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ABSTRACT

The Non-Linear Dynamics of Output and Unemployment in the US*

This Paper studies the joint dynamics of US output and unemployment rates
in a non-linear VAR model. The non-linearity is introduced through a feedback
variable that endogenously augments the output lags of the VAR in
recessionary phases. Sufficient conditions for the ergodicity of the model,
potentially applying to a larger class of threshold models, are provided. The
linear specification is severely rejected in favour of our threshold VAR.
However, in the estimation the feedback is found to be statistically significant
only on unemployment, while it transmits to output through its cross-
correlation. This feedback effect from recessions generates important
asymmetries in the propagation of shocks, a possible key to interpret the
divergence in the measures of persistence existing in the literature. The
regime-dependent persistence also explains the finding that the feedback from
recession exerts a positive effect on the long-run growth rate of the economy,
an empirical validation for the Schumpeterian macroeconomic theories.
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NON-TECHNICAL SUMMARY

The vector auto-regressive (VAR) system of output and unemployment rate is
one of the most commonly studied in the macroeconometric tradition in order
to analyse the propagation and the persistence of shocks in the real economy
and the transmission mechanism between product and labour market. The
common feature of those VAR applications is that the dynamics of the model
are routinely assumed to be linear, meaning that the effects of the shocks
perturbing the system are proportional to the size of the shocks itself. In light
of the mounting empirical evidence on the non-linear properties of both time
series, the validity of this assumption is questionable, as important features of
the data might be concealed by imposing the linear specification.

The purpose of this work is to offer a thorough statistical investigation of the
joint dynamics of output and unemployment rate, allowing for non-linear
interactions between the two series. In order to accomplish this task, we
specify a non-linear VAR model where the non-linearity arises from the
inclusion in the system of a feedback variable measuring the depth of the
current recession. Consequently, the model has a different linear structure
according to the regime (expansionary or recessionary) the economy is
undergoing.

Our framework is a multivariate model where the duration of the feedback
from recession is optimally chosen in a model selection procedure, the
feedback variable affects both the conditional mean and the conditional
variance, and the definition of the expansionary or recessionary regimes is
endogenously determined. When all these features are simultaneously
included in the model there is a desirable gain in generality, but also a
significant rise in the degree of complexity of the statistical analysis. Given the
non-standard specification, great attention is posed in order to investigate the
dynamic properties of the proposed model and the validity of the asymptotics
results. Moreover, generally applied model selection procedures and standard
tests of non-linearity prove to be inadequate in this context, so bootstrapping
techniques are extensively used to cope with these problems in order to
obtain the best possible specification to be estimated.

The first task we undertake with the estimated model is to formally test
whether the non-linearity is statistically significant. The analysis performed
severely rejects the linear structure. A deeper look at the estimates, though,
shows that the feedback variable enters significantly only in the
unemployment equation, while there is no evidence of a strong direct non-
linear feedback in the time series for output. This is where our multivariate
extension becomes relevant. Although univariate tests have often found clear
signs of non-linearity and asymmetry in both series, our analysis suggests that



the non-linearity is directly present only in unemployment and transmits to
output through its cross-correlation.

Second, we perform an impulse–response analysis on the model following the
recently developed theory on non-linear impulse responses. In line with the
existing applied work focusing on this class of univariate threshold model, we
find that recessions have a positive feedback on the economic activity in the
long run. Thus, in recession aggregate shocks are remarkably less persistent
than they are in expansion and negative aggregate shocks display lower long-
run persistence than positive ones. When we look at the propagation of
reallocative shocks, we also find rich asymmetries in the impulse responses.
This impulse–response analysis leads us to argue that the conflicting findings
in the traditional literature on the persistence of shocks to output, relating the
persistence coefficient to the order lag of the model, can be rationalized within
our non-linear model.

The specification we choose for the non-linearity is particularly attractive when
output is modelled with a stochastic trend, as we have done, because it
establishes a potential link between aggregate fluctuations and long-run
growth. This relationship is one of the cornerstones of the Schumpeterian
approach. Schumpeter viewed recessions as times when the creative-
destruction process was taking place with the highest intensity: old
technologies would be swept away by new and more productive ones, thus
opening the way to future growth. Various authors have recently revived the
Schumpeterian idea of recessions as periods in which a cleansing process is
activated in the economy through formal macroeconomic models whose main
prediction is the existence of a positive feedback between recessions and
long-run growth of output, similar to the one identified in the impulse–response
analysis. Our model is a natural environment to uncover empirically this
interaction between recessions and growth, while any linear model is
inadequate since it would treat symmetrically both phases of the business
cycle. Our main finding in this regard is that recessions do entail a positive
feedback on growth, although quantitatively small.



1. Introduction

The bivariate system of output and unemployment rate is one of the most commonly stud-

ied in the V AR tradition to analyze the propagation and the persistence of shocks in the real

economy and the transmission mechanism between product and labor market. Notable exam-

ples include Blanchard and Quah (1989), Evans (1989), and Aoki and Fiorito (1993). The

common feature of these V AR’s is that the dynamics of the model are routinely assumed to

be linear.1 In light of the mounting empirical evidence on the nonlinear structure of both se-

ries, the validity of this assumption is questionable, as important features of the data might be

concealed by the linear specification.2

The purpose of this paper is to offer a thorough statistical investigation of the joint dynamics

of output and unemployment rate, allowing for nonlinear interactions between the two series.

In order to accomplish this task, we specify a threshold VAR model where the nonlinearity

arises from the inclusion in the system of a feedback variable measuring the depth of the

current recession. Consequently, the model has a different linear structure according to the

regime (expansionary or recessionary) the economy is undergoing. The threshold growth rate

of output which separates the two regimes is endogenously estimated.

This nonlinear specification was first introduced by Beaudry and Koop (1993) (hereafter,

BK) in a univariate model of U.S. output where the feedback variable was allowed to enter

the conditional mean with multiple lags, but the threshold parameter was fixed ex-ante and

not estimated. Pesaran and Potter (1994) (hereafter, PP) generalize this model by allowing

the threshold to be estimated and the feedback variable to enter the conditional variance as

well, but fix deterministically the maximum lag at which the feedback variable can be active.

Koop, Pesaran and Potter (1996) (hereafter, KPP) further extend the PP model to a multivariate

framework.

Our framework is a multivariate model where the highest lag of the feedback variable is

optimally chosen in a model selection procedure, the feedback variable affects both the con-

1 An exception is the work of Koop, Pesaran and Potter (1996) where a threshold VAR of output and unemployment rate
is used to illustrate some of the important issues in performing impulse response analysis in nonlinear multivariate models.
2 The nonlinearity of US output data is discussed, among others, by DeLong and Summers (1986), Hamilton (1989), Potter
(1995), and Pesaran and Potter (1997). Evidence on the nonlinearity of unemployment is found, among others, by Rothman
(1991), and Montgomery, Zarnowitz, Tsay and Tiao (1996).
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ditional mean and the conditional variance and the associated threshold parameter is endoge-

nously estimated. When all these features are simultaneously included in the model there is

a desirable gain in generality, but also a significant rise in the degree of complexity of the

statistical analysis, compared with the aforementioned studies. Standard model selection pro-

cedures are inadequate because the competing models can be non-nested, and standard tests

of nonlinearity cannot be implemented because the threshold parameter vanishes under the

null of linearity. Bootstrapping techniques are extensively used to cope with these problems

in order to obtain the best possible specification to be estimated.

Even though this type of threshold model is quite common in applied time-series, its sta-

bility properties and the asymptotics of its quasi-maximum likelihood estimator (QMLE)

have never been properly investigated. We provide a set of sufficient conditions for ergodicity

which are quite general and potentially apply to a larger class of threshold models. Our ap-

proach is based on their Markovian representation and on a modification of theN -step criteria

proposed by Tjøstheim (1990). We also prove that the model can be written as a SETARwith

linear parameter restrictions, which leads us to argue that the consistency of the QMLE can

be proved by slightly extending the result in Chan’s (1993) on the asymptotics of least squares

estimators in SETAR models.

The first task we undertake with the estimated model is to formally test whether the non-

linearity is statistically significant. The test performed accounting for the nuisance parameter

problem severely rejects the linear structure. A deeper look at the estimates, though, shows

that the feedback variable enters significantly only in the unemployment equation, while there

is no evidence of a strong direct nonlinear feedback in the time series for output. This is where

our multivariate extension becomes relevant. Although univariate tests have often found clear

signs of nonlinearity and asymmetry in both series, our analysis suggests that the nonlinearity

is directly present only in unemployment and transmits to output through its cross-correlation.

Second, we perform an impulse response analysis on the model following the recently de-

veloped theory on nonlinear impulse responses. In line with the existing applied work focusing

on this class of univariate threshold model, we find that recessions have a positive feedback

on the economic activity. Thus, in recession aggregate shocks are remarkably less persistent
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than they are in expansion, and negative aggregate shocks display lower long-run persistence

than positive ones. When we look at the propagation of reallocative shocks, we also find rich

asymmetries in the impulse responses. This impulse response analysis leads us to argue that

the conflicting findings in the traditional literature on the persistence of shocks to GNP , re-

lating the persistence coefficient to the order lag of the model, can be rationalized within our

nonlinear model where the order lag is regime-dependent.

The specification we choose for the nonlinearity is particularly attractive when output is

modeled with a stochastic trend, as we do, because it establishes a potential link between

aggregate fluctuations and long-run growth. This relationship is one of the cornerstones of

the Schumpeterian approach. Schumpeter viewed recessions as times when the creative-

destruction process was taking place with the highest intensity: old technologies would be

swept away by new and more productive ones, thus opening the way to future growth. Vari-

ous authors have recently revived the Schumpeterian idea of recessions as periods in which a

cleansing process is activated in the economy through formal macroeconomic models whose

main prediction is the existence of a positive feedback between recessions and long-run growth

of output.3 Our model is a natural environment to uncover empirically this interaction between

recessions and growth, while any linear model is inadequate since it would treat symmetrically

both phases of the business cycle. Our main finding in this regard is that recessions do entail

a positive feedback on growth, although quantitatively small: at most 3.5% of output growth

in the post-war U.S. economy can be accounted for by this channel.

The rest of the paper is organized as follows. Section 2 presents the statistical model. Sec-

tion 3 lays out the conditions for its ergodicity, and discusses the asymptotic properties of the

QMLE. Section 4 describes the results of the order selection procedure, the estimation, and

the test against the null of linearity. In Section 5 we illustrate the impulse responses of the

model to different types of innovations, and we discuss the issue of persistence of aggregate

shocks on output. Section 6 tests empirically the creative-destruction hypothesis and quan-

tifies the long-run positive feedback from recession. In Section 7 we make our concluding

remarks. The Appendix contains the proof that the model admits a Markovian representation,

the proof of ergodicity with an illustrative example, and a description of the bootstrap method
3 See Aghion and Howitt (1994), Caballero and Hammour (1995), and Aghion and Saint-Paul (1998).
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used in the paper.

2. A Threshold VAR of Output and Unemployment Rate

We will conduct our econometric analysis with a nonlinear bivariate model of changes

in the log of real GNP (y) and in the unemployment rate (u).4 Following BK, KPP, and

PP, the nonlinearity is introduced by constructing a feedback variable measuring the current

depth of the recession (CDRt) which augments the linear vector autoregressive dynamics of

∆Xt ≡ (∆yt,∆ut). This feedback variable is defined as the gap between the current level of

log-output and the economy’s historical maximum level augmented by a threshold parameter

r. More formally:

CDRt (r, τ) = yt −max {yt, y,t−1 + r, ..., yt−τ + r} , (1)

where τ is a finite integer. CDR will be zero as long as output grows at least at a rate r.

However, once a period with growth of output lower than r switches on CDR, the latter will

remain activated as long as the log of output is at a lower level compared to its previous

maximum increased by r, i.e., as long as the economy has not fully recovered the gap of the

recession. The threshold parameter r will be endogenously estimated, thus duration and depth

of recessions are endogenous as well.

After embedding the feedback variable into the linear V AR, the joint dynamics of ∆Xt
follow the specification:

Φ(L)∆Xt = α+Θ(L)CDRt−1 (r, τ) + εt, (2)

where α is a vector of constants, p is the order of the polynomialΦ(L) and (q − 1) is the order

of Θ(L). In the rest of the paper, we will refer to the situation in which the dynamics of the

system are not under the effect of any feedback, i.e.,
Pq

i=1CDRt−i = 0, as the expansionary

regime, while we will speak of recessionary regime in the case in which at least one of the

lags of the CDR variable is non-zero.

Recessions are often perceived to be times of higher economic turbulence compared to

4 The series are Citibase quarterly data from 1952.1 to 1990.4 of U.S. GNP at 1982 prices (GNP82) and total unemployment
rate (LHURN). The series are scaled to percentage points.
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expansions. French and Sichel (1993), among others, provided robust evidence to this com-

mon perception. Accordingly, we allow for regime-dependent heteroskedasticity and define

εt = V
1
2
t ut with ut

iid∼ (0, I2).We model the conditional variance Vt as:

Vt = 1(

qX
i=1

CDRt−i = 0)(Ωe − Ωr) + Ωr, (3)

where 1 (·) is the indicator function, and Ωe (respectively, Ωr) is the covariance matrix in

the expansionary (recessionary) regime.5 It should be noticed that sinceCDR depends on the

threshold parameter r, the latter enters both the conditional mean and the conditional variance.

The model to be estimated is described by equations (1)-(3). To gain more intuition about

the structure of the model, it is helpful to observe from (1) that CDR can be either zero or a

constant plus the sum of the ∆y terms from the date of the previous peak to the current time.

Therefore, by substituting (1) into (2) we obtain a linear V AR with time varying parameters

and time varying number of lags determined by an endogenous deterministic threshold rule.

It follows that when the economy is under the effect of the feedback, at each period the linear

structure is modified with additional lags and different parameter values.

3. Ergodicity of the Model and Asymptotics of the QMLE

3.1 Ergodicity

In this section we aim at providing sufficient conditions for ergodicity for a large class of

k-dimensional piecewise linear threshold processes {Zt} admitting the Markovian represen-

tation:

Zt =
IX
i=1

(Ci +AiZt−1) 1 (Zt−1 ∈ Pi) + εt, Pi ∈ P (4)

where Pi, i = 1, ..., I is a generic element of the partition P of the space of Zt, and εt is an

independent zero mean random variable with positive density function and withE kεtk <∞.
5 This structure of the conditional variance is a form of Qualitative Threshold Autoregressive Conditional Heteroskedas-
ticity (QTARCH), introduced by Gourieroux and Monfort (1992). This specification is a parsimonious way of allowing
different volatilities in the two phases of the business cycle. An alternative specification of the conditional variance within
the GARCH family would not be completely satisfactory due to the larger number of parameters and to the impossibility of
clearly associating the regime for the conditional mean with the regime for the conditional variance. However, it will be clear
later that the form of the conditional variance we adopt will induce some difficulties in the process of model specification
(see Sections 3.2 and 4.2).
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In the Appendix we show that, under the assumption of the finite memory of the feedback

process (i.e. a finite τ ), our threshold VAR displays the above Markovian structure, where

each partition of the space is constructed through theCDR variable. Notice that (4) is a rather

general specification which includes all the variants of the SETAR family.

General conditions for the ergodic behavior of various specifications of nonlinear time se-

ries processes have been provided, among others, by Pham (1986), Tong (1990), and Tjøstheim

(1990). Common to all is the use of Markov chain theory and in particular the construction

of a test function to verify the existence of a central set in the space of the time series towards

which the stochastic trajectories drift almost surely. Our proof of ergodicity for the class of

models in (4) is based on the ‘‘N -step drifting condition’’ proposed by Tjøstheim (1990).

The strategy we follow is to characterize how the process Zt moves between each two

elements of the partitions of the space of Zt and to verify under which conditions it drifts

towards the center of the space within N-steps. Two remarks greatly simplify our task. First,

the definition of the partitions imposes several constraints on the dynamics of the process and,

consequently, it restricts the ‘‘adjacent’’ elements of the partition. Second, out of deterministic

path realizations have probability decreasing with the dimension of Zt. It follows that in

verifying the drifting condition, without loss of generality we will confine our attention to

those movements of Zt which occur within a restricted subset of the partition and are driven

only by the deterministic part of the process.

Pursuing this logic, define an elementPi of a given partition to be deterministically adjacent

to Pj if there is a Zt−1 ∈ Pi such that Ci+AiZt−1 ∈ Pj . We also denote the set of all possible

sequences of lengthN of deterministically adjacent elements as eσ (N). Finally, denote by ePi
the union of the deterministically adjacent sets to Pi.We are now ready to state:

Proposition 1: Given the Markov process in (4), if:
(A1) there exists an N > 0 such that

maxeσ(N)
(
ρ

Ã
NY
i=1

Ahi

!)
< 1,

where ρ (A) is the maximum eigenvalue of the matrix A in absolute value, and

(A2) for all Pi’s, as kZ−1k→∞, for some ² > 0 :
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Pr
n
(Z /∈ ePi) ∩ (Z−1 ∈ Pi)o = O ¡kZ−1k−²¢ ,

then the process Zt is geometrically ergodic.

Proof: The proof and an illustrative example are provided in the Appendix.

Assumption (A1) is a condition on the eigenvalues of the N-step transition requiring the

existence of a finite N such that the deterministic dynamics of the process are ‘‘stable’’.6 As-

sumption (A2) regulates the probability of dynamics not driven by the deterministic part of

the process by imposing that, as Z becomes large, this probability declines at a given rate.

Since condition (A1) is in terms of eigenvalues, it does not easily allow us to characterize a

region of the parameter space associated with the stability of the process. Rather, the logic of

the proposition permits us to easily assess the ergodicity of the process associated to a given

parametrization of the model. This assessment requires two steps: first, identify the determin-

istic adjacent sets and second, find the N -step horizon for which the eigenvalue condition is

satisfied.

3.2 Asymptotics of the QMLE

The estimation of the parameters of the conditional mean and conditional variance of our

model is performed by quasi-maximum likelihood under the nominal assumption of normality

of the innovation. The algorithm we use is the two-step procedure suggested by Tong (1990)

for SETAR models, and implemented by PP as well. It consists of generating a finite grid

of points over the domain of the threshold parameter r and at each point on the grid maxi-

mizing the likelihood function with respect to the remaining parameters through a standard

hill-climbing algorithm. The value of r chosen in the second step is that point on the grid for

which the log-likelihood attains its global maximum.7

Proving the consistency of this estimator is complicated by the discontinuity of the likeli-

hood function with respect to the parameter r, the threshold coefficient. What generates the

discontinuity is the conditional variance term changing discretely between regimes, whereas
6 An important remark is that it is possible to have overall stable dynamics of the process associated with unstable dynamics
(i.e. eigenvalues above one) in particular states, given that the relevant concept is stability inN -steps.
7 The estimates have been performed with a grid of 400 point in the interval (−.013,+.013) and at every point it has been
allowed for 100 iterations over the likelihood function with a convergence criteria of 10−5 for each parameter. To reduce
the already large computational burden, we do not estimate the parameter τ which is meant to capture the memory of the
feedback process, but we assume it is larger than the length of our sample.
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the conditional mean changes smoothly. Given the ergodicity of the process, consistency can

be easily verified in two steps. First, as we show in the Appendix, our specification can be

expressed as a SETARwith a large number of regimes and linear restrictions among the para-

meters in the different regimes. Second, our model being a SETAR, the consistency theorem

of Chan (1993) generalizes to our case because, under the correct specification of the model,

the presence of linear restrictions among the parameters does not modify the logic of Chan’s

proof.8

Finally, assessing the asymptotic normality of the estimator would require proving the dif-

ferentiability of the population likelihood with respect to the parameter vector, including r.

We do not pursue this strategy, but more simply we observe that conditional on r, asymptotic

normality descends from standard asymptotic theory. Hence, if the speed of convergence of r

is sufficiently fast, then the threshold value can be treated as known in performing inference

on the autoregressive parameters and therefore the standard asymptotic theory would hold.

This conjecture is based once again on the result in Chan (1993), where the superconsistency

of r is proved for a two-regime SETAR, and it is largely supported by a set of Monte Carlo

experiments we performed with our model.

4. Model Specification, Estimation and Testing

4.1 Levels vs. First Differences

The first step in model specification is the choice of levels vs. first differences in the vari-

ables. Standard unit root testing suggested the existence of an autoregressive root in both

series, but the presence of the nonlinearity might invalidate the asymptotic theory of the tra-

ditional tests. We therefore opted for the test proposed in Caner and Hansen (1997) which is

robust with respect to a large class of threshold nonlinearities in the DGP , including ours.

The bootstrap p− values of the test statistics for the null of unit root on the level of the series

are respectively 0.821 for output and 0.153 for unemployment, confirming the results of the

standard Dickey-Fuller tests. An additional argument in favor of differencing unemployment

8 We thank one Referee for suggesting this argument. An alternative proof of consistency can be constructed following
Andrews (1987), as done in Altissimo and Violante (1998). There we show that, despite the discontinuity of the sample
log-likelihood, its expectation is a smooth function of the parameters.
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is related to our proof of ergodicity. When we specified and estimated the system with unem-

ployment rate in levels, the maximum eigenvalue of the matrix driving the dynamics in the

expansionary regime was found to be outside the unit circle thus precluding the possibility of

finding a N−step sequence for which (A1) holds, whereas when we estimated the model in

first differences of both series, condition (A1) was satisfied. Although (A1) is only a sufficient

condition for ergodicity, it is not too restrictive. For example, it admits diverging dynamics

(i.e. eigenvalues above one) in particular states associated with overall stable dynamics of

the process, since the proof is based on a N -step drifting condition. Hence, it appears that

violations of that condition should be taken as a strong signal of non-ergodicity.

These two findings have led us to choosing a specification in first differences for both

variables as the benchmark model.9 This choice differentiates sharply our work from the

previous studies on V AR’s of output and unemployment which treated the unemployment

rate as a stationary variable, although consistently recognizing that the evidence on this point

was not unequivocal. To allow a more direct comparison with this literature, in Section 5.5

we study how sensitive are some of our conclusions to the choice of modeling unemployment

as I(0) or I(1).

4.2 Optimal Lag Order

The next step is the choice for the lag order in the Φ (L) polynomial of the autoregressive

linear part, and in theΘ (L) polynomial of the feedback variable. We started from a maximum

lag of 8 for∆X and 4 forCDR, and for each combination we computed Akaike and Schwartz

information criteria. The results are presented in Table 5 at the end of the text. We conclude

that, for any given lag of CDR, the model with two lags of ∆X is a reasonable and conser-

vative specification. However, models with different lag orders of CDR are non nested as a

result of the specification of the conditional variance, and for this reason the two information

criteria are not useful to select among them. The choice of the best lag order of the CDR has

to rely upon a non-nested testing procedure in which models with two lags of∆X and various

9 The presence of a nonlinear cointegration relationship between output and unemployment has been investigated applying
the procedures suggested by Balke and Fomby (1997) and by Corradi, Swanson and White (1997), but we found no evidence
of cointegration.
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lags of CDR are contrasted among each other.10

To test the specification with j lags of CDR against the ‘‘true’’ one with i lags, we used

a Cox type statistics in its multivariate version, as proposed by Pesaran and Deaton (1978),

given by:
LRj,i − Ei(LRj,i)p

Vi(LRj,i)
,

where LRj,i is 2 (`j − `i) , `i and `j are the sample log-likelihoods of the two models, Ei and

Vi are respectively the expectation and variance under the ‘‘true’’ specification. The disconti-

nuity of the log-likelihood function prevents us from utilizing the asymptotic results proposed

by Pesaran and Deaton and obliges us to resort to resampling techniques in computing the

empirical distribution of the statistics.11 The statistics and the bootstrap p− values (in paren-

thesis) for the test are reported in the Table below.

Table 1 - Non-Nested Test
lag CDR j = 1 j = 2 j = 3 j = 4
i = 1 ... 4.704

(0.001)
4.133
(0.001)

4.598
(0.001)

i = 2 0.010
(0.520)

... 0.777
(0.188)

1.545
(0.085)

i = 3 1.292
(0.096)

1.722
(0.029)

... 2.518
(0.019)

i = 4 0.974
(0.167)

1.739
(0.030)

0.722
(0.914)

...

The testing strategy is quite successful in identifying the proper lag of CDR, and it indicates

that models with 2 or 4 lags dominate specifications with 1 or 3 lags. Since the test is in-

conclusive on the selection between 2 and 4 lags, we favor a parsimonious representation and

choose the model with 2 lags of CDR.

4.3 Results of the Estimation

The results of the estimation of the V AR with 2 lags of (∆y,∆u) and 2 lags of CDR are

shown in the following Table.

10 Beaudry and Koop compare models with different lags of CDR only by looking at standard order selection criteria,
correctly so as their models are homoskedastic.

11 In Appendix, we describe the bootstrap methodology used throughout all the paper.
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Table 2 - Parameter Estimates
const. 4y−1 4u−1 CDR−1 4y−2 4u−2 CDR−2

4y 0.501
(3.524)

0.051
(0.469)

−1.095
(−3.118)

−0.071
(−0.329)

0.193
(1.908)

0.614
(1.977)

−0.201
(−1.022)

4u 0.107
(2.761)

−0.051
(−1.716)

0.416
(4.036)

−0.143
(−2.027)

−0.084
(−3.063)

−0.127
(−1.461)

0.199
(3.029)

The t-values (in parenthesis) are based on the asymptotic standard errors conditional on the

estimated value of the threshold parameter. We regard these values as good approximations

of the unconditional standard errors, as argued in the previous section. The most striking

result of the estimation is that none of the CDR lags are significant in the output equation,

while they are significant in the unemployment equation. This is an interesting finding for

two reasons. First, this pattern is very different from what we found in the model with 1 lag

of CDR (used for instance by KPP) as in the latter model CDR is significant on output and

not on the unemployment rate, leading to a potentially diverging interpretation of whether the

feedback operates in the labor market or in the product market. Second, this finding suggests

that estimating nonlinear univariate models of output can be misleading if the nonlinearity is

originally present in other series (unemployment, in our case) and transmits to output purely

through its cross-correlation.

TheCDR variable enters strongly in the unemployment equation and the signs of its coeffi-

cients reveal the dynamic effect of the nonlinearity on the series. CDR enters with a negative

sign in the first lag and with a positive sign (and a bigger coefficient) in the second. This

combination of signs offers a very intuitive interpretation of the direct effect of the feedback

on the economy. When the system enters a recession, the feedback initially accelerates the rise

in unemployment, since the first lag of CDR is larger than the second. On the contrary, when

the economy is in the recovery process, the second lag of CDR is larger than the first one,

thus the nonlinearity reinforces the fall of unemployment, by making the recovery shorter and

sharper. Through the strongly significant lags of unemployment in the output equation, such

a nonlinear behavior transmits to output as well. Finally, notice that the long run coefficient

on CDR for both series implies a beneficial effect originating from recessions.

As expected, we find that recessions are times of stronger volatility. The standard devi-

ation of innovations to output and unemployment is, respectively, 50% and 100% higher in
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contractionary phases of the cycle. The estimated value of r is −0.138, which is not too far

from zero (the value assumed in the univariate model of BK) and implies that 57 observations

—approximately 1/3 of the sample— fall into the recessionary regime.

Figure 1 shows the values for CDR implied by the estimation together with the NBER

chronology for business cycles from the quarter following the peak to the quarter of the trough.

Interestingly, in most cases the CDR variable starts increasing at a date corresponding to the

NBER definition of peak and falls to zero in the quarter of the trough, or the following

one. Therefore, its timing coincides strikingly well with the ‘‘conventional wisdom’’ about

recessions and, in addition to the NBER definition, the CDR variable provides a measure

of the depth of each recession.

4.4 Test for Nonlinearity

With the ‘‘best’’ specification of the nonlinear model in hand, one has to test the significance

of the nonlinearity itself. This test is aimed at understanding whether a specification of the

dynamics of∆Xt with a nonlinear term but also with a possibly induced heteroskedasticity in

the error term fits the data better than the best possible linear model. After the appropriate or-

der selection procedure, we have chosen as null hypothesis an homoskedastic linear V AR(2),

which we have re-estimated on the same data. Testing the significance of the nonlinearity leads

to a nuisance parameter problem because under the null of the test the threshold parameter r

vanishes.12 Our test procedure can be summarized in three steps. First, for each value of the

space of the nuisance parameter r, we compute the likelihood ratio LR20(r) = 2 (`2(r)− `0),
where `2 is the log-likelihood of the nonlinear model with 2 lags of CDR, and `0 is the log-

likelihood of the alternative linear model. Second, following Andrews and Ploberger (1994),

we construct three different statistics: supLR = supr(LR(r)), expLR = lnEr exp(LR(r))

and avgLR = ErLR(r), where the expectation is taken with respect to the nuisance parame-

ter. Third, the distributions of the statistics are computed by simulation.

12 If r is exogenously fixed, as in BK, this problem does not arise and the test for nonlinearity becomes a simple F test with
null hypothesisH0 : Θ(L) = 0.
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Table 3 - Nonlinearity Test
supLR expLR avgLR

stat
(p−value)

57.959
(0.000)

55.199
(0.002)

48.530
(0.001)

Table 3 reports the bootstrap p − values for the three statistics and shows that all these tests

largely rejected the linear model. Although we are aware to have chosen just one specification

of nonlinearity among a variety of possibilities, the evidence against the linear specification

is surprisingly strong. Even though the true unknown DGP may not be a threshold VAR, it

seems to be much closer to this nonlinear model than to a linear one. We reckon therefore

that using a linear VAR in this context may induce misleading conclusions about the general

dynamic behavior of the series, the pattern of the impulse responses and the persistence of the

shocks. We examine all these issues in the next sections.

5. The Propagation and Persistence of Shocks

5.1 Nonlinear Impulse Responses

One of the main objectives of this paper is to understand the propagation mechanism and the

persistence properties of the shocks perturbing our nonlinear system of output and unemploy-

ment rate. As explained in KPP, nonlinear Impulse Response (IR) functions in multivariate

models are history, shock and composition dependent. Each one of these types of depen-

dence poses methodological problems in the definition and the computation of IR functions

which, as of today, do not have a unique established answer in the literature.13 KPP define the

Generalized Impulse Response (GIR) function as:

GIR∆X(T, εt,Ht−1) = E(∆Xt+T |εt,Ht−1)− E(∆Xt+T |Ht−1),

where T is the time-horizon, εt is the vector of innovations at time t and Ht−1 is a generic

history until time (t− 1) .14 The function above is a random variable with respect to the shock

and the history with the property that its joint distribution contains all the information about

propagation and persistence of the shocks in the system. Since we are mainly interested in the

13 The theory of impulse responses in nonlinear multivariate models is fairly recent. See Gallant, Rossi and Tauchen (1993),
and Koop, Pesaran and Potter (1996) for extensive discussions.

14 In our model, all the relevant information at time t− 1 is given by {CDRt−i,∆Xt−i} with i = 1, 2.
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regime asymmetry of the IR function, we will focus on the expectation of theGIR conditional

on a restricted set of representative realizations of the shocks and on a particular regime. We

therefore define our IR function as:

IR∆X(T, η, R) = E [E(∆Xt+T |εt = η,Ht−1)− E(∆Xt+T |Ht−1) | Ht−1 ∈ R] , (5)

where η is a given realization of εt, and R ≡ {expansion, recession} is an index of the

regime of the economy at time t− 1. This definition of IR is similar to that of Gallant, Rossi

and Tauchen (1993), except for the different baseline forecast. They condition the baseline on

a null realization of the current shock, while we average over all the possible realizations, as

in KPP. The rationale for this choice comes directly from the meaning of the baseline, which

should represent the average behavior of the system. Only in linear models the two baseline

forecasts coincide.

From the representation in (2), and from the definition of IR in (5), it is easy to show that

the IR for the levels of the variables cumulates to:

IRX(T, η, R) =
PT

k=0{Ψkη +
Pk

j=0Bj[E(CDRt+k−1−j|εt = η, R)

−E(CDRt+k−1−j|R)]}

(6)

where Ψ(L) = Φ−1(L) and B(L) = Φ−1(L)Θ(L). Therefore, not only does the persistence

arise from Ψ(1) as in the linear case, but also from the nonlinear structure. In particular, the

difference in the realizations ofCDRt between the shocked economy and the baseline forecast

permanently affects the level of the variables.

Finally, we generalize the definition of persistence of Campbell and Mankiw (1987) to our

nonlinear framework, and measure the persistence of a shock η in regime R on the variable

Xi as:

π (η, R) =
IRXi

(∞, η, R)
IRXi

(0, η, R)
, (7)

which is that value the impulse response function converges to in the long-run, once it is

normalized to one in the initial period.

5.2 Computation of Impulse Response Functions

Our computation of the IR functions follows closely the procedure of KPP who suggest a
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Monte Carlo technique to numerically integrate the expectations in (6). The three main steps

in the implementation of the procedure are the choice of the histories,Ht−1, the calibration of

the shocks εt, and the treatment of the future shocks.

We have used the histories in the observed sample, rather than generating new ones. Alto-

gether, we have 97 sample paths ending up in the expansionary regime and 57 leading to the

recessionary regime. To estimate the IR conditional on the regime, we should average over all

the histories terminating in each regime. We have noticed though that a large number of real-

izations of the recessionary regime are very mild. Since we wanted to focus on those histories

in which the economy is undoubtedly in a phase of recession, we decided to discard those

observations in which both CDRt−1 and CDRt−2 are below .1.15 Following this strategy, we

are left with 25 histories that are sharply different from those of the expansionary regime.

To calibrate the shocks, we have adopted the graphical method suggested by Gallant, Rossi

and Tauchen (1993) consisting of scattering the residuals for the two time series and, by inspec-

tion, determining what could be regarded as typical shocks to the system. Shocks increasing

(decreasing) the growth rate of output and decreasing (increasing) the change in the unem-

ployment rate can be interpreted as aggregate shocks. The residual plot suggests to pick the

pair (1,−.2) for (∆y,∆u) as a representative positive aggregate (P) shock. By changing the

sign, we obtain a negative aggregate (N) shock and by doubling their magnitude (PP, and NN)

we can explore the size-asymmetry of the IR.

Besides being hit by aggregate shocks, the economy is often perturbed by shocks which

move output and unemployment in the same direction. These innovations can be interpreted

as reallocative shocks, and the plot of the residuals indicates the pair (.5, .1) (and its negative

counterpart) as representative of this class of innovations. Since reallocative shocks occur

more than 30% of the times in our sample period, it is of great interest to study their propaga-

tion dynamics. The IR analysis will therefore be performed on both aggregate and reallocative

shocks.

Once the initial shock is chosen from one of the cases above, the future sample paths of

the system are generated by the bootstrap method described in detail in the Appendix. The

15 Two entire (but very mild) recessionary phases of the NBER official calendar are eliminated through this procedure: the
mini-recession of 1960 and that of 1970. See Figure 1 for the details.
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regime-dependent empirical IR is therefore computed as:

ÎRX(T, η, R) =
1

NR

NRX
j=1

(
1

M

MX
i=1

£
X i
t+T (η,Hj)−X i

t+T

¡
εit,Hj

¢¤)
, (8)

whereNR indicates the number of histories for the two regimes,Hj is the observed j− th his-

tory for regime R associated with the realizations until time (t− 1), andM is the number of

Monte Carlo replications. The Law of Large Numbers for i.i.d. random variables ensures con-

vergence of the sample mean within brackets in (8) —for each history— to the time invariant

expectation characterizing the true IR conditional on the same history.

5.3 Results of the Impulse Response Analysis

The combination of regression coefficients on the various lags of the CDR variable found

in the estimation implies that, when the economy enters a downturn, with some lag it will

benefit from an upward push proportional to the depth of the recession. This feedback effect

is the key source of the asymmetry in the shape and the long-run persistence of the impulse

responses of the model, plotted in Figures 2, 3 and 4.16

Aggregate Shocks

A striking regime-dependent pattern of long-run persistence stands out in our results: ag-

gregate shocks are remarkably less persistent when they hit in a recession. Consider the dy-

namics of GNP after the economy is perturbed by a negative aggregate shock (N), depicted

in the lower-left panel of Figure 2. When the economy is in the recessionary regime, it re-

sponds through an initial drop in output, but only after two quarters the positive feedback from

the CDR variable sets in strongly and leads output well above its initial level. In the linear

regime this feedback effect is weaker because the nonlinearity is likely to be activated less

often —as it is evident from the smoother and delayed hump in the IR— so output levels off

slightly below its initial value. In the IR for the unemployment rate (lower-right panel), the

feedback effect from recession is even stronger as it appears from the sharp hump of the IR

function in downturns. This is consistent with the larger and more significant coefficient of

16 In all graphs, the impulse responses have been normalized so that their value at impact is 1. In this way, the persistence
coefficient can be immediately calculated from the graphs.
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the CDR variable in the unemployment equation of the V AR. Turning to positive shocks

(P), an even more pronounced regime-dependent pattern of persistence is found. To under-

stand why this happens one has to recall that the IR is the difference between the response

of the shocked economy and that of the baseline economy. In downturns, after the positive

innovation, the shocked economy is pushed out of the recession quickly, while in the baseline

economy the feedback is likely to stay activated for longer and its positive effect contributes

to reduce the difference between the shocked and the baseline systems, reducing therefore the

long-run persistence.

Interestingly, the observed pattern of the IR for unemployment is consistent with the pre-

dictions of the Schumpeterian model of Aghion and Howitt (1994). In their model, a positive

aggregate shock is more beneficial to unemployment in expansion than in recession because

the capitalization effect of more job creation dominates the creative-destruction effect for high

growth rates. Moreover, as stressed by Postel-Vinay (1998), the Aghion and Howitt model

implies a sign-asymmetry in the short-run dynamic response of unemployment to aggregate

shocks. A negative shock makes unemployment jump up strongly at impact, while its response

to a positive shock is much smoother, a qualitative pattern that we recognize in our pictures.

A comparison of Figures 2 and 3 shows a remarkable size-asymmetry in the IR functions.

Positive shocks of double magnitude (PP) induce a much smoother IR and have larger per-

sistence than the benchmark shocks of Figure 2 in both regimes. On the other hand, negative

shocks of double magnitude (NN) display a more pronounced hump-shape because the up-

ward push originating from recession is more intense, and consequently long-run persistence

is lower. This finding suggests a pronounced sign-asymmetry in the IR functions. In the

expansionary regime, positive aggregate shocks always show more persistence compared to

negative ones, independently of their size. This is still a result of the feedback operating in

recession: a negative innovation is much more likely than a positive one to precipitate the

economy in the downturn regime, and consequently activate the feedback variable. In the re-

cessionary regime, small positive shocks tend to be slightly less persistent than negative ones

of comparable magnitude, but as the size increases the pattern is reversed as clear from Figure

3.
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Reallocative Shocks

The responses of output and unemployment to a reallocative shock are pictured in Figure

4. As customary in the literature, we have defined a positive reallocation disturbance as one

that has a positive net effect on the aggregate economic activity (hence, on output), but it also

increases the variance of the shocks at the micro level, inducing a spur of labor reallocation

and an increase in unemployment. When a positive reallocative innovation hits the economy

in a recession, the positive shock to output is likely to push the system out of a recession and

weaken the feedback effect. However, the baseline economy will fully exploit the positive

feedback from the recession, hence the shock has barely any impact on output in the long-

run. By the same token, the weak feedback effect is unable to counteract the impulse to

unemployment, thus it provokes a sharp rise in the unemployment rate.

On the contrary, in expansions the reallocative shock only mildly increases unemployment,

whereas it benefits output in the long-run. Finally, recessions are still associated with lower

persistence in output, as with aggregate shocks, but the regime-asymmetry is completely re-

versed for unemployment.

Comparison with the Literature

In the existing literature, only KPP perform an impulse response analysis on a nonlinear

V AR of output and unemployment rate. There are a number of methodological differences

with respect to our approach. First, they model the unemployment rate in levels. Second,

they have a three-regime model that includes a ceiling regime when the economy ‘‘overheat-

s’’. Third they explicitly say that they do not attempt a full estimation of the best nonlinear

specification as the model is only used as an example to illustrate their approach to IR analysis

in nonlinear multivariate models. Fourth, they compute ‘‘generalized’’ IR functions, and plot

their entire distributions. Since they do not condition on the type of shock, their analysis does

not document the sharp difference in the propagation of aggregate and reallocative shocks

that we have reported above. Nevertheless, their findings on sign and regime asymmetry of

shocks to output are quite similar to ours. The main discrepancies are the time-profile of the

IR functions due to the higher lag structure they adopt and the long-run behavior of the IR for
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unemployment, due probably to the different stationarity assumptions of the series.17

5.4 The Persistence of Shocks to GNP

Following the influential paper of Nelson and Plosser (1982), a number of authors have en-

gaged in the task of measuring the persistence of shocks in U.S. output, reaching conflicting

conclusions. On one end of the range, Campbell and Mankiw (1987) using univariate parsi-

monious ARMAmodels forGNP find a persistence coefficient of about 1.5 and Cochrane’s

(1988) nonparametric approach provides estimates between 1.1 and 1.4, according to the

window-size selected. On the opposite end, Watson’s (1986) decomposition into stochastic

trend and cycle, based on the assumption of orthogonality of the shocks to the two compo-

nents, gives a measure of persistence between .36 and .57 and Evans (1989) using a bivariate

VAR of GNP and unemployment rate estimates the persistence factor between .26 and .55.

Evans reconciled his finding with the previous literature by arguing that his VAR specifica-

tion implies a high order ARMA process for GNP including the dampening effect of higher

lags, all entering with a negative sign and, as a result, his measure of persistence is lower. On

the contrary, the low order ARMA models as in Campbell and Mankiw miss this effect and

overestimate persistence, producing measures above the random-walk mark.

Persistence factors of aggregate shocks forGNP in our benchmark model, measured through

(7), are summarized below.

Table 4 - Coefficients of Persistence for GNP
Expansion Recession

P PP N NN P PP N NN
1.44 1.52 -1.28 -.81 .67 .92 -.77 -.49

As we already noted, persistence is extremely asymmetric across the two regimes. A striking

feature of these measures is that the persistence coefficient is in the range .5-.9 for the reces-

sionary regime and in the range .8-1.5 in the expansionary regime. These are roughly the two

sets of numbers over which the debate in the literature has developed. Our model can rec-

oncile the two different sets of persistence measures through the nonlinearity. Our nonlinear

17 It is likely that their model would also predict different measures of persistence for output, although this is difficult to
infer from their conditional distributions.
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specification implies that there is not a unique optimal lag order to represent the dynamics of

output and consequently there is not a unique coefficient of persistence. Persistence is strongly

regime-dependent. Adapting the argument set forth by Evans to a nonlinear framework, one

could say that during the phases of expansion output dynamics can be well approximated by

a low order ARMA process in which the persistence of the shocks is high. During down-

turns, to capture correctly the dynamics of the system, more lags of GNP should enter the

specification —and this is done in our model through the CDR variable— with the effect of

decreasing the persistence of the innovations.

Finally, notice that our persistence measures, although qualitatively similar to those re-

ported by BK, present some differences. BK report a persistence factor for positive shocks

of about 3, hence much larger than ours, while for negative shocks the two magnitudes are

roughly comparable. We conjecture that Evans criticism on the lag order might apply to BK

as well, since they work with a very parsimonious autoregressive representation for the linear

regime.

5.5 Sensitivity of the IR Analysis to Modeling Unemployment as I(0)

Since the assumption of stationarity of the unemployment rate in levels rather than in first-

differences is much more common in the (linear and nonlinear) literature, we have also ex-

plored how sensitive our conclusions are to modeling unemployment in levels. With unem-

ployment in levels, the order selection indicates a specification with 3 lags of the dependent

variables and 2 lags of CDR which clearly nests our benchmark model in first-differences.

The threshold parameter is estimated to −.140, which is remarkably close to the benchmark

value. The lags of CDR are still not significant in the output equation, while they are signif-

icant in the unemployment equation, with the same combination of signs as in the benchmark

case.

From the IR analysis, summarized in Figure 5, the main conclusion emerging is that the IR

for unemployment is extremely slow to level off at zero: after 60 quarters it reaches a value

still slightly above zero (.04). This represents, we reckon, further evidence (in addition to that

already presented in Section 4.1) that the unit root model provides a satisfactory approximation
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for the unemployment rate.18

Regarding the short-run behavior of the IR functions, the regime asymmetry in the IR of

unemployment is still visible as the response in the recessionary regime displays a sharper

hump-shape, like in the benchmark case. Also the IR for output shows in the short-run roughly

the same qualitative features of sign and regime asymmetry as in the benchmark case. How-

ever, a clear difference appears in the IR for the expansionary regime, where in the I(0) case

the response at impact is somewhat smaller and tends to revert to zero much more quickly.

The long-run behavior of the IR for output, albeit qualitatively similar, presents some quan-

titative differences with the benchmark case. Its measure of persistence ranges between .35

and .8, a factor of 1.5-2 lower than the benchmark case. Also the asymmetry in persistence

across regimes is slightly reduced. These last two findings are not surprising: the nonlinearity

enters strongly the output equation only through unemployment. Since unemployment has no

persistence in the long run, obviously the nonlinear feedback on output will tend to vanish in

the long run as well, softening the regime asymmetry and the overall level of persistence of

the series.

We recognize that the issue of stationarity of unemployment rate is far from settled, nonethe-

less in the rest of the paper we will resume our benchmark specification. This section demon-

strated that although the general qualitative behavior of the IR functions seems robust to this

alternative specification, a cautionary remark should be raised on some of the quantitative

conclusions.

5.6 Do Recessions Affect Long-Run Growth?

Given that our model features a stochastic trend in output and an asymmetry between the

two phases of the business cycle, it provides a natural framework to analyze empirically the

conjecture advanced by various authors following the Schumpeterian approach, that reces-

sions foster long-run growth. The argument set forth by Aghion and Saint-Paul (1998) for

example is that during recessions re-organizational activities will take place (such as restruc-

turing, training, relocation of capital and labor, implementation of new technologies) that im-

18 As suggested by a Referee, the I(0) vs I(1) dichotomy might be too rigid here. The best specification could lie in
between, with a fractional integration model. We leave a rigorous analysis of this issue to future research.
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prove productivity growth in the long-run.

The first test of this conjecture that we perform is a counterfactual experiment where we

ask the following question: how much lower (or higher) would have been the average growth

rate of output in the US, had recessions exerted no feedback effect onto the economy? To

answer this question, we compare the actual time series of output in the data with the coun-

terfactual series generated through the estimated model of equations (1)-(3) where we set to

zero the polynomial Θ(L). The implicit assumption we make in the experiment is that the

nonlinear feedback captured byΘ(L) is the reduced form of the cleansing effect of recessions

conjectured in the Schumpeterian theories. Our finding is that the average yearly growth rate

of output would have been 2.87% compared to the actual growth rate of 2.96%. Hence, ac-

cording to this calculation the feedback from recessions can explain only about 3.5% of the

overall growth of the post-war US economy. The intuition from this result is that when the

feedback is turned off, then the model becomes a linear V AR and displays the same levels of

persistence for all shocks, while in the nonlinear model negative shocks are dampened more

than positive shocks.19

A second experiment was inspired by a prediction of the Schumpeterian business cycle

model in Aghion and Saint-Paul (1998). In their framework, a mean preserving spread in the

distribution of shocks, under general conditions, would foster long-run growth. We have used

our nonlinear V AR to test this prediction, by simulating the time series first with the empir-

ical distribution of the residuals, and then with mean preserving spreads of the latter. When

the standard deviation was reduced by 25%, the economy entered the recessionary regime on

average 49 times (57 in the baseline economy) and grew at 2.93% per year, whilst when the

standard deviation was increased by 25%, the economy entered the recessionary regime on

average 67 times and grew at 3.0%. These results confirm the finding of the previous experi-

ment and the conjecture in Aghion and Saint-Paul (1998), although the overall magnitude of

the effects is fairly small.20

19 Gali and Hammour (1991) find evidence of an interaction between recessions and growth in the fact that in their V AR
a negative aggregate shock has a long-run positive effect on productivity. Our view is slightly different: rather than being
based on sign-reversion effects, it is based upon sign-asymmetry which is intrinsic in nonlinear structures.

20 The details of these two experiment are provided in the Appendix.
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6. Conclusions

The joint statistical analysis of output and unemployment rate is a classical exercise in

the linear V AR tradition. In this paper we have performed this same analysis allowing for

nonlinear dynamics in the series. The nonlinearity is introduced, following a recent literature

on univariate threshold models, through a lagged feedback variable that measures the depth

of recessions. The resulting model is a V AR with a fixed lag order when the economy is in

expansion, and a time-varying lag-order when the economy is undergoing a recession.

In the first part of the paper we established a set of new theoretical results for this model.

First, we identified a set of sufficient conditions for its ergodicity, which potentially apply to a

larger class of nonlinear threshold frameworks. Second, we illustrated that our model belongs

to the SETAR family, hence consistency of the quasi-maximum likelihood estimator follows

from Chan (1993).

In the second part of the paper, we applied the model to the empirical analysis of the data.

First, we found that the best linear specification is severely rejected against our nonlinear

model, but interestingly the nonlinearity is found to be statistically significant only in the

equation for the unemployment rate, while it transmits to output via the tight cross-correlations

between the series. Second, we found that the feedback effect captures one important feature

of the data: the deeper is the recession the economy has gone through, the faster will be the

recovery process in the following periods. Third, these forces that push the economy out of a

recession generate important asymmetries in the propagation and the persistence of aggregate

and reallocative innovations in the model. Fourth, we argued that asymmetry in persistence

across different phases of the cycle helps in reconciling some of the conflicting findings of the

traditional literature on output persistence. Finally, this same regime asymmetry explains our

finding that recessions benefit the economy in the long-run, by fostering growth, as predicted

by some recent Schumpeterian macroeconomic theories.
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7. Appendix

7.1 Markov Representation

In this section we give a Markovian representation of the threshold VAR in equations (1)-

(3) of the main text and show that the model can be interpreted as a SETAR with a large

number of regimes. This result will be crucial for the proof of ergodicity of the next section.

Let {∆Xt} be a sequence of <2-valued random variables (r.v.’s) which are defined on the

complete probability space (S∆X , F∆X , µ∆X) where µ∆X is some σ−finite measure on F∆X .

Let also Zt = {∆Xt,∆Xt−1, ...,∆Xt−q−τ+2} be a (q+ τ −1)− tuple defined on the product

space (SZ, FZ ,µZ).

Define the feedback index Ft:

Ft(r, τ) =


0 if

Pτ−1
i=0 [1− 1(X1t −X1,t−τ+i > r)] = 0

Ft−1 + 1 if
Pτ−1

i=0 [1− 1(X1t −X1,t−τ+i > r)] > 0 and Ft−1 < τ
τ if

Pτ−1
i=0 [1− 1(X1t −X1,t−τ+i > r)] > 0 and Ft−1 = τ

, (9)

which is zero when the current realization ofX1t is higher than each of the past τ realizations

augmented by r, the threshold growth rate, it is equal to i when the economy has spent i

periods in recession for i < τ and it is equal to τ for i ≥ τ . It follows that:

CDRt (r, τ) =

 0 if Ft = 0
(∆X1t − r) if Ft > 0 and Ft−1 = 0
(CDRt−1 +∆X1t) if Ft > 0 and Ft−1 > 0

. (10)

The combination of (9) and (10) delivers the specification (1) in the text. We can generate q

different partitions ℘i, i = 1, ..., q, of the space of Zt−1 through the feedback indexes Ft−i,

based on the different ways in which the CDRt−i variable can be activated. The partition ℘i

is composed by τ + 1 elements and the generic element P i (j) ≡ {Zt−1 : Ft−i = j} . Let ℘

be the joint of the ℘i, i = 1, ..., q, partitions.21 This joint partition has maximum dimension

(1+ τ )q and we can denote its generic element by P (K) ≡ ∩qi=1P i (ki) where P i (ki) ∈ ℘i,
ki = 0, ..., τ and K = {k1, ..., kq}. Hereafter, P0 ≡ ∩qi=1P i (0) corresponds to that region

of the space where the model is in the expansionary regime, i.e., the region where all the

feedbacks are zeros. The joint partition ℘ divides the space of Zt−1 into sub-regions P (K)

21 Given two partitions P1and P2, P ∗ is an element of the joint partition P1∪ P2 if for some elements P 1 ∈ P1 and
P 2 ∈ P2, P ∗ ⊆ P 1 ∩ P 2 and there is no other element P

0
of the joint such that P

0 ⊆ P 1 ∩ P 2 and P ∗ ⊂ P 0
.
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in which the dynamics of the model are modified with respect to those of the expansionary

regime through a matrix Λ (K) . This matrix can be written as Λ (K) =
Pq

i=1 Λ
i (ki), where

Λi (ki) is associated with the element P i (ki) ∈ ℘i and it is a square matrix of dimension

2(q + τ − 1) of zero elements, except at position (1, 2(i+ j)− 1) for j = 0, ..., k − 1 where

elements are equal toΘ1i, and at position (2, 2(i+ j)− 1) for j = 0, ..., k− 1 where elements

are equal to Θ2i. Recall that Θ1i and Θ2i are elements of the (2× 1) vector Θi of coefficients

of CDRt−i in the model. Using the definition of Zt and the partition ℘, the model in (1)-(3)

can be rewritten in a vectorized form as:

Zt =

·
α
0

¸
+ r

qX
i=1

Θi1(Zt−1 /∈ P i (0)) +
·
Φ1, ...,Φp 0

I 0

¸
Zt−1

+

(1+τ)qX
K=1

Λ (K)Zt−11(Zt−1 ∈ P (K)) + εt.

where ε0t = {(V
1
2
t ut)

0
, 0, ..., 0}. This delivers the desired Markovian representation embedded

in the more general structure of equation (4) in the main text. Moreover, this specification

clearly is a SETAR with (1+ τ )q regimes and linear constraints among the regimes since the

q matrices Θi are used to generate the (1+ τ )q matrices indexing the various regimes.

A final remark useful for the discussion on ergodicity is that even if the partition ℘ has

(1+ τ)q elements, this does not imply that the process Zt can move among all elements of the

partitions, due to the way the feedback variable has been constructed. Two elements, P (K)

and P (K∗), of the partition P will be defined deterministically adjacent from K to K∗ if it

is feasible that Zt ∈ P (K) and Zt+1 ∈ P (K∗) . This will be the case when k∗i+1 = ki for

i = 1, ..., (q − 1) and, if k1 < τ , the difference in absolute value between k∗1 and k1 is not

greater than one.

7.2 Proof of Proposition 1

The proof of geometric ergodicity is based upon the theory on stability of Markov chains

developed in Nummelin (1984), and extended by Tjøstheim (1990). If the process Z is

µZ−irreducible and aperiodic, then by proposition 5.21 of Nummelin (1984) the assessment

of the geometric ergodicity essentially requires to verify whether a drift conditions for a given
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power function of Z holds. For a non negative measurable function g andR > 1, theN−step

ahead drift conditions are:

(DC1) : RE(g(Zt+N)|Zt = z) < g(z), ∀ z ∈ κc
(DC2) : E(g(Zt+N)|Zt = z) ≤M <∞, ∀ z ∈ κ

where κ is a small set. In our framework piecewise linearity of the conditional mean function

and the regularity conditions on the error term εt ensure that every compact set on the space

of Zt is a small set. For the formal definitions of irreducibility, small set, and aperiodicity, the

reader can refer to Nummelin (1984), definitions 2.2, 2.3 and 2.4.

Proof. The aperiodicity and µZ−irreducibility follow directly from definitions, under the

assumptions on the marginal pdf of the error term εt. Denote an element of the partition Pi
as adjacent to Pj if there is a Zt−1 ∈ Pi and an εt such that Ci + AiZt−1 + εt ∈ Pj. The

set σ (N) will contain all the possible sequences of lengthN of adjacent elements. A generic

element of σ(N) is {h1, ..., hN} such that for i = 1, ..., N − 1 Phi
is adjacent to Phi+1 . To

complete the notation, σ (N)c is the complement set of eσ (N) (defined in the main text as the

set containing all the possible sequences of lengthN of deterministically adjacent elements)

with respect to σ (N) . Define now the test function g (·) as a vector norm in L1 and kAk as

the corresponding matrix norm.

From the Markov representation of Z, we obtain:

Zt+N =
P
eσ
³QN

j=1AijZt +
PN

l=1

h³QN
j=l+1Aij

´
(εt+l + Cil)

i´
1(Zt+j ∈ Pij , j = 1, ..., N)

+
P
σc

³QN
j=1AijZt +

PN
l=1

h³QN
j=l+1Aij

´
(εt+l + Cil)

i´
1(Zt+j ∈ Pij , j = 1, ..., N).

Taking the expectation of the norm on both sides and rearranging terms, we have:

E kZt+Nk ≤ kZtk
P
eσ
°°°³QN

j=1Aij

´°°°Pr(Zt+j ∈ Pij j = 1...N)
+ kZtk

P
σc

³°°°QN
j=1Aij

°°°´Pr(Zt+j ∈ Pij j = 1...N)
+
P
σ

°°°PN
l=1

³QN
j=l+1Aij

´°°°E kεtk+P
σ

°°°PN
l=1

³QN
j=l+1Aij

´
Cil

°°° .
The third and fourth term are independent ofZ and by the assumptions on εt there is a constant

δ which bounds the sum of those terms. The second term, by the assumption (A2) on the
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transition probability, is anO
¡kZk1−²¢ and furthermore, it is easy to see that by the eigenvalue

assumption (A1) it exists an α < 1 such that the following inequality holds:

E (kZt+Nk | Zt = z) ≤ δ + α kZk+O ¡kZk1−²¢ .
Note that for the norms in L1, there is a norm such that |ρ (A)− kAk| is arbitrarily small.

Hence, it is possible to find anR > 1 such that Rα < 1 and to rewrite that previous condition

as
RE (kZt+Nk | Zt = z) ≤ Rδ +Rα kZk+O ¡kZk1−²¢

≤ kZk+Rδ + (αR− 1) kZk+O ¡kZk1−²¢
Let us now define the small set κ ≡ {z : kzk ≤ r} and take r > Rδ+O(kZk1−²)

1−Rα . Then we

obtain:

(DC1) : RE(kZt+Nk |Zt = z) < kzk on κc and

(DC2) : E(kZt+Nk |Zt = z) < M <∞ on κ,

where the second condition derives from the compactness of κ and the continuity of the con-

ditional mean of the process. Geometric ergodicity of the model follows by proposition 5.21

in Nummelin (1984).

7.3 An example

To gain more intuition on the restrictions that this result on ergodicity puts on our specific

model, let us consider the following example where ∆x is a scalar, τ = 1, q = 2, r = 0 and

p = 1, with εt ∼ NID(0, σ2):
∆xt = φ1∆xt−1 + θ1min (0,∆xt−1) + θ2min (0,∆xt−2) + εt . (11)

The model is an AR(1) in the expansionary regime, while under the effect of the feedback

it changes slope and lag order. The above model can be interpreted as a SETAR with four

regimes and with linear cross equation restrictions, so:

∆xt =


φ1∆xt−1 + εt if ∆xt−1 ≥ 0 and ∆xt−2 ≥ 0
(φ1 + θ1)∆xt−1 + εt if ∆xt−1 < 0 and ∆xt−2 ≥ 0
φ1∆xt−1 + θ2∆xt−2 + εt if ∆xt−1 ≥ 0 and ∆xt−2 < 0
(φ1 + θ1)∆xt−1 + θ2∆xt−2 + εt if ∆xt−1 < 0 and ∆xt−2 < 0.

Using the same notation of the previous sections, we define Zt as {∆xt,∆xt−1} and Ft−i,
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i = 1, 2 as the feedback indexes. It follows that Ft−i = 1 whenever Z1,t−i ≤ 0 and Ft−i = 0

otherwise. The potential activation of the two lags of CDRt generates four possible states

creating a partition ℘ ≡ {P0, P1, P2, P3} on the space of Zt−1with elements:
P0 = {Z : F−1 = 0, F−2 = 0} , P1 = {Z : F−1 = 1, F−2 = 0} ,
P2 = {Z : F−1 = 0, F−2 = 1} , P3 = {Z : F−1 = 1, F−2 = 1} .

This partition is used to build the following Markovian representation of the model:

Zt =
3P
i=0

AiZt−11(Zt−1 ∈ Pi) + εt

where the A0s (2× 2) matrices associated to the four states are respectively:

A0 =

·
φ1 0
1 0

¸
, A1 =

·
φ1 + θ1 0
1 0

¸
, A2 =

·
φ1 θ2
1 0

¸
, A3 =

·
φ1 + θ1 θ2
1 0

¸
.

The matrix A0 describes the dynamics in the expansionary regime, while the other three ma-

trices describe how these dynamics are modified through the activation of CDR. In the logic

of Proposition 1, to asses the ergodicity of the system we need to start from some parameter

values of the model. Assume for example that 0 ≤ φ1 < 1, θ1 ≤ −φ1 and θ2 < 0. The

partition generated by the CDR variable imposes some constraints on the movements across

states: P0 is deterministically adjacent only to itself, P2 to P0, P1 to P2 and P3 to P2. For this

particular parametrization, it is easy to verify that the system moves towards P0, hence, given

0 ≤ φ1 < 1, there is an N such that the eigenvalue condition is fulfilled and the model is

geometrically ergodic. As a final remark, note that this parametrization allows the process to

have unstable dynamics in all the elements of the partitions but P0.

7.4 Description of the Bootstrap Technique

Due to the non standard asymptotics of the nonlinear model, we made extensive use of

bootstrap techniques throughout all the paper. Recall that in our model the variance of the

error term follows a qualitative threshold process of the form:

εt = V
1
2
t ut, with Vt = 1(

qX
i=1

CDRt−i = 0)(Ωe −Ωr) + Ωr.

We adapt the method of resampling proposed by Lamoureux and Lastrapes (1990) for models

with conditional heteroskedastic errors. From the estimation procedure we obtain consistent

estimators for bεt and for bVt at every t, hence the adjusted-homoskedastic error but can be com-
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puted as but = bV − 1
2

t bεt. For the errors {but} we tested and could not reject the null hypothesis of

no serial correlation. In bootstrapping, we used the following procedure. In every replication,

we draw with replacement a new series
n
u
(i)
t

oN
i=1

from the homoskedastic and uncorrelated

residuals. Given this new sample and assuming the original initial conditions, we generate

the new sample
n
∆X

(i)
t

oN
i=1

by means of the recursive structure of the model specified in

equations (1)-(3).

In the non-nested test for the order selection on the CDR variable and in the test for lin-

earity, we use this resampling strategy to compute the empirical distribution of the statistics

under the null. For both tests, at each replication, we regenerate the data under the null of the

test and then compute the p − value of the statistics given the bootstrap sample. For each

test, 2, 000 bootstrap replications were performed. A precautionary remark has to be raised

concerning the non-nested testing procedure, as in the theoretical literature there are no re-

sults on the validity of bootstrap methods when the log-likelihood function is discontinuous.

However, some Monte Carlo experiments support our testing strategy.

The same resampling methodology has also been used in the computation of the Impulse

Responses. The maximum horizon of the IR has been set to 24 quarters, which turns out to be

sufficient for the long-run behavior to set in. For each history, we draw 1, 000 × 24 realiza-

tions of the homoskedastic residuals for the baseline model and 1, 000 × 23 for the shocked

model, since the initial shock is fixed at the calibrated values. To induce a negative correla-

tion between the sample estimates of the two expectations in (6) and reduce the experimental

variance, we used the same set of random numbers in sampling the future innovations. For

each of the 1, 000 replications, a future of length 24 for ∆X and CDR is recursively built

both for the shocked and the baseline economies. The regime dependent Impulse Response

is computed by averaging over all the selected histories in each regime. As explained in the

text, we have used all 97 actual histories for the linear regime, and 25 out of 57 histories in

the recessionary regime.

The experiment of the mean preserving spread in the empirical distribution of residuals

was performed using common random numbers with 1, 000 simulations of length equal to the

sample size.
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Table 5 - Order Selection
lag CDR lag AR AIC SIC

1 1 2.253 2.415
1 2 2.231 2.474
1 3 2.255 2.579
1 4 2.278 2.683
1 5 2.311 2.797
1 6 2.320 2.887
1 7 2.359 3.007
1 8 2.261 2.990
2 1 2.121 2.324
2 2 2.090 2.374
2 3 2.106 2.470
2 4 2.147 2.592
2 5 2.163 2.689
2 6 2.177 2.785
2 7 2.201 2.890
2 8 2.172 2.942
3 1 2.153 2.396
3 2 2.110 2.434
3 3 2.133 2.538
3 4 2.175 2.661
3 5 2.168 2.736
3 6 2.160 2.809
3 7 2.194 2.923
3 8 2.111 2.921
4 1 2.142 2.425
4 2 2.084 2.449
4 3 2.116 2.562
4 4 2.148 2.675
4 5 2.186 2.793
4 6 2.190 2.878
4 7 2.221 2.990
4 8 2.172 3.022

Akaike information criteria, AIC = −2× ( `oglike −#(parameters)
n

)

Schwartz information criteria, SIC = −2× ( `oglike− 0.5×lnn×#(parameters)
n

)

Number of observations, n = 148
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Figure 1: The variable CDR (—) compared with the NBER official business cycle chronology (· · ·)
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Figure 2: The Impulse Response Functions of the benchmark model to aggregate shocks
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Figure 3: The Impulse Response Functions of the benchmark model to aggregate shocks of double magnitude
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Figure 4: The Impulse Response Functions of the benchmark model to reallocative shocks

37



Figure 5: The Impulse Response Functions of the model with unemployment in levels to aggregate shocks.
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