Thus consumption-wealth ratios cannot be used to identify properties of the
subjective discount function either.

As an example, one can take endowment growth to be i.7.d. and the information
structure {F;}?°, such that at any date nothing is known about future endowment
growth. Alternatively, one can take preferences to be logarithmic. If v = 1, then Iy
and A; are simply sums of subjective discount factors, and therefore constant across
time.'2

3.3. Some Intuition about State Prices and Marginal Utilities

In constructing our equilibrium, we have already defined a value function V;(w) in
(10). This value function represents the expected utility from date ¢ on, as viewed by
the date-t — 1 consumer, in the date-t subgame in which the date-t consumer starts
with wealth w. Now let Fy(w) be expected utility for the date-t consumer in the same

subgame:
Zénu<ct,t+n<w>>] .
n=0

Clearly, if 6,, = 8" then Vi(w) = BF(w). More generally, the two value functions are
related via:

E&(w) =L,

Fi(wy) = max {u(cy) + Ey [Vigr (i)}

Ct,Wt+1

where the maximization is subject to the budget constraint (8).!* The first-order and
envelope conditions for this maximization are:

T4l _ DW+1(wt+1)
Tt D'U/(Ct)
DF,(w;) = Du(c)

2Barro (1999) observes that in the standard deterministic Cass-Koopmans growth model one
cannot infer from data whether consumers discount geometrically or not if the economy is in steady
state, or if preferences are logarithmic. See also Laibson (1996).

13This equation is related to the “quasi-Bellman equation” developed by Harris and Laibson (1999)
for quasi-hyperbolic subjective discount functions.
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in all states and at all dates. Combining the first-order condition at date ¢ with the
envelope condition at date ¢t + 1, one can write:

Tt41 _ DW+1(wt+1) DU(Ct+1)
Ty DFy1(wiy1) Dule)

(28)

That is, the usual (geometric) subjective discount factor is replaced by a ratio of
marginal utilities of wealth based on the “one-period ahead” value function V., and
next period’s “current” value function F.;. Given that preferences are homothetic,
and that consumption and portfolio strategies are linear in wealth, it is not difficult
to see that Vi(w) = Ay (w/Ty)*7/(1 —v) and Fy(w) = Ty (w/Ty)*/(1 — ) in
equilibrium. Combining this with (28) implies that equilibrium state prices are indeed
given by (23).

4. CONTINUOUS-TIME APPROXIMATIONS

In the discrete-time economies we have considered so far, it was relatively easy to
construct a competitive equilibrium. However, characterizing the properties of this
equilibrium is more difficult. As we show in this section, this task is simplified con-
siderably when we let the length of a period go to zero.

4.1. Limit Properties of Discrete-Time Economies

Suppose that the subjective discount function §(¢) is defined for all ¢ € [0, 00), and
normalized so that 6(0) = 1. Suppose also that there exists an underlying continuous-
time endowment process {e;};>o that evolves according to a diffusion:

dIn(ey) = p,(z)dt + o(x;) dBy, (29)

where {B;}+>0 is a vector of independent standard Brownian motions, and {z;}:>¢ is
a vector of state variables that satisfies:'

dr; = py(z)dt + o4(2;) " dB. (30)

Given the discount function 6(-) and the endowment process {e;};>0, we construct
a sequence of discrete-time economies as follows. For any 7 > 0, interpreted as the
length of a period, consider a discrete-time economy with a sequence of subjective
discount factors 6, = 6(n7), n = 0,1,2,..., and endowments in period n given by
Tenr. For any t > 0 and 7 > 0, let:

) - E :gé(nﬂ (et;—t’”>l_1,

A() = B :ni;oé((n—l—l)T) <et+—’”>l_1

€t

14Without loss of generality, we take the dimension of B; to be equal to one plus the dimension
of x;.
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denote the analogues of (15) and (16) for the discrete-time economy with period
length 7. It then follows from (23) and an appropriate normalization that the state
prices for this economy are given by {m,,(7)}2,, where for any ¢ > 0:

mi(r) = exp Htﬁ G In @:8)) e (31)

n=1

and [t/7] denotes the integer part of ¢/7. From (21), 1/T',,(7) is the consumption-
wealth ratio based on consumption at date n7 in the discrete-time economy with
period length 7.

We now examine the sample path properties of the discrete-time state price process
(31) when 7 goes to zero. Note first that the consumption-wealth ratio and the ratio
1/A,(7) vanish as 7 goes to zero. In Appendix B we provide conditions that ensure
that, for every ¢ > 0, the quantities 7 Ay(7) and 7I'4(7) converge almost surely to
['(z;) as T goes to zero, where the function T'(-) is defined by:'?

/0 ) (e’; “)1_7 dv] . (32)

Furthermore, we show that, for every ¢ > 0, the difference I';(7) — Ay(7) converges
almost surely to ®(x;) as 7 goes to zero, where the function ®(-) is defined by:

L) ]

and the integration in (33) is with respect to the measure induced by 6(-) on [0, 00).
This, together with (31), implies the following proposition.

[(xy) = Ey

O(zy) = —E4

Proposition 2 Under regularity conditions, the state prices {m;(7) }+>o for the discrete-
time economy with period length T converge to:

ol ([B))

as T goes to zero, almost surely.

Appendix B gives a precise statement and proof of this result. Note that the sense in
which the process {m:(7)}+>0 converges to {m}+>0 as 7 goes to zero is quite strong:
almost every sample path of state prices in the discrete-time economy with period
length 7 converges pointwise to the corresponding continuous-time sample path.

5Note that since {x;}+>0 and {et}+>0 are time-homogenous diffusion processes, they both satisfy
the Markov property, hence I'(+) is independent of ¢. The same applies to the function ®(-) defined
below.
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Interest Rates and Risk Premia From (34), the limiting state price process
{m:}i>0 satisfies:
d7Tt = —T (T(.flft)dt + Uw(l't>TdBt) s (35)

where the instantaneous risk-free rate r(z;) and the “market price of risk” o, (z;) are
determined by:

o) = T melen) =~ g7 o), (36)
or(xy) = oe(xy). (37)

Observe that the shape of the subjective discount function §(-) is reflected in the first
term in (36). Clearly, if 6(¢) = exp(—pt), then ®(z;) = pI'(z;) and this term reduces
to p as expected. The last two terms in (36) are the usual terms that result from
endowment growth and curvature of the period utility function. It follows from (37)
that the market price of risk o.(z;) is not affected by the shape of the subjective
discount function 6(-).

Let R(z:) be the risk premium on aggregate wealth—that is, the instantaneous
expected excess return on aggregate wealth. In the limit economy, aggregate wealth
at time t is equal to eI'(z;). Standard calculations imply that R(z;) is given by the
negative of the instantaneous covariance between e,I'(z;) and 7, divided by me,I'(x).
This yields:

R(z,) =~ (ae(a:t)T LD ”?223@0 > o). (38)

The risk premium on aggregate wealth therefore does depend on the discount function
6(+), via its effect on the wealth-consumption ratio I'(x;).

If §(-) is sufficiently smooth so that one can write §(t) = exp(— fg p(v) dv), then
the first term in (36) simplifies to a weighted average of the subjective discount rates

{p(v)}o0: o) N
Tz :/0 p(v) w(xy, v) dv, (39)

where the weights w(z;, v) are given by:

_ b [8(v) (erro/er) ]
Ly Uooo 6(v) (€t+v/€t)1_7 dv} 7

as in (26). Alternatively, non-smooth subjective discount functions arise if consumers
discount any positive delay of utility by a discrete amount, while utility at positive
horizons is discounted at an instantaneous rate. Consider for example the discount
function 6(0) = 1, and 6(t) = dexp(—pt) for all ¢ > 0. The jump in the discount
function shows up in the risk-free rate (36) via:

O(xy) 1-6
T(w) " T(w)

w(zy,v)

(40)

Note that 6(-) can be seen as the limit as 7 goes to zero of discrete-time quasi-
hyperbolic discount functions with 6o(7) = 1 and 6,,(7) = § exp(—pn7) for each n > 1.
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One feature of this limit is that the wealth-consumption ratio (32) is proportional to
the time-inconsistency parameter ¢:

/0 "~ exp(—pv) (‘32”)1W dU] .

This implies that the vector DI'(x;)/I'(x;), and therefore the risk-premium on aggre-
gate wealth (38), only depend on p and not on é.

F(l’t> = 6Et

4.2. A Continuous-Time Economy with Partial Commitment

So far we have studied the limiting properties of a sequence of discrete-time economies
as the period length goes to zero. However, it is also possible to analyze the continuous-
time economy directly. Following Barro (1999), one way to do this is to assume that
consumers can commit to a particular consumption strategy for a short period of
time, and then let this commitment period go to zero. We now investigate under
what conditions this continuous-time approximation is equivalent to the one given in
the previous section.

A Sequence of Partial Commitments Assume as above that the endowment and
state variable processes {e;}+>0 and {z;}+>¢ evolve as in (29) and (30), and consider
an infinitely lived consumer whose preferences at any date ¢ over continuous-time
future streams of consumption {c;4, }»>0 are given by:

Uilfeusdus) = B | [ o) uteen) o).

where u(-) is a CRRA utility function, as before. Suppose that at any date ¢t = nr,
n=20,1,2,..., the date-t consumer can commit to consumption choices for an episode
7 > 0. Thus, at any such date t, the date-t consumer commits to a stream of
consumption {ctﬂ,}ue[w), as well as to an amount of wealth w;,, to be left to the
date-t + 7 consumer. The budget constraint for the date-t consumer is then:

E, [/ Tt 40Ctio AU + Ty Wiy r | < Tywy, (41)
0

together with the requirement that w;,, > 0.!® For any date t = n7, n = 0,1,2,...,
let {ctio(w)}o>o and {wy k- (W)}, be the consumption and portfolio strategies
in the subgame in which the date-t consumer starts period ¢ with wealth w. As in
the case of the discrete-time economy, we will focus on consumption and portfolio
strategies that are linear in current wealth:

Ct,t-i-v(w) = ¢t+vw7

Wt t+v (w) = Yy W,

16 One possible interpretation is that at every date ¢t = n7 there is a complete set of state-contingent
claims for every date ¢t +v, v € [0, 7]. Alternatively, one can assume that there is continuous trading
in a certain set of long-lived assets, in such a way that markets are dynamically complete.
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where v € [0, 7). For any date t = nt, n =1,2,..., let V;(w) be the discounted utility
expected by the date-t — 7 consumer from date ¢ on, in the subgame in which the
date-t consumer starts with wealth w:

Vi(w) = E; [ /O h 8(v 4 T) u(Cryo(w)) dol .

As in the discrete-time economy, the linearity of the consumption and wealth strate-
gies implies that V;(w) = A;w'™7 /(1 — 7). As a result, the optimal consumption and
portfolio choices for the date-t consumer will be linear if those of his successors are
linear. One can thus solve for the equilibrium decision rules and state prices exactly
as in Section 2. For any ¢t = n7, n = 0,1,2,..., the analogues of (15) and (16) can

be defined as T’y = I'(z,), and:
o0 e 1—y
/ o(v+7) (ﬂ) dv] :
0 €t

Note that ft is independent of the commitment period 7. Consumption and wealth
choices are determined by:

A1) = E;

5 _ Cto
t+v etrt

QZ _ CGyr Ft+T
t+1 6tft I

for each v € [0, 7), and equilibrium state prices are given by:

%iJrv(T) ) <€t+v>’y7

7Tt(’7') €t
Titr (7'> _ Agyr (7'> <et+7'> -
%t(T) ft+T €t 7
where v € [0,7) and t = n7, n = 1,2,.... If we let To(7) = ¢, ", the process for state

prices can be written as:

It/] zk ( )
(1) = 6(t — 7[t/7]) exp In a e . (42)
[ 2 F )
Observe that these state prices will in general differ from the ones obtained in an
economy with geometric discount factors, even if endowment growth is .i.d. or if
utility is logarithmic. The factor 6(¢t — 7[t/7]) introduces a periodicity in state prices
that allows one to identify 6(¢) over the interval [0, 7).

Small-7 Limits We now investigate the sample path properties of the state price
process (31) when 7 goes to zero. Note first that, as 7 goes to zero, 6(t — 7[t/7])
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converges to 6(0"), for any ¢ > 0. If 6(0") < 1, this only amounts to a different
normalization of the limiting state price process, and we can therefore ignore it.
Using the fact that:

S

[t/7] X [¢/7] Ty — Apr
ZI“(AEST>> IR U & ’fk,km) ’

k=1

for all ¢ > 0 and 7 > 0, one can show that the state prices {m(7)}+>0 for the
continuous-time economy with commitment period 7 converge almost surely as 7
goes to zero to a state-price process proportional to:

{Titizo = {eXp <—/0 %dv> 6?7} ) (43)

5, — lm L= /(O’OO) (GZU)M dé(w] , (44)

T—0F T
If 6(-) is continuous at 0, then P, = ®(x;) for each t > 0, almost surely, where
®(-) is given by (33). Hence, in that case, the sample paths of the limit state-price
process {7 }+>0 coincide almost surely with those of {m;}:>0 obtained as the limit of
state prices for discrete-time economies when the period length goes to zero. But in
general, (33) and (44) differ by an amount 1 — §(0"), so that the two limit state-price
processes do not coincide.

This potential discrepancy is an artifact of the commitment technology. The
reason is that for any 7 > 0 and n = 0,1,2,..., the presence of a jump in the
discount function 6(-) at 0 does not affect the optimal choice of the date-n7 consumer
who can commit to a consumption stream over the interval of time [n7, (n + 1)7).
The discontinuity of the discount function at 0 cannot therefore be reflected in the
limit state-price process {7 };>0 obtained as 7 goes to zero. A possible way to capture
the impact of such sharp changes in the discount function in the neighborhood of the
present period would be to consider a sequence of economies indexed by 7 > 0, where
now 7 not only represents the length of the commitment period, but also determines
the shape of the subjective discount function. For instance:

where, for each t > 0:

- _E,

1 if te[0,7)
5T<t) = ) (45)
§(t) if t € [r,00)

This corresponds to a case in which consumers do not discount over the commitment
period. Let I';(7) be the equilibrium wealth-consumption ratio for such an economy.

In Appendix C, we show that:
e =
[ (%) ww)| -0 a9
[0,00) €t
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for each ¢t > 0, almost surely. It is easy to check that (46) implies that the sam-
ple paths of the process obtained as the limit of state-prices for the continuous-time
economies when the commitment period length goes to zero coincide almost surely
with those of the process constructed as the limit of state-prices for discrete-time
economies when the period length goes to zero. This provides an alternative motiva-
tion for (34).

5. TIME-INCONSISTENCY AND VOLATILITY

As emphasized in Section 2, economies with different subjective discount factors are
observationally equivalent if conditionally expected utility growth is constant. In
this section we shall consider a model of endowment growth that exhibits serial de-
pendence, and show how quasi-hyperbolic and hyperbolic discount factors can make
aggregate wealth more volatile than when preferences are time consistent.

We shall assume that consumers discount using a subjective discount function 6(-)
that satisfies 6(0) = 1 and either:

6(t) = 6 exp(—pt)

for any t > 0 (the quasi-hyperbolic case), or:
8(t) = (1 + Ct)~*/ exp(—pt)

for any ¢ > 0 (the hyperbolic case.) Taking 6 = 1 or ( — 0 corresponds to geo-
metric discounting, at rates p and p + &, respectively. Note that the second discount
function combines a geometric part with the generalized hyperbolic discount function
proposed by Loewenstein and Prelec (1992). For this combined discount function,
the subjective rate of time preference converges to p + £ as the horizon goes to zero
and to p as the horizon goes to infinity. The parameter ( governs the speed at which
the subjective rate of time preference changes from its short-run value p 4 £ to its
long-run value p. The parameter p also determines the consumer’s long-term subjec-
tive discount rate in the quasi-hyperbolic case. Keeping the value of p low, or even
negative, while at the same time choosing 6 < 1 or { > 0 allows us to examine pref-
erences that exhibit both high discount rates in the short run and very low, or even
negative discount rates in the long run.!” Recall from (36) and (38) that the risk-free
rate depends on ®(z)/I'(x), and that the risk premium on aggregate wealth depends
on DI'(z)/T'(z). A key factor in our analysis will be how these ratios depend on the
long-run rate of time preference p. Our specification of the endowment process will
enable us to characterize this dependence explicitly.

1"Kocherlakota (1990) shows that competitive equilibria may exist in an infinite-horizon economy
even if consumers have negative discount rates, and suggests this as part of solution to the equity
premium and risk-free rate puzzles. This has sometimes been objected to on intuitive grounds. Since
we can allow for strongly positive rates of time preference at short horizons, such objections have
less force in our context.
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5.1. A Square-Root Endowment Process

We consider an economy in which endowments evolve according to:
t t
In(e;) = In(eg) +nt + )\/ (u—z4)ds + 9/ Vx5 dBs, (47)
0 0
t t
T = :Eg+h:/(u—a:8)ds+0/ Vs dBg (48)
0 0

where x, p and o are positive. The {e;};>¢ process is a special case of one considered
by Heston (1993). The {z:}:>0 process is the Feller (1951) square-root process used
by Cox, Ingersoll and Ross (1985) and others. This process is stationary when x
has the right initial distribution. Its stationary density is proportional to z¥~le~“%,
where v = 2xku/0? and w = 2k/0?. The mean of z; is p and its variance is v/w?.
For small v, the stationary density is strongly skewed to the right. De-trended log

endowments are stationary if and only if:

A0

K g

If this condition is not met, then log endowments are difference-stationary. One can
then interpret (A\/k)z; as a stationary deviation from the stochastic trend:

i (222 /tde
n O_KOOCES .

In our calibrations we shall take A < 0. If z; is large, then the level of endowments
is far below its stochastic trend, and the evolution of both the stochastic trend as
well as the gap between trend and actual endowments are more uncertain than usual.
Since the stationary density of {z;};>¢ is skewed to the right, the endowment process
spends relatively little time below its trend.

Note that one can normalize the {x;};>0 process and at the same time re-scale
and 6 without changing the properties of the endowment growth process. If x; is not
observable, then there is no loss of generality in setting w = 1. The shape parameter
of the stationary density of {x;};>¢ is then simply v = p.

Expected Utility Growth We shall use the continuous-time approximations of
Section 4.2 to obtain interest rates and risk premia. These variables depend on the
functions I'(+) and ®(-). Both these functions can be expressed as integrals over time
of appropriately discounted expected utility growth. Since log-endowment growth is
a stationary Markov process, we can express expected utility growth over a period ¢
as a function of the current state x:
(2) |-
— To—=2| .
€o

A convenient feature of our specification of endowment growth is that G(x,t) can be
computed analytically. In Appendix D we show that under certain restrictions on the

G(z,t)=FE
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parameters:

Gla,t) = (%)V@(p (—Pt + <% (R+5)— (%)) wa:) (49)

for all z,t > 0, where:

P = (7—1)n+m/<(77_1) (%)—F%(R_S))a

R—-S
@ = R+ S’

() )
- () (3)

From hereon, we shall assume that consumers are more risk averse than when utility
is logarithmic. That is, v > 1. The parameter restrictions under which (49) is valid
then correspond to requiring that p = (v —1)A\/(wk) and ¢ = (7 —1)8/(wo) lie below
the solid curve in the Figure 1 (see Equation (61) in Appendix D; essentially, ) must
be no smaller than —1.) If this condition is not satisfied then G(z,t) diverges to oo
at some finite t. If G(z,t) is finite for all ¢, then both I'(z) and ®(x) are finite if and
only if P+ p > 0. If log-endowment growth is trend-stationary, then P = (y — 1)n
and P+ p > 0 amounts to the familiar condition p > (1 —v)n. If log endowments are
difference stationary, then P < (7 — 1)n and larger values of p are required to ensure
utility is finite.

Figure 1: Feasible values of p = O=DX and q= =18

WK wao

5.2. Interest Rates and Risk Premia

The expressions for the risk-free rate (36), the market price of risk (37), and for the
risk premium on aggregate wealth (38) specialize to:

r(z) = ?g; +7 <n - %m@Q — (A + %792) (z — u)) :
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ox(z) = 10V, (50)

R(x) = ~0 <9+ %) x

for all x > 0.

The dependence on §(-) of the risk-free rate and the risk premium on aggregate
wealth is not difficult to characterize in the case of quasi-hyperbolic preferences. As
shown in (40), quasi-hyperbolic discount factors imply that I'(x) is proportional to &
and that ®(x)/I'(z) = p+(1—0)/I'(x). Therefore ®(z)/I'(x) is increasing in p as long
as 0 < 1, and decreasing in . Consider making consumers more time-inconsistent by
lowering ¢ while at the same time also lowering p to keep the mean of the risk-free rate
unchanged. Since I'(z) is proportional to §, lowering ¢ does not affect DI'(z)/I'(x).
But lowering p does.

To see how, let f(t|z) be the density 6(t)G(x,t)/I'(z) and observe that the deriv-
ative of In(G(z,t)) with respect to x is monotone in ¢ and of one sign. By taking a
derivative with respect to p of DI'(z)/T'(z) = [} [01In(G(x,t))/0z] f(t|x)dt one can
verify that this ensures that:!®

a0 ‘DF(:E)
dp | I'(z)

< 0. (51)

That is, the log consumption-wealth ratio becomes more volatile as the long-run rate
of time preference p declines.

The risk premium on aggregate wealth is driven both by the volatility of the
consumption-wealth ratio, and by the correlation of this ratio with endowment growth.
One may verify that (R — S)DI'(z) < 0 unless R happens to be equal to S (R > S
corresponds to the area under the parabola in Figure 1.) The expression for the risk
premium on aggregate wealth then implies that:

OR(z)
dp

<0Oforallz < 0(R—S) <0.

If (R — S) < 0, then 6§ and DI'(x) are of the same sign, and thus innovations in
aggregate endowments and in the wealth-consumption ratio are positively correlated.
This implies that the return on aggregate wealth and aggregate endowments are
always positively correlated. This ensures that the risk premium on aggregate wealth
is always positive and increasing in the volatility of aggregate wealth. It follows that
making consumers more time-inconsistent by lowering ¢ and p raises the instantaneous
risk premium on aggregate wealth if (R — S) < 0.

The case of hyperbolic discount factors is a bit more complicated. Now ®(x)/T"(x)
satisfies (39) and one can verify that ®(z)/I'(x) is increasing in p and &, and decreas-
ing in (. By lowering p and raising £ and ( one can make the subjective discount
factors “more time-inconsistent” (discount nearby utilities at higher rates and distant
utilities at lower rates) while keeping the mean of the risk-free rate the same. For

8Note that f(t|x) is a density for any p, and that DI'(z)/T'(x) depends on p only via f(t|z). The
derivative of DI'(z)/T'(x) with respect to p can then be written as a covariance (interpreting t as a
“random variable” with density f(¢|z)) between 9In(6(t))/0p = —t and Oln(G(z,t))/d.
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the same reasons as in the case of quasi-hyperbolic discount factors, (51) holds, and
thus lowering p again makes wealth more volatile. But now DI'(z)/I'(x) also changes
with £ and (. The numerical results in the next section illustrate how increases in &
and ( can accentuate the increase in volatility of the consumption-wealth ratio that
is generated by lowering p.

5.3. Quantitative Results'’

We conduct two sets of experiments, loosely motivated by US data on aggregate
consumption, dividends, and asset returns. As an imperfect proxy for the return on
aggregate wealth we shall use the return on the value-weighted index of the New
York Stock Exchange (NYSE.) Table 1 below provides a guide for specifying the
endowment process. It shows means and standard deviations for annual US per
capita consumption and dividend growth for two sample periods. Mean growth rates
of consumption and dividends vary within a relatively narrow range, but the variances
differ significantly. To get some idea of the quantitative implications of our model we
shall take n = .0175 and let the standard deviation of endowments be 3% per annum
in Experiment I and 6% per annum in Experiment II. This is in the mid-range of the
statistics reported in Table 1.

Table 1: Endowments

20" Century Postwar

Consumption: Mean 1.77 1.89
St. dev. 3.26 1.22
Dividends: Mean 1.49 2.23
St. dev. 14.2 6.00

(Annual growth rates in percent.)

We shall adopt the normalization w = 1 and take x = .1 and v = 1.5. The parameter
K governs the persistence of the {z;}:;>¢ process and, indirectly, that of interest rates
and consumption-wealth ratios. Data on short-term interest rates and NYSE price-
dividend ratios suggest that both should be highly persistent. Thus x should be
small. A small value of k also implies that endowment growth exhibits only low
levels of serial correlation, as seems to be the case for US per capita consumption. A
value of 1.5 for v makes the stationary distribution of {z;}:>¢ highly skewed (see the
densities plotted in the background of Figures 4-6), and this may capture business
cycle asymmetries of the type documented by Hamilton (1989).

To complete the description of the endowment process, we need to determine
A and 0. In Experiment I we take log endowments to be trend-stationary. This
restriction suffices to determine A and 0. In Experiment II we take the risk-free rate
to be constant under geometric discounting. For a given value of v this also identifies

9This section is preliminary and only intended to illustrate some possibilities. A more complete
empirical investigation is in progress. All statistics reported in this section are gathered from Camp-
bell (1999), and Campbell and Cochrane (1999). These papers contain the original sources of the
data and the precise sample periods used.
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A and 6. In both experiments, we shall take v = 7.5. As we shall see, this yields
mean Sharpe ratios E[o,(z;)] that are in the right range for US stock returns. The
resulting estimates of A and 6 are negative in both experiments, so that “recessions”
(periods of below-trend consumption) are relatively short and uncertain. Moreover,
R > S for these estimates so that I'(x) is a decreasing function of the state x. The
parameter restrictions imposed so far are summarized in Table 2.

Table 2: Parameters

Experiment: I II
y 7.5 7.5
K 10 10

v =2ku/o? 1.5 1.5
w=2k/0? 1.0 1.0
A_ 0 0 _
Arlyr — 0
Eln(e1/e)] 0175 .0175
std[In (et41/e:)]  .0300 .0600

Given this specification of endowments and of the period utility function, we shall
now describe the implications of various assumptions about subjective rates of time
preference. We choose the parameters of §(-) so that the mean of the instantaneous
risk-free rate is equal to 2.5% per annum in Experiment I and 1% per annum in
Experiment II. These values are in the range of the mean for the century-long sample
(2.92%) and the postwar sample (.94%) reported in Campbell and Cochrane (1999).

We shall be interested to see what type of subjective discount factors can generate
a risk premium on aggregate wealth that is comparable to the equity premium in US
data. As one measure of the risk premium on aggregate wealth we report E[R(z:)].
This is the mean of the instantaneous expected excess return on wealth. Although
analytically convenient, this is not a direct measure of a discrete-time return. For
comparison with data, we also report the mean of the annual log return on aggregate
wealth. One can show that the mean of the log return on aggregate wealth over a
period 7 is given by (n+ E [F{ 1] )7, and the tables below report values for 7 = 1. The
concavity of the logarithm implies that this return is lower than might be expected
from E[R(z;)] and the level of the instantaneous risk-free rate.

Experiment I Table 3 reports means and standard deviations of returns for various
specifications of the subjective discount function. For the geometric discount function,
the parameter p is determined so that the mean of the risk-free rate is equal to 2.5%.
The results for this parameterization are reported in column G of Table 3. The mean
risk premium on aggregate wealth implied by these parameters is 3.55% per annum,
somewhat below the historical average for the period 1871-1993. Note that p has to
be negative in order to match the relatively low real interest rates found in the data.

The columns labelled H in Table 3 show results for different hyperbolic discount
factors.?? In each case, p is set equal to —.11, which is less than 10~2? away from

20The integrals over t that determine I'(z) and ®(x) are calculated numerically using the NAG
routine DO1AJF after the change of variables ¢’ =¢/(1 + ¢).
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P. Choosing p close to the boundary of the region that ensures that wealth is finite
maximizes the volatility of the wealth-consumption ratio. For given values of (, the
values of ¢ reported in Table 3 were chosen so that the mean of the risk-free rate is
equal to 2.5%.The results in Table 3 show that the risk premium on aggregate wealth
increases noticeably as consumers discount more rapidly over short horizons (that is,
as ¢ gets larger.) For large values of (, this risk premium is about 1.1% higher than
when consumers discount geometrically.

Table 3: Experiment I

Case: G H H H QH US-XX US-PW
5 1 — - - 200 - —
p —.080 —.110 —.110 —.110 —.107 —~ -
¢ - 1 10 106 —~ —~ -
¢ - 487 319 1.19%10°  — - -
|Elox(y)]| 21 21 21 21 21 22 43
Elr(z:)] 2.50 250  2.50 2.50 2.50 196 .79
std[ (z4)] 2.97  3.83  4.19 4.66 454 892 1.76
E[R(z)] 3.55 418  4.42 4.71 4.64 - -
n+E[1/T(z,)] 492 507 511 5.14 514  6.82 7.63
E[(y)] 344 343 346 35.1 349 211 24.7

Returns are real, annual, and measured in percent. The column US-XX
is based on 20'" century data for the US and US-PW is based on postwar
data. Risk-free rate statistics are from Table 2 of Campbell (1999). Other
data are from Table 2 of Campbell and Cochrane (1999).

1.2
1\
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\ e
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- -
0.4

Figure 2: §(t) = exp(—pt)(1 + (t)™¥%: p= —11 and ( = 1,£ = 48
(dash-dot), ¢ = 10,£ = 3.19 (dash), ¢ = 10°, & = 1.19 x 10° (solid); the
thin curve represents 6(t) = exp(.08t).
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Figure 2 illustrates the shape of the hyperbolic part of several of the discount
factors used in Table 3. As the figure suggests, the generalized hyperbolic discount
factor corresponding to ¢ = 10° should be well approximated by a quasi-hyperbolic
discount factor with ¢ around .2. The results for this case are reported in column
QH of Table 3. Again, the parameter p was chosen to ensure that the model implies
a mean risk-free rate of 2.5% per annum. The risk premium on aggregate wealth
reported in the third H column and the QH column of Table 3 are quite similar, as
expected.

Experiment II The results for the experiment with volatile endowment growth
are reported in Table 4. The non-geometric examples are constructed by setting
p = —.10. The corresponding discount factors are illustrated in Figure 3 below. The
impact on the risk premium on aggregate wealth of making consumers more time-
inconsistent is much more dramatic in this experiment than in Experiment I. The
values of ¢ and ( required to obtain a significant impact on returns are much smaller
than in Table 3. One reason is that the change in p is larger: from —.08 to —.11 in
Table 3 and from —.015 to —.10 in Table 4. In turn, this is a consequence of the fact
that the precautionary savings term —py26%/2 in the expression for the risk-free rate
is larger in this experiment than in Experiment I. A second reason is the fact that in
this experiment the Sharpe ratio is twice as large as in Experiment I. This doubles
the impact that changes in the volatility of aggregate wealth have on the expected
return on aggregate wealth.

Table 4: Experiment II

Case: G H H H QH US-XX US-PW
) 1 — — - 200 -
p —.015 —.100 —.100 —.100 —.071 - -
¢ - 100 250 .500 - - -
¢ —~ 195 326 514 —~ - -
|E[o(z,)]] 42 42 42 42 42 22 43
E[r(z;)] .00 1.00 100 1.00 1.00  1.96 79
std[ (z4)] 0.00 1.00 1.62 213 262 892 1.76
E[R(z})] 570 7.04 7.87 854 943 - -
n+E[1/T(z;)] 660 745 794 831 880  6.82 7.63
E[T(zy)] 198 174 176 170 163 211 24.7

Returns are real, annual, and measured in percent. The column US-XX
is based on 20" century data for the US and US-PW is based on postwar
data. Risk-free rate statistics are from Table 2 of Campbell (1999). Other
data are from Table 2 of Campbell and Cochrane (1999).

The results in Tables 3 and 4 illustrate the fact that hyperbolic discount factors
can lead to more volatile wealth and to higher risk premia on aggregate wealth.
If consumers discount near-future utilities at high rates (as they do when discount
factors are strongly hyperbolic; note that p+¢£ < 0 in all cases in Tables 3 and 4) then
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they must also discount distant future utilities at a low rate, or else interest rates
would be much higher than found in the data. This means that p must be lower (more
negative) than would be the case if consumers discounted utility geometrically. For
our specification of the endowment process, this makes DI'(z)/I'(x) more negative.
As can be seen from (50) this should increase the risk premium on aggregate wealth
(0 < 0.) The three hyperbolic cases in Tables 3 and 4 show that the same effect also
operates for a given value of p, as one makes the discount function more hyperbolic
while continuing to match the historical average of the risk-free rate.

Figure 3: 6(t) = exp(—pt)(1 4+ (Ct)"¢¢: p= —.10 and ¢ = .1,£ = .195
(dash-dot), ¢ = .25, = .326 (dash), ( = .5,& = .514 (solid); the thin line
represents 6(t) = exp(.015t).

These effects are made more explicit in Figures 4-6. These figures report log(I'(z)),
R(x) and r(z) for the geometric discount function reported in Table 4, and for the
hyperbolic case of ( = .5. The stationary density of {x;}:>¢ is plotted in the back-
ground. The log wealth-consumption ratio is not far from linear and more steeply
downward sloping for the hyperbolic case.

In both Table 3 and Table 4 the risk-free rate becomes more volatile as consumers
become more time-inconsistent. This is because ®(z)/I'(z) becomes more volatile and
®(z)/T(z) has a non-negative correlation with (A 4+ ~v6?/2) z. This need not always
be the case. One can show that these variables are negatively correlated when p and
q in Figure 1 lie in between the parabolas p + ¢*> = 0 and p + ¢*v/(y — 1) = 0. In
Experiment II, A + v6?/2 is zero and p and qlie on the latter parabola. Thus, for
values of A\/k that are a bit less negative than is the case in Experiment II, time-
inconsistency reduces (at least initially) the volatility of the risk-free rate, while at
the same time increasing the volatility of the wealth-consumption ratio.
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6. CONCLUDING REMARKS

In an infinite-horizon exchange economy in which utility is expected to grow at a con-
stant rate, and in which consumers cannot commit to future choices, price and wealth
data can always be interpreted as resulting from the optimal choices of consumers
with geometric discount factors. While the fact that expected utility must be finite
allows one to rule out some subjective discount functions, there will typically be a
large set of subjective discount functions consistent with the same data. If utility is
logarithmic, this observational equivalence result applies even for essentially arbitrary
endowment processes.

Sources of evidence that may allow one to make inferences about subjective dis-
count factors include situations in which consumers can make only partially reversible
commitments, as in Laibson (1997), or in which consumers face binding borrowing
constraints, as in the buffer-stock savings model analyzed by Harris and Laibson
(1999). In this paper, we have abstracted from commitment devices or market fric-
tions. Instead, we have examined the extent to which serial dependence in utility
alone allows one to distinguish among various types of subjective discount factors.

In the presence of serial dependence in endowment growth, implicit discount rates
are no longer constant when consumers have hyperbolic or quasi-hyperbolic discount
factors. As a result, equilibrium prices will differ from those in an economy in which
consumers discount utility geometrically.

We have explored the quantitative implications of hyperbolic and quasi-hyperbolic
discounting in an economy that exhibits persistence in the volatility of endowment
growth, and possibly in mean endowment growth. We show that when consumers
have hyperbolic or quasi-hyperbolic discount factors, aggregate wealth can become
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significantly more volatile and the risk premium on aggregate wealth can become
significantly higher than when consumers discount geometrically.

Standard models tend to generate stock prices that are less volatile than appears
to be consistent with the data (LeRoy and Porter (1981), Shiller (1981)). The risk
premium on stocks implied by these models also appears to be too low (Mehra and
Prescott (1985)). Given that stocks are a non-negligible fraction of aggregate wealth,
our results suggest that hyperbolic discounting can contribute to an understanding
of these phenomena.

For the period utility functions we consider, these results hinge on the presence
of serial dependence in endowment growth. Serial dependence in utility can also
be generated by habit persistence and the consumption of durable goods. How these
aspects of consumer preferences interact with non-geometric discounting is the subject
of ongoing research.

An important feature of the continuous-time approximation we present in this
paper is the fact that the instantaneous market price of risk is not affected by how
consumers discount utility. Subjective rates of time preference only affect the level
and dynamics of the instantaneous risk-free rate. For the endowment process we
consider in the quantitative part of this paper it is easy to calculate analytically the
term structure of interest rates when consumers are time-consistent. The impact
of time-inconsistent preferences on the term structure of interest rates needs to be
investigated further.
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A RuULING OUT BUBBLES

To prove Proposition 1, we proceed in two steps. We first give a precise statement
and proof of the first-order condition (12). Next, we check that Conditions A and B
imply the existence of an equilibrium in which there is no-bubble on the long-lived
asset.

Proof of the First-Order Condition (12). Given current wealth w; > 0, the
date-t consumer’s decision problem can be written as:

s
max {U(Ct) + Et [At+1U(’UJt+1)] L c Et |: ;TJFI wt+1:| < wt} , (52)

(Ct,wt+1)€R+XLz;Ll t

where L/, is the set of nonnegative F;, -measurable random variables, A, € L},
is a P-almost surely positive random variable to be determined in equilibrium, and
Ter1/m € L 1 represents the relative price of next-period consumption.

Lemma 1 Suppose that (52) has a solution (c;,wy,,) at which expected discounted
utility is finite. Then (12) holds P-almost surely.

Proof. Since A, is positive P-almost surely, the fact that the marginal utility
Du(-) at zero is infinite implies that ¢; and w},; are both positive. Furthermore,
given that wu(-) is strictly increasing, we know that the budget constraint must be
binding at the optimum. Perturb w;,, to w;1; = aw;j,, for some o > 0 small
enough and take ¢; = wy — Ey[(mi11/7¢)wis1]. By homotheticity of u(-), the mapping
a — EAu(owy,,)] is differentiable on Ry;. The optimality of (cf,w;, ) then
implies:

0 T
P (u (wt —ak, [%tl w;‘H}) + Et[AtHu(awZ‘H)]) . =0,
or, equivalently:
7r
E; {(—Du(c;‘) ;:1 + At+1Du(wf+1)> w;l] = 0. (53)
t

Alternatively, consider perturbing wealth to w;11 = (1 + aup)wy,, for some o > 0
and B € F;1. For a small enough, wy — Ey[(my41/m)wei1] is positive. Furthermore,
since u(+) is increasing and concave, one has:

Appr (u((1 + aep)wy, ) — u(wiyy))

(07

k * k *
‘ < Appiepwipy Du(wiy,) < Avwi Dulwiy,).

Since w;,; Du(wy,,) = (1 —y)u(w;,,) and expected utility is finite, the right-hand
side of this inequality is integrable. The differentiability of u(-) on R, together
with the dominated convergence theorem therefore imply that the right-derivative of
the mapping o — E;[Ay1u((1 + aup)wf )] at o = 0 is well-defined and given by
Ei[Aiepwfu(wy,,)]. The optimality of (¢}, wy,,) then requires that:

m
E; [(—Du(cf) :1 —l—AtHDu(wZ‘H)) wZ‘HLB} <0. (54)

t
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Note that because B is an arbitrary element of F;1, equations (53) and (54) imply
that (—Du(c}) w1 /m + ArrDu(wy,,)) wi; = 0 P-almost surely. Since wj,, is
always positive, the result follows. [ |

We are now ready to complete the proof of Proposition 1.

Proof of Proposition 1. Conditions A and B ensure that the quantities I';, A; and
Ay are well-defined and P-almost surely finite for any ¢ > 0. By construction, the
consumption and wealth choices (e, e;411"11) satisfy the first-order condition (12) at
market-clearing prices w1 /m = (A¢y1/Tei1)(€141/€:) 7 for any t > 0. It then follows
from the concavity of the objective function in (52) that (e, €;11011) is optimal from
the perspective of the date-t consumer, and since I'; is finite, that the value of problem
(52) is finite. To conclude the proof, we need only to check that Conditions A and B
imply (24). Consider first Condition A. Using (17) one can write:

d = A e \' 7 A er \'77
-l () R ()
1:[ - <€t 1) ] ’ tl_[ — (et 1 o Ir_1 \er—1
[T—1 1—’y
- aTes () ()
palley Iy \e—1 Iy
T-1 1—y
= (i) (1- k)
% 1Ft71 €t—1

< .(1 — )T,

IA
IS

from which it is immediate that (24) is satisfied. Under Condition B we can write
Ay /T < @ since Ay/T is an average of 6,1/, < (. Also, §, < " and therefore:

oo 1—y
n € n
NACS
n=0 ¢
This yields:

(B2 ) o)<l (2) e < B ()]

(25) implies that the RHS of this inequality converges to zero, hence the result. H

I < Ey

< FEjy < Ejy

B CoNTINUOUS-TIME APPROXIMATION

In the following, {z:}:+>0 denotes a continuous-time Markov process defined on the
same probability space (£, F, P) as the endowment process {e;};>0, and taking its
values in some state space X C RY. Endowments {e;};>o are positive and we write:

G(z,t)=FE




for any z € X and ¢t > 0. Unless stated otherwise, the following assumptions will be
maintained in the remainder of this Appendix.

Assumption 1 The subjective discount function 6 : Ry — [0, 1] is non-increasing,
left-continuous and positive on a set of positive Lebesgue measure. Moreover, 6(-) is
integrable over R, and 6(0) = 1.

Assumption 2 There exists a function M : X — R, that is bounded on compact
subsets of X and such that G(z,t) < M(z) for all € X and t > 0.

Assumption 3 The function G(z,-) is continuous for every x € X. Moreover, the
family of functions {G(-,t)}er, is equicontinuous at any x € X.

Since 6(-) is non-increasing and integrable over R, lim; o, 6(¢) = 0. Thus 6(-)
induces a unique probability measure p5 on the Borel sets of R, such that pg([s,t)) =
6(s) — 6(t) for any t > s > 0 (Lang (1993, Proposition X.1.8)). Note that by Fubini’s
theorem, we may rewrite (32) and (33) as:

D(z) = /O () Gla, 1) dt,

O(z) = Gz, t) dps(t)

[0,00)

for any x € X. Assumptions 1-3 ensure that these functions are well defined and
finite. Furthermore, I'(x) is positive for all  in X since G(z,-) > 0 and 6(-) > 0 on
some set of positive Lebesgue measure. Assumption 3 ensures that I'(+) is continuous
on X. It follows that I'(-) is bounded away from zero on compact subsets of X. Also,
®(-) is positive and bounded above by M(-). For any 7 > 0 and x € X, define:

[(z,7) = Z 6(nt) G(x,nT),

Alz,7) = Y b6((n+1)r)G(z,n7),

and let ®(z,7) = I'(z,7) — Az, 7). Assumptions 1 and 2 ensures that these sums
are finite for any 7 > 0 and =z € X, and that I'(z, 7) is positive for all 7 > 0 small
enough. It follows from the monotone convergence theorem that I'(z;, 7) = I';(7) and
A(zy, 7) = Ay(7) for any ¢t > 0 and 7 > 0.

Lemma 2 For any z € X, lim, o+ 7I'(z,7) = ['(x).

Proof. For any 7 > 0,¢t > 0, and z € X, let G,(z,t) = G(z,7[t/7]) and 6,(¢) =
6(t[t/T]), where [t/7] is the integer part of ¢/7. Observe that:

PT(a,7) = Y 6(nr) Gla,nr) 7 = /O 6 (8) G (1) d.
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Assumptions 1 and 2 imply that 6.(t) G,(z,t) < M(x) for any ¢t € [0,1) and 7 >
0, as well as 6,(t) G, (x,t) < 6(t —1)M(x) for all t > 1 and 7 € (0,1]. Thus
6.(-) G(x,-) is dominated for all 7 € (0, 1] by an integrable function of t. Moreover,
the continuity of G(z, -) implies that lim, o+ G (z,t) = G(z,t) and the left-continuity
of 6(-) implies that lim, .o+ 6-(t) = 6(t). The result then follows by Lebesgue’s
dominated convergence theorem. [ |

Lemma 3 The convergence of 7I'(z,7) to I'(x) as 7 — 07 is uniform on any compact
subset of X.

Proof. Assumption 3 implies that the family {G(,t)}1er, is uniformly equicontinu-
ous on any compact K of X. Hence for any € > 0, there exists n > 0 such that for
allt > 0and 7 € (0,1], |G (z,t) — G- (y,t)| < ¢/ (1 + [T 6(v) dv) for any z,y € K
such that ||z — y|| < 7. It follows that for any 7 € (0, 1],

|7 T(x,t) — 7 T(y,t)| < /000 6. (v) |G (z,v) — G, (y,v)|dv < ¢

for any z,y € K such that ||z — y|| < n, where the second inequality follows from
the fact that [;° 6, (v)dv = Y 2 é6(nT)T < T + fo v)dv as 6(-) is decreasing
over R,. This 1mphes that the family {7I'(-,7) }+e(0,1) is unlformly equicontinuous on
K. By Ascoli’s theorem (Lang (1993, Theorem II1.3.1 and Corollary II1.3.3)), the
convergence of 7I'(x,7) to I'(x) as 7 — 07 is therefore uniform on K. |

Lemma 4 For any z € X, lim, o+ ®(z,7) = ®(x).

Proof. Using the notation of Lemma 2, observe that for any z € X and 7 > 0:

=Y G(z,n7) (6(nT) = 6((n+ 1)7)) = Gr(z,t) dps(t).
As before, lim, o+ G,(x,t) = G(x,t) and G,(z,t) < M(z) for any 7 > 0, t > 0
and z € X. Since p; is a probability measure, the result follows immediately from
Lebesgue’s dominated convergence theorem. [ |

We can now state and prove our main result.

Proposition 2 If the Markov processes {z;};>0 and {e;};>o have P-almost surely
continuous sample paths and if Assumptwns 1-3 are satisfied, then for P-almost
every w € Q, lim, o+ 7¢(7) = exp(— f F(ww) dv)(e¥)™" =7 for each t > 0.

Proof. Consider a continuous sample path {z{};>0. At any date t = k7, k € N,
discrete-time state prices are given by:

[t/7] w
m(r) = ex Zm BT ) ()
ST D)) |

= CXp <A Lt,T(”)Q('I:')[’l)/T]]7 T) d?)) (‘3;‘))_77
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where ¢, (v) =1 if v/7 € [1,[t/7]] and zero otherwise, and:

Qlz,7) = %m (1—7 (%))

for all 7 > 0 and x € X. At dates t # k7, k € N, simply set 7¢(7) = Wfﬂt/Tﬂ(T). By
Lemmas 2 and 4, lim, o+ Q(z,7) = —®(z)/T'(z) for any € X. Next, recall that
lim, o+ 7I'(z, 7) = ['(x) uniformly on compact subsets K of X. Hence, since z¥ is a
continuous function of v, lim, g+ 7I'(2%, 4, 7) = I'(2%) uniformly on [0, ¢]. Therefore
723}, /77, T) is bounded away from zero on [0,¢] for all 7 > 0 small enough. Because
L is a probability measure and G(z,-) € [0, M(z)], we know that ®(z,7) € [0, M (z)]
for any x € X and 7 > 0 small enough. Thus Q(mfﬂv PRE 7) is uniformly bounded on
[0,¢], for all 7 > 0 small enough. The result then follows from Lebesgue’s dominated
convergence theorem and the continuity of {z¢, ef };>o for P-almost every w € Q. W

Remark 1 In some applications, one can ensure that Assumptions 1-3 are satisfied
by replacing 6(t) and G(z,t) by 6*(t) = exp(—at) 6(t) and G*(x,t) = exp(at) G(x,t),
for some coefficient & > 0. The analogs of I'(z,7) and A(z,7) are then I'*(z,7) =
['(xz,7) and A*(x,7) = exp(at) A(z, ), and discrete-time state prices are given by:

Y T)

Le/7] A*(ze . T)

(1) = exp | ar[t/T] + ; In <#) (e
for any w € Q and 7 > 0, and at any dates t = k7, k € N. If 6 and G* sat-
isfy Assumptions 1-3, then Proposition 2 implies that for P-almost every w € (2,
lim, g+ (1) = exp(at — Ot %ﬁ;(%) dv)(e¥)™" = n¢ for each ¢ > 0.
Remark 2 Proposition 1 also holds for any left-continuous and integrable subjective
discount function 6 : R, — R, that is of bounded variation and decreasing in an
interval [T, 00). In that case there exist two decreasing and left-continuous functions
6" and 6~ such that § = 6" — 6~ and 6 =0 on [T, c0). These functions induce two
finite measures y; and p; on the Borel sets of R that satisfy ) [s,t) = 67 (s)— 6% (¢)
and pg [s,t) =6 (s) — 6 (t) for any t > s > 0. All the arguments above can then be
generalized in a straightforward manner, provided that the measure pz that appears
in the expression of ®(z) is replaced by the signed measure pf — ;.

C PARTIAL COMMITMENT

In this Appendix we will maintain the Assumptions 1-3 of Appendix B. We add the
following two assumptions.

Assumption 4 The function G(z,-) is continuously differentiable for each x € X.

Assumption 5 There exists a function M : X — R, that is bounded on compact
subsets of X and such that |DyG(z,t)] < M(z) for each x € X and t > 0.
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For any x € X and 7 > 0, define:

Az, 1) = /0005(t+T>G(l',t)dt,
() = /( Gl 0dt)

and let ®(z, 7) =1 (F(:L‘) - Z(:E,T)) Assumption 1-3 ensure that these functions

are well-defined and finite. As before, I'(-) is bounded away from zero on compact
subsets of X, 5(, -) is positive, and p4 is the probability measure induced by the
discount function §(-). It follows from Fubini’s theorem that A(z,,7) = A,(7) and
&D(a:t) = EIVDt for any ¢t > 0 and 7 > 0.

Lemma 5 For any z € X, lim, o+ ®(z,7) = ®(x).
Proof. For any z € X and 7 > 0, we can rewrite ®(z, 7) as:

Bz, 7) = l/{:é(t) Gz, 1) dt+/ooo 5(t +7)

T

G(z,t+71)— G(z,t)

dt. (55

Note that L [7[6(¢) G(z,t) — 6(0%) G(x,0)|dt < 6(07) maxyeoq | G(z,t) — G(x,0)]
since 6(-) is non-increasing. It follows that lim, o+ = [ 6() G(z,t) dt = 6(07) G(x,0)
by continuity of G(z,-). Next, by the mean-value theorem, |G(z,t + 7) — G(x,t)| <
T SUPgepq) | D2G (2,1 + €7)|. Assumption 5 implies that the integrand in the second
term of the right-hand side of (55) is bounded in absolute value by §(t) M (z) for all
t > 0. Since 6(-) is integrable, we thus have, by Lebesgue’s dominated convergence
theorem:

im [ st 4 EEIFEDZC@Y / 8(t%) DoG(x, 1) dt.
T—0% Jo T 0
This in turn is equal to [;° 6(t) D2G(x, t) dt since §(-) is monotone and hence contin-

uous except on a set of measure zero. We therefore have:

hrgl+ ®(z,7) = 6(0%) G(x,0) +/ 6(t) DoG(z,t) dt. (56)
T 0

Let T'> 0. By Assumptions 1 and 4, the function §(-) D2G(z, -) is continuous except
on a set of measure zero and therefore Riemann integrable on [0,7]. Moreover,
since G(z, ) is contmuously differentiable and 6(-) is of bounded variation, we have
fOT 6(t) DoG(x,t) dt = fo t) dG(z,t), where the second integral is to be interpreted
in the Rlemann—StleltJes sense. From the integration by parts formula for these
integrals and 6(0) = 1 we obtain:

/T(S()dG(mt / G(z,t)dé(t) + 6(T) G(z,T) — G(z,0).
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By the Riesz representation theorem (Lang (1993, Theorem 1X.2.7)), the positive lin-
ear functional f(-) — fo ) on the space of continuous real-valued functions
f(-) with compact support in R+ can be represented in a unique way by a measure
on the Borel sets of R, , and it is immediate to check that the corresponding measure
is pg. Using the fact that limy . 6(T) G(x,T) = 0 and that ps({0}) = 1 — 6(0%)
together with the above integration by parts formula, we get:

/ T oGty dt = [ Glaat)dug(t) — 5(07) G, 0)

(0,00)
by Lebesgue’s dominated convergence theorem. The result then follows from (56). B

From this, we can now deduce (43).

Proposition 3 If the Markov processes {z:}:>0 and {e:}:+>o have P-almost surely
continuous sample paths and if Assumptions 1-5 are satisfied, then for P-almost

every w € Q, lim, o+ 75 (7) = exp(— f F(ww) dv)(e¥)™" =7 for each t > 0.

Proof. Consider a continuous sample path {z}};>0. At any date t > 0, the state
prices for the continuous-time economy with commitment period 7 > 0 are given by:

[t/7] A (2 7)
(1) = exp Zm( m’>> (e¥)™

= CXp <A l’t,T(v) @(x:')[’u/ﬂ]? T) d'U) (6;))—7 )

where ¢, -(v) =1 if v/7 € [1,[t/7]] and zero otherwise, and:

Qz,7) = lln (1 -7 @(x77)>

T

forall 7 > 0 and # € X. By Lemma 5, lim, o+ Q(z,7) = —®(z)/T'(z) for any z € X.
Note that since z¥ is a continuous function of v and I'(+) is bounded away from zero
on compact subsets of X, F(a:f[[v /T]]) is bounded away from zero for all 7 > 0 small

enough. Next, observe from (55) that ®(z,7) < M(x)+ M(x) for all 7 > 0 and
z € X. Since both M(-) and M(-) are bounded on compact subsets of X and z7
is a continuous function of v, it follows that Q(mfﬂv s 7) is uniformly bounded on

[0,t] for all 7 > 0 small enough. The result then follows from Lebesgue’s dominated
convergence theorem and the continuity of {z¥, e} };>o for P-almost every w € Q. W

Remark 3 Consider now the discount function 6.(-) in (45). In that case, the
analogue of ®(xz,7) is ®(z,7) + L 5 (1—=6(t)) G(x,t)dt. Arguing along the same
lines as in the proof of Lemma 4, it is not difficult to show that this converges to
®(x). Finally, the proof of Proposition 3 can easily be adapted to prove that the
corresponding state-price process converges to {m;};>o as 7 goes to zero.
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D A CONDITIONAL EXPECTATION

Write @ = 7 — 1 and note:

G(z,7) = E [exp <—a <m + A /t = wy)ds + 6 /t " @d&))

It is convenient to define:

~a.

H(z,7) =exp(ant) G(z,T).

exp <—a <)\ /Ot(u — z,)ds + e/ot wp—sst)) H(zy, T —t)
_ 5 {exp <_a <)\ /OTW —2)ds + e/OT @st)) o = } |

The right-hand side of this equation is a martingale. The drift of the left-hand side
must therefore be zero. By Ito’s Lemma, this is the case when:

Then:

1
DH(z,t) = <—a)\(u —z)+ 50429%) H(z,t)+ LH(x,t) — abox D, H(z,t), (57)
where: ]
LH(xz,t) = k(p—x)D H(z,t) + 502mDmH(a:, t).
Note that G(x,0) = 1. The boundary condition for H(x,t) at t = 0 is therefore:
H(z,0) = 1. (58)
The solution of the PDE (57)-(58) is of the form:
H(z,t) = a(t)exp (b(t)z).
The PDE (57)-(58) implies that a(-) and b(-) must satisfy:
Da(t 1 1
ac(bi)) +Db(t) x = (kp — (k + abo) x) b(t)+§a2:c b2 (t)+ (—a)\u + (a)\ + §a292> ZE>
for all z,¢ > 0. Therefore:

Da(t) = spalt) (30~ (7)), (59)
(

Db(t) = (a)\—l— —a? ) K+ afo) ()+%azb2(t), (60)

together with the boundary conditions a(0) = 1 and b(0) = 0. The differential
equation (60) is a Riccati equation that can be solved explicitly. Its solution does not
explode in finite time if and only if the b(¢)-polynomial on the right-hand side of (60)
has at least one real root and the largest of these roots is non-negative. If a > 0, it
can be verified that this is equivalent to:

G-I (G (G0 D [0 2oL o

WK wo wo wo
and that the solution for G(z,t) is given by (49).
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