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ABSTRACT

Monotone Matching In Perfect And Imperfect Worlds*

We study frictionless matching models in large production economies with and
without market imperfections and/or incentive problems. We provide
necessary and sufficient distribution-free conditions for monotone matching
which depend on the relationship between what we call the segregation pay-
off – a generalization of the individually rational pay-off – and the feasible set
for a pair of types. Imperfections have two distinct effects that are relevant for
equilibrium matching patterns: they can overwhelm the complementarity
properties of the production technology and they can introduce non-
transferabilities that make equilibrium matching inefficient. We also use our
framework to reveal the source of differences in the comparative static
properties of some models in the literature and to explore the effects of
distribution on the equilibrium matching pattern.
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NON-TECHNICAL SUMMARY

Matching models have proved to be remarkably adaptable to a wide range of
problems. Early applications considered environments in which there were no
market imperfections: the only departure from standard Arrow-Debreu
assumptions was the presence of indivisibility in agents’ characteristics that
make a matching problem relevant. But many of the more recent applications,
including for example community stratification, education financing,
international trade, organizational design, or the market for ownership and
control, also involve some sort of imperfection arising from a missing market
or an information asymmetry.

The main insight of the early literature was a fundamentally monotonic result.
In the presence of complementarities there is positive assortative matching:
more able individuals are assigned to more productive tasks or to more able
individuals. Monotone matching patterns of this kind are compelling both
because of their empirical appeal and because they greatly facilitate
computation of the equilibrium. However, it is unclear to what extent the
connection between complementarity and positive assortative matching
carries over to the more general environments that have attracted recent
attention. Our purpose here is to (1) provide conditions for monotone matching
to occur in equilibrium in some of these more general environments and (2)
show, by studying some applications, how these conditions facilitate
computation of equilibria (including those in the classical models) and help
with an assessment of the impact of imperfections on matching.

Our analysis proceeds by studying an object called the ‘surplus’, defined as
the difference between the utility possibility set of a matched pair and the
segregation pay-off vector, the latter consisting of the utility levels that each
type would get in the equilibrium of an economy consisting solely of that type.
The surplus is a natural measure of the ‘gains from trade’ (more precisely
gains from a heterogeneous match), and its properties can tell us a lot about
the equilibrium outcome.

We derive the following main results. (1) For the case of transferable utility, in
which case the surplus is a real valued function, the match will be positively
assortative of all type distributions if and only if the surplus satisfies ‘weak
increasing differences’, a strict weakening of the standard increasing
difference condition. (2) Two-sided matching models, in which there is a
gender as well as a type, have strong invariance properties compared with
one-side models; this is explained by showing that they are equivalent to a
particular form of one-side model with a particular structure. (3) For the case
of non-transferrable utility, we provide a readily verifiable sufficient condition



(the ‘spiralling condition’), that has a simple diagrammatic representation, for
positive assortative matching.

We then employ these results to analyse several extended examples, which
are simplified versions of models from the recent literature. Market
imperfections have two distinct effects that are relevant to matching. First, as
we illustrate with a model of production with a credit market imperfection, they
may swamp the complementarity properties of the production technology,
resulting in matches that may be non-monotonic; more generally the
monotonic nature of the match may depend on the distribution of types. Thus,
even when it is known that technology is complementary, positive assortative
matching is not a universal prediction of matching models,

Second, imperfections reduce transferability within coalitions. We apply the
spiralling condition to a model of risk-sharing within households, showing that
there will be negative assortative matching by wealth. We also study a
production model with moral hazard in which a very strong form of positive
matching, known as segregation, wherein agents match only with agents of
their own type, emerges despite the fact that it is not efficient: a social planner
could increase the economy’s output by reassigning people to other types.
The incentive problem prevents the winners in such a reassignment from
compensating the losers, which is why it doesn’t happen in equilibrium. The
result arises only from the failure of transferability within coalitions and has
nothing to do with there being too few towns for the number of types or other
‘external’ effects. The example also shows that positive assortative matching
may not constitute reliable evidence of an efficient matching process.



1 Introduction

Ever since Roy [22] and Tinbergen [27] used them to study the distribution
of earnings, matching (or assignment) models have proved to be remarkably
adaptable to the study a wide range of problems.1 Early applications of
these models (as well as some more recent ones) tended to be to environ-
ments in which there were no market imperfections: the only departure from
standard Arrow-Debreu assumptions was the presence of an indivisibility in
agents’ characteristics that make a matching problem relevant. Many more
recent applications – including for example community stratification, ed-
ucation financing, international trade, organizational design, or the market
for ownership and control ([2], [9], [5],[16], [18]) – also involve some sort of
imperfection arising from a missing market or an information asymmetry.

Among the main insights of the early literature was a fundamental mono-
tonicity result. In the presence of complementarities there is positive assor-
tative matching: more able individuals are assigned to more productive tasks
or to more able individuals. Monotone matching patterns of this kind are
compelling both because of their empirical appeal and because they greatly
facilitate computation of the equilibrium. Indeed, in the minds of most
economists, the connection among efficiency, positive assortative matching
and complementarities is probably the main idea of the matching literature.

But while this connection has been established for cases in which there
are no market imperfections, it is unclear to what extent it carries over to
the more general environments that have attracted recent attention. Some
examples suggest that complementarities in the production technology alone
need not entail positive assortative matching.2 Moreover, the presence of
market imperfections leads to the possibility that matches may not be effi-
cient, at least in the sense of maximizing social surplus. Our purpose here
is to provide necessary and sufficient conditions for monotone matching in
some of these more general environments. These conditions facilitate compu-
tation of equilibria (including those in classical environments) and help with
an assessment of the impact of imperfections on matching.

The standard argument for positive assortative matching goes something

1Some other classic references are Becker [1], Gale-Shapley [10], Roth-Sotomayor [21] ,
and Sattinger [24]. Sattinger [25] provides a fine survey of the “classical” literature.

2For instance, Legros-Newman [16] study a model of firm formation and find that
when capital markets are perfect, matches are segregated, while when capital markets are
imperfect, there may be negative assortative matching.
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like this. Consider two workers of abilities aH > aL and two firms with
productivities bH > bL. All agents have payoffs which are linear in income.
Complementarity in production means that the output gain when aL switches
from bL to bH is smaller than that gained when aH makes the same switch.
Therefore, aH can outbid aL for the more productive firm and, in an efficient
(or competitive or core) allocation of such an economy, aH matches with bH

and aL matches with bL : we get positive assortative matching.
Notice two crucial assumptions. The obvious one is complementarity,

which arises quite naturally in production situations; most neoclassical pro-
duction technologies display this property. But what matters for positive
assortative matching is complementarity in the joint payoffs; this immedi-
ately leads us to ask what happens in the presence of market imperfections,
when payoffs and output are not always the same thing. Suppose, for in-
stance that outside financing of a project is possible only if the joint output
exceeds a certain minimum level (many models of imperfect financial mar-
kets have this or a similar property); then negative assortative matching (in
which the high firm matches with the low worker and vice versa) may be
the outcome of competition and may even be optimal. Thus imperfections
may affect the complementarity properties of the joint payoff in ways that
overwhelm the effects of the technology.

Second, and less obvious perhaps, is the implicit assumption that there
is full transferability of utility between the partners in a match. In order for
aH to outbid aL for bH , she may have to pay to bH the full marginal gain
from matching with bH rather than bL. But if there are incentive problems
(suppose it is harder to detect more able workers when they shirk, so inducing
effort requires paying them a large rent), transferring too much income to the
high productivity firm may destroy her incentives, so she may only be able to
match with the lower (and cheaper) firm. The outcome might be inefficient in
the sense that a social planner could generate higher total output by forcing
a new match and requiring high productivity firms to accept less than their
equilibrium income.

In order to handle these two effects of market imperfections – changes to
the complementarity properties of the joint payoff and reductions in trans-
ferability – the appropriate object to look at is the utility possibility set for
each possible partnership: in other words, we are interested in the charac-
teristic function of a cooperative game representing the matching problem.
To describe the outcome on this game (we will use the core as our equilib-
rium concept) requires that we characterize the equilibrium match and the
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corresponding equilibrium utilities of all the agents.
In practice, such a characterization is difficult. Nevertheless, as we will

show, a lot of information about the comparative statics in technological
and informational parameters of equilibrium can be obtained by analyzing
changes in the feasible utility sets and in what we call the segregation payoffs.
The segregation payoff for an individual is the equilibrium payoff to this
individual in an economy consisting solely of individuals of the same type as
himself.

Our analysis follows a simple economic logic. One normally thinks of
an equilibrium as a situation in which individuals’ current benefits exceed
their outside options. Occasionally, some individuals’ equilibrium outside
option is equal to the segregation payoff, but this will not be true in general.
Nevertheless, we use the segregation payoff as a lower bound on the outside
option and compare it to the utility possibility obtained in different matches.
Doing so we have a natural concept of “gains from trade” (more precisely
gains from a heterogeneous match). It is the comparative static of these
gains from trade that will tell us much about the equilibrium outcome. For
example, it helps to indicate situations in which individuals of very different
types match together – despite strong complementarities in the production
technology – because one type has a very low segregation payoff.

Within this framework, we provide necessary and sufficient conditions for
monotone matching to occur for any distribution of characteristics. All of
them rely on the same kind of logic: positive matching requires that there
be no negative matches (i.e. if a > b > c > d, we cannot have a matched
with d and b with c). Thus, if four types are matched in a negative way,
it must be possible for two of them to improve upon the payoffs they are
getting in the negative match. This simple observation places restrictions on
the characteristic function which are relatively easy to verify. For instance,
in the case of transferable utility, we obtain a direct weakening – known as
weak increasing differences – of the standard complementarity conditions
on the joint payoff (Proposition 4). In the nontransferable utility case, our
necessary and sufficient condition for positive matching (Condition P and
Proposition 6) describes those characteristic functions which will not admit
a stable negative match.

Perhaps the most novel result applies to the nontransferable utility case
in which the Pareto frontiers of the utility possibility sets for all pairs of types
are strictly decreasing. In this instance, one can describe these frontiers by
invertible functions. A sufficient condition for positive matching then turns
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out to be that the image of any positive real number under certain fourfold
compositions of these functions is always less than that number (Proposition
10). This condition is fairly amenable to analytic and/or numerical verifica-
tion and should therefore help to render tractable a wider class of matching
models (for instance, those with risk averse agents).

We employ these results to analyze several extended examples, some of
which are taken from the recent literature and some of which are new. We
study two imperfect markets examples, making use of our results on mono-
tone matching to help compute equilibria. More substantively, we illustrate
the points made above about the two effects of imperfections on matching.
In one case, a financial market imperfection swamps the complementarity
in production, resulting for instance in situations in which nonmonotonic
matching (mixtures of positive and negative assortative matching) may oc-
cur. Thus, positive assortative matching is not a universal prediction of
matching models, even when it is known that technology is complementary.

Another feature of this example is that despite being derived from a mar-
ket imperfection, payoffs remain fully transferable within coalitions. A conse-
quence of this fact is that matching, though no longer necessarily monotonic,
is always optimal.

A second model we study illustrates the reduced transferability effect of
imperfections. In the context of a production model with moral hazard,
a very strong form of positive matching, known as segregation, in which
agents match only with agents of their own type, emerges despite the fact
that it is not efficient: a social planner could increase the economy’s output
by reassigning people to other types. The incentive problem prevents the
winners in such a reassignment from compensating the losers, which is why
it doesn’t happen in equilibrium. Similar arguments have been made for
example with respect to school choice [2], [9]. Here though, the inefficiency
stems solely from lack of transferability within coalitions, and has nothing to
do with there being too few towns for the number of types or other “external”
effects. The example also shows that positive assortative matching may not
constitute reliable evidence of an efficient matching process.

Of course the utility of our results is not limited to economies with imper-
fections. They can be helpful in understanding some comparative static prop-
erties of different “perfect-world” models. For example, consider Becker’s [1]
model of the marriage market. There are two tasks, 1 and 2; if ai is the
ability of the individual performing task i, output is h(a1, a2); ability is com-
plementary: h has positive cross partial derivatives throughout. Individuals
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are distinguished on the basis of their gender i = 1,2; men perform task 1,
women perform task 2. It is well known that the matching in this model is
always positive assortative. Moreover, for a given distribution of abilities,
the equilibrium matching pattern is invariant to the choice of h as long as h

has the complementarity property.
Kremer [14] and Kremer and Maskin [15] use a similar model to study in-

come distribution. The first paper uses h (a1, a2) = a1a2 while the second uses
h (a1, a2) = max{a2

1
a2, a

2

2
a1}. In the first case there is perfect segregation: in

equilibrium, each firm consists of a single type of worker. In the second case,
firms will not be segregated; in particular, if the support of the distribution
is tight enough, the best worker will match with the median worker and the
others will match in a positive assortative way. The change in the matching
pattern can only have come from the difference in the production function.
As we know, this cannot happen in Becker’s model.

Why the dramatic difference in comparative statics? In both models, a
worker’s willingness to pay for a partner depends on the difference between
what he achieves with a partner and his segregation payoff (we call this dif-
ference, when positive, the “surplus”). But there is an important distinction
between the two models. In Becker’s case, if two people of the same gender
match together they receive a payoff of zero irrespective of their abilities.
Therefore the gains from a heterogeneous match relative to the segregation
payoffs are fully described by the output function h. Every man would like to
match with the ablest woman, but it is the ablest man who is willing to pay
the most. This fact is independent of the specific form of h. By contrast, in
Kremer-Maskin, the segregation payoff is positive, and so the surplus varies
with ability and with the choice of h in nonmonotonic ways. Therefore the
individuals do not unanimously rank the other individuals and the pattern
of matching will be more complex and more sensitive to the specifics of the
technology and type distribution. We show that a general property of two-
sided matching models (such as Becker’s) is that matching will be invariant
to changes in technology as long as complementarity is preserved. We also
derive a sufficient condition (the “single trough surplus condition”) for one-
sided matching models (such as Kremer’s) which lead to a similar pattern.
The latter condition is more vulnerable to changes in the technology, which
helps explain why the one-sided models have more complex comparative stat-
ics than the two-sided models.

Another issue that has attracted some attention recently is the depen-
dence of the pattern of matching on the distribution of types [15]. In fact, it

5



is clear in general that the match must depend on the distribution, if only in
the sense that the correspondence m(a) which sends a type a into the type(s)
with which it matches will not be invariant to the distribution (think of the
example above in which say bL increases slightly to b̂L < bH : m(aL) will
change from bL to b̂L). Of course, requiring that m(a) be invariant is very
demanding (Condition S below is necessary and sufficient for this kind of in-
variance). At the other extreme, we might only require that monotonicity of
the match be preserved, for which our Conditions P and N are necessary and
sufficient. In between, these conditions don’t help directly, but reveal a lot
about the structure of particular models and make them easier to solve. To
this end, we study the model of Kremer and Maskin, showing how their main
result on the effect of distribution of the degree of segregation is easily un-
derstood as a consequence of the shape of the surplus functions. Their model
always has monotone matching, however, and the dependence of matching
on distribution is reflected in cardinal measures of changes in the matching
map m(a). A more striking dependence of matching on distribution occurs
in our imperfect financial market example: changes to the type distribution
can cause the match to go from positive to negative assortative, and typically
there will be a nonmonotonic mix of the two.

2 Theory

2.1 Notation

The economies we study have a continuum of agents who are designated by

the set I = [0, 1]× [0, 1] with Lebesgue measure. The description of a specific
economy includes an assignment of individuals to types via a map τ : I −→ T

, where the “type space” T is taken to be a compact subset of some Euclidean
space with the usual order. The map τ is measurable. We also assume that
any two agents with the same first coordinate get assigned the same type
by τ : if i = (x, y) and j = (x, ŷ), then τ (i) = τ(j). The type assignment τ

induces a distribution of types which may have finite or continuous support;
we shall be concerned with both cases depending on context.

This somewhat unconventional construction is appropriate for two rea-
sons. First, the core is the equilibrium concept that we will use, and this is
defined in terms of individuals rather than types. Moreover, in the environ-
ments we shall be considering, defining an equilibrium directly in terms of
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types is awkward because we cannot guarantee that all agents of a given type
get the same payoff (i.e. there is no “equal treatment property”). Secondly,
we use the two-dimensional set of agents because we require that there is a
continuum of agents of every type so that the segregation-payoff reasoning
is logically consistent. Throughout the discussion, however, we shall talk
interchangeably in terms of either individuals or types matching together,
blocking allocations, etc. as convenience and clarity dictate.

We will follow much of the literature in restricting attention to matches
of size two (some of our results generalize to multiperson matches, as we will
indicate); the next step then is to specify what the payoff possibilities are
for a pair of individuals. The most general approach would be to simply
posit that there is such a set with abstract properties. For definiteness, we
shall specify a somewhat restricted class for the reader to keep in mind; our
examples will mostly come from this class.

In many applications, the individuals are assumed to be risk-neutral in-
come maximizers who can feasibly share the output of their joint production
in any way. The level of output they can generate depends on their type
according to a (possibly stochastic) “production function” h(t1, t2, θ), where
θ ∈ Rl are parameters reflecting aspects of the technology: we shall often be

interested in studying how the pattern of matching varies with changes in

this parameter. Thus the set of utilities that a pair of individuals with types

t1 and t2 can generate would be described as

V (t1, t2) = {(v1, v2) ∈ R
2|v1 + v2 ≤ h(t1, t2, θ)}.

The notation reflects the fact that the utility possibilities of the pair of agents

do not depend on what other agents in the economy are doing: there are no

externalities across coalitions.3 We shall maintain this assumption through-

out.

Since we are interested in studying howmarket imperfections affect match-

ing outcomes, we shall need a more general framework. This is easily accom-

3Of course the equilibrium payoffs in one coalition will depend on the other coalitions,
in general. The restriction on externalities may exclude certain types of imperfections
from the analysis (e.g. community formation models such as [3] and [9] in which there are
congestion effects), but we believe our approach has some relevance to those cases.
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modated by considering utility possibility sets of the form

V (t1, t2) = (1)

{(v1, v2) ∈ R
2| ∃x, q :

{
v1 + v2 ≤ h(q, x; t1, t2, θ)− g(q, x; t1, t2, θ, φ)
vi ≥ f (q, x; ti, φ), i = 1, 2

}

∪{(0, 0)}.

We have added some extra variables: q ∈ Q ⊆ R
m represents possible

technological or organizational choice variables for the coalition (supposed
contractible and/or publicly observable), x ∈ X ⊆ R

n are unobservable or
noncontractible choices that can be made by the individual partners, and
φ ∈ R

p are parameters representing costs associated with asymmetries of
information within the coalition or between the coalition and the outside
world.

The function g has been subtracted from the original production function
to account for costs to the coalition arising from certain market imperfections.
For instance, g could represent the cost of monitoring the partners’ effort.
Or it could be a general representation of the cost of financial market imper-
fections: for example, one element of θ could be a fixed capital requirement k
without which no output can be produced, the types could be wealth levels,
and φ > 1. Then one way to write a capital market imperfection would be

g(q, t, t′, k, φ) = max{k − t− t′, φ(k − t− t′)}.4

Finally, the constraint(s) f are restrictions on how the output is shared
and are typically present when there are incentive problems (of the hidden
action or hidden information variety) within the coalition. (Note there are
possibly as many constraints as there are choices in X, although usually only
a few of these bind). For simplicity, we assume that the minimum payoff
to one partner depends only on his own type, the observable choices q, the
unobservable choices x that he might make, and (possibly) the information
parameters φ. For example, if effort e is zero or one and not directly observ-
able, q ∈ [0, 1] a monitoring intensity measuring the probability of detecting
a shirking partner, and a partner of type t incurs a disutility t if and only if
he exerts effort, an incentive compatibility constraint might assume the form
vi ≥ e( t

q
− t).

All choice sets are compact and h, g, and f are continuous in the choice
variables; h and f are continuous and g lower semicontinuous (so that h−g is
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upper semicontinuous) in types. These assumptions help to ensure existence
of an equilibrium.

We assume that the payoff to an unmatched individual is zero and that
a coalition of larger than two individuals cannot achieve anything that could
not also be achieved by subcoalitions of size one or two. Notice that (0,0) ∈
V (t, t′) for any pair of types. What we have done then is to specify a game
in characteristic function form, and by a slight abuse of the conventional
definition, we will often refer to V (·, ·) as the characteristic function.

Of course, the characteristic function can be generated in other ways
from the one we have described here. For instance, the f functions could be
used to describe the utility possibility set for a situation (with or without
imperfections) in which the partners are risk averse. As should be clear,
Propositions 2, 6, and 9 apply to the more general case, and in fact, we will
examine an instance of this in Section 2.4.4.

Consider two individuals of the same type t who are matched together.
Define the segregation payoff of type t as the (unique) payoff u (t) such that
(u (t) , u (t)) is on the Pareto frontier of the convex hull of V (t, t) . (Sometimes
V (t, t) itself fails to be convex, in which case its Pareto frontier may not
intersect the 45◦ line; this is why we use the convex hull.5) The segregation
payoff has the interpretation of the minimum utility that an agent can expect
to get: if two agents of a particular type get less than this, they can always
match together and share the output equally (at least in expectation).

In partial equilibrium analyses (bargaining problems, principal-agent mod-
els), outside options are exogenously given and are crucial for predicting how
gains from cooperation will be allocated across the individuals. In our frame-
work however, the outside option of an individual will usually be his equi-
librium payoff. There is therefore no obvious operational concept of outside
option that can be used if one wants to understand the structure of equilibria
without having to compute them. What we hope to show in this paper is
that the segregation payoff is actually such an operational concept: it tells
us a lot about the patterns of matching that can arise in equilibrium, and
from this information computation of equilibrium is greatly simplified.

It will often be convenient to analyze economies using a modified charac-
teristic function that captures the notion of the potential gains from “trade”

5Actually, it is enough to consider the intersection of the 45◦ line with the Pareto

frontier of the comprehensive extension V −R2+ of V in order to ensure that the segregation

payoff is well defined.
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(i.e., heterogeneous matching). Formally, let6

S (t, t′) = {(0, 0)} ∪
(
[V (t, t′)− (u (t) , u (t′))] ∩ R2+

)

S (t) = {0} .

Denote by SP its Pareto frontier.
Special notation is useful for the case in which utility is transferable within

coalitions (in terms of (1), this is the case f ≡ 0). This case encompasses
many of the perfect-markets examples already present in the literature. It
also includes a number of imperfect markets examples (the imperfect financial
market example below is one). If surplus is transferable, there exists σ such
that the Pareto frontier can be expressed as SP =

{
s ∈ R2

+ : s1 + s2 = σ
}
.

Since σ depends on the types, we have a surplus function which is the

maximum of 0 and σ and which we write σ(t, t′).7 Observe that σ(t, t) = 0
for all t.

2.2 Equilibrium

The equilibrium specifies the way individuals are matched to each other,

i.e., the way the set I is partitioned into coalitions. We use the core as the

equilibrium concept: a partition can be part of an equilibrium if there exists

a payoff structure that is feasible for that partition and such that it is not

possible for any individuals to obtain a higher payoff by forming a coalition

different from their equilibrium coalition.

Denote by P the set of measure consistent partitions of I into subsets of

size two at most.8

6Therefore, if the segregation payoff vector lies outside the feasible set, we define the

surplus set to be the zero vector. The fact that the surplus is zero captures the idea that

there are no gains from trade.
7Thus, σ (t, t′) = max

{
0,H (t, t′)− 1

2
[H (t, t) +H (t′, t′)]

}
, where H(·, ·) is the maxi-

mized value of net output h(q, x; ·, ·, θ) − g(q, x; ·, ·, θ, φ); 1

2
H (t, t) is just the segregation

payoff for t.
8Let P be a partition of I. Let P2 be the set of elements of P of size two. List the

elements of every P ∈ P2 according to the lexicographic order �Lon R2 (hence, write
P = (i, j) when i �L j). Let I1 be the set of agents who are first and I2 the set of agents

who are second. P is measure consistent if λ
(
I1

)
= λ

(
I2

)
. This restriction rules out

partitions in which say, all agents in [0, 1/3] × [0,1] are matched one-to-one with all the
agents in (1/3,1]× [0,1]. See also Wooders [28] and Kaneko-Wooders [12].
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Definition 1 An equilibrium is a pair (P, u) consisting of a partition P ∈

P and a utility allocation u : I → R such that
(i) u is feasible: for almost all P = {i, j} ∈ P, (ui, uj) ∈ V (τ(i), τ (j)).
(ii) u cannot be improved upon: there does not exist a pair of agents {i, j}

and a vector of payoffs (ûi, ûj) ∈ V (τ (i), τ (j)) such that (ûi, ûj) >> (ui, uj).

Our assumptions guarantee that an equilibrium always exists if f ≡ 0 or
if the type distribution has finite support (see the Appendix and Gretsky-
Ostroy-Zame [11], Kaneko-Wooders [12] and Wooders [28]).

We first note that all equilibria are constrained Pareto efficient. Indeed,
since effective coalitions are finite, the grand coalition cannot achieve any-
thing more than what two person coalitions can achieve. If there were a
Pareto improvement, then the grand coalition could block the equilibrium
payoff but then a two person coalition could also do it and this would violate
the definition of an equilibrium.

In the case of transferable utility (that is the case in which the function f

in (1) is identically zero),9 something much stronger can be asserted, namely
that the equilibrium match will maximize the aggregate net output (this
includes in particular the case in which g is nonzero). In this case, any
pair of matched agents who are part of an equilibrium will always maximize
their joint net output h − g. Call this maximized value H(a, b) when an a

matches with a b (it always exists under our assumptions). Observe that if
a and b are two types which are unmatched in equilibrium, then ua + ub ≥

H(a, b), else the pair (a, b) would block.10 Now, if the equilibrium matching
pattern (a,m(a)) fails to maximize aggregate net output (m(a) is the (set
of) type(s) that are assigned to type a), there is another measure consistent
match (a, m̃(a)) which generates a higher aggregate; for at least some type
â such that m̃(â) �= m(â) we must then have uâ + u

m̃(â) < H(â, m̃(â)), or
the aggregate could not be higher. But then the pair (â, m̃(â)) would have
blocked the original equilibrium. A similar argument can be made for the

aggregate surplus,11 and we have

9The terminology may be slightly confusing because we have assumed that agents are

risk-neutral in income. However, incentive or liquidity constraints restrict how utility

can be transferred from one agent to another, so it is important to bear in mind that

transferability is a separate assumption.
10With transferable utility, there must be equal treatment, so there is no ambiguity in

denoting the equilibrium utility u as dependent on type rather than on individual.
11In this case, note that in equilibrium, ua ≥ u(a). If m̃(a) is a match which yields
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Proposition 1 If f ≡ 0, then in equilibrium (i) the match is efficient in the
sense that given the type distribution, it maximizes aggregate net output; and
(ii) aggregate surplus is also maximized.

The optimality of equilibrium (i) under transferable utility is, of course,
well known; what we want to emphasize here is that certain market imperfec-
tions can still be treated under the rubric of transferable utility and therefore
lead to efficient outcomes. We will return to this point in Section 3.2.1. As
we will also show there, result (ii) can be useful in computations.

2.3 Descriptions of Equilibrium

Since we are unconcerned with the identities of individuals in this economy
apart from their type, we shall usually denote a coalition by the types of its
members, i.e. a coalition consisting of individuals i and j will be written as
(a, b), where τ(i) = a and τ (j) = b. We now provide some definitions useful
for characterizing equilibria.

The simplest (and strongest) form of monotone matching occurs when
each agent matches only with someone like himself, a condition we refer to
as segregation.

Definition 2 An equilibrium (P, u) satisfies segregation (SEG) if for almost
all P ∈ P, t = t′ for (t, t′) ∈ P.

Definition 3 An equilibrium (P, u) satisfies essential segregation (ESEG)

if there exists another equilibrium
(
P̂, û

)
satisfying SEG such that û = u

almost everywhere. An economy is segregated if all equilibria are essentially

segregated.

Note that if an economy is segregated, the equilibrium payoff is essentially

unique: in equilibrium, almost every individual obtains the segregation payoff

for his type. For this reason, the segregation payoff provides a lower bound

on the outside option of an individual in any equilibrium match.

higher surplus, we have
∫
σ(a,m(a)) =

∫
ua + u

m(a) − u(a) − u(m(a)) =
∫
ua + u

m̃(a) −

u(a)− u(m̃(a)) <
∫
σ(a, m̃(a)). So there is a type â for which σ(â, m̃(â)) > uâ + u

m̃(â) −

u(â)−u(m̃(â)) ≥ 0; Thus H(â, m̃(â))−u(â)−u(m̃(â)) > uâ+u
m̃(â)−u(â)−u(m̃(â)), or

H(â, m̃(â)) > u
â
+ u

m̃(â),which again contradicts no-blocking.

12



Segregation is an extreme kind of equilibrium outcome. When the set

of types is one-dimensional, the literature has used a weaker concept than

segregation, namely positive assortative matching. For the remainder of this

paper then, we assume that the type space T is one dimensional, that is, a

compact subset of the real line. Strictly speaking, this leaves out the two-

sided matching models, but as we shall see these can be handled within

the one-dimensional framework. We define positive assortative matching as

follows.

Definition 4 An equilibrium (P, u) satisfies positive assortative matching
(PAM) if for almost any two equilibrium coalitions P = (a, b) and P ′ = (c, d)
the following is true:

max(a, b) > max(c, d) =⇒ min(a, b) ≥ min(c, d)

Note that segregation is a kind of positive assortative matching.

A third type of matching is “negative assortative,” defined analogously:

Definition 5 An equilibrium (P, u) satisfies negative assortative matching
(NAM) if for almost any two equilibrium coalitions P = (a, b) and P ′ = (c, d)
the following is true:

max(a, b) > max(c, d) =⇒ min(a, b) ≤ min(c, d)

These two concepts are illustrated in Figure ??. One can define essen-

tial positive assortative matching (EPAM), a positively matched economy,
essential negatively assortative matching (ENAM), and a negatively matched

economy in ways analogous to those done for segregation.
There is an equivalent characterization of positive assortative matching

which is useful in some applications. Suppose that we describe any matched
pair of types by listing the larger type first; hence when we write 〈a, b〉
we mean that a ≥ b and that a type a and a type b are matched. We
can write m(a) to indicate the type(s) with which a is matched. There is
positive assortative matching in equilibrium if and only if the graph 〈a,m(a)〉
is upward sloping. Note that this graph lies weakly below the 45◦ line and
that segregation occurs when the graph coincides with that line. Negative
assortative matching corresponds to a downward-sloping graph.

While the terminology we use is standard, there seems not to be a consen-
sus in the literature on what is meant, for instance, by “positive assortative

13



d c b a d c b a

Positive assortative matching

d c b a

Negative assortative matching

Figure 1:

matching.” For example, Shimer and Smith [26] define it by requiring that
the graph (a,m(a)) (note that the pairs are not necessarily ordered by size)
form a lattice. This is a useful definition for the problem they are studying,
namely matching under search frictions, but it is too weak to be of interest
in the frictionless case. Moreover, the class of models they consider leads to
segregation in the absence of search frictions, not PAM.

2.4 Distribution-Free Conditions for MonotoneMatch-

ing

The Becker result suggests that it is possible to find conditions on the charac-
teristic function such that we need know nothing about the type distribution
in order to conclude that the economy satisfies PAM. Sometimes PAM is all
one wants to know; in other instances (we shall study some below), knowing
that PAM will be satisfied greatly facilitates computation of the equilibrium.
Thus, our first goal is to provide characterization results for segregated and
positively and negatively matched economies which can be checked without
considering the particular type distribution. They are expressed in terms of
conditions which depend only on the characteristic function and are therefore
relatively easy to verify. Later, we shall examine some consequences of the
failure of our necessary and sufficient conditions

14



2.4.1 Segregation

Our first condition is based on the observation that if we are always to have
segregation, the segregation payoff vector must not lie “inside” the utility
possibility set of any heterogeneous coalition.

Definition 6 (Condition S) Let

X = {(t, t′) ∈ T 2 : ∃v ∈ V (t, t′) , v > (u (t) , u(t′))}.

Condition S is satisfied if X is empty.

X is the set of types for which there are gains from “trade,” i.e. heteroge-
neous matching, meaning that it is possible for individuals of those types to
match and Pareto improve relative to the segregation payoffs. An example of
a model in which Condition S is satisfied is the one in [14], since h (a, b) = ab,

u (a) = a
2

2
and for any a �= b, h (a, b) < a

2

2
+ b

2

2
. Therefore X = ∅. Of course,

that economy is segregated. In fact, we obtain the following general result.

Proposition 2 (i) An economy is segregated if Condition S is satisfied. (ii)
If Condition S is not satisfied, there is a type assignment τ such that the
economy is not segregated.

P roof. (i) Suppose that Condition S holds and that there is an equi-
librium which violates ESEG. This means that a positive measure of agents
are receiving more than their segregation payoffs. For this to be true, there
must be heterogeneous matches (t, t′). In such matches, at least one of the
agents is getting more than its segregation payoff; for stability, the other type
must be getting at least its segregation payoff. But then there must exist
v ∈ V (t, t′) such that v > (u (t) , u(t′)), which contradicts Condition S.

(ii) Suppose that Condition S does not hold: there exists a pair of types
(t, t′) and a v ∈ V (t, t′) such that v > (u (t) , u(t′)); clearly this is only possible
if t �= t′. Take the type assignment which puts an atom of size 1/2 at t and an
atom of size 1/2 at t′. There is an equilibrium in which almost every coalition
is composed of types (t, t′) and the payoffs are given by v (or by v̂ ∈ V (t, t′)
in case v is Pareto dominated by v̂). These payoffs cannot be replicated by
segregation, hence the economy is not segregated.

The result says simply heterogeneous coalitions may form only if there
are “gains from trade” relative to the segregation payoffs; otherwise there can
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only be segregation. The same result is true for general matching problems as
long as effective coalitions are finite: one merely has to modify Condition S to
say that there is no finite set of heterogeneous types which can strictly Pareto
improve relative to the corresponding segregation payoff vector. Moreover,
neither the definition of segregation nor the result depend on the dimension
of the type space.12

Note that if we want all equilibria in an economy to satisfy SEG, we need
the segregation payoff vector of any heterogeneous coalition to be outside
its feasible set, i.e., that (u (t) , u (t′)) ∈ V (t, t′) implies t = t′. Hence, Con-
dition S can be restated to say that the set {(t, t′) : S (t, t′) = {(0, 0)}} has
full measure. For the transferable utility case, Condition S can be written
σ(·, ·) ≡ 0.

There are, of course, conditions on the primitives of the model which lead
to Condition S. For instance, suppose that we are in the standard perfect-
markets setting without choice variables. If types are “truly” one-dimensional
(so that agents aren’t described by a “gender” in addition to their ability, as
in Becker), it is natural to suppose that the production function is symmetric
in type.13 The following sufficiency result is known; we state it here for
completeness.

Proposition 3 Suppose that utility is transferable, the production function

assumes the form h(a, b), and it is symmetric in types: h(a, b) = h(b, a). If h
is also supermodular, the economy is segregated.

P roof. If h is supermodular, it satisfies the inequality h(x∨y)+h(x∧y) ≥
h(x) + h(y);14 putting x = (a, b) and y = (b, a) and using symmetry then

12Condition S is also a sufficient condition for the existence of an equilibrium for any dis-
tribution of types, even without continuity assumptions on V (·, ·): any allocation in which
each coalition consists of two individuals of the same type is clearly measure consistent
and cannot be blocked.

13In fact, many “asymmetric” production functions can be made symmetric by specify-
ing the type space appropriately. For instance, in the hospital-intern matching problem
[21], we might have joint output equal to h(a, b) = a2b, where a is the hospital’s productiv-
ity and b is the intern’s ability. If one thinks of a hospital of type η = (a,0) and an intern of
type ι = (0, b), where the first component is hospital productivity and the second compo-
nent is intern ability, then the type space is now ([a, a]×{0})∪({0}×[b, b]).Output can now

be written as a symmetric function of η and ι, namely ĥ(η, ι) = max{h(η
1
, ι2), h(ι1, η2)}.

14For x, y ∈ R2 we denote by x ∧ y the componentwise minimum of x and y : x ∧ y =
(min {x1, y1} ,min {x2, y2}) ; similarly, x ∨ y = (max {x1, y1} ,max {x2, y2}) .
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implies that h(a, b) − 1

2
[h(a, a) + h(b, b)] ≤ 0; hence σ(a, b) ≡ 0 and the

economy is segregated.
This result suggests that innocuous-looking restrictions on production

functions may turn out to be undesirably strong. In this case, if one is to
have (nontrivial) heterogeneous matching, one must rule out supermodular
production functions, or else introduce imperfections.15

2.4.2 Positive Assortative Matching

The logic of our necessary and sufficient condition for positive assortative
matching is similar to that for segregation: if we do not have PAM every-
where, there must be a negative pair of matches somewhere. For now, assume
that utility is transferable, and consider four types a > b ≥ c > d and a neg-
ative match of the form (a, d) and (b, c) (there are other combinations to
consider, but we simplify the argument by ignoring them for now; details
are in the Appendix), which generates a total surplus of σ(a, d) + σ(b, c). To
ensure EPAM, this negative match must be generating the same payoffs that
would be generated under PAM, or the negative match could be blocked by
a rearrangement of the types. Since the surplus is transferable, it is nec-
essary that the total surplus generated under the positive matches of these
types be at least equal to that of the negative match. In other words, either
σ(a, b) + σ(c, d) ≥ σ(a, d) + σ(b, c) or σ(a, c) + σ(b, d) ≥ σ(a, d) + σ(b, c). A
rearrangement of these inequalities suggests the following

Definition 7 The symmetric function F : R2 → R satisfies weak increasing
differences (WID) on a set T ⊂ R if for any four elements a, b, c, d of T,

where a > b ≥ c > d,

F (b, c)− F (b, d) ≤ F (a, c)− F (a, d)

or

F (b, c)− F (c, d) ≤ F (a, b)− F (a, d) .

15This conclusion does not change greatly if we introduce choice variables into the pro-
duction function. For instance, if h(q;a, b) is symmetric and supermodular in types and
C2, q is a real-valued choice, and h12 is single-signed (by symmetry h13 will be as well),
then H(a, b) = max

q∈Q
h(q; a, b) will be symmetric and supermodular and we get segregation.
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Definition 8 (Condition PT) The surplus σ satisfies Condition PT if it
satisfies WID on T whenever σ(a, d) > 0.

Condition PT is the necessary and sufficient condition we seek:

Proposition 4 When the surplus is transferable: (i) An economy is pos-
itively matched if Condition PT is satisfied. (ii) If Condition PT is not
satisfied, there is a type assignment τ such that the economy is not positively
matched.

P roof. Appendix.
The weak increasing difference condition resembles the familiar increasing

difference (ID) condition discussed for instance in [20]: F satisfies ID if for all
a > b and c > d, F (a, c)−F (a, d) ≥ F (b, c)−F (b, d) .WID is weaker since
it requires comparison among four ordered elements (while the ID condition
would not require that a > c).16

As is well known, increasing differences is equivalent for smooth functions
to non-negative cross partial derivatives. Typically, however, σ will not be
differentiable everywhere, even if it is derived from a smooth production
function. In fact, σ will be smooth and satisfy PT only if it is identically
zero, and hence satisfies Condition S. It can also be shown that any smooth
function which satisfies WID also satisfies ID. But many production functions
that are useful in matching applications (such as those used by Kremer-
Maskin) are not smooth, and do not satisfy ID, although they do satisfy
WID.

Often it is easier to check that the production function satisfies WID than
that σ satisfies PT. Fortunately, we have

Proposition 5 If h satisfies WID, then σ satisfies PT and the economy is

positively matched.

P roof. Since Condition PT is necessary and sufficient for the economy

to be positively matched, it is enough to show that h implies the economy

is positively matched. Suppose not, i.e. that for some distribution of types

16Another way to see this is to note that ID implies that

F (a, c)− F (a, d) ≥ F (b, c)−F (b, d) and F (a, b)−F (a, d) ≥ F (c, b) −F (c, d)

whenever a > b ≥ c > d.
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there is an a > b ≥ c > d with matches (a, d) and (b, c) which are not payoff
equivalent to a positive match. But since h (a, d)+h (b, c) ≤ h (a, c)+h (b, d)
or h (a, d) + h (b, c) ≤ h (a, b) + h (c, d) , at least one of the pairs of matches
(a, c) and (b, d) or (a, b) and (c, d) generates at least as high total output.
Thus either the negative match is payoff equivalent to a positive one or one

of the pairs (a, c), (b, d), (a, b), or (c, d) can block it, a contradiction.
Notice that the converse is not true, since h could fail to satisfy WID at

a point at which σ does not or at which σ is zero; an instance of this is given

in the next example.

On the other hand, in some instances, the surplus function will be more

informative than the production function about the properties of the equi-

librium match. For instance, there are cases in which production functions

are neither super- nor submodular and yet from the surplus computation it

is easy to see that the economy must be segregated:

Example 1 Let T = [4, 5] and h(a, b) = A(
√
a +

√
b) − εmax{a3b, b3a},

where 0 < ε < A

2000
. It is straightforward to verify that ha and hb are positive

wherever they exist (which is everywhere except on the diagonal). And hab < 0
almost everywhere; hence h is not supermodular and doesn’t satisfy WID. Nor

is it submodular, since this would require h(a, b) + h(b, a) ≥ h(a, a) + h(b, b);
but h(a, b) + h(b, a) − [h(a, a) + h(b, b)] ∝ a4 + b4 − 2max{a3b, b3a} ≤ 0 on

T 2. By the same token, σ(a, b) = max{0, h(a, b) − 1

2
[h(a, a) + h(b, b)]} ≡ 0

there, and the economy is segregated.

We have a condition analogous to PT for the case in which surplus is not

transferable. Let SD = S\SP denote the set of Pareto dominated elements

of S.

Definition 9 (Condition P) Condition P is satisfied if for any four ele-

ments {a, b, c, d} of T, where a > b ≥ c > d , s ∈ SP (a, d) × SP (b, c) , and
S (a, d) �= {(0, 0)} one of the two conditions below is true. Either

s ∈ S (a, b)× S(c, d) or s ∈ S (a, c)× S(b, d) (2)

or

∃t ∈ {a, d} , t̂ ∈ {b, c} such that (s (t) , s
(
t̂
)
) ∈ SD

(
t, t̂

)
(3)

As with Condition PT, Condition P says that for any negative match,
either it is possible to reassign the types in a positive way that keeps all four
types (at least) indifferent (2), or the match is not stable (3).
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Proposition 6 (i) An economy is positively matched if Condition P is sat-
isfied. (ii) If Condition P is not satisfied, there is a type assignment τ such
that the economy is not positively matched.

P roof. (i) Suppose that Condition P holds. If an economy is not
positively matched, there exist a, b, c, d where a > b ≥ c > d and payoffs s,
where s ∈ SP (a, d)× SP (b, c) ,17 such that the matches (a, d) and (b, c) are

part of the equilibrium and it is not possible to obtain a positively matched
reshuffling of these types which keeps the payoffs the same (2 is violated).
Since there are no beneficial deviations from the equilibrium payoffs s, (3) is
also violated, contradicting Condition P.

(ii) Suppose that Condition P is not satisfied. Since (2) is violated, s /∈
S (a, b) × S(c, d) and s /∈ S (a, c) × S(b, d). Since (3) is violated, for each
t̂ ∈ {a, d} and each t ∈ {b, c} ,

(
s
(
t̂
)
, s (t)

)
/∈ SD

(
t̂, t

)
. Consequently, it is

not possible to replicate the payoffs s by a positive match between a, b, c and
d. Consider τ such that there are four atoms at a, b, c and d of equal mass.
The matches (a, d) , (b, c) together with the payoff s constitute an equilibrium
and the economy is not positively matched.

Propositions 2, 4, and 6 show that if the characteristic function satisfies
certain properties, the equilibrium matching pattern will (essentially) always
assume a positive assortative form. But in economies in which this condition
is violated, the outcome will be sensitive to type assignment map: the equi-

librium matching pattern will depend on the distribution of types. We will

illustrate this point in the Applications section below.

2.4.3 Negative Assortative Matching

Since the logic is similar, we state here without proof conditions for negative

matching which are analogous to Conditions P and PT.

Definition 10 The symmetric function F : R
2 → R satisfies weak de-

creasing differences (WDD) if for any four elements a, b, c, d of T, where
a > b ≥ c > d,

F (b, c)− F (b, d) ≥ F (a, c)− F (a, d)

17If s /∈ SP (a, d)× SP (b, c) , either (a, d) or (b, c) has an incentive to deviate from the

proposed payoffs.
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and

F (b, c)− F (c, d) ≥ F (a, b)− F (a, d) .

Note that this condition is still weaker than decreasing differences (and
indeed is implied by it), since it applies only to quadruples of types with the
specified order.

Definition 11 (Condition NT) The surplus σ satisfies Condition NT if it
satisfies WDD on T whenever σ(a, d) > 0.

Proposition 7 When the surplus is transferable: (i) An economy is neg-
atively matched if Condition NT is satisfied. (ii) If Condition NT is not
satisfied, there is a type assignment τ such that the economy is not negatively
matched.

Proposition 8 If utility is transferable, and the production function is sym-
metric and strictly submodular on R2, the economy is negatively matched.

There is no direct analog to Proposition 5 because strict WDD by itself

is not enough to rule out segregation, which after all is a kind of positive

assortative matching. However, if it is known on other grounds that matching

will be heterogeneous, it is sufficient for ENAM only that the production

function satisfy WDD.

Definition 12 Condition N is satisfied if for any four elements a > b ≥ c >

d, the following conditions both hold:
(i) if s ∈ SP (a, b) × SP (c, d), then either [s ∈ SD (a, d) × SDb, c)] or

[∃t ∈ {a, b} , ∃t̂ ∈ {c, d} ,
(
s (t) , s

(
t̂
))
∈ SD

(
t, t̂

)
]

(ii) if s ∈ SP (a, c) × SP (b, d), then either [s ∈ SD (a, d) × SD(b, c)] or
[∃t ∈ {a, c} , ∃t̂ ∈ {b, d} ,

(
s (t) , s

(
t̂
))
∈ SD

(
t, t̂

)
].

Proposition 9 (i) An economy is negatively matched if Condition N is sat-
isfied. (ii) If Condition N is not satisfied, there is a type assignment τ such
that the economy is not negatively matched.
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2.4.4 Some Sufficient Conditions for Monotone Matching with

Nontransferable Utility

When utility is nontransferable but the Pareto frontier of the utility possi-
bility set is strictly decreasing, there are alternative sufficient conditions for
monotone matching that can be fairly easy to verify. We present these here
and then show how they can be used by applying one of them to a model of
risk sharing based loosely on Kihlstrom-Laffont [13] and Sadoulet [23].

Suppose then that for all pairs of types (t, t̂), the Pareto frontier of S
(
t, t̂

)

is strictly decreasing (which it is trivially in case S
(
t, t̂

)
= {(0, 0)}). Since

S
(
t, t̂

)
is bounded above, there exist two values φ

tˆt
(t) and φ

tˆt

(
t̂
)
correspond-

ing to the least upper bound of the payoff that type t and t̂ respectively can
attain in S

(
t, t̂

)
(since the frontier is strictly decreasing, these occur only

when the other type receives 0, i.e. (0, φ
tˆt
(t)) and (φ

tˆt

(
t̂
)
, 0) are elements of

S
(
t, t̂

)
.) This environment is of general interest since it corresponds, for in-

stance, to the formation of households with risk-averse partners or to general
bargaining problems.

We shall require the use of a function defined on all of R which is an

extension of the frontier of S
(
t, ˆt

)
. Acceptable extensions of the frontier can

be represented by a map:

β
tˆt
(ŝ) =

{
max

{
s : (s, ŝ) ∈ S

(
t, t̂

)
with s = s (t) , ŝ = s

(
t̂
)}

if ŝ ∈
[
0, φ

tˆt

(
t̂
)]

ψ
tˆt
(ŝ) otherwise,

(4)

where ψ
tˆt
(ŝ) is any strictly decreasing function from R onto itself which

satisfies ψ
tˆt

(
φ

tˆt

(
t̂
))

= 0, ψ
tˆt
(0) = φ

tˆt
(t) and ψ

tˆt
◦ ψ

ˆtt
(s) = s. By construc-

tion, β
tˆt
(ŝ) is strictly decreasing in ŝ ∈ R, and β

tˆt
and β

ˆtt
are inverses:

β
tˆt
◦ β

ˆtt
(s) = s for any s.

We now provide a sufficient condition for positive matching:

Definition 13 (Condition P∗) There exists an extension β such that for

any a > b ≥ c > d with φ
ad

(d) > 0 and s ∈ [0, φ
ad

(d)] , one of the following

holds:

either s ≥ βda ◦ βab ◦ βbc ◦ βcd (s) (5)

or s ≥ β
da
◦ β

ac
◦ β

cb
◦ β

bd
(s) ; (6)
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and for negative matching:

Definition 14 (Condition N∗) There exists an extension β such that for

any a > b ≥ c > d where φ
ad

(d) > 0, we have

[s ≤ φ
cd

(d)] =⇒ [s ≤ β
da
◦ β

ab
◦ β

bc
◦ β

cd
(s)] (7)

and [s ≤ φ
bd

(d)] =⇒ [s ≤ β
da
◦ β

ac
◦ β

cb
◦ β

bd
(s)] . (8)

Proposition 10 Suppose that the Pareto frontier of any surplus set is strictly
decreasing. (i) If Condition P∗ holds, the economy is positively matched; (ii)
If Condition N∗ holds, the economy is negatively matched.

P roof. Appendix.
The basic logic of the proof is very simple. If we are to have a posi-

tively matched economy, we cannot have a negative match that is not payoff
equivalent to a positive one. Suppose instead that there is such a nega-
tive match ((a, d) and (b, c)) with payoffs s (t) (t = a, b, c, d); if the neg-
ative match is feasible, we have s (a) = βad(s (d)) and s (b) = βbc (sc) .
Stability also requires that b (strictly) doesn’t want to switch to a, given
what a is currently getting: s (b) > β

ba
◦ β

ad
(s (d)). And c doesn’t want

to switch to d : s (c) > β
cd
(s (d)); since s (b) = β

bc
(s (c)), we have s (b) <

β
bc
◦ β

cd
(s (d)) . Thus, β

ba
◦ β

da
(s (d)) < β

bc
◦ β

cd
(s (d)) , and, using the in-

verse operators, s (d) < βda◦βab◦βbc◦βcd (s (d)) . Similarly, the requirements
that b doesn’t want to switch to d, and c doesn’t want to switch to a, imply
s (d) < β

da
◦ β

ac
◦ β

cb
◦ β

bd
(s (d)) . The negation of these necessary condi-

tions for the existence of a stable negative match then yields Condition P∗.

A complete proof is in the Appendix.
Conditions P∗ (5) and N∗ (8) are illustrated graphically in Figure 2 in

which the frontiers are plotted in four-axis diagrams. For instance, positive
matching results if any path like that shown starting with s ends up at a

point less than s. We expect that even when closed-form expressions for

the frontiers are not available, Conditions P∗ and N∗ can feasibly be checked

using numerical methods.

It is important to bear in mind that Conditions P∗ and N∗ are not nec-

essary for monotone matching in the general, nontransferable utility case.

In the case of transferable utility, however, they are necessary. To see this,

notice that in this case, φ
tˆt
(t) = φ

tˆt

(
t̂
)
= σ

(
t, t̂

)
. Hence, if we choose

ψ
tˆt
(ŝ) = φ

tˆt

(
t̂
)
− ŝ in (4), we have β

tˆt
(ŝ) = σ

(
t, ˆt

)
− ŝ. Observe that
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Figure 2: The Not Transferable Case
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β
da
◦β

ab
◦β

bc
◦β

cd
(s) = σ (a, d)− (σ (a, b)− (σ (b, c)− (σ (c, d)− s)) . Hence,

the first line in Condition P∗ is equivalent σ (a, d)−σ (a, b)+σ (b, c)−σ (c, d) ≤
0, which is the first line in Condition PT. Similarly, the second line of Condi-
tion P∗ is equivalent to the second line in Condition P. It follows that in this
case, Condition P∗ is equivalent to Condition PT and is therefore necessary
and sufficient for EPAM. Similarly, Condition N∗ is equivalent to Condition
NT.

Note that Conditions P∗ and N∗ might hold only for certain extensions
β but not for others. We provide below sufficient conditions that do not re-
quire the use of an extended frontier. These conditions require the additional
(weak) condition that the feasible sets are monotonic in types.18 The suffi-
cient conditions that we obtain are stronger than the previous conditions but

as the following example will show, are often enough to establish monotone

matching.

Corollary 11 Suppose that for any t and t̂, there exists a real Σ
tˆt
∈ R,

increasing in
(
t, t̂

)
, such that the Pareto frontier of V

(
t, t̂

)
can be described

by a bijective function γ
tˆt

: (−∞,Σ
tˆt
)→ (−∞,Σ

tˆt
) .

(i) If for any t �= t̂, S
(
t, t̂

)
�= {(0, 0)} , and for any a > b ≥ c > d we

have

v < Σcd ⇒ γba ◦ γad (v) ≥ γbc ◦ γcd (v) (9)

and v < Σbd ⇒ γ
ca
◦ γ

ad
(v) ≥ γ

cb
◦ γ

bd
(v) , (10)

then the economy is negatively matched.
(ii) If for any a > b ≥ c > d we have

v < Σad ⇒




γ
ba
◦ γ

ad
(v) ≤ γ

bc
◦ γ

cd
(v)

or

γ
ca
◦ γ

ad
(v) ≤ γ

cb
◦ γ

bd
(v)

(11)

then the economy is positively matched.

P roof. Appendix.
We now apply this corollary to a simple example of risk sharing.

18Note that monotonicity of the feasible sets does not imply monotonicity of the surplus

sets. For this reason, while it would be possible to obtain a similar looking result for

surplus sets, the required condition of monotonicity of the surplus sets would exclude a

large set of environments.
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Example 2 Production is risky with a finite number of possible outcomes

wi and associated probabilities πi. Agents are expected utility maximizers who
are identical except for their attitudes toward risk. The utility of income
is ua(x) (u′

a
> 0 > u

′′

a
), where type a ∈ [a, ā] is an index of absolute risk

aversion: ρ
a
(x) ≡ −u

′′

a
(x)

u
′

a
(x)

is strictly decreasing in a for all x (below we shall

use log(x + a) as the family of utility functions). The only risk sharing
possibilities in this economy lie within (two-person) production units because
observing the outcome of production is prohibitively costly except to the people
directly involved. When parties match, they sign a contract which specifies
how the output will be shared in each state (level of output).

Optimal risk sharing between a type a and a type b is characterized by the
solution to

max
{xi}

Σiπiua(wi − xi) s.t. Σiπiub(xi) ≥ vb.

The first-order condition (Borch’s rule) is u′

a
(wi − xi) = λu′

b
(xi), where λ is

the multiplier on the constraint. If a = b and utility is equal for both partners,
then λ = 1, from which xi = wi/2. Thus the segregation payoff is achieved by
equal sharing in each state.

Observe that any heterogenous pair can guarantee each member the segre-
gation payoff, as equal sharing is always feasible. Since this will not constitute
the optimal contract,19 the segregation payoff vector can be (strictly) Pareto
dominated by every heterogeneous coalition: S(t, t̂) �= {(0,0)} if t �= t̂ (so
Condition S is violated), and in fact matching will always be heteroge-

neous if there is more than one type in the economy.

The question is what pattern it will assume. Intuitively, we might expect
that the least risk averse will want to insure the most risk averse in order to
extract a large risk premium; the moderately risk averse will be less willing
to undertake this role because it would entail bearing too much risk, so they
will match together instead. We now verify this intuition for the case of
logarithmic utility.

Consider then the special case in which u
a
(x) = ln(x + a) (a can inter-

preted directly as a risk parameter or as an initial wealth level; either way,
higher a means lower risk aversion, and the form of the optimal contract is

19To see this, note that ρ
a
(x) < ρ

b
(x) everywhere implies

u
′

a
(x)

u
′

b
(x) is strictly increasing in

x. Since
u

′

a
(wi−xi)
u

′

b
(xi)

is constant at the optimum, wi − xi = xi for at most one value of wi.
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of course independent of the interpretation). Assume that wi ≥ −a for each
i.

The optimal contract in this case is

xi = b+ (wi + a− b)evb−Σiπi ln(wi+a+b),

from which

γ
ab
(vb) = ln(1− e

vb−Σiπi ln(wi+a+b)) + Σiπi ln(wi + a+ b).

Let Σab denote Σiπi ln(wi+a+b). It is clear that Σab is increasing in (a, b) and
that the Pareto frontier γab satisfies γab (vb) → −∞ as vb → Σab. Applying

the γ operator as in Corollary for types a > b ≥ c > d, we obtain

γ
ca
◦ γ

ad
(vd) = ln(1 − eΣad−Σac + e

vd−Σac) + Σac

γ
cb
◦ γ

bd
(vd) = ln(1 − e

Σbd−Σbc + e
vd−Σbc) + Σbc

γ
ba
◦ γ

ad
(vd) = ln(1 − e

Σad−Σab + e
vd−Σab) + Σab

γbc ◦ γcd(vd) = ln(1 − e
Σcd−Σbc + e

vd−Σbc) + Σbc.

Inequalities (9) and (10) then become

eΣad + eΣbc > eΣab + eΣcd

and eΣad + eΣbc > eΣac + eΣbd,

which are satisfied if and only if the function

F (a, b) ≡ eΣab =
∏

i

(wi + a+ b)πi

satisfies WDD. But it is easily verified that in fact ∂2F/∂a∂b < 0;20 thus
WDD is satisfied (strictly), and we conclude by Corollary 11 (i) that in the

risk-sharing economy with logarithmic utility, agents will always

match negatively in wealth.

20To see this, note that ∂F/∂a = ∂F/∂b =
∑

i
[πi(wi+a+ b)πi−1

∏
j �=i

(wj +a+b)πj ] =
∑

i
[ πi

wi+a+b

∏
j
(wj + a + b)πj ] = F (a, b)

∑
i

πi

wi+a+b
. Thus, ∂2F/∂a∂b = ∂F

∂b

∑
i

πi

wi+a+b
−

F (a, b)
∑

i

πi

(wi+a+b)2
= F (a, b)(

∑
i

πi

wi+a+b
)2 − F (a, b)

∑
i

πi

(wi+a+b)2
, which is negative by

F > 0 and Jensen’s inequality.
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2.4.5 Comment

Distribution-free conditions for monotone matching are relatively easy to
verify. In general, distribution will affect the match to some degree: m(a) is
independent of distribution if and only if Condition S is satisfied. Invariance
of m(a) is of course a very strong requirement; if one wants only that mono-
tonicity be preserved as the distribution changes, then Condition P (or N) is
necessary and sufficient. If one is using more refined measures of matching
patterns (e.g. the degree of segregation), then since the matching map is
unlikely to be invariant to the distribution, these measures are also unlikely
to be invariant to the distribution.

In checking whether Conditions S, P or N apply for a particular character-
istic function, it will often become apparent that changes in the technology
and imperfection parameters θ and φ will affect u(·) and V (·) very differently
for different types. For instance, if φ measures a degree of capital market im-
perfection, increases in φ will typically lower the segregation payoffs of poor
agents but may have no effect on those of wealthy ones; at the same time, the
production possibilities for mixed coalitions, if one partner is wealthy enough,
may also be unaffected. Thus for low φ we could have segregation, while for
high φ we would have heterogeneous, even negative, matching: Conditions S
will be satisfied at some parameter values, while for others it will not. The
consequence is that the qualitative properties of the equilibrium matching
pattern, even for a fixed type distribution, will vary across economies.

When the conditions for monotone matching are violated, the distribution
will also play an important role in determining the qualitative nature of the
outcome. In these more difficult cases, though our monotonicity conditions
may be violated globally, they are often satisfied locally, and this information
can be useful in computing the match. We shall demonstrate this point in
the Applications section.

2.5 When Is the Match Invariant to Changes in Tech-

nology?

The previous subsection has been concerned with finding conditions on the
characteristic function such that the “qualitative” property of the match is
not dependent on the particular type distribution. That is, given an arbi-
trary distribution of types, any change to the characteristic function which
preserves Condition P (N) will preserve positive (negative) assortative match-
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Figure 3: The Single Trough Condition

ing. But we may be interested in a stronger question: is there a class of char-
acteristic functions all of which give rise to the same match? If this is the
case, then changes in technology (or in the severity of imperfections) which
preserve this class will leave the matching pattern invariant.

In this section we show that the answer to this question is yes, and with
it we can clarify the differences in the comparative statics of the two-sided
matching models such as that of Becker and of one-sidedmodels such Kremer-
Maskin’s that we alluded to in the Introduction. We do not provide an
exhaustive characterization of invariant matches, but will focus instead on a
particular one that has appeared repeatedly in the literature, which we call
median matching.

We consider the case of transferable utility. Let the support of the type
distribution be contained in [a, ā]. The surplus can be written in the form
max{0, h(a, b) − 1

2
[h(a, a) + h(b, b)]}. Fix one of the types (say a) and plot

this as function of the other type. Typically, the picture will resemble Figure
3(a) (note that the surplus is always equal to 0 at a). Suppose, however,
that as in Figure 3(b) the surplus achieves a unique minimum at a and is
increasing on (a, ā] and decreasing on [a, a). We say in this case that the
surplus is single-troughed for a.

Definition 15 The economy satisfies the single-trough surplus condition (STSC)
if the surplus is single-troughed for all a in the support of the type distribution.

The result, which is surprisingly easy to prove, is that if we have an atom-

less type distribution, the STSC holds, and the production function satisfies
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WID, then the equilibrium matching pattern has a simple characterization in

which the highest type matches with the median type, and all other match

in such a way as to keep the “probability distance” between a type and

his partner constant at 1/2. Because of full transferability and the atomless
distribution, the matching correspondence m(a) is in fact a function.

Proposition 12 Suppose that the STSC holds, that h satisfies weak increas-
ing differences and that the assignment map τ generates a continuous dis-
tribution of types T (a). Then there exists an essentially unique equilibrium
matching pattern in which for a ∈ [a

m
, ā], T (a)− T (m(a)) = 1

2
, where a

m
is

the median type.

We call this matching pattern median matching.

P roof. Denote by s(a) ≡ u(a) − u(a) the amount of surplus that a

obtains in equilibrium. Suppose that m(ā) < a
m
. Since h satisfies WID,

we have PAM, which implies that m(a) < m(ā) for m(ā) < a < ā. But

this violates measure consistency, since more than one-half the population is

matching with less than one-half the population. Thus m(ā) ≥ am. A similar

argument establishes that m(a) ≤ am. Suppose that these inequalities are

strict. In equilibrium, we must have σ(ā,m (ā)) − s(m(ā)) ≥ σ(ā,m(a)) −
s(m(a)), else ā would try to match with m(a). Thus s(m(a)) − s(m(ā)) ≥
σ(ā,m(a))−σ(ā,m (ā)) > 0, the last inequality following from the STSC. The
same argument for a establishes that s(m(a))−s(m(ā)) < 0, a contradiction.
Therefore m(a) = m(ā) = am. To complete the argument for the remaining

types, note that if T (a) − T (m(a)) > 1

2
for a > a

m
, then the measure of

agents between a
m
and a, who by PAM are matching with agents between a

and m(a), exceeds that of the latter set, which violates measure consistency.
A similar violation of measure consistency occurs if T (a)− T (m(a)) < 1

2
.

An example of an economy which conforms to these hypotheses is the
one in Kremer-Maskin, provided the support of the type distribution is tight
enough. We shall return to this below.

Three observations are in order. First note that heavy use is made of the
fact that we have PAM; this illustrates how our distribution-free conditions
can simplify the computation of equilibrium.

Second, if the technology or production changes in such a way as to
preserve WID and the STSC, the match will be unchanged because there is
only one way to have median matching for a given distribution of types.
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Third, any change in the type distribution that preserves WID and the
STSC (for instance, small changes in the support of the distribution), pre-
serves median matching, although this in general means that the types which
match will change after the distribution changes. In particular, we have

Corollary 13 Suppose that h satisfies WID and that the STSC holds on

[a, ā]. Then there is median matching for any continuous distribution with

support in [a, ā].

Of course, if the distribution changes by “stretching” the support enough,
then STSC will not generally hold on all of the new distribution’s support,
and we will lose median matching (although because of WID we retain pos-
itive assortative matching). This is the main comparative static result of
[15].

The STSC case is not the only one delivering median matching. Write
a ⊥ b when a and b are on opposite sides of the median (i.e. a ≤ a

m
≤ b or

a ≥ am ≥ b). Now consider the following class of transferable utility models,
which we call class M:

1. Whenever a > b ⊥ c > d, σ satisfies one of the weak-increasing-
difference inequalities σ (b, c)− σ (b, d) ≤ σ (a, c)− σ (a, d) or σ (b, c)−
σ (c, d) ≤ σ (a, b)− σ (a, d) .

2. For all a, σ(a, b) is strictly positive when a ⊥ b

3. σ(a, a′) = 0 whenever it is not the case that a ⊥ a′.

Proposition 14 If the type distribution is atomless and σ belongs to class

M, there is median matching.

P roof. Observe that in this economy, a ⊥ m(a) for almost every a;
if not, then on each side of the median a positive measure of agents are
matched with each other and getting zero; this can be blocked by having
the agents find partners with whom they generate a strictly positive surplus
on the other side of the median (measure consistency assures these potential
partners exist). Matching is therefore positive assortative: if not, there is a
negative match of the form (a, d) and (b, c), with a > b ⊥ c > d. But this will
be blocked since the WID inequalities are satisfied. Now mimic the argument
used in the proof of Proposition 12 to conclude that matching is median.
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One reason for studying this class is that it can be used to understand
many “two-sided” matching models, such as the marriage market model of
Becker. Two-sided matching models have type spaces which are really two
dimensional: there is a “gender” as well as an ability. A positive payoff is
generated only when types from different sides match.

Consider Becker’s model. The joint payoff to a couple consisting of a
man of ability a and a women of ability b is h(a, b); h is supermodular (and
strictly increasing, although this is not essential). Joint payoffs are positive
if and only if a man matches with a woman and can be divided in any way.
The distribution of ability within each gender can be arbitrary. Suppose for
simplicity that the total measure of women (supported on [b, b̄]) equals that
of men (supported on [a, ā]) and that the distributions are atomless. It is
well-known that the outcome of this model has the men of ability ā matching
with the women of ability b̄; as the men’s ability decreases, so does the ability
of their partners, until a matches with b.21

The segregation payoff in this model is zero for every type, so the surplus
function σ is just equal to the production function h. Now map this model
into a one-dimensional model with a new type space [x, x̄], where type x is
given by

x(t) = t, t ∈ [b, b̄], x(t) = b̄+ t− a, t ∈ [a, ā].

That is, the women are the “left half” of the interval and the men become
the right half. The types b̄ and a are then identified and become the median
type xm. Define a new surplus function σ̃(y, y′) = σ(x−1(y), x−1(y′)). It is
clear that σ̃ is of class M and we therefore have median matching which is
isomorphic to the match in the Becker model.

This construction, along with Proposition 14, shows why Becker’s result
is so strong. Changes to the production technology which preserve super-
modularity of h will also preserve the WID condition, so there is no change
to the match from such changes in the technology. The key property of the
two-sided matching model is that same-side matches generate zero output.
This implies (1) that the segregation payoff is identically zero, which makes
the surplus coincide with the production function; and (2) that the surplus

21The monotonicity of h(·, ·) will play a role if the measure of men is not equal to the

measure of women, in which case the lowest ability agents of the gender in excess supply

will be unmatched; the way surplus is shared among the remaining types will be affected

by this, but not the pattern of matching. The construction in the next paragraph is easily

modified to allow for this possibility.
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for types on opposite sides is positive because the production function is.
Positivity of the production function for types on opposite sides of the me-
dian is of course a reasonably general property, but positivity of the surplus
is not (neither is it generally equal to zero on the same side of the median),
and the latter is crucial to median matching (or its two-sided counterpart).

If instead one allowed for positive payoffs to same-sex matches, there gen-
erally would not be median matching (it would no longer be automatic for
types on the same side of the median not to match or for the surplus to be
positive for types on opposite sides), and neither would the match be invari-
ant to changes in technology. Indeed, the model based on Kremer-Maskin
which we study in the next section is neither of class M, nor does it satisfy
the STSC for all admissable technologies, and we show that technological
change which preserves the WID property will generally change the match.

Somewhat less formally, if the distribution of abilities changes (keeping
the measure of the two sides the same), we still retain median matching,
which in particular means that for all distributions, the matching map m(a)
is monotonic, with m(a) = b, m(ā) = b̄. This is admittedly a crude sort of
invariance, since in general m(a) will depend on the distribution for interme-
diate values of a. But the latter effect is perhaps not so conspicuous; insofar
as two-sided models have tended to dominate the literature, we may have an
explanation as to why the dependence of matching patterns on distribution
has not been noticed until recently.

3 Applications

We now apply the above theory to the analysis of some examples. First,
we consider the examples discussed by Kremer and Kremer-Maskin. The
apparatus we have developed clarifies and generalizes the results they obtain
and leads to some new comparative static results. The next two examples
consider economies with imperfections. In both cases the production tech-
nology satisfies increasing differences so that the first-best version of these
economies will display segregation. The first example considers a financial
market imperfection which results in the violation of Conditions S and PT.
We show that the matching configuration will be sensitive to the distribution
of types and that in some instances the effects of the imperfections swamp
the effects of the production technology. The second example considers pro-
duction with an incentive problem. There it turns out that Condition S is
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still satisfied but that segregated matching may be inefficient.

3.1 A Perfect-Markets Example

In this subsection we will be interested mainly in how the matching pattern
depends on a technological parameter θ. We shall make heavy use of the
surplus concept developed in the previous section.

Let the type space be an interval [a, a], a > 0, and h(a, b) = max
{
aθb1−θ, bθa−θ

}

where θ ∈ (0, 1) (if we make a change of variable â =
√

a, i.e., if the type
space is

[√
a,
√

a
]
, [14] corresponds to θ = 1

2
and [15] to θ = 2

3
for this type

space). Note that the segregation payoff is h(a,a)
2

= a

2
. The idea is that the

tasks are asymmetric, and that the two partners will be assigned to them in

an output maximizing fashion. Since these are transferable utility models, we

will use the surplus function σ(a, b) = max
{
0, h (a, b)− 1

2
(a+ b)

}
to study

these economies.
We note that when θ̂ = 1 − θ the two economies will have the same

equilibria (since the θ̂ production function is obtained from the θ production
function by “renaming” the two tasks). Hence, it is enough to consider the
case θ ∈

[
1

2
, 1
)
. The (pre-) surplus function h (a, b) − 1

2
(a+ b) is concave in

b ≤ a and attains its maximum at M (a; θ) = a (2 (1 − θ))
1

θ . Simple algebra

shows that M (a; θ) is a decreasing function of θ. Simple algebra also shows
that the presurplus function is an increasing function of θ.

A quick calculation shows that h satisfies WID for all θ ∈
[
1

2
, 1

)
so that by

Proposition 5 the economy will always be positively matched. A somewhat
longer calculation shows that h is supermodular if and only if θ = 1

2
. Thus

Proposition 3 tells us that the economy is segregated when θ = 1

2
; alterna-

tively, note thatM
(
a; 1

2

)
= a. As long as θ > 1

2
, M (a; θ) < a and there exist

b < a such that σ (a, b) > 0. If we use a simple measure of segregation like
the average difference between two matched types in equilibrium, this shows
that when there is more technological bias (i.e., one of the tasks is more
productive) the economy will be less segregated than when the two tasks are
equally productive.

Moreover, ass θ→ 1, M (a; θ)→ 0; since a > 0, it follows that the single-
trough surplus condition is satisfied and that there is median matching when
θ is large enough. Hence, when the relative productivities of the two tasks is
the largest, segregation is the lowest.

As for changes in distribution, observe that if we hold θ fixed and in-
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stead change the distribution by “lengthening” the support, the economy
can change from satisfying STSC to violating it. This kind of result is ob-
tained in [15]. Seen in the light of the forgoing discussion, it is not hard to
understand that matching patterns depend on the distribution of types. In
Kremer and Maskin [15] segregation increases when the support of the type
distribution increases for a given value of θ.

If agents can modify their types (say through costly education), then two
effects are likely to happen in response to technological shocks. In the short
term, when the type distribution is given, our effect is likely to dominate, i.e.,
technological bias reduces segregation. In the long run, when agents decide
to “change” their types, the type distribution will also change. Whether or
not the type distribution changes in the manner that Kremer-Maskin assume
is still an open question.

3.2 Imperfect-Markets Examples

We consider two examples. The first introduces a financing constraint. The
most obvious change is the differential effect of the imperfection on the seg-
regation payoffs of different types. Put simply, high ability agents get the
same segregation payoff with or without the financing constraint. Low ability
agents suffer a large decrease in the segregation payoff with sufficiently im-
perfect financing. The result is possibly a significant change in the matching
pattern (as well as in the aggregate output of the economy). The same kind
of effect was present in the case of the technological changes studied in the
previous subsection, although here the outcome varies more conspicuously
with the type distribution: whereas in the previous example, matching is
always positive assortative, here we will get mixtures of segregation, positive
and negative assortative matching, depending on the distribution.

Such is not the case in the second example, which introduces a moral
hazard problem into the production process. This reduces the segregation
payoff for all types, but again those of the lowest ability are most severely
affected. But a second effect now comes into play, which is not present in
either of the other two examples: increasing information costs also reduce
the transferability of utility. The moral hazard problem requires that payoffs
exceed a positive lower bound for each partner. It turns out that this change
in the characteristic function offsets the changes in the segregation payoffs
in such a way as to keep the matching pattern unchanged: Condition S
will always be satisfied. But now aggregate performance will no longer be
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optimal, even conditional on the information constraints and the distribution
of types: total surplus could be increased by forcing matches to differ from
their equilibrium form. The source of the failure of optimality of equilibrium
is the restricted transferability introduced by the incentive problem, on which
we comment below.

3.2.1 Production with an Imperfect Financial Market

Consider now a modification of the standard production model in which
a fixed amount k > 0 of capital is required for production to take place;
once this is invested, output depends on the ability of the firm’s members
according to h(a, b) = ab.We assume that the lowest ability a exceeds

√
k (so

it is always efficient to produce if the capital market is perfect). The cost of
a unit of capital is normalized to one. All individuals have zero wealth, and
therefore every partnership must access a capital market in order to finance
their firm. This market, however, is imperfect. We model this imperfection
starkly: the output of a firm must exceed φk, φ ≥ 1, in order for financing
to be possible.22 The joint output for a pair (a, b) can then be written as

H(a, b, k, φ) =

{
ab− k, if ab ≥ φk

0, if ab < φk

A perfect capital market corresponds to φ = 1. In this case, the econ-
omy will be segregated by ability, since when a ≥

√
k the segregation payoff

u (a) = a
2
−k

2
is positive and the surplus function σ (a, b) = max

{
0,− (a− b)2

}
=

0. Note that the surplus function is constant for all k as long as k ≤ a2. This

outcome is independent of the initial distribution of types.

As φ increases, the market becomes less efficient, excluding more and

more types from producing positive output on their own. We note that

despite the financial market imperfection, utility is still transferable within

each coalition. Proposition 1 therefore has two implications for this model.

22This kind of capital market imperfection can be derived by supposing that the partner

in the firm, upon having to repay, may renege on their debt and escape with probability

π a punishment which brings their income to zero. Lenders will make loans of size k only

to those firms whose output h will exceed k/(1−π), since only for these firms is repaying,

which yields a payoff of h − k, more attractive than reneging, which yields πh. Thus,

φ ≡ 1

1−π
= 1 corresponds to π = 0; with larger values of π escape becomes more likely,

until with π = 1, the market shuts down altogether (φ =∞).
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First, the equilibrium match will maximize aggregate surplus, which will be

helpful in computing the equilibrium below. Second, aggregate output is also

maximized at equilibrium, which may be of more interest from the welfare

point of view.23

The segregation payoff is

u (a) =

{
a
2
−k

2
if a

2 ≥ φk

0 if a2 < φk.

We divide the type space into two intervals, A
−

= [a,
√
φk) and A+ =

[
√
φk, a]. The pre-surplus and surplus functions are

s (a, b) =




−

(a−b)2

2
if a, b ∈ A+

a
(
b− a

2

)
−

k

2
if a ∈ A+, b ∈ A

−

0 if a, b ∈ A
−

.

⇒ σ (a, b) =

{
max

{
0, a

(
b− a

2

)
−

k

2

}
if a ∈ A+, b ∈ A

−

0 otherwise.
(12)

We note that there can be heterogenous matching only between types in

A+ and A−; a and b match and generate a positive surplus only if the three
conditions below are satisfied.

a ∈ A+, b ∈ A
−

(13)

ab ≥ φk (14)

b ≥
a

2
+

k

2a
. (15)

23How do we reconcile optimality of the equilibrium here with the well-known results
that say that in the presence of financial market imperfections, equilibrium need not max-
imize aggregate output? Pecuniary externalities are one possible cause of an inefficient
outcome, but these are precluded here because of the assumption that there are no ex-
ternalities across coalitions. Even without externalities, policies which redistribute initial
wealth may increase output. Proposition 1 says that matching will be efficient given

the distribution of types; this means that there are no policies that involve a mere reas-
signment of matches away from the equilibrium ones that can increase output, although
mean-preserving changes to the initial type distribution (plausible if type is interpreted to
be wealth, less so perhaps if type is ability) might raise output. But purely “associational
redistribution” ([6]) can play no efficiency-enhancing role here. In [8], a financial market
imperfection leads to a possibly inefficient match. But there the imperfection does not
reduce the total output that a student and a school can produce together, but rather limits
the amount of surplus that a student can transfer to a school, and it therefore does not
correspond to the case f = 0; in this sense it is related to the example in the next section.
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(13) follows (12). Let Ω denote the set of pairs (a, b), with a ∈ A+ and b ∈

A
−

which satisfy (14) and (15). This set is illustrated in Figure 4; the down-
ward sloping boundary corresponds to the financing constraint (14) while
the upward sloping boundary corresponds to the positive surplus constraint
(15).24 a∗ is the value of a for which (14) and (15) bind; we have partitioned
Ω into the sets Ω0 – where a < a

∗ – and Ω1 where a ≥ a∗.

It is useful to think of this problem as a two sided model, where the sides

are A+ and A
−
. For any distribution τ on A, we can define a new distribution

on the pairs (a, b) , where a ∈ A+ and b ∈ A−; we are interested in the support
of that new distribution; support that we denote by Aτ

+
× Aτ

−

.

Let â > a > b̂ > b; if all pairs in {a, â} ×
{
b, b̂

}
belong to Ω, then the

WID condition is satisfied since it coincides with the WID condition in the

Becker model. In the figure, we have an example in which all pairs in {a, â}×{
b, b̂
}
belong to Ω except the pair (a, b) (the point (a, b) does not satisfy the

financing constraint ab ≥ φk); in this case, the WID condition is σ
(
â, b̂

)
−

24Computations show that a∗ =
√
(2φ− 1) k, b∗ = φk

a∗
and a

∗∗

=

(√
φ+

√
φ− 1

)√
k.
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σ (â, b) ≥ σ

(
a, b̂

)
and this condition can be easily violated. Clearly, there

also exist situations in which the WID condition is satisfied. For instance, if
(a, b̂) and (â, b) belong to Ω1, then both (â, b̂) and (a, b) belong to Ω1 (Ω1 has
a lattice structure but Ω0 has not25) From these observations, the properties
of the equilibriummatching will depend on the distribution of types. We first
state conditions on the distribution under which the equilibrium matching is
monotone; then we use these results to understand the effects on matching
of changes in the distribution and in the parameter φ. All results are proved
in the Appendix.

Proposition 15 (i) If Aτ

+
×Aτ

−

∩Ω is a lattice, then the equilibrium satisfies
PAM.

(ii) Suppose that Aτ

+
⊆ [a∗, a] , then the equilibrium satisfies PAM.

Distributions satisfying the conditions of Proposition 15 are bimodal. We

assume from now on that the distribution of types is log-uniform, i.e., that

log a is uniformly distributed on [log a, log a]. We show that even if WID is

satisfied for a non trivial subset of the set of types, the equilibrium match

involves negative matching or segregation.

Proposition 16 Suppose that the distribution of types is log-uniform on
[a, a] . The unique equilibrium matching pattern is as follows.

(i) If a ≥ √φk or a ≤ √φk, there is segregation.
(ii) If a <

√
φk < a, there exists (a unique) b

e
∈ [

a,
√
φk

)
such that

the equilibrium matching is as follows: there is negative matching between[
be,
√
φk

)
and

(√
φk, φk

be

]
and types outside these intervals segregate.

Comparative Statics

Using Propositions 15 and 16, we illustrate how the distribution of types

can affect–here in a somewhat dramatic way–the equilibriummatching pat-

tern. For descriptive purposes, call the interval
[
a,
√
φk

)
the “lower class”,

the interval
[√

φk, φk
be

]
the “middle class” and the interval

(
φk

be
, a

]
the “up-

per class”, where be is as in Proposition 16. Starting from the log-uniform

distribution on [a, a] suppose that, keeping the average type in the econ-
omy constant, we decrease the measure of the middle class, by moving mid-

dle class agents to the other two classes in a mean preserving way. If the

25Recall that a subset X ⊂ R
2 is a lattice if x, y ∈ X implies that both x∨ y and x∧ y

are in X where ∨ is the “maximum” operator and ∧ is the “minimum” operator.

39



middle class completely disappears, the support of the new distribution is[
a,
√
φk

)
∪
(
φk

be
, ā

]
. But

([
a,
√
φk

)
×

(
φk

be
, ā
])
∩Ω is a lattice, so from Propo-

sition 15 there is PAM in equilibrium. In general, while the middle class still
has positive measure, equilibriummatching will consist of a mixture of PAM,
NAM and segregation.

It is also possible to obtain some results on the effects of changes in the
parameters of the log-uniform distribution on a numerical measure of the
matching patterns, namely the level of segregation (this is similar to the
exercise carried out in [15]). Let µ (φ, a, a) be the measure of the interval[
be,

φk

be

]
, i.e., the interval of types that match in a negative fashion in Claim

16.26. A simple measure of the degree of segregation is 1− µ (φ, a, a) . Keep-
ing the assumption of log-uniformity, we can first make comparative statics

on the bounds. The first result shows that the degree of segregation is not

monotonic in the spread of the support; the second result shows a multi-

plicative shift in the support yields increased segregation. The proofs of

these assertions are in the Appendix.

• For any a <
√
φk, segregation first decreases for a ∈

(√
φk,min

{
a∗, φk

a

})
and

then increases for a > min

{
a∗,

φk

a

}

• Consider a family of log-uniform distributions on [αa, αa] , where a <

b∗, a ≥ a∗. Then, in equilibrium, segregation increases as α increases.

Finally, if we consider changes in φ, the degree of imperfection on the

financial market, we obtain a non-monotonic relationship between φ and the

degree of segregation

• Let φ∗ = 1

2

((
a

a

)
2

+ 1

)
; the index of segregation decreases with φ

when φ ∈ (1, φ∗) and increases with φ when φ ≥ φ∗

Thus trends in the degree of segregation which could be explained by skill

biased technical change or an increasingly unequal skill distribution might

also be explained by improvements in the functioning of financial markets.

26Under log-uniformity, µ (φ, a, a) = log φk−2 log be
log a−log a

.
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3.2.2 Production with an Incentive Problem

In contrast to the efficiency of matching in transferable utility environments
(even those with financial market imperfections or other restrictions on trans-
ferability between coalitions and the outside world), inefficiencies may arise in
matching environments when there are restrictions on transferability within

coalitions.27 In these instances, reassignment of matches away from their
equilibrium values can raise aggregate output.

Consider the same production function as before, but now suppose that
there is a moral hazard problem: each partner in a match must take some
effort in order for output to be produced. The effort levels are low and high,
with cost 1 if the high effort is chosen and zero otherwise. In order for partners
of ability a and b to produce ab, both must take the high effort; otherwise
output is zero. Effort is not observable unless it is monitored at a cost: if
c(φ, q) is invested at the time of the match, the probability of detecting a
partner if he takes the low effort is q (this probability is independent across
partners, but the same q must be chosen for each partner). Thus φ ≥ 0 will
index the severity of the moral hazard problem. We assume that c(0, q) ≡ 0,
and that c is increasing in both arguments and convex in q.

Each partner receives a contract which specifies that he receives a pay-
ment y if he is not caught taking low effort, and 0 if he is.28 Given the level
of monitoring q, incentive compatibility then requires that y − 1 ≥ (1− q)y,

or y ≥
1

q
. The net output generated by a firm with partners a and b and

monitoring q is then ab− c(φ, q); but even though the partners are assumed
to be risk neutral they cannot transfer this output to each other arbitrarily:

each partner must receive at least
1

q
.29

For analyzing this problem it is convenient to consider the maximum
payoff that an agent can achieve assuming his partner is incentive compatible,

27The observation that matching can be inefficient has already been made in the liter-
ature (e.g., [2], [9]), but in those cases it depends on spillovers across coalitions.

28If one takes the assumption of two partners literally, this is not the optimal contract,
since the firm’s output would typically serve as a signal of the partner’s effort. We have
in mind situations, such as those in large firms, where output information reveals little
about individual effort and other (costly) signals must be employed instead. See [16] for
a more general analysis.

29Thus in terms of (1), we have X = {0,1} × {0, 1}, Q = [0, 1], h(q, x, t1, t2, θ, φ) =
t1t2x1x2, g(q, x, t1, t2, θ, φ) = c(φ, q), f(q, x, ti, φ) = xi(

1

q
− 1).

41



1
1
�

q

� � 1
1

, ���

q
qch �

� � 1
1

,
0

���

q
qch �

� �hu

� �hq

q

1

v

Figure 5:

considered as a function of q. This expression, h−c(φ, q)−
1

q
−1, with φ > 0,

is graphed for different values of h in Figure 5. Also shown is the incentive

compatibility constraint
1

q
− 1: if h = ab, both a and b must get a payoffs at

least this high if they are to be incentive compatible.
For φ = 0, q is optimally set equal to 1. In this case, the first-best alloca-

tion with segregation is achieved in equilibrium (We assume it is efficient for
all partnerships to produce: if abilities lie in the interval [a, ā], then a >

√
2.)

Things can be rather different, however, if φ > 0. Let q (h) be the lower
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value of q, when it exists, at which the graph of h− c(φ, q)−
1

q
− 1 intersects

the graph of 1

q
−1. When q(a2) exists (and lies in [0, 1]), the segregation payoff

of type a is
a
2
−c(φ,q(a2))

2
− 1. Clearly, there exists a unique h0 such that the

graphs of h − c(φ, q)−
1

q
− 1 and 1

q
− 1 are tangent. Hence, when a <

√
h0,

q (a2) does not exist and the agents have a zero segregation payoff.30

The fact that the segregation payoff is zero for some types creates a sit-

uation parallel to the one with the imperfect financial market: high types

might want to match with low ones because the latter have such poor out-

side opportunities and they might be “cheaper” than their more productive

counterparts. In other words, we might conjecture that there would be het-

erogeneous matches in equilibrium. The first thing to check, then, is whether

Condition S is violated. The surprising result is that, on the contrary, it is

always satisfied:

Proposition 17 The economy with moral hazard is segregated for all φ.

P roof. Suppose instead that there is a heterogeneous match (a, b), with
a > b. Let q be the level of monitoring they choose. Clearly, a has a positive
segregation payoff (if not, then neither does b, and nothing can be gained if
they match), and q > q(a2). Let ya and yb be the levels of compensation paid
to each of the partners. If b has a positive segregation payoff and q ≥ q(b2),
then since for a heterogeneous match to occur we must have

ya + yb = ab− c(φ, q) ≥
a2 − c (φ, q (a2))

2
+

b2 − c (φ, q (b2))

2
,

we immediately conclude, since c(φ, ·) is increasing in q, that

0 > ab−
a2 + b2

2
≥ c(φ, q)−

c (φ, q (a2)) + c (φ, q (b2))

2
> 0,

a contradiction.
If instead q < q(b2) or b has a zero segregation payoff (q(b2) does not

exist), then b2− c (φ, q)− 1

q
< 1

q
; heterogeneous matching again requires that

ab− c (φ, q)− yb ≥
a2 − c (φ, q (a2))

2
,

30If c(θ,1) is finite, the set of types with zero segregation payoffs may be larger than

[a,
√
h0]. This hardly affects the analysis, however; when it does, we shall point this out.
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and, since yb ≥
1

q
,

yb >
b2 − c (φ, q)

2
;

adding these two expressions and rearranging yields

0 > ab−
a2 + b2

2
>

c (φ, q)− c (φ, q (a2))

2
> 0,

a contradiction. We conclude that no heterogeneous matches can occur.

Even though the matching configuration is unchanged when incentive

problems are introduced, there is an important difference between the two

cases from a welfare point of view: when φ is large enough, the equilibrium

will not always be efficient in the sense of maximizing total output net of

monitoring and effort costs. There are two sorts of reasons for this. First

of all, since different types choose different levels of the monitoring technol-

ogy, the average level of monitoring that will be used under heterogeneous

matches might be lower than that used under segregation. More important,

in equilibrium some types are “left out” of the economy, and more output
could be generated if higher types were forced to match with them. In both
cases, the source of inefficiency of equilibrium is the failure of full transfer-
ability.

To see this, suppose that c (φ, q) = φq and φ > 2. A social planner trying
to maximize total output net of monitoring and effort costs will always want
the partners in a match to share output equally, since this minimizes the
level of q they need to use. Thus, the level of q chosen by a partnership of
an a and a b is given by the smaller solution to

ab− φq −
1

q
=

1

q
,

provided it exists – one needs ab ≥ 8φ; otherwise the partnership gener-
ates zero output since it is not possible for both members to be incentive
compatible. (Since φ > 2, any partnership that is incentive compatible is
also efficient in the sense that the output net of monitoring costs exceeds the
disutility of effort). Solving for q, one finds that the maximized net output
for a pair (a, b) is

H(a, b) =
ab+

√
a2b2 − 8φ

2
.
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It is tempting to think of H as a “reduced-form” production function, but
it differs from the usual notion of production function in that the level of
output produced is dependent on a particular sharing rule (namely equal
sharing) that the planner has imposed.

With this caveat in mind, note that H is symmetric but neither super-
nor submodular; indeed a simple computation shows that its cross partial

derivative is negative in the range
√
8φ < ab <

√
4(
√
5 + 1)φ and positive

for ab >

√
4(
√
5 + 1)φ. As in the case of the financial market imperfection,

incentive problems can cause the properties of the joint output to differ dra-

matically from those of the production technology.

Given this fact, it is clear that segregation is not the optimal matching

pattern. In fact, if the support of the distribution lies in [(8φ)1/4, (4(
√
5 +

1)φ)1/4], it is straightforward to show that the optimum consists of strictly

negative matching.31 Thus, even if all types in the economy are able to pro-
duce, the segregated outcome is not generally optimal simply because lower
types, when segregated, (must) choose excessively high levels of monitoring.
Aggregate performance is enhanced when high types match with them: the
sacrifice in output is more than compensated by the reduction in monitoring
costs.

A more significant increase in welfare can sometimes be obtained by forc-
ing types with positive segregation payoffs to match with those with zero. In
this case, even though the high types will now be in firms that are producing
less output and incurring higher monitoring costs than they do under seg-
regation, there are more active firms; the employment of previously unused
resources can increase aggregate output very significantly.32 Notice that this

31To see this, note that if the joint output function is symmetric and strictly submodular,

it satisfies the WDD inequalities: we have

H(x) + H(y) > H(x ∨ y) + H(x ∧ y) by submodularity; putting x = (a, d) and y =
(b, c) yields H(a, d) + H(b, c) > H(a, c) + H(b, d); putting instead y = (c, b) and using
H(c, b) = H(b, c) yields H(a, d) +H(b, c) > H(a, b) +H(c, d). Thus whenever there are
four types a > b ≥ c > d, output is higher when they are negatively matched than when
they are positively matched. Finally, putting x = (a, b) and y = (b, a) establishes that
H(a, b) > 1

2
[H(a, a)+H(b, b)] (and H(c, d) > 1

2
[H(c, c)+H(d, d)]), so H(a, d)+H(b, c) >

1

2
[H(a, a) +H(b, b) +H(c, c) +H(d, d)], which shows that segegation is also dominated.

The same sort of logic establishes Proposition 8.
32For instance, consider the example with a linear cost function, a uniform distribution

on [a, ā], and parameter values φ = 4, ā = (4(
√
5 + 1)φ)1/4, a0 = (8φ)1/4, a =

√
8φ
ā .

In equilibrium, agents below a0 are idle and net output is 1

ā−a

∫
ā

a0

(b2+
√

b4 − 8φ−2)db =
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effect would remain if q were exogenously fixed independently of type, while
the previous effect would disappear.

This example illustrates that the efficient (output maximizing) match
need not occur in equilibrium when there is limited transferability due to
incentive problems. We do not have a complete characterization of those
nontransferable cases in which equilibrium fails to be optimal. However,
there is the following partial characterization result.

Proposition 18 Suppose that the output-maximizing match is (payoff-equivalent
to) segregation. Then the economy is segregated.

P roof. Suppose instead there is an equilibrium in which a positive
measure of agents get strictly more than their segregation payoffs. Since in
any equilibrium every type gets at least its segregation payoff, the aggregate
equilibrium payoff strictly exceeds the aggregate of the segregation payoffs.
But this contradicts the assumption that aggregate output is maximized by
segregation.

In particular, if the planner’s “reduced-form” production functionH(a, b)
is symmetric and supermodular, then the optimum will involve segregation
(the reasoning for this is analogous to that for Proposition 3), and therefore
the equilibrium will too.

The converse to Proposition 18 is obviously not true, as our example
shows. In that case, the reason that surplus maximizing matches are not
achieved in equilibrium stems from the limited transferability introduced by
incentive problems. An a who is forced to match with a b receives less than his
segregation payoff; she cannot be compensated by the b because that would
entail that the b end up with less than an incentive-compatible share of output
(recall that the equilibrium is Pareto efficient, just not output maximizing).
This would violate feasibility. Thus, this simple example illustrates how a
conflict between “cake production” (maximizing the surplus generated by
matches) and “cake division” (maximizing one’s share of a given surplus)
can lead to distortions in the pattern of matching.

3.85
Negative matching on [a0, ā] yields

1

ā−a

∫
ā

a0

(b(ā+a0−b)+
√

b2(ā+ a0 − b)2 − 8φ−2)db =
3.91
But NAM on [a, ā] yields 1

ā−a

∫
ā

a
(b(ā+a−b) +

√
b2(ā+ a− b)2 − 8φ− 2)db = 4.47

In this case, while there is a gain to matching negatively where the reduced-form pro-
duction function is submodular (namely on [a0, ā]× [a0, ā]), this is small compared to the
gain of employing the “unemployed” who are below a0 (also in a negative assortative way).
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More generally, the example demonstrates that even with knowledge of
the production technology that indicates that SEG (or PAM) ought to be
the outcome, and even with accompanying evidence to that effect, there need
not be a presumption that such a matching pattern is efficient.

4 Conclusion

The foregoing analysis suggests that the conclusions that have been drawn
from the basic matching model are vulnerable to misspecification. The fi-
nancial market example indicates that market imperfections may significantly
change the patterns of matching we observe, possibly making them very sen-
sitive to the distribution of types. Or, as the moral hazard example indicates,
they may have very little effect on matching, even if they have a large ef-
fect on economic outcomes. The general point is that the conclusions one
can draw from observing a matching pattern – either about the underly-
ing economic process or the efficiency of outcome – may be very limited.
In particular, the properties of the production technology hardly suffice for
making welfare evaluations on the basis of an observed matching pattern or
in predicting the outcome of the match.

The next step in the agenda is the search for conditions on the distribution
of types that will help characterize solutions for situations in which conditions
like P are violated. The analysis in Section 3.2.1 indicates this may be a
challenging task, but far from hopeless. In particular, optimization methods
can be applied to transferable utility cases, which as we have seen, include a
number of imperfect markets models.

This paper has focused on the effects of only one departure from the
classical environment on two-person matching without externalities. There
are two others which have received some attention recently, namely search
frictions [26] and multidimensional type spaces [7]; we comment briefly on
the latter.

On the positive side, as we have remarked, Condition S and Proposition
2 apply almost without modification to multidimensional type spaces (as
well as to multiperson matches). It is possible to generalize the definitions
of monotone matching to this case, although the typical incompleteness of
orders on the type space tend to make fully satisfactory definitions hard to
come by.33

33See our earlier working paper [17] for a discussion of this point.
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The multidimensional case introduces other difficulties. First of all, there
is a myriad of ways in which the various characteristics of the matching
partners might enter into their joint output. A most natural way to proceed
is to suppose that the characteristics can be summarized by a one-dimensional
quantity (call it “talent”). Output then depends on talent in the usual way.
Talent is not observable to the investigator, but (some of) the characteristics
are (one thinks of athletes, whose height and weight might be easy to measure
but whose athletic talent might require the appraisal of experts who match
the athletes into teams).

But even in this restricted environment with two-person matches, it is
easy to find cases in which matching satisfies PAM in talent but appears
as NAM in every dimension observable to the investigator. The problem is
that the joint distribution of characteristics leaves a degree of freedom that
doesn’t fully nail down the matching pattern. Avoiding this predicament
requires a weaker, statistical definition of PAM and related restrictions on
the joint distribution of characteristics. We discuss this in [19]. The point
to emphasize is that one-dimensional models, like perfect-markets models,
entail special assumptions, and it is important to have some idea just what
those assumptions are and how strong they might be.

5 Appendix

5.1 A Note on Existence of Equilibrium

When f ≡ 0, utility is transferable. By the maximum theorem and the im-
posed conditions on the choice sets and the functions h and g, the maximized
value of the joint payoff is upper semicontinuous in types; as shown in [11],
this ensures that an equilibrium exists.

1. For the nontransferable case, things are slightly more involved. The
first issue is comprehensiveness of the characteristic function,34 which
is generally essential to ensuring nonemptiness of the core. While a
mild condition in the case of perfect markets (it amounts to being
an assumption of free disposal), it is much less so in the presence of
incentive and/or contractibility problems, since feasibility will often

34V is comprehensive if for any set P, v ∈ V (P ) implies that v
′ ∈ V (P ) whenever

v
′

i
≤ vi for all i ∈ P.
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entail that each agent receives a nonnegligible payoff (see Figure ?? for
an example). None of our results depend on comprehensiveness (except
in instances where it is already guaranteed by other assumptions).

For existence, the following construction suffices. Restrict attention to
economies in which the type distribution has finite support (the issue with a
continuous type distribution is possible failures of continuity of the charac-
teristic function in type). Define the comprehensive extension of a set V (·)
as the smallest comprehensive set containing V (·). The economy in which V

is replaced by its comprehensive extension will have a nonempty core [12].
Moreover, there will always exist core allocations in the extended economy in
which agents receive utility levels that are on the Pareto frontier of the origi-
nal feasible set V (·). Such allocations satisfy feasibility, measure consistency,
and the no blocking requirements of an equilibrium of the original economy,
and so the original economy has an equilibrium.

When Condition S is satisfied and V is comprehensive, then the segrega-
tion payoff vector lies outside (or on the Pareto frontier) of V (·). Violations
of this condition entail that the segregation payoff vector lies in the interior
of V (·). But if V is not comprehensive, then segregation payoff vector may

lie outside of V (·) and still entail a violation of Condition S.

5.2 Proof of Proposition 4

(i) Assume that Condition PT is satisfied. Consider a > b ≥ c > d and
payoffs such that

s (a) + s (d) = σ (a, d) (16)

s (b) + s (c) = σ (b, c) .

We will show that for any payoffs satisfying (16), a negative matching
pattern ({a, d} , {b, c}) cannot be stable. Since PT is satisfied, one of the two
WID inequalities holds. Assume without loss of generality that

σ (a, d) + σ (b, c) ≤ σ (a, b) + σ (c, d) . (17)

If either s (a) + s (b) < σ (a, b) or s (c) + s (d) < σ (c, d) , the negative
matching pattern ({a, d} , {b, c}) is not stable when the payoffs are s. Hence,
there can be negative matching in equilibrium only if s (a) + s (b) ≥ σ (a, b)
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and s (c)+ s (d) ≥ σ (c, d) . However, by using (17) it is immediate that both
inequalities must be equalities. Hence, the payoffs s also sustain the positive
match ({a, b} , {c, d}) .

(ii) Consider an economy with three atoms of equal mass a > b > c. We
show that if PT is violated, i.e., if

σ (a, b) + σ (b, c) < σ (a, c) (18)

PAM is violated in equilibrium. Consider payoffs s such that

s (a) = σ (a, b) + ε

s (c) = σ (a, c)− σ (a, b)− ε

s (b) = 0.

where ε ∈ (0, σ (a, c)− σ (a, b)) . Then, s (a) + s (c) = σ (a, c) , s (a) +
s (b) > σ (a, b) and s (b) + s (c) > σ (a, c) by (18). Hence the matching
({a, c} , {b}) together with s constitutes an equilibrium that violates PAM.

Consider now any a > b > c > d and suppose that PT is not satisfied.
Hence, σ (a, d) > 0, and,

σ (a, d) + σ (b, c) > σ (a, b) + σ (c, d) (19)

σ (a, d) + σ (b, c) > σ (a, c) + σ (b, d) (20)

Consider now an economy with four atoms of equal measure at a, b, c, d. We
show that there is no equilibrium with positive matching; thus the equilib-
rium must exhibit negative matching.

There are positive matches in which some types segregate. Clearly, seg-
regation of all types cannot be an equilibrium since σ (a, d) > 0. The positive
matches are the following

m1 = ({a} {b} , {c, d})

m2 = ({a, b} , {c} , {d})

m3 = ({a} , {b, c} , {d})

m4 = ({a, b} , {c, d})

m5 = ({a, c} , {b, d}) .

Clearly, m1 and m2 are dominated by m4 (if m4 cannot be an equilibrium
match, neither can m1 and m2). m3 cannot be an equilibrium since σ (a, d) >

50



0 (this also explain the use of the condition σ (a, d) > 0). Hence, we are left
with m4 and m5. The argument is the same for both, so we prove only the
result for m4.

Suppose by way of contradiction that m4 is an equilibrium match for the
economy. Then there is a payoff s such that

s (a) + s (b) = σ (a, b)

s (c) + s (d) = σ (c, d) .

However, by (19), s (a)+ s (b)+ s (c)+s (d) < σ (a, d)+σ (b, c) . Hence either
s (a) + s (d) < σ (a, d) or s (b) + s (c) < σ (b, c) which means that for any
payoff, there is beneficial deviation by a coalition. Since matching cannot
be positive in equilibrium, the negative assortative matching ({a, d} ,{b, c})
(this is the only other possible matching) is the unique equilibrium matching
pattern.

5.3 Proof of Proposition 10

We prove part (i) only, as the proof of (ii) is similar. We observe that by
monotonicity of βaiaj

(sj) ,

for any {a1, a2, a3, a4} , (21)

β
aiaj

◦ β
ajak

(sk) is increasing in sk

β
aiaj

◦ β
ajak

◦ β
akal

(sl) is decreasing in sl.

Suppose that Condition P is violated. I.e., consider a 4-tuple {a, b, c, d}
where a > b ≥ c > d and payoffs s (a) , s (b) , s (c) and s (d) with s ∈
SP (a, d)× SP (b, c) and such that the following conditions hold

(a) s (a) ≥ βab (s (b)) , s (a) ≥ βac (s (c)) , s (d) ≥ βdb (s (b)) , s (d) ≥
β
dc
(s (c))
(b) [either s (a) > β

ab
(s (b)) or s (d) > β

dc
(s (c))]

(c) [either s (a) > β
ac
(s (c)) or s (d) > β

db
(s (b))].

Note that since s ∈ SP (a, d)× SP (b, c),

s (a) = β
ad
(s (d)) ∈ [0, φ

ad
(a)] (22)

s (b) = β
bc

(s (c)) ∈ [0, φ
bc

(b)]

Condition (a) is implied by the core condition for s ∈ SP (a, d)×SP (b, c) . In-
deed, the original core condition implies that (s (a) , s (b)) /∈ SD (a, b) ; hence,
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it must be that the vector (s (a) , s (b)) is “outside” the set SD (a, b) .However,
since both s (a) and s (b) are nonnegative, this implies that (s (a) , s (b)) is
also “outside” the extension of the set SD (a, b) , i.e., that s (a) ≥ β

ab
(s (b)) .

Note that this is true for any extension. The other inequalities in (a)-(c) are
derived following the same logic.

We show that (b) implies that s (d) < β
da
◦ β

ab
◦ β

bc
◦β

cd
(s (d)) and that

(c) implies that s (d) < β
da

◦ β
αc

◦ β
cb
◦ β

bd
(s (d)) , hence that condition P∗

is violated.
In (b), suppose first that s (a) > βab (s (b)) . By (22) and strict mono-

tonicity of β, we have the following sequence

s (a) > β
ab
(s (b))

⇔ β
ad
(s (d)) > β

ab
(s (b))

⇔ β
ad
(s (d)) > β

ab
◦ β

bc
(s (c))

⇔ s (d) < β
da
◦ β

ab
◦ β

bc
(s (c))

⇒ s (d) < β
da
◦ β

ab
◦ β

bc
◦ β

cd
(s (d))

If s (a) = β
ab
(s (b)) , then (b) implies that s (d) > β

dc
(s (c)) . We then have

s (d) > βdc (s (c))

⇔ s (c) > β
cd
(s (d))

⇔ s (b) < β
bc
◦ β

cd
(s (d))

=⇒ βba (s (a)) < βbc ◦ βcd (s (c))

⇒ s (a) > β
ab
◦ β

bc
◦ β

cd
(s (d))

⇒ s (d) < β
da
◦ β

ab
◦ β

bc
◦ β

cd
(s (d)) .

Now, in (c), if s (a) > β
ac
(s (c)) , we have

s (a) > β
ac
(s (c))

⇐⇒ s (d) < βda ◦ βac (s (c))

⇐⇒ s (d) < β
da
◦ β

ac
◦ β

cb
(s (b))

=⇒ s (d) < β
da
◦ β

ac
◦ β

cb
◦ β

bd
(s (d))

If s (a) = β
ac
(s (c)), then (c) requires that s (d) > β

db
(s (b)) , we then have,

s (d) > β
db
(s (b))

⇔ s (b) > β
bd
(s (d))

⇔ s (c) < β
cb
◦ β

bd
(s (d)) .
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Since s (a) = β
ac
(s (c)) , β

ad
(s (d)) = β

ac
(s (c)) the previous inequality and

the fact that β
ac
is strictly decreasing, imply

βad (s (d)) = βac (s (c))

> β
αc
◦ β

cb
◦ β

bd
(s (d))

⇐⇒ s (d) < β
da
◦ β

αc
◦ β

cb
◦ β

bd
(s (d)) .

Therefore, (b) and (c) imply a violation of condition P∗ for any extension

β. This proves that if there exists one extension β such that Condition P∗

holds, then Condition P also holds. This concludes the proof.

5.4 Proof of Corollary 11

We prove (i), as the proof of (ii) is similar. For any t and t̂ and v ≤ Σ
tˆt
, let

s = v − u
(
t̂
)
, φ

tˆt

(
t̂
)
= Σ

tˆt
− u

(
t̂
)
, and

β
tˆt
(s) =

{
γ

tˆt

(
s+ u

(
t̂
))
− u (t) if s ≤ φ

tˆt

(
ˆt
)

φ
tˆt

(
ˆt
)
− s otherwise

Observe that β satisfies (4) since γ
tˆt

(
s+ u

(
t̂
))
is strictly decreasing and since

the boundary conditions are met. Also, for any a > b ≥ c > d, φ
ad

(d) > 0.
Therefore, the requirements in Condition N∗ are satisfied. We show that
(9)-(10) imply (7)-(8) of Proposition 10 when applied to β.

Let s ≤ φ
cd

(d) and suppose that (7) does not hold for β. Since β is
strictly decreasing, we have,

β
ba
◦ β

ad
(s) < β

bc
◦ β

cd
(s)

Using recursively the definition of β, we have:

βbc ◦ βcd (s) = βbc (γcd (s+ u (d))− u (c))

= γ
bc
(γ

cd
(s+ u (d)))− u (b)

and

βba ◦ βad (s) = βba (γad (s+ u (d))− u (a))

= γ
ba
(γ

da
(s+ u (d)))− u (b) .

It follows that γba ◦γad (s+ u (d)) < γbc ◦γcd (s+ u (d)) which violates (9) for
v = s+u (d) since s ≤ φ

cd
(d) implies that s+u (d) < Σcd. Similar reasoning

shows that (10) implies (8).
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5.5 Proof of Proposition 15

(i) If Aτ

+
× Aτ

0
∩ Ω is a lattice, then any two pairs that can be chosen out

of Ω will satisfy WID. Since equilibrium matches outside Ω involve segre-
gation, matching overall satisfies PAM. The condition basically requires the
distribution of types to be bipolar : there is a “hole” in the support. (ii) is a
special case of (i) since all gains from trade happen in Ω1 and since Ω1 is a
lattice.

5.6 Proof of Proposition 16

Looking at a relaxed version of the surplus maximization program (i.e. one
in which constraints that reflect the measure consistency requirement are
ignored), we see that the surplus for (a, b) is maximum at a = φk

b
, namely

at the lowest value of a for which the financial constraint (14) is satisfied.
So maximizing surplus pointwise by putting m(b) = φk

b
maximizes surplus in

the relaxed program. Now observe that imposing the measure consistency
constraint doesn’t change anything: under log-uniformity it is satisfied with
this choice of m(b), so m(b) = φk

b
is indeed optimal. Thus the equilibrium

consists of negative matching between
[
b∗,

√
φk

)
and

(√
φk, a∗

]
and segre-

gation elsewhere: the “middle types” match negatively and the other types
segregate. This result is generalized to the cases a > b∗ or a < a∗ in the
following proposition.(i) is a direct implication of our earlier discussion. For
(ii), let b̃ = max {a, b∗} and ã = min {a, a∗} . If b̃ < φk

ã
, define be =

φk

ã
, b̃ ≥ φk

ã
,

define be = b̃.

5.7 Proof of the Comparative Static Results in Section

3.2.1

Increasing the Lower Bound of the Support.

The measure of heterogeneous matches is, for a < b∗,

µ (φ, a, ā) =




0 if ā ≤ √φk
2 log ā−log(φk)

log ā−log a
if ā ∈

[√
φk, a∗

]

log(2φ−1)−logφ
log ā−log a

if ā ≥ √φk

(23)

On ā ∈ (√
φk, a∗

)
,
∂µ(φ,a,ā)

∂ā
is proportional to log

(
φk

a2

)
which is positive

since a <
√
φk. Hence, the index of segregation 1−µ decreases as ā increases

54



on this interval. On ā >
√
φk, µ (φ, a, ā) is clearly decreasing in ā, and

segregation increases for these values; in the limit, as ā→∞, µ (φ,a, ā)→ 0.
A similar argument can be used for any value of a as long as a <

√
φk. (If

a ≥ √φk, µ (φ,a, ā) = 0 for any ā).
Shifting the Distribution

Since α is the parameter of interest, we write µ (α) for µ (φ, αa, αā) . Since
there is a multiplicative shift of the support, the density of a is still log a

log ā−log a

on [αa, αā]. Direct application of Proposition 16 leads to the following values
for µ (α)

µ (α) =




log(2φ−1)−logφ
log ā−log a

if α ≤
φ

2φ−1
a∗

a

log(φk)−2 log(αa)
log ā−log a

if α ∈

[
φ

2φ−1

a∗

a
,

√
φk

a

]

0 if α ≥
√
φk

a

Clearly, µ (α) is constant for α ≤ φ

2φ−1

a∗

a
, and decreasing for α ∈

[
φ

2φ−1

a∗

a
,
√
φk

a

]
,

yielding the result.

Increasing φ

To simplify the writing, let β = a

a
. Since φ is the parameter of interest we

write µ (φ) for µ (φ, a, a) . Without loss of generality, assume that a =
√
k;

hence, a = β
√
k, where β > 1. Note that for φ > 1, a <

√
φk, hence as

long as φ < β2, a >
√
φk, and Ω is non empty, which implies that µ (φ)

is positive. φ∗ = 1

2

(
β2 + 1

)
is the unique solution to the equation in φ,

a =
√
(2φ− 1) k. Then, in the notation of Proposition 16, since a =

√
k, a

is less than b∗ = φ
√
k√

2φ−1
for any φ > 1 and it follows that b̃ = b∗. Since a = a∗

when φ = φ∗, ã = a∗ if φ ≤ φ∗ and ã = a when φ ≥ φ∗. Observing that

log a− log a = (log β − 1) log k

2
, and that log a− log φk

a
= (log β − log φ) log k,

it follows that

µ (φ) =




2
log(2φ−1)−logφ
(logβ−1) log k

if φ ∈
[
1, 1

2

(
β2

+ 1
)]

2
logβ2−logφ

(logβ−1) log k
if φ ∈

[
1

2

(
β2 + 1

)
, β2

]

0 if φ ≥ β2

Clearly, µ (φ) is decreasing (so that segregation 1−µ(φ) is increasing) on[
1

2

(
β2 + 1

)
, β2

]
and increasing on

(
1, 1

2

(
β2 + 1

))
, yielding the result.
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