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ABSTRACT

Reference Cycles: The NBER Methodology Revisited*

This Paper proposes a new way to compute a coincident and a leading index
of economic activity. The method provides a unified approach for the selection
of the coincident and the leading variables, for averaging them into coincident
and leading indexes and for the identification of turning points. The statistical
framework we propose reconciles dynamic principal component analysis with
dynamic factor analysis. We use our procedure to estimate coincident and
leading indexes for the EMU area as well as country-specific indexes. Unlike
other methods used in the literature, the country indexes take into
consideration the cross-country as well as the within-country correlation
structure.

JEL Classification: C13, C33, C43
Keywords: coincident and leading indicators, dynamic factor models, dynamic
principal components

Mario Forni
Dipartimento Di Economia Politica
Università di Modena
Via Berengario 51
41100 MODENA
ITALY
Tel: (39 59) 417 852
Fax: (39 59) 417 948
Email: forni@unimo.it

Marco Lippi
Dipartimento di Scienze
Economiche
Università di Roma
via Cesalpino 12
I-00161 Roma
ITALY
Tel: (39 06) 4428 4202
Fax: (39 06) 4404 572
Email: lippi@giannutri.caspur.it

Marc Hallin
Université Libre de Bruxelles
ECARES
39 ave. F.D. Roosevelt
B-1050 Bruxelles
BELGIUM
Tel: (32 2) 650 5886
Fax: (32 2) 650 5899
Email: mhallin@ulb.ac.be

Lucrezia Reichlin
Université Libre de Bruxelles
ECARES
39 ave. F.D. Roosevelt
B-1050 Bruxelles
BELGIUM
Tel: (32 2) 650 4221
Fax: (32 2) 650 4475
Email: lreichli@ulb.ac.be



*This Paper is produced as part of a CEPR research network on New
Approaches to the Study of Economic Fluctuations, funded by the European
Commission under the Training and Mobility of Researchers Programme
(Contract No ERBFMRX-CT98-0213).

Submitted 1 February 2000



NON-TECHNICAL SUMMARY

The aim of this Paper is to provide a practical method for computing
coincident and leading indicators of economic activity for the EMU as an
aggregate and for EMU countries. The procedure we propose is inspired by
the NBER tradition, but it is based on a fully developed statistical model which
is a generalization of the dynamic factor model and has a great theoretical
appeal in that it provides a reconciliation of factor analysis with principal
component analysis (Forni, Hallin, Lippi and Reichlin 1999, Forni and Lippi,
1999).

We pass through all the steps of the traditional NBER procedure – selection of
the coincident and the leading variables, identification of the turning points,
averaging and cleaning from the noise – although in a different order. We first
eliminate, from each time series in the panel, that part of the dynamics that is
poorly correlated with the rest of the economy and can hence be considered
as idiosyncratic. Then, in a second step, we select coincident and leading
indicators by analysing the phase shifts between these `cleaned’ time series.
Finally, we aggregate coincident and leading variables into coincident and
leading indexes and establish turning points. A major novelty of our
methodology is that these steps are not conceptually disjointed operations, but
are all consistently nested within a unified theoretical setting.

The advantages of our method over standard techniques can be summarized
as follows. First, we do not need to identify the turning points and select the
coincident variables on the basis of judgmental criteria before cleaning them
from noise, measurement errors and other idiosyncratic disturbances. Second,
by retaining leading and lagging variables in the data set we are able to exploit
additional information for the estimation of the coincident index.  Third, from
the analysis of a panel of time series for different countries, we can construct
both an aggregate index and country-specific indexes; the latter are estimated
by taking into account cross-country as well as within-country correlation. This
is particularly interesting for the construction of indexes for the EMU area
where it would be inappropriate to analyse countries in isolation from each
other.



1. Introduction1

There are basically two approaches to construct coincident and leading indicators of
the business cycle. The best known is due to the NBER tradition and is based on
two steps: first, the identification of turning points on the basis of some judgmental
criterion and the classification of each single variable as leading or coincident; sec-
ond, on the computation of averages of leading and coincident variables in order to
construct the relative indexes (Burns and Mitchell, 1946 and, for a general review,
Zarnowitz, 1992). Through averaging the analyst can not only produce a synthetic
measure of economic activity, but also eliminate measurement error and, in gen-
eral, specific characteristics of a single time series which are poorly correlated with
the rest of the economy. This approach, although not founded on any well defined
probabilistic model, has proved to be a useful way to summarize information on
the macroeconomy, is built on an enormous amount of experience and has provided
knowledge on US business cycle and reference for the macroeconomic profession for
years.

A second approach is founded on statistical modeling, specifically on index (or
factor) models. Index models are based on the idea that the dynamics of macroe-
conomic variables can be represented as the sum of a component which is common
to all variables in the economy and an orthogonal idiosyncratic residual. The com-
mon component is of low dimension, due to the existence of comovements between
macroeconomic variables (see Sargent and Sims, 1977 as a classic reference). A
version of this model has been used by Stock and Watson (1989) to construct co-
incident and leading indicators which are regularly applied to the US economy and
also published as NBER products. In this approach, the coincident index is the
common factor estimated from a vector of few coincident variables and the classifi-
cation of variables as coincident is performed a priori. The common factor estimate,
in a sense, is the statistical counterpart of the heuristic averaging operation of the
NBER methodology.

In this paper, we propose a new procedure, which retains basic features of both
the approaches above. The procedure is based on a statistical model, which is a
generalization of the dynamic factor model and has a great theoretical appeal in
that it provides a reconciliation of factor analysis with principal component analysis
(Forni, Hallin, Lippi and Reichlin 1999, Forni and Lippi, 1999). We pass through
all the steps of the traditional NBER procedure—selection of the coincident and the
leading variables, identification of the turning points, averaging and cleaning from
the noise—though in a different order. We first eliminate, from each time series in

1 This research has been supported by an A.R.C. contract of the Communauté française
de Belgique and by the European Commission under the Training and Mobility of Researchers
Programme (Contract no. ERBFMRXCT98-0213). We would like to thank Luca Sala for excellent
research assistantship.
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the panel, that part of the dynamics which is poorly correlated with the rest of the
economy and can hence be considered as idiosyncratic. Then, in a second step, we
select coincident and leading indicators by analyzing the phase shifts between these
‘cleaned’ time series. Finally, we aggregate coincident and leading variables into
coincident and leading indexes and establish turning points. A major novelty of our
methodology is that these steps are not conceptually disjoint operations, but are all
consistently nested within a unified theoretical setting.

The advantages of our method over standard techniques can be summarized
as follows. First, we do not need to identify the turning points and select the co-
incident variables on the basis of judgmental criteria before cleaning them from
noise, measurement errors and other idiosyncratic disturbances. Second, by retain-
ing leading and lagging variables in the data set we are able to exploit additional
information for the estimation of the coincident index. Third, from the analysis of
a panel of time series for different countries, we can construct both an aggregate
index and country-specific indexes ; the latter are estimated by taking into account
cross-country as well as within-country correlations. This is particularly interesting
for the construction of indexes for the EMU area where it would be inappropriate
to analyze countries in isolation from each other.

The paper is organized as follows. Section 2 presents our theoretical framework.
The procedure for the construction of the coincident and the leading indexes is
described in Section 3. A simple example illustrating the main features of our
method is presented in Section 4. The indexes for the EMU area are shown in
Section 5. Summary and conclusions follow.

2. Theory

‘Cleaning’ the variables through dynamic principal components

As anticipated above, a crucial preliminary step of our procedure is to clean each
observed series in the panel from the noise, i.e. from that part of its own dynamics
which is poorly correlated with the rest of the panel. Intuition suggests that, to this
purpose, we must, first, define few aggregates which capture most of the variance
of the variables in the panel and, second, project each variable on the leads and
lags of these aggregates. This allows us to decompose each time series into two
orthogonal components, the first one capturing the part of individual dynamics
which has ‘strong correlation’ with the rest of the panel and the second one being
of no interest for our purposes. We do this by using as aggregates the first few
dynamic principal components, which are the dynamic generalizations of the well-
known static concept of principal component.

Let us formalize the problem in the following way. We assume that our macroe-
conomic time series, suitably transformed, are realizations from a zero mean, wide-
sense stationary n-dimensional vector process xt = (x1t · · · xnt )

′. We wish to
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summarize what the processes xit have in common by a small number q of ‘aggregate
indexes’. Precisely, we look for q processes zht, h = 1, . . . , q, satisfying the following
properties. To begin with, (a) zht is a linear combinations of the leads and lags of
the variables in xt, i.e.

zht = ph(L)xt, h = 1, . . . , q,

where L is the lag operator and ph(L) is a row vector of two-sided filters. Moreover,
(b) zht and zkt are mutually orthogonal at any lead and lag for h �= k and the
filters ph(L) are normalized in such a way that ph(L)pk(F )′ = 0 for h �= k and
ph(L)ph(F )′ = 1, where prime denotes transposition and F = L−1. Finally, let us
focus on the decomposition

xt = γq
t + ζq

t = C
q(L)zqt + ζq

t = K
q(L)xt + ζq

t , (1)

where γq
t = ( γq

1t · · · γq
nt ) is the projection of xt on the present, past and future

of zqt = ( z1t · · · zqt )
′ and ζq

t is the residual vector. We require that (c) the filters
ph(L) and the associated processes zht, h = 1, . . . , q, are such that the sum of the
explained variances

n∑
j=1

var(γq
jt) (2)

is maximized.
Processes z1t, . . . , znt satisfying requirements (a), (b) and (c) for q = 1, . . . , n

do exist under quite general conditions and are called ‘principal component series’
or ‘dynamic principal components’ of xt.2 What we propose here as the first step
of our procedure is precisely to ‘clean’ the vector xt by replacing it with γq

t , i.e. its
projection on the present, past and future of the first q principal components series.

A comprehensive treatment of the principal component series can be found in
Brillinger (1981). Here we need only to remark a few facts. A first observation is that
dynamic principal components are related to the eigenvalues and the eigenvectors of
the spectral-density matrix of xt, just like the static principal components are related
to the eigenvalues and the eigenvectors of the variance-covariance matrix. Precisely,

2 It is worth noting that the projection γq
t solving the maximization problem is unique,

whereas the principal components themselves are not. To see this, let us focus for simplicity on
the first principal component and set q = 1. Now let us consider any invertible two-sided filter
a(L). Clearly, the linear space spanned by the leads and lags of a(L)z1t and that spanned by the
leads and lags of z1t coincide. Hence if z1t solves the maximization problem, also a(L)z1t solves
the problem, since the projection γ1

t is the same. The normalization p1(L)p1(F )′ = 1, which is
usually adopted, is not sufficient to imply uniqueness, since it simply imposes a(L)a(F ) = 1, i.e.
the amplitude of a(L) must be 1 at all frequencies, but the phase can be chosen arbitrarily. For
instance, we can get a different set of principal components simply by taking their lags, i.e. by
multiplying Ph(L), h = 1, . . . , q, by a(L) = Lk.
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let Σ(θ), −π < θ ≤ π, be the spectral-density matrix of xt: the vector ph(e−iθ) is
the eigenvector corresponding to the h-th eigenvalue of Σ(θ) in descending order.
Moreover, denoting by λh(θ) this eigenvalue and setting λh =

∫ π

−π
λh(θ)dθ, the

maximal explained variance (2) is given by λ1 + · · · + λq and the percentage of
explained variance is given by the ratio

λ1 + · · · + λq

λ1 + · · ·+ λn
. (3)

As we shall see below, the above ratio provides useful indications for the choice of
q.

Second, we can get an explicit expression for the filters Cq(L) and Kq(L) ap-
pearing in (1). These filters are given by

Cq(L) = (p1(F )′ · · · pq(F )′ )
Kq(L) =Cq(L)Cq(F )′ = p1(F )′p1(L) + · · · + pq(F )′pq(L)

, (4)

with a close analogy with the static case.
Finally, it is worth stressing that the definition of the filters ph(L) involves

unknown quantities like the variances in (2) and therefore must be estimated from
a finite realization of x of length T. The estimator we use here (which is denoted
by χT

nt for reasons which will be clear below) is described in detail in Appendix A.3

Here we give only a short hint. As a preliminary step, we estimate the spectral
density matrix Σ(θ) at different frequencies. Then, for each frequency, we compute
the first q eigenvalues and eigenvectors and use (4) to compute Kq(e−iθ). Lastly, we
use the inverse Fourier transform to estimate the filter Kq(L) and apply it to the
data. The estimates of Σ(θ) and Kq(e−iθ) can be exploited to estimate the spectral
density matrix of the common components, which is Kq(e−iθ)Σ(θ)Kq(eiθ)′.

Principal Components and the Generalized Dynamic Factor Model

Our cleaning procedure is based on the choice of the small number q, and seems
therefore open to considerable arbitrariness. However, if we assume that the x’s are
generated by a factor model, then the procedure can be given a more sound justifi-
cation and a criterion for the choice of q can be constructed. In the dynamic factor
approach, the variables are represented as the sum of two unobservable components:
the ‘common components’, which are driven by a small number of ‘factors’, common
to all of the variables in the system (but possibly loaded with different lag struc-
tures) and the ‘idiosyncratic components’, which are uncorrelated with the common
components and are specific to a particular variable. If we take this point of view,

3 Consistency of this estimator is ensured by standard results (see Brillinger 1981, ch. 9).
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eliminating the idiosyncratic part and retaining the common part appears as a quite
natural cleaning procedure.

To better understand the factor model we are dealing with, it will be convenient
to think of the vector xt as formed by the first n elements of the infinite sequence
xjt, j = 1, . . .∞. To emphasize the dependence on n, we write xnt in place of xt.
In our model,

xjt = χjt + ξjt = bj(L)ut + ξjt, (5)

where χjt is the common component, ut = (u1t · · · uqt )
′ is the vector of the com-

mon shocks, i.e. a (covariance stationary) q-vector process with non-singular spectral
density matrix, bj(L) is a row vector of possibly two-sided, square-summable filters,
and the idiosyncratic component ξjt is orthogonal to ut−k for any k and j. Hence,
with obvious notation,

xnt = χnt + ξnt = Bn(L)ut + ξnt. (5′)

Finally, we require the following properties. Let us denote by λχ
hn(θ), h = 1, . . . , n,

the h-th eigenvalue of the spectral density matrix of χnt, in descending order of
magnitude. Similarly, λξ

hn(θ) is the h-th eigenvalue of the spectral matrix of ξnt. We
assume that (i) the eigenvalues of ξnt are bounded as n→ ∞; precisely, λξ

hn(θ) < Λ
a.e. in [−π, π], for any h and n; (ii) the first q eigenvalues of χnt diverge, precisely,
limn→∞ λ

χ
hn(θ) =∞ for h ≤ q, a.e. in [−π, π].

Model (5) is the generalized dynamic factor model proposed by Forni, Hallin,
Lippi and Reichlin (1999) and Forni and Lippi (1999). The basic difference with
respect to the dynamic factor model of Sargent and Sims (1977) and Geweke (1977)
is that here the idiosyncratic components are not assumed to be mutually uncorre-
lated. Instead of this rather restrictive assumption, we require conditions (i) and (ii),
which impose a particular behavior to the common and the idiosyncratic eigenvalues
as the cross-sectional dimension becomes larger and larger. Heuristically, we require
that the amount of cross-correlation between the idiosyncratic components is limited
in the sense that idiosyncratic causes of variation, although possibly shared by many
(even all) units, have their effect concentrated on a finite number of units and tend-
ing to zero as j tends to infinity. On the other hand, we want a minimum amount
of cross-correlation between the common components. With a slight oversimplifica-
tion, we want each uht to be present in infinitely many cross-sectional units, with
non-decreasing importance. These requirements define the notion of ‘common’ and
idiosyncratic in an asymptotic sense and guarantee the uniqueness of the common
and the idiosyncratic components (the uniqueness of the common shocks and the
factor loading requires additional assumptions).

Now let us go back to equation (1) and rewrite it as

xnt = γnt + ζnt = Cn(L)znt + ζnt, (1′)
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where for convenience, we have added the subscript n and dropped the superscript
q, which is not useful in this context. Now let us add the following assumptions: (iii)
the non-zero eigenvalues of ζnt (i.e. the last n − q eigenvalues of xnt) are bounded
as n → ∞; precisely, λhn(θ) < Λ, h = q + 1, . . . , n, a.e. in [−π, π], for any n; (iv)
the first q eigenvalues of χnt (i.e. the first q eigenvalues of xnt) diverge; precisely,
limn→∞ λhn(θ) =∞ for h ≤ q, a.e. in [−π, π].

Assuming (iii) and (iv), the similarity between representations (1′) and (5′) is
striking. The basic difference is that the sequence χnt, n = 1, . . . ,∞ is nested, in
the sense that the first n − 1 entries of χnt are the same as that of χn−1,t. By
contrast, the sequence γnt in non-nested in general, so that the two decompositions
do not coincide.

However, there is a deep relation between them. Forni and Lippi (1999) show
that if conditions (iii) and (iv) on the eigenvalues of the x’s are satisfied, then the
generalized dynamic factor representation (5) does exist and, conversely, if (5) holds,
then (iii) and (iv) are satisfied. This result is a dynamic generalization of a basic
theorem in Chamberlain and Rothschild (1983). Moreover, the j-th entry of γnt,
call it γjnt, converge to χjt in mean square as n→ ∞, for any j. Hence, for n large,
γnt is a good approximation of χnt. Finally, the latter result provides the basis for
the consistency theorem proven in Forni, Hallin, Lippi and Reichlin (1999): the j-th
entry of the estimator used here and described in Appendix A, call it χT

jnt, converges
in probability to χjt as both n and T go to infinity at some appropriate rate.

These results build a firm bridge linking principal component and factor anal-
ysis. The basic intuition behind them is that, by taking the principal components,
we are taking an average of the x’s. When n is large, we get a kind of Large Num-
ber result. The idiosyncratic components, which are poorly correlated, disappear,
so that we are essentially left with linear combinations of (the leads and lags of)
the common components. Such linear combinations span almost the same dynamic
space as the common factors. Hence, by projecting xjt on the former space, we ap-
proximate χjt, which is the projection of xjt on the latter. We shall return on this
point in Section 5, where we show a simple example illustrating our methodology.

The above results also suggest a simple criterion for the choice of the number
of principal components to be retained. If model (5) holds, the eigenvalues λhn =∫ π

−π
λhn(θ)dθ are bounded for h > q and diverge for h ≤ q as n → ∞. Hence, for

large n, we expect that there is a ‘jump’ between λqn and λq+1,n. This suggests
to add principal components until the increase in the explained variance is larger
than some prespecified value. Precisely, denoting by λT

hn, where T is the number of
time observations, the estimate of λhn, and given a number α ∈ (0, 1) the criterion
consists in selecting q = q∗ such that

λT
q∗n/

n∑
h=1

λT
hn > α and λT

q∗+1,n/
n∑

h=1

λT
hn < α. (6)
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Model (5) allows for possibly more than one shock with heterogenous impulse
response functions across cross-sectional units. The model in Stock and Watson
(1989) is obtained as the particular case in which, besides mutually orthogonal id-
iosyncratic components, there is only one common shock (so that Bn(L) is a vector),
and all the entries of Bn(L) are proportional (i.e. there is a scalar filter b(L) such
that Bn(L) = b(L)Bn, Bn being a vector of constants). In this case we can unam-
biguously identify a unique ‘common cycle’ in a very strong sense, since the only
common factor, defined as b(L)ut, is loaded only contemporaneously by all of the
variables in xnt. This is a rather demanding restriction. None of the xjt’s can
be leading or lagging, and, in addition, there must be only one source of common
variation in the data set. Matching these requirements imposes a very accurate pre-
liminary selection of the coincident variables, and, even so, the restrictions could be
rejected by the data, leaving us without any theoretical foundation for the coincident
index. Here we give up the idea that a common cycle in the strong sense above does
exist. On the other hand, we are payed back with an enormous gain in flexibility,
which is the source of the advantages of our methodology, as we shall see in detail
in the following sections.

3. The procedure

Having clarified the basic theoretical background, we can now go on and present the
whole procedure for the construction of the coincident and the leading indexes and
the identification of turning points. To better fix ideas, we shall make reference to
the panel of countries belonging to the European Monetary Union (EMU), but the
procedure, possibly with minor modifications, has general validity. The procedure
consists of five steps.

STEP 1: choice of the variables to include in the panel

The first step is to decide what are the variables to include in the data set and to clean
them by computing the common components. As we have seen, from a theoretical
point of view, all available variables should in principle be included. In practice,
however, it is not recommended to include variables which have small commonality
and large idiosyncratic components, since the latter could survive aggregation and
be wrongly interpreted as additional common factors. To select our data set we
proceed as follows. We identify two sets of variables: a ‘core’ formed by variables
which surely must be in, and a set of candidate variables. Then we transform all the
variables so as to get stationarity and normalize them by subtracting the mean from
each variable and dividing them by their standard deviation. We obtain stationarity
by differencing (or differencing the logs). An alternative procedure would have been
to apply a band-pass filter as, for example, in Stock and Watson (1998). The
advantage of the latter strategy is that it eliminates high frequency fluctuations.
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Its drawback, however, is that it implies a bilateral filter which poses problems of
estimation at the end of the sample in addition to those that we will discuss below.

Using the core, we fix q∗ according to criterion (6) and compute the corre-
sponding ‘degree of commonality,’ as measured by the (estimated) variance ratio
(3). Once this ratio, say µ, is fixed, we evaluate each candidate variable in turn.4

For the evaluation, we consider the enlarged system formed by the core and the can-
didate variable, compute the quantity (3) with q = q∗ and decide that the candidate
has passed the exam as soon as (3) is larger than µ. Successful candidates are not
added to the core until all the candidates have been evaluated. The final data set is
defined as including the core and the non-core successful variables.

At this stage, we estimate both the vector of the common components χnt and
its spectral density matrix Σχ(θ), with q = q∗, as explained in the previous Section
and in Appendix A.

STEP 2: pro-cyclical and anti-cyclical variables

As the second step, we classify the common components χjt as being ‘in phase’ or
in ‘phase opposition’ with respect to the common component of the GDP, which is
taken as the reference point to establish what is ‘coincident’ and what is not. A
variable in phase opposition is a counter-cyclical variable; an obvious example is the
unemployment rate.

Precisely, we proceed as follows. Using the estimate of Σχ(θ), we compute
the cross-spectral density of each common component with respect to the common
component of the growth rate of the European GDP.5 Then we compute the argu-
ment of these densities, which is the phase angle delay with respect to the European
GDP, at frequency zero.6 Let the phase angle shift for χjt be φj(θ), −π < θ ≤ π.
At frequency zero, the phase may be either 0 or π depending on whether long-run
correlation is positive or negative. We interpret φj(0) = π as indicating that χjt is
in ‘phase opposition’ and define the new series of interest as7

ωjt =
{
χjt if φj(0) = 0,
−χjt if φj(0) = π.

4 Since we have many countries, when evaluating a variable we add to the core several time
series at a time.

5 The European growth rate is defined as the weighted average of the differences of the logs of
the GDP’s of the European countries, with weights proportional to the average levels across time.
For a few countries we do not have the GDP; in these cases, we used energy consumption.

6 We recall that the cross spectral density between two variables h and j can be expressed,

in its ‘polar form’, as Shj(θ) = Ahj(θ)e
−iφhj(θ) where Ahj(θ) is the ‘amplitude’ and φhj(θ) is

the ‘phase’. The phase φhj(θ) measures the angular shift between the cosine waves of h and j at
frequency θ, while φhj(θ)/θ measures the time shift.

7 This procedure is suggested by Granger and Hatanaka 1964, ch. 12.
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STEP 3: classification of variables as coincident, leading and lagging

The third step consists in classifying the resulting time series as being leading,
coincident or lagging according to their phase delay with respect to the GDP.

We compute the phase angle shift of ωjt, j = 1, . . . , n, with respect to the GDP,
at a typical business cycle frequency, say θ∗ > 0, and, denoting such phase angle
with ψj(θ∗), we classify ωjt as coincident if |ψj(θ∗)| is smaller than a prespecified
value τ , leading if ψj(θ∗) < −τ and lagging if ψj(θ∗) > τ .8

STEP 4: the coincident and leading indexes

Now we are ready to compute the indexes. The coincident and the leading indexes
for Europe are constructed as averages of the coincident and the leading common
components, taken with the proper signs. More precisely, we assign to variable j the
weight Wj , given by the average across time of the GDP level of the corresponding
country. Then, denoting with C the set of the j’s such that ωjt is coincident and with
L the set of the j’s such that ωjt is leading, the first differences of the coincident
and the leading indexes, ∆Ct and ∆Lt, are defined as

∆Ct =

∑
j∈C ωjtWj∑

j∈CWj

∆Lt =

∑
j∈L ωjtWj∑

j∈LWj
.

(7)

The indexes in levels, Ct and Lt, are defined as the cumulated sums, centered and
divided by their standard deviations. A lagging index can be defined in a similar
way.9

Notice that the estimated common components χT
jnt are obtained by applying

to the data set a two-sided filter (KT
n (L)) with length 2M + 1 (see Appendix A).

Hence at the beginning and at the end of sample, i.e. at t = 1, . . . ,M and t =
T −M +1, . . . , T the estimates are bad. For this reason we correct the estimates at
these points by replacing ωjt in equation (7) either with xjt (if ωjt = χjt), or with
−xjt (if ωjt = −χjt). In order to evaluate the adequacy of this correction, consider
that if we have many coincident and leading variables, the idiosyncratic components
are roughly eliminated by the averaging in (7), even when ωjt is replaced by xjt. In

8 Of course, this is equivalent to computing the ‘time delay’ ψj(θ∗)/θ∗ and compare it with
τ/θ∗. Notably, if θ∗ is sufficiently close to 0, the estimate of the time delay ψj(θ

∗)/θ∗ can be
regarded as an estimate of the derivative of the phase angle at θ = 0. This is interesting in that
such derivative is equal to the ‘mean lag’, which is a well-known time-domain statistic measuring
the ‘delay’ of a time series.

9 As observed in Sargent (1987, ch. XI), a phase lead does not necessarily imply Granger
causation. Hence, the ability of the leading index in predicting the coincident index has to be
verified in practice.
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our European data set, within sample, i.e. for t =M+1, . . . , T−M , the mean-square
error is 0.98 for the coincident index and 0.96 for the leading index.

STEP 5: turning points

Having obtained the (corrected) coincident index Ct, the turning points are simply
defined as the dates t∗ in which Ct reaches local maxima and minima. To avoid the
possibility that two maxima (or minima) are too close to each other, we can impose
the further condition that, given a prespecified m, t∗ ≥ t for any t ∈ [t∗−m, t∗+m].
STEP 6: local indexes

Coincident and leading indexes for each European country can be constructed as
follows. For country s we select the related series, i.e. the χjt’s such that sj = s,
and focus on the cross-spectra of each one of them with respect to the GDP of that
country. Then we follow Step 2 in order to define the correct signs and the phase
delays of each series. The coincident (leading) index is then defined as the simple
average of the coincident (leading) series.

4. A stylized example

Dynamic principal components average time series cross-sectionally and over time.
This double operation allows to weight variables according to their leading-lagging
relations. This section develops a stylized example which illustrates the point. To
make things simple we shall assume an infinite number of observations over time, so
that the error stemming from a finite T will be ignored.

Suppose that q = 1 and the filters bj(L) appearing in equation (5) are of the
form Lsj , with sj equal to zero, one or two. Thus we have a single common factor
ut; some of the variables load it with lag one, the coincident variables, some with
lag zero, the leading variables, some with lag two, the lagging variables. Equation
(5′) becomes

xnt =



Ls1

Ls2

...
Lsn


ut + ξnt.

Moreover, assume that the idiosyncratic components ξjt, j = 1, . . . ,∞, are mutually
orthogonal white noises, with the same variance σ2, so that the spectral density of
xnt is

1
2π



e−is1θ

e−is2θ

...
e−isnθ


 ( eis1θ eis2θ · · · eisnθ ) +

σ2

2π
In.
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In this case, it can be easily verified that the larger eigenvalue is

λ1n(θ) = n+ σ2 (8)

and a valid corresponding row eigenvector is

p1n(e−iθ) =
1√
n
( eis1θ eis2θ · · · eisnθ ) . (9)

The related filter is10

p1n(L) =
1√
n
(F s1 F s2 · · · F sn ) ,

while the first principal component series is

z1t =
1√
n
(F s1 F s2 · · · F sn )



Ls1

Ls2

...
Lsn


ut

+
1√
n
(F s1 F s2 · · · F sn ) ξnt

=
√
nut +

1√
n

n∑
j=1

ξjt+sj
.

Two observations are in order. First, the idiosyncratic part of the principal
component vanishes with respect to the common part as n becomes larger and
larger, so that the principal component itself becomes increasingly ‘collinear’ with
the common factor ut. In other words, if n is sufficiently large, the first principal
component captures the information space spanned by the common shock.

Second, the filter p1n(L) shifts the common components by multiplying each
of the Lsj precisely by F sj , so that time delays and time leads are eliminated and
we end up by summing n times the same common shock ut. This sort of automatic
re-alignment is the reason why we do not need to discriminate a priori between
coincident and non-coincident series and discard the non-coincident ones in the con-
struction of the coincident index. Far from disturbing, leading and lagging series

10 Note that, in this example, the idiosyncratic components plays no role in the determination
of p1n(L), which would have been identical with zero idiosyncratic terms. This is due to the
particular form that we have assumed here for the cross-covariance structure of the idiosyncratic
components. However, as shown in Forni and Lippi (1999), the same property holds approximately
for large n under Assumption (i) of Section 2, i.e. the boundedness of the first eigenvalue of the
spectral density matrix of ξnt.
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contribute to a better cleaning of the variables from the idiosyncratic noise. By
averaging both across time and across sections, we are able to exploit correctly the
information conveyed by the leading and lagging variables, which otherwise would
be lost.

This point can be better understood by developing the example further. Apply-
ing (4) we see that the filterKn(L) is equal to p1n(F )′p1n(L), so that the ‘estimated’
common components, which coincide here with the γjt’s appearing in equation (1)
(because of the simplification T =∞) are

γjt =
1√
n
Lsj

[
√
nut +

1√
n

n∑
h=1

ξht+sh

]
= Lsjut +

1
n

n∑
h=1

ξh(t+sh−sj)

= χjt +
1
n

n∑
h=1

ξh(t+sh−sj).

Note that, when applying the filter p1n(F )′ (i.e. projecting on the leads and lags
of z1t), the correct lags of the common components are restored and the leading or
lagging nature of each variable emerges again.

To see how the ‘phase shift’ reveals this information assume s1 = 1, i.e. the
first variable is coincident, and take it as the reference point. The spectral density
matrix of the common components will be estimated as

Kn(e−iθ)Σn(θ)Kn(eiθ) = p1n(eiθ)′p1n(e−iθ)
λ1n(θ)
2π

.

¿From (8) and (9) it is seen that the estimated cross-spectrum of χjt and χ1t is
e−iθ(sj−1)(1/2π + σ2/2nπ). Hence the true cross-spectral density e−iθ(sj−1)/2π will
be obtained for n→ ∞ and the angle phase delay is perfectly estimated as

ψj(θ) = θ(sj − 1).

The implied time delay (see note 8, p.9) is ψj(θ)/θ = sj − 1, i.e. −1 for the leading,
0 for the coincident, and 1 for the lagging common components.

The coincident index ∆Ct is obtained by averaging the coincident common
components. Assuming without loss of generality that the coincident variables are
the first m ones, we have s1 = · · · = sm = 1 so that

∆Ct =
m∑

h=1

γht/m = ut−1 +
1
n

n∑
j=1

ξj(t+sj−1).

The true coincident index ut−1 is approximated with error variance σ2/n.
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Let us now compare our index with the index which we would obtain by simply
averaging across the coincident variables, which for simplicity we now assume known
in advance. This alternative index, say ∆CNBER

t , is a stylized exampled of the
traditional NBER procedure.

We have

∆CNBER
t =

1
m

m∑
j=1

xjt = ut−1 +
1
m

m∑
j=1

ξjt,

with error variance σ2/m. Hence, as anticipated above, as long as leading and
lagging variables are available (n > m), their inclusion will improve the estimates.

Notice that in this stylized example, the first principal component, suitably
shifted to be in phase with GDP, is collinear with the coincident index. However,
using the first principal component as the coincident index, as suggested by Bowden
and Martin (1993), is not appropriate when we have more than one common shock.

Finally, let us observe that if, as in the empirical application of the next Section,
we have more than one country and the GDP of one of them is leading, the coinci-
dent index for this country will differ from the general index. More generally, in a
model with more than one common shock and heterogenous factor loadings, there
is no reason to expect equal coincident indexes for all countries, even in the case
in which all GDPs are coincident. Therefore, our method identifies national as well
as international indexes. In models with one common shock and contemporaneous
loadings this flexibility would be lost.

5. Coincident and leading indexes for the EMU

We will now estimate coincident and leading indexes for all countries of the EMU
aggregate and for each different member country following the procedure outlined
in Section 3. Data and data sources are described in Appendix B.

The variables selected for the core are all from the real sector. Additional labor
market variables, prices, monetary and financial indicators and orders were left out
and analyzed one-by-one as described in Step 1 of Section 3. We fixed α = 0.05 and
found q∗ = 3, i.e. three common factors. For the core, the degree of commonality,
as measured by (3), is 0.50. Table 1 reports results from the selection procedure. It
emerges clearly that all financial and monetary variables do not pass the selection
criterion and neither do the price indexes or the share indexes. This indicates that
the financial sector and prices have a limited commonality with the real sector of the
economy. On the other hand, and not surprisingly, male unemployment rate passes
the test while the female rate does not. The result for orders is not surprising either,
since this variable is traditionally used as a leading indicator by practitioners.

In Table 2 we show variance ratios between each variable common component
and its total. These estimates provide an information on the ‘degree of commonality’
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of each variable in the panel. Results vary slightly across countries, but, in general,
GDP, labor market variables and orders show the highest degree of commonality.

Table 3 reports the analysis of the time phase lead of each variable with respect
to the common European GDP (time leads are expressed in quarters) at frequency
θ∗ = π/16, corresponding to a cycle of period of eight years. On the basis of these
results we can then establish which variables are coincident, leading or lagging.
Leading variables are defined as those with time phase lead larger than one month
(0.33 quarters), corresponding to an angle phase lead τ = π/48; lagging variables
are defined as those which lag by more than one month and the residual variables
are defined as coincident. Starred variables are those found to be in phase with
respect to the common component (procyclical). Not surprisingly, unemployment is
anti-cyclical and labor market variables are generally lagging. Leading variables are
orders for all countries and capacity utilization and energy consumption for some
countries. We can also observe that, contrary to what one may have expected,
neither German GDP nor German investment are leading. In fact, it is the Finnish
GDP and investment which have a leading role. This is explained by the specific
characteristics of the Finish recession of the early nineties. The exceptionality of
the Finnish cycle will again emerge from country-specific results below.

On the basis of these results we are finally able to aggregate coincident, leading
and lagging variables into their respective indexes. Figure 1 shows the resulting
EMU coincident and leading indexes in levels (without the drift). We have two
main turning points in the first quarter of 1990 (beginning of a recession) and the
first quarter of 1994 (beginning of an expansion), followed by a short cycle with
small amplitude at the end of the sample, with turning points 1995:1 and 1996:2,
which could be interpreted as a minor episode within a basically expansive period.

Finally, let us report results from the country analysis. Figure 2 reports the
national coincident indexes against the EMU aggregate coincident index.

6. Summary and conclusions

This paper develops a unified methodology for the construction of coincident and
leading indicators and the identification of turning points of the business cycle. The
method is based on statistical theory and reconciles dynamic principal component
and dynamic factor analysis. We apply the methodology to a data set of many
macroeconomic variables for ten EMU countries. Results indicate that the real
cycle is not strongly correlated with the monetary-financial cycle and that, contrary
to common wisdom, Germany does not have a ‘leading’ role within the EMU.
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Appendix A: the estimator

In this Appendix we show how χnt and its spectral density matrix can be estimated.
We adopt the notation of (5′) and (1′), i.e. we drop the superscript q and explicit
the dependence on n. As explained in the main text, χjnt, the j-th entry of χnt, can
be regarded as an estimator of both γjnt, the j-th entry of γnt, and χjt. Standard
results ensure consistency of the estimator, as an estimator of γjnt, as T goes to
infinity. Consistency with respect to χjt as both n and T go to infinity is shown in
Forni, Hallin, Lippi, Reichlin (1999).

The estimation procedure is in three steps. First, we estimate the spectral
density matrix Σ(θ) of xnt at a number of frequencies, using a Bartlett lag-window
estimator of size M = M(T ). Precisely, we compute the sample covariance matrix
ΓT

k of xnt and xnt−k for k = 0, . . . ,M . Then we compute the 2M +1 points discrete
Fourier transform of the truncated two-sided sequence ΓT

−M , . . . ,Γ
T
0 , . . . ,Γ

T
M , where

Γ−k = Γ′
k, i.e. we compute

ΣT
n (θs) =

M∑
k=−M

ΓT
k ωke

−ikθs ,

where
θs = 2πs/(2M + 1), s = 0, . . . , 2M

and ωk = 1 − |k|
(M+1)

are the weights corresponding to the Bartlett lag window of
size M . Consistent estimation of Σ(θs) is ensured, provided that M(T ) → ∞ and
M(T )/T → 0 as T → ∞. The rule M = round(

√
T/4) seems to perform well for

a number of low order MA and AR models under simulation (see Forni, Hallin,
Lippi, Reichlin 1999). The construction of a data-dependent rule, which would be
preferable in principle, is still an open question. Here, with T = 50, we used both
M = 2 and M = 3 and decided in favor of M = 3 because of the existence of
consistent phase shifts between the variables.

Second, we compute the first q eigenvectors πT
hn(θs), h = 1, . . . , q, of Σ

T
n (θs), for

s = 0, . . . , 2M . Note that, for M = 0, πT
hn(θ0) is simply the h-th eigenvector of the

(estimated) variance-covariance matrix of xnt: the dynamic principal components
then reduce to the static principal components. ¿From the eigenvectors we compute

ΦT
n (θs) = π̃T

1n(θs)π
T
1n(θs) + · · ·+ π̃T

qn(θs)π
T
qn(θs),

where the tilde denotes conjugation and transposition.
Finally, we compute the estimator of the n × n matrix of filters Kn(L) by

applying the inverse discrete Fourier transform of

(ΦT
n (θ0), · · · , ΦT

n (θ2M ) ) .
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Precisely, we compute

KT
kn =

1
2M + 1

2M∑
s=0

ΦT
n (θs)e

ikθs

for k = −M, . . . ,M . The estimator of the filter is given by

KT
n (L) =

M∑
k=−M

KT
knL

k.

The estimator of the common components is

χT
nt = K

T
n (L)xt.

The spectral density matrix of the common components can be estimated as

ΣχT
n (θs) = ΦT

n (θs)Σ
T
n (θs)Φ̃

T
n (θs).
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APPENDIX B: Definition of variables, sources and data treatment 
 
Core variables 

Code Variable Source Details Data Treatment 
GDP Gross domestic product  Eurostat Mio Ecu 1990 - National accounts (SEC79) Differences in logs 
Inv. Gross fixed capital formation Eurostat Mio ecus,1990 /National accounts (SEC79) Differences in logs 

Cons. Private national consumption Eurostat Mio ecus,1990 /National accounts (SEC79) Differences in logs 
Cap. Util. BSS capacity utilization rate Eurostat Seasonally Adjusted /Business tendency surveys/ 

Rate of capacity utilisation 
Differences - For Italy, regression on 3  
seasonal dummies and a trend (as the seas. 
adjusted series was not available) 

Unemp. Unemployment  Eurostat Total, seasonally adjusted  Differences 
En. Cons. Energy   Eurostat Energy - Gross inland consumption - all products - 

 1000 TOE  
Differences - Deseasonalized by a regression 
on 3 seasonal dummies and a constant.  
For Germany, regression on 3 seasonal dum- 
mies, a trend and a constant with a change in 
regime in 90:4   

IP Industrial production  Eurostat Total industry (excluding construction) - 1995=100  Differences in logs 
 
 

Other variables 
Code Variable Source Details Data Treatment 
Emp Employment  Eurostat Total industry (excluding construction) -1995=100  Differences 

Mrate Day-to-day money rate Eurostat Day-to-day money rate (mean) %   Differences 
3Mth rate 3-month money market rate  Eurostat 3-month money market rate (mean) %  Differences 

M1 Money supply: M1   Eurostat Money supply: M1 (end of period) T/T-12  Differences in logs 
M2 Money supply: M2  Eurostat Money supply: M2 (end of period) T/T-12 %  Differences log 
M3 Money supply: M3  Eurostat Money supply: M3 (end of period) T/T-12 %  Differences in logs 

Unemp men Unemployment rate men  Eurostat Unemployment rates men seasonally adjusted  Differences 
Unemp 
women 

Unemployment rate women  Eurostat Unemployment rates women seasonally adjusted  Differences 

Unemp 
young 

Unemployment rate of persons 
under 25 years 

Eurostat Unemployment rates of persons under 25 years, 
total seas. adj.  

Differences 

CPI CPI  OECD All items - Index - 1995=100 Differences in logs 
PPI PPI  OECD Total  Index publication base - 1995Y Differences in logs 

Share Price  Share Prices  OECD SHARE PRICES ALL SHARES - Index Differences in logs 
Real Int. 3Mth rate - ∆(in logsCPI) Authors’  

computations 
3Mth rate - ∆(logCPI) Differences 

Orders Orders for manufacturing 
industries 

EC-DGII 
  

Orders for manufacturing industries Differences 

 



Table 1: Data set 
 

 Austria Belgium Finland France Germany Ireland Italy Netherlands Portugal Spain 
GDP core core core core core - core core - core 
Inv. core core core core core - core core - core 

Cons. core core core core core - core core - core 
Cap. Util. - core - core core - core core core core 
Unemp. - core - core - core core core core core 

En. Cons. - core - core core core core core core core 
IP core core core core core core core core core core 

Emp - nc - nc nc - nc - - nc 
Mrate x - - x x - - x - x 

3Mth rate x x x x x x x x x x 
M1 x x x x - x x - x x 
M2 - - x x - - - - x x 
M3 x x x x - - - - x x 

Unemp men - nc - nc - nc nc nc nc nc 
Unemp wom - x - x - x x x x x 

Unemp young - nc - nc - nc nc nc nc nc 
CPI x x x x x x x x x x 
PPI x x x x x x x x - x 

Share Price  x x - x x x x x - x 
Real Int. x x x x x x x x x - 
Orders nc nc nc nc nc nc nc nc - - 

 
core: variables belonging to the core 
nc: variables not belonging to the core, used in the final estimation 
x: variables not belonging to the core, not used in the final estimation 
 



 
 
 
Table 2: Variance ratios of the common components  
 

 Austria Belgium Finland France Germany Ireland Italy Netherlands Portugal Spain 
GDP 0.4422 0.4981 0.4609 0.7704 0.5596 - 0.533 0.3363 - 0.8001 
Inv. 0.3793 0.3707 0.4154 0.6663 0.5925 - 0.5546 0.4669 - 0.7773 
Cons. 0.1925 0.4314 0.3957 0.3569 0.5012 - 0.597 0.3793 - 0.7001 
Cap. Util. - 0.3281 - 0.5591 0.5482 - 0.3978 0.5026 0.2548 0.4489 
Unemp. - 0.6374 - 0.7032 - 0.7384 0.4189 0.5585 0.5466 0.8213 
En. Cons. - 0.4672 - 0.5999 0.4065 0.4829 0.4414 0.4609 0.1765 0.2151 
IP 0.3235 0.223 0.5427 0.5768 0.6552 0.3706 0.2997 0.374 0.3576 0.5464 
Emp - 0.3461 - 0.7915 0.7524 - 0.5315 - - 0.6316 
Unemp 
men 

- 0.6198 - 0.7766 - 0.7199 0.4552 0.583 0.4493 0.7781 

Unemp 
young 

- 0.7267 - 0.713 - 0.6246 0.4117 0.389 0.4749 0.8069 

Orders 0.6788 0.675 0.532 0.6615 0.7484 0.2905 0.689 0.5931 - - 
 
 
 
 
 
 
Table 3: Phase lead/lag with respect to the common European GDP 
 

 Austria Belgium Finland France Germany Ireland Italy Netherlands Portugal Spain 
GDP -0.0319* 0.0230* 0.4545* 0.0147* -0.1696* - 0.0397* -0.0329* - 0.0751* 
Inv. 0.5427* -0.1508* 0.0421* -0.0985* -0.2316* - -0.2717* 0.1786* - 0.0548* 
Cons. -0.6206* -0.0434* 0.3407* -0.1680* -1.4209* - -0.0447* -0.5661* - -0.0947* 
Cap. Util. - 0.6893* - -0.1106* 0.3671* - 0.3657* 0.3702* 0.1902* 0.5323* 
Unemp. - -0.3591 - -0.4625 - -0.0353 -1.0839 -0.416 -0.1499 -0.1988 
En. Cons. - 0.2983* - 0.5071* -1.048 1.3540* 0.1548* 1.1242 -0.7777* 0.4682* 
IP -0.1231* -0.0456* 3.0941* 0.1269* 0.0552* -0.4841* 0.1749* -0.2501* -0.2936* 0.5754* 
Emp - -0.7197* - -0.4074* -0.4126* - -0.1412* - - -0.0443* 
Unemp 
men 

- -0.3804 - -0.3221 - -0.0816 -1.0063 -0.2013 -0.1062 -0.0765 

Unemp 
young 

- -0.296 - -0.3307 - 0.2773 -0.6475 -0.0664 0.0126 -0.1222 

Orders 0.3798* 0.4756* 4.1444* 0.4641* -0.0066* 0.4211* 0.7120* 0.4662* - - 
 
Starred variables are procyclical (in phase with respect to the Euro common GDP). Those without a star are  
countercyclical (in opposition of phase). 
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Figure 1: European coincident and leading indexes
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Figure 2: National coincident indexes 


