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ABSTRACT

Risk Premia In The Term Structure Of
Interest Rates: A Panel Data Approach*

This Paper proposes a panel data approach to modelling the risk premium in
the term structure of interest rates. Specifically, we develop a fixed
maturity/random time effects model that implies a time-invariant one-factor
model. Our approach allows us to disentangle risk premia and unexpected
excess returns, which is not possible in the standard time series approach. In
addition, small sample bias is alleviated and statistical efficiency improved.
Our results allow for interesting inferences about maturity-specific effects in
the term structure. First, the expectations hypothesis is soundly rejected for
our full data panel of US Treasury securities. Second, a considerable degree
of mean reversion is present in the risk premia. Third, our findings shed new
light on the magnitude of the slope coefficient in regressions of the yield onto
the forward curve.
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NON-TECHNICAL SUMMARY

The expectations hypothesis of the term structure of interest rates has been
studied in the literature for a long time. The early literature deals with the pure
expectations hypothesis, which is presented in different versions. The first
version states that the excess holding period return on a bond is equal for all
maturities. The second version of the pure expectations hypothesis states that
the yield on a long-term bond is a weighted average of current and future
expected short rates over the life of the yield of the long-term bond. In the third
version, the forward rate is claimed to be an unbiased predictor of the future
spot rate.

The very stringent hypothesis posed in either of the three variants appears not
to hold and the inclusion of a constant risk premium has been adopted. Hicks
(1939) postulated the liquidity premium theory, which states that borrowers of
long-term capital are required to increase their promised return to compensate
the preferred liquidity of lenders. Hence the longer the time to maturity of a
bond, the greater the liquidity premium would need to be. Modigliani and
Sutch (1966) argued that liquidity premia can be either positive or negative
and there is no need for them to follow any systematic pattern. Their preferred
habitat hypothesis recognizes that heterogeneous groups of borrowers and
lenders prefer securities of different maturities.

By the early 1970s, a general consensus emerged that term premia exist and
that they are usually positive. Most research activities have centred round the
null hypothesis of rational expectations and time-invariant risk premia. In what
follows we will refer to this as the Expectations hypothesis.

More evidence shows that time-varying risk premia exist and account for a
substantial part of the variation in the term structure, see for example Fama
(1984), Hamburger and Platt (1975) and Shiller, Campbell and Shoenholtz
(1983). Although many researchers have found statistically significant
evidence of time variation in term premia, the more important question is
whether this time variation can be interpreted in an economically meaningful
way. Much less work has been done on quantifying the importance of term
premia as a source for variation in the term structure.

In this Paper we concentrate our efforts on the empirical properties of risk
premia in a panel data framework. We focus on the variant of the expectations
hypothesis in which the current forward rate is claimed to be the expected
future interest rate plus some risk premium. Central to our analysis are the
properties of the risk premia in the maturity dimension and how they vary over
time. On the basis of this analysis we investigate whether the maturity-related



properties that we uncover indeed cause rejection of the expectations
hypothesis.



1 Introduction

The expectations hypothesis of the term structure of interest rates has been studied in

the literature for a long time. The early literature1 deals with the pure expectations

hypothesis, which is presented in di�erent versions. The �rst version states that the

excess holding period return on a bond is equal for all maturities. The second version

of the pure expectations hypothesis states that the yield on a long term bond is a

weighted average of current and future expected short rates over the life of the yield

of the long term bond. In the third version, the forward rate is claimed to be an

unbiased predictor of the future spot rate.

Although Cox, Ingersoll and Ross (1981) show that these three variants are log-

ically incompatible, Campbell (1986) demonstrates that they are not substantively

dissimilar, as they are well approximated by a family of linear approximations which

is internally consistent. In periods of high and volatile rates and for very long-term

bonds care must be taken in using the linearization.

The very stringent hypothesis posed in either of the three variants appears not to

hold and the inclusion of a constant risk premium has been adopted. Hicks (1939)

postulated the liquidity premium theory, which states that borrowers of long term

capital are required to increase their promised return to compensate the preferred

liquidity of lenders. Hence the longer the time to maturity of a bond, the greater

the liquidity premium would need to be. Modigliani and Sutch (1966) argued that

liquidity premia can be either positive or negative and there is no need for them

to follow any systematic pattern. Their preferred habitat hypothesis recognizes that

heterogeneous groups of borrowers and lenders prefer securities of di�erent maturities.

By the early seventies, a general consensus emerged that term premia exist and that

they are usually positive. Most research activities have centered around the null

hypothesis of rational expectations and time invariant risk premia. In what follows

we will refer to this as the expectations hypothesis.

More evidence shows that time-varying risk premia exist and account for a sub-

stantial part of the variation in the term structure, see for example Fama (1984),

Hamburger and Platt (1975) and Shiller, Campbell and Shoenholtz (1983). Although

many researchers have found statistically signi�cant evidence of time variation in

1For a thorough overview of the literature on the expectations hypothesis we refer to Melino

(1988).
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term premia, the more important question is whether this time variation can be in-

tererpreted in an economically meaningful way. Much less work has been done on

quantifying the importance of term premia as a source for variation in the term

structure.

Empirical tests have rejected the expectations hypothesis time and again. Mishkin

(1988) provides some re�nement of Fama's (1984) evidence on the information in the

term structure. He proposes econometric techniques that properly correct standard

errors for overlapping data and for conditional heteroskedasticity. Evans and Lewis

(1994) test whether stationary risk premia alone can explain the predictable variation

in excess returns. They reject this hypothesis and show that either permanent shocks

in the risk premia and/or rationally anticipated shifts in the interest rate process

could produce anomalous results. Furthermore, they show that time varying-risk

premia which are correlated with forward rates contaminate regression results. Re-

cently, rejection of the expectations hypothesis was attributed to small sample bias,

see Bekaert, Hodrick and Marshall (1997). They documented that the asymptotic

distributions of commonly used test of the expectations hypothesis are not to be

relied upon.

In this paper we concentrate our e�orts on the empirical properties of risk premia

in a panel data framework. We focus on the variant of the expectations hypothesis

in which the current forward rate is claimed to be the expected future interest rate

plus some risk premium. Central to our analysis are the properties of the risk premia

in the maturity dimension, i.e. how are risk premia of bonds with di�erent time to

maturity related to each other, and in the time series dimension, i.e. how do they vary

over time. On the basis of this analysis we investigate whether the maturity-related

properties that we uncover indeed cause rejection of the expectations hypothesis.

We employ panel data techniques, which seems natural for several reasons. First,

in a panel data framework both the time series and cross section - i.e. maturity

- dimensions are taken into account. Hence the model is more informative than

models that only account for (univariate) time series behavior. Second, we are able

to discern the risk premium from the unexpected excess return, which is not possible

in pure time series approaches. This is achieved through the use of a random e�ects

speci�cation in order to model the unobservable time-varying risk premia. Third,

since the expectations hypothesis essentially posits the same model for all maturities,

pooling the data is appropriate and helps to avoid problems of small sample bias.
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To avoid problems with overlapping data and to take the critique by Cox, In-

gersoll and Ross (1981) seriously, we construct discount rates from raw bond data

as proposed by McCulloch (1975). The use of discount rates avoids the use of lin-

ear approximations, which sometimes makes the di�erent forms of the expectations

hypothesis inconsistent with each other.

In the next section we provide some relevant background and explain our notation.

In section 3 we formally set up the econometric framework, in which we will model

and test the expectations hypothesis. In section 4 we show how the discount rates

are constructed from coupon bearing bonds, in section 5 we present the estimation

results and in section 6 we provide some concluding remarks.

2 Background and notation

Let Pt(� ) denote the price of a discount bond at time t that matures at time t + � .

The relation between the price of a discount bond and the yield-to-maturity is given

by

Pt(� ) = exp[��Yt(� )] (1)

where Yt(� ) is the discount yield with time-to-maturity � at time t. The discount yield

is an instrument that is helpful in determining the current value of a future cashow.

Because of the one-to-one relation between prices and yields, both variables contain

the same information. Another way to express information on the yield curve is

through the holding period return of a bond with price Pt(� ) at time t

Ht;t+1(� ) � ln

"
Pt+1(� � 1)

Pt(� )

#
(2)

The holding period return denotes the one-period return which follows from buying

a bond at time t, and selling it one period later at t + 1. The yield-to-maturity

and the holding period return are di�erent from each other. The yield-to-maturity is

the average annual return on a discount bond when the bond is held until maturity,

whereas the holding period return quanti�es the change in price when holding the

bond for one period. In the special case of a one year discount bond, yield-to-maturity

and holding period return coincide.

The current term structure of interest rates also provides a forward rate curve.

The forward rate at time t is the rate at which investors currently agree to enter into a
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contract at time t+1, that has maturity � . In a risk neutral world, the current forward

rate is equal to the expected future yield. The one-period forward rate, Ft;t+1 (� ), is

given by

(� � 1)Ft;t+1(� � 1) = �Yt(� )� Yt(1) (3)

This de�nition of forward rates follows from two investment strategies that yield the

same result. In the �rst strategy an investor decides to enter into a contract that holds

for � periods. In the second strategy, the investor decides to invest for one period

and to invest the payo� of this investment for � � 1 periods, starting one period from

now. Because both strategies start now and end at the same time, in the absence of

arbitrage opportunities, their returns will be equal. Clearly, the forward rate on the

left-hand-side of equation (3) is implied by current yields on the right-hand-side.

Consider an investor who faces at time t the possibility to invest in alternative

discount bonds. Investing in a discount bond that has a remaining time-to-maturity

of one period is riskless, since at maturity the principal is repaid. The one-period

return on this discount bond is the one-period yield, Yt (1). The one-period return

on a general discount bond is the holding period return. We de�ne the value of the

holding period return in excess of the return on a risk free investment as the excess

holding period return

�t+1(� ) = Ht;t+1(� )� Yt(1) (4)

The excess holding period return denotes the additional return on a risky investment

over a certain investment for the same period. An interesting issue is whether this

excess holding period return is zero on average (the pure expectations hypothesis), or

positive (the expectations hypothesis). In the latter case the investor is rewarded with

a higher expected return to compensate for the additional amount of risk. We refer

to the expected excess holding period return as the risk premium, which quanti�es

the expected excess return over the riskfree rate. The risk premium,  t (� ), is de�ned

as

 t(� ) = Et [�t+1(� )] = Et [Ht;t+1(� )]� Yt(1) (5)

We focus on the properties of this risk premium. Using the relations in equations (1),

(2) and (3) the risk premium as de�ned in equation (5) can be rewritten as

 t(� ) = (� � 1) [Ft;t+1(� � 1)� Et (Yt+1(� � 1))] (6)

This results in a second interpretation of the risk premium, which is the di�erence

between the forward rate and the expected future yield, premultiplied with a maturity
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dependent factor. Under the pure expectations hypothesis the forward rate is assumed

to be equal to the expected future yield and hence the risk premium is zero in that

case. From equation (6) a testable expression of the expectations hypothesis follows,

which links the future yield to the current forward rate

�Yt+1(� ) = �Ft;t+1(� )�  t(� + 1) + � [Yt+1(� )� Et (Yt+1(� ))] (7)

The future yield consists of three components: the current forward rate, a risk pre-

mium and an unexpected excess yield. This expression encompasses the pure expec-

tation hypothesis, when  t (� + 1) = 0, and the expectations hypothesis, otherwise.

The expected value of future interest rate is the current forward rate plus a risk pre-

mium. The relation in (7) is the fundamental relation that is our starting point for the

empirical analysis. Note that we choose to run levels regressions because subtracting

either yields or forward rates on both sides to render the regression variables "more

stationary", as was suggested by Campbell and Shiller (1987), increases the potential

for biases in small samples, see Bekaert, Hodrick and Marshall (1997).

3 The econometric framework

In the literature, testing the pure expectations hypothesis typically boils down to

estimating the regression model

�Yt+1(� ) = � + ��Ft;t+1(� ) + "t+1(� ) (8)

where � and � are unknown parameters. Testing for the pure expectations hypothesis

amounts to testing the hypothesis that � = 0 and � = 1. The error term "t+1(� ) is

given by

"t+1(� ) = � t(� + 1) + � [Yt+1(� )� Et (Yt+1(� ))] (9)

which implies that the error term consists of two components. One depends upon

the risk premium, the other one is the unexpected excess yield. Leaving the risk

premium in the error term does not allow us to gain insight into its properties, apart

from its average value, that is measured through the estimate for �. In our view

knowledge about the properties of the risk premium is important. It not only enables

a better understanding of pricing of risk in the economy, but also it may be able to

explain why the expectations hypothesis is rejected. Because both the risk premium
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and the unexpected excess yield are unobservable, it is in general not clear to which

of the two we should attribute an e�ect in the error term as given in equation (9).

Once we are able to discern the risk premium component from the unexpected excess

yield component, the regression results could actually provide clear insight as to which

component can account for the rejection of the expectations hypothesis, which is fairly

common in the literature, see Melino (1988) for an overview. Panel data techniques

are a convenient tool to disentangle risk premia and unexpected excess yields.

Next, we set up the panel data framework for the expectations hypothesis regres-

sion model of equations (8) and (9). For each time-to-maturity the pure expectations

hypothesis states that � = 0 and � = 1, hence pooling the data for di�erent maturities

gives the following model

2
6664
�1Yt+1(�1)

...

�NYt+1(�N )

3
7775 =

2
6664
1
...

1

3
7775� +

2
6664
�1Ft;t+1(�1)

...

�NFt;t+1(�N )

3
7775� +

2
6664
"t+1(�1)

...

"t+1(�N )

3
7775 (10)

or in matrix notation

Yt+1 = �� + Ft;t+1� + "t+1 t = 1; : : : ; T (11)

where Yt+1 is the (N � 1) vector of maturities times yields at time t+1 for maturities

�1; :::; �N, � is the (N � 1) vector of ones, Ft;t+1 is the (N � 1) vector of maturities

times forward rates at time t, and "t+1 denotes the (N � 1) vector of error terms

which consists of a risk premium and the unexpected excess yield. Stacking the

vectors for all time observations t = 1; :::; T results in the panel data model. We refer

to this model as the pooled case. In this speci�cation we do not explicitly account

for the existence of the risk premium, but relegate it to the error term. Testing this

speci�cation results in more e�cient parameter estimates than in the univariate time

series models. The main motivation for considering the pooled case is because it may

adress small sample biases in the parameter estimates, which were documented by

Bekaert, Hodrick and Marshall (1997).

In the following, this model speci�cation is extended to incorporate explicitly the

risk premia as incidental variables. In a panel data framework the usual approach

to model incidental variables is either as �xed e�ects, including a dummy for each

observation, or as random e�ects by specifying a stochastic process for the variables

in question. Direct application of either approach, however, is not possible in our
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model. In order to take account of the risk premium we extract it from the error

term and rewrite the model as

2
6664
�1Yt+1(�1)

...

�NYt+1(�N )

3
7775 =

2
6664
�1Ft;t+1(�1)

...

�NFt;t+1(�N )

3
7775� �

2
6664
 t(�1)

...

 t(�N)

3
7775+

2
6664

UEYt+1(�1)
...

UEYt+1(�N)

3
7775 (12)

where we introduce

UEYt+1(� ) � � (Yt+1(� )� Et[Yt+1(� )]) � = �1; :::; �N (13)

for the unexpected excess yield. In matrix notation it holds that

Yt+1 = Ft;t+1� �  t +UEYt+1 t = 1; : : : ; T (14)

Note that we have split the error term from equation (9) into two parts, the risk

premium  t and the unexpected excess yield UEYt+1. The unexpected excess yield

is treated as an error term that takes account of the cross sectional relations between

the univariate series, through the adoption of a covariance matrix speci�cation. We

adopt the following speci�cation for the error terms

UEYt+1 � N(0;�)

where we specify the exact form of the covariance matrix below.

Our goal is to model the risk premium explicitly, where the �xed maturity e�ects

estimator seems a natural candidate to learn about its maturity properties. The �xed

maturity e�ects estimator treats the risk premium as a constant in time and assumes

that it is only di�erent whenever the maturity of the yield is di�erent, hence

 1(� ) = � � � =  T (� ) � = �1; :::; �N (15)

This estimator quanti�es the relative levels of risk premia for yields with di�erent

time-to-maturity. The pure expectations hypothesis postulates that they are zero

for all maturities. The liquidity preference theory suggests that the risk premium

increases with time to maturity. In the appendix we derive the panel data estimator2

2See Baltagi (1995) and Hsiao (1986) for textbook treatments of panel data models.
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for the �xed e�ects, the associated estimator for �; and expressions for standard

errors. This results in the following estimator for the �xed maturity e�ects

2
6664
 ̂(�1)
...

 ̂(�N)

3
7775 =

1

T

TX
t=1

(Yt � Ft;t+1�)�
1

T

TX
t=1

UEYt (16)

We split the estimator into an observed part and an unobserved part. The unobserved

part represents the sample average of the unexpected excess return, which approaches

zero by the law of large numbers. The �xed maturity e�ects estimator is equal to

the estimator we �nd when the unexpected excess yield would not be incorporated

in the model, and hence this estimator speci�cally describes the behavior of the risk

premium in the maturity dimension.

The �xed maturity e�ects speci�cation is interesting in itself, but at the same

time somewhat restrictive: the risk premia are allowed to vary only with maturity

and not with time. In what follows, we introduce time variation into the model by

employing ingredients from a time e�ects panel model. The use of a random time

e�ects model lies in combining it with the �xed maturity e�ects model in order to

incorporate both the maturity and time dimensions appropriately.

Using equation (4) and the fact that  t (� ) = Et�t+1 (� ), we derive

Yt+1 = Ft;t+1� � �t+1 +UEYt+1 +UEHt+1 (17)

where the term given by

UEHt+1(� ) = [�t+1(� )� Et�t+1(� )] � = �1; :::; �N (18)

denotes the unexpected excess holding period return. Obviously, the right-hand-side

now consists of three terms which are indiscernible: the excess holding period return,

�t+1, the unexpected excess yield, UEYt+1, and the unexpected excess holding period

return, UEHt+1. The last two terms are unexpected e�ects and are easily eliminated

by taking conditional expectations. We impose an AR(1) process for the sum of

excess holding period return, unexpected excess yield and unexpected excess return,

denoted by

�t+1 = ��t+1 +UEYt+1 +UEHt+1 (19)

This reduces the number of parameters to the number of unknown parameters in an

AR(1) process which is only three. Note that taking conditional expectations in the
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estimated time series process results in a time series of risk premia

Et�t+1 = �Et�t+1 = � t t = 1; : : : ; T � 1 (20)

since the conditional expectations of the second and third components are zero. Be-

cause we are only interested in the risk premia, the modeling decision relies heavily on

the assumptions we make for the excess holding period returns, whereas the second

and third components are not relevant since they are eliminated from the equation

by taking conditional expectations. The risk premium is allowed to be di�erent from

period to period with the arrival of news or with changes in the economic regime. The

AR(1) process allows for such changes and provides us with a measure of persistence

of the risk premium over time.

We assume that the excess holding period returns for yields with di�erent time

to maturity are driven by the same dynamics: we impose a time-invariant one-factor

model in time dimension. We also incorporate the maturity dimension of risk premia.

The excess holding period returns of the long term yield serves as a base case. The

risk premia of all other yields are assumed to be related to this process through a

scaling factor

�t+1(� ) = Z(� )�t+1 � = �1; :::; �N (21)

with Z(�N ) = 1. Note that these scaling factors will be estimated from our term

structure data and that they imply a time-invariant one-factor model. The model

is expressed in state-space form, which makes it possible to apply Kalman Filter

techniques. Furthermore, it allows for the simultaneous inclusion of time series e�ects

and cross sectional e�ects of the risk premium. The excess holding period return is

divided into a component �t+1, which only depends on time, and a component Z(� ),

which only depends on maturity. The process fEt�t+1g
T
t=1 shows evolution of the

risk premium over time, whereas fZ(� )g�N�=�1 shows the relation between risk premia

of bonds with di�erent time to maturity, where the long term yield serves as the

reference point.

Altogether our �xed maturity/random time e�ects panel model is given by

Yt+1 = Ft;t+1� � Z�t+1 + �t+1

�t+1 = (1� �)� + ��t + �t+1

�t+1 � N (0;�)

�t+1 � N (0; �2)

(22)
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where �, � and �2 are the parameters in the AR(1) process and � denotes the co-

variance matrix of the cross sectional error term. We assume that �t+1 and �t+1 are

independent. Once the process for the excess holding period has been estimated, the

process for the risk premium at di�erent maturities follows directly from the relations

stated in equations (5) and in (21).

Of course, the error terms �t+1are not cross-sectionally independent. We model the

cross-sectional error term following the speci�cation in Bams and Schotman (1997).

In order to keep the number of parameters to be estimated tractable, and to gain

further e�ciency, we assume that the correlation between error terms �t+1(�i) and

�t+1(�j) depends on the distance between the terms to maturity:

Corr (�t+1(�i); �t+1(�j)) = �j�i��jj (23)

with 0 < ' < 1. Yields that are very close show high correlation, whereas yields that

are far apart are less correlated. The speci�cation resembles a cross-sectional AR(1)

error term.

Besides cross sectional correlation we also account for possible cross sectional

heteroskedasticity. Long term yields show less variance than short term yields. For

that reason we specify the variance of the error term, �t+1(� ), as a function of �

Var (�t+1(� )) = !2��2d ; (24)

where !2 is a scale parameter, and d determines the sensitivity of the variance for

the term to maturity. We estimate d along with the other parameters. If d = 0 then

the error terms are homoskedastic in a model for the yields. In case d = 1, the model

is homoskedastic in a regression model for (log-) bond prices. The heteroskedasticity

implies a weighting scheme on the maturities. With d > 0 more emphasis is put on

long term yields.

Altogether the cross sectional covariance matrix of the error terms for a model

with maturities � = �1; : : : ; �N is parametrized by the three parameters �, ! and d.

In matrix form the covariance structure for the cross sectional error terms is

� = !2S(�; d) (25)
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and

S(�; d) =

2
666666664

��2d1
�j�2��1 j

(�2�1)d
� � �

�j�N��1j

(�N�1)d

�j�2��1 j

(�1�2)d
. . .

. . .
...

...
. . .

. . . �
j�N��N�1j

(�N�N�1)d

�j�N��1j

(�1�N )d
� � �

�j�N��N�1j

(�N�1�N )d
��2dN

3
777777775

(26)

where � and S are matrices of order (N �N). We assume that the same covariance

matrix is applicable in the regression equation for the pure expectations hypothesis

of equation (8), where the error term is "t+1.

4 Data

Interest rates are only directly observable for short maturities, implied by money

market instruments. The longer term yields are implicitly available in coupon bearing

bond prices. Because the expectations hypothesis is stated in terms of discount yields

and discount forward rates, the analysis is greatly simpli�ed if we can work with

discount rates. The alternative is to use approximate linear relations as proposed by

Campbell (1986). Especially in periods of high and volatile interest rates care must

be taken in applying the linear approximation.

In the literature there exist di�erent methods to construct discount rates from

coupon bearing bonds. Here we follow McCulloch (1975), who introduces cubic spline

functions. A cubic spline is a functional form for the discount function like

�t(� ) = 1 + �1� + �2�
2 +

LX
j=1

�2+j(� � cj)
3
+ (27)

where �t(� ) denotes the discount function at time t for a cash ow of $1 with maturity

� , cj , j = 1; : : : ; L are break-points, (�)+ = max[:; 0] and �j, j = 1; : : : ; L+ 2 denote

the parameters to be estimated. The functional form for the discount function at

time t is found by minimizing

KX
i=1

2
4Pit �

JiX
j=1

Cij�t(�ij)

3
5
2

(28)

where K is the number of bonds, Pit denotes the price of bond i at time t, corrected

for accrued interest, Cij denotes the cash ow of bond i with term �ij and Ji is the

number of cash ows for bond i. Finally, the yield curve at time t is obtained by

Yt(� ) = �

ln [�t(� )]

�
(29)
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The splines are an a-theoretical way to transform the information in bond prices to

yield curve data. We have used US government bond data, available from the CRSP

tapes for the period January 1970 until December 1994. These data are available on a

monthly basis. For maturities less than a year we also include the observed Treasury

bill rates. For each month the spline function contains 12 breakpoints, and thus 14

unrestricted parameters �j . The parameters of the spline function are di�erent for

every month. As the �tted curve does not perfectly �t all available bond prices, the

method already �lters out some error terms implicit in the quadratic �t criterium

(28). Using the estimated cubic spline functions, we have constructed a panel which

includes time series of yields with maturities of 1 to 6 months and 1 to 10 years,

a total of 16 time series. The number of maturities that we include in the sample

corresponds with the number of parameters in the spline functions. In essence the

data on a large cross section of bond prices are condensed to 16 observations. At

every time t the yield curve is represented by a cross section of yields, denoted by

Yt(�1); : : : ; Yt(�N ), where N = 16.

Figure 1 shows the full data panel. A number of issues are of interest. First, most

of the yield curves are increasing. Second, in the period 1979-1984 the interest rates

have been substantially larger than in the rest of the data sample. Third, for short

maturities the yield curve is less smooth than for long maturities. Data at the short

end of the yield curve are less reliable since they include monetary policy e�ects and

the like.

In the top panel of table 1 summary statistics are presented for yields. The

yield levels show an average term structure that is increasing. The term structure

of volatilities is decreasing and from the last column we �nd that yields are highly

autocorrelated. The bottom part of table 1 present the di�erence of yields and lagged

forward rates. Under the pure expectations hypothesis the lagged forward rate is the

expected value of the current yield. The second column denotes the average di�erence

between the lagged forward rate and the current yield. It follows that next month's

one month yield is on average 13 basis points lower than the current forward rate,

next period's ten year yield is on average only 1 basis point lower than the current

forward rate. A possible di�erence between the two is attributed to a risk premium.

From equation (7) it follows that the average risk premium is given by

avg [ t (� )] = � favg [Ft;t+1 (� )]� avg [Yt+1 (� )]g (30)
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In the last column the average risk premium is reported which follows from multipli-

cation of the �rst and the second column. The statistics imply that the risk premium

is on average increasing with maturity, the same holds for the associated standard

errors. Equation (5) presents a de�nition of risk premium in a holding period return

context. It follows that the average expected monthly excess return on a ten year

bond over the risk free rate is 13 basis points.

In table 2 another feature of yield curve data is illustrated. The top panel shows

that yields that have maturities that are close together, are highly correlated. The

correlation decreases as the di�erence between the maturities of the bonds increases.

For the yield minus the lagged forward rate, we observe the same pattern although

the correlations are not as high as in the case of yield levels. This feature of the data

is important since it shows that the information available in the data is limited. We

take this explicitly into account when we model the cross sectional relation between

the error terms.

5 Estimation results

This section presents empirical results for the various models that deal with tests

of the expectations hypothesis. We start with simple univariate regressions. Next,

we pool the data and test the expectations hypothesis for all yields simultaneously.

Then models are considered in which the risk premium is explicitly modeled. First we

consider a �xed e�ects estimator, then we deal with the case where the risk premium

is modeled as a combined �xed maturity/random time e�ects model.

Table 3 shows the univariate regression results of yields on lagged forward rates

for all maturities, as given by equation (8). Typically, the slope coe�cient � is close

to one, which implies that the lagged forward rate seems a reasonable predictor of

the future yield. For most maturities at the short end of the yield curve, the pure

expectations hypothesis (i.e. H0 : � = 0; � = 1) is rejected, which follows from the

LR statistic, that is compared with a critical value of �20:95 (2) = 5:99. It seems that

the results for very short maturities up to 4 months are imprecise, probably caused

by transitory noise at the short end, or because of liquidity problems around maturity

dates of bonds. Bekaert, Hodrick and Marshall (1997) point out that rejection of the

expectations hypothesis may very well be caused by small sample biases.

The Durbin-Watson statistic indicates that for some maturities there is residual

13



autocorrelation. This may point at dynamics in the error term that were not modeled

adequately, perhaps a time-varying risk premium. The residuals for the separate

maturities are clearly heteroskedastic, given the increment in volatility of the residual

term when the maturity of the yield is higher. We have also calculated the cross-

sectional correlation between error terms (not reported) and �nd high correlation for

residuals which di�er only a little in time-to-maturity. The correlation decreases as

the residuals di�er more in time-to-maturity.

Remember that we employ panel data techniques in order to deal with two issues.

First, pooling the data leads to more e�cient estimates and will help to deal with the

small sample bias problem. Furthermore, panel data techniques allow us to model

the risk premium explicitly, whereas in the univariate regression tests it is included

in the error term. Now, we pool the data and rerun the regression model of equation

(8), estimating the slope parameter for all maturities simultaneously. Also, we take

into account the heteroskedasticity and the cross-sectional correlation by specifying

the error term as proposed by equations (25) and (26). The results are presented

in the �rst column of table 4. The slope parameter � is very close to one. Pooling

the data also results in an even lower associated standard error, which still leads to

a rejection of the expectations hypothesis. The covariance matrix of the error terms

properly accounts for the heteroskedasticity in the residuals, see �gure 2 for the term

structure of residual volatilities, both as observed in the residuals and implied by the

cross-sectional covariance matrix speci�cation. Also the covariance matrix appears to

model the correlation between residuals adequately. Residuals which di�er only one

month in maturity have a correlation coe�cient of �
1
12 = 0:997. Clearly, since � is

close to one, the correlation between residuals decreases smoothly with di�erence in

time-to-maturity, which is consistent with what we found in the univariate regression

results.

In the second column of table 4 the parameter results for the �xed maturity e�ects

model as speci�ed by equation (16) are given. We �nd a drop in the estimate for �,

which decreases to 0:945. The expectations hypothesis cannot be rejected in the case

of �xed maturity e�ects. The standard errors are high enough, even after adjustment

for low autocorrelation in the residuals, to favor the expectations hypothesis. The

model explicitly includes the parameter  t (� ) through inclusion of a dummy for each

maturity. However, only if � is equal to 1, can we interpret the parameter  t (� ) as a

risk premium. Otherwise, we have to correct for the deviation of � from 1. Estimates
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for the parameter  t (� ) ; along with the associated standard errors are given in table

5. In the last column we also quantify the risk premium, by taking account of the

deviation. The levels of the risk premia are consistent with the historical average

values we reported in the data section. In the case � is constrained to be 1, the �xed

maturity estimator for the risk premium is nothing but the historical average value

of yields minus lagged forwards, as given in the bottom part of table 1. The maturity

e�ects show that risk premia increase with time-to-maturity � . Testing whether the

maturity e�ects are zero amounts to a likelihood ratio (LR) test between the pooled

model and the �xed maturities e�ects model. The hypothesis is clearly rejected, since

the regression results report an increase of two times the loglikelihood of about 158,

while the critical value equals �20:95(16) = 26:30. The LR test favors the presence

of risk premia that vary with time-to-maturity. Note that estimation results for the

covariance speci�cation of the error term are almost identical to the pooled case.

In table 6 we report the estimation results for the full model that was presented in

equations (22), (23) and (24). The model incorporates both �xed maturity e�ects and

random time e�ects. The model is written in state space form and is estimated using

the time-invariant Kalman �lter. Model I in the �rst column of table 6 shows the

regression results for the most general case. The slope parameter, �, shows a further

decrease and is far away from the value where the expectations hypothesis would

hold. The parameters �, � and � model the time series dynamics for  t, which is the

time series related to the longest maturity �N = 10. We �nd moderate persistence

in the process for  t, with an AR(1) parameter of � = 0:675. Because � di�ers from

1,  t cannot be interpreted as the risk premium for the long maturity yield. For the

same reason, � is not the average value of the long term risk premium. At time t, the

bias is of the order (1 � �) �NFt;t+1 (�N ), which is on average 17:96. The risk premium

time series processes for the other maturities are linked to  t through scaling with the

maturity parameter Z(� ), which is found in table 7. As in the �xed maturity e�ects

case, we �nd that Z increases with maturity. In �gure 3 both the time series pattern

and the cross sectional relation are depicted. The covariance matrix speci�cation of

the error term takes account of the high correlation between error terms that di�er

little in time to maturity. For error terms that di�er 1 year in time to maturity,

the implied correlation is �̂ = 0:834, for error terms that di�er only one month in

time to maturity the correlation is �̂
1
12 = 0:985, which corresponds to the data. The

covariance speci�cation is similar for restricted versions of the model that we consider
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next.

Model II in table 6 deals with a restricted version of model I. Since under the

expectation hypothesis the theoretical value of the slope coe�cient is � = 1, we

restrict the parameter to this value. We �nd a lower AR(1) parameter estimate in

the random e�ects speci�cation of the risk premium, but it is signi�cantly di�erent

from zero. This speci�cation suggests that the associated risk premium still increases

with maturity, and that there is also small but signi�cant predictive power with

respect to the time series dimension of the risk premium. This average value for the

risk premium, � = 0:206, is similar to what we found in the �xed maturity case. The

likelihood ratio test favors a model with time-varying risk premia and, thus, rejection

of the expectations hypothesis, sinc the LR statistic is 232, whereas the critical value

is �20:95 (1) = 3:84.

6 Concluding Remarks

In this paper we have developed a panel data model for the term structure of interest

rates which combines �xed maturity e�ects with random time e�ects. Relative to

standard regression approaches, an important advantage of the model is that it allows

us to explicitly disentangle risk premia and unexpected excess returns. The panel

setting also helps to mitigate small sample bias and to increase statistical e�ciency

in testing procedures.

Our empirical results demonstrate a resounding rejection of the expectations hy-

pothesis in the multivariate panel setting, even though the rejection was not possible

for the univariate models at the short end of the term structure. The point estimates

indicate that a considerable degree of mean reversion is present in the risk premia

and that the slope coe�cient �,which is one under the expectations hypothesis, is

estimated to be about 0.8 for the full datapanel.
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Appendix

In this appendix we derive the �rst order conditions which are necessay to obtain

parameter estimates. Furthermore we derive the Hessian matrix which is used to

compute standard errors of the parameter estimates. We consider the case where the

risk premia are treated as individual e�ects. The loglikelihood reads

lnL = �

1

2
ln jSj�

1

2
NT ln(!2)�

1

2!2

T�1X
t=1

(Yt+1 � Ft;t+1� �  )
0
S�1 (Yt+1 � Ft;t+1� �  )

The �rst derivative with respect to  is

@ lnL

@ 
=

1

!2

T�1X
t=1

(Yt+1 � Ft;t+1� �  )
0
S�1

The �rst derivative with respect to � is
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The second derivatives are required to calculate standard errors for the parameter

estimates.
@2 lnL

@ @ 0
= �

1

!2
(T � 1)S�1

@2 lnL

@�2
= �

1

!2

T�1X
t=1

Ft;t+1S
�1Ft;t+1

@2 lnL

@ @�
= �

1

!2

T�1X
t�1

Ft;t+1S
�1

@2 lnL

@�@ 0
= �

1

!2

T�1X
t�1

S�1Ft;t+1

and the covariance matrix of the parameter estimates reads

cov(�;  ) = !2

2
4 PT�1

t=1 Ft;t+1S
�1Ft;t+1

PT�1
t=1 Ft;t+1S
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Figure 1: US Interest Rates
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Figure 2: Volatilities error term

Each of the panels shows the implied volatility functions of the error terms for the
panel data models. The top panel shows results for the pooled regression model
and the bottom �gure for the �xed maturity e�ects model.
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Figure 3: Risk premium speci�cation

The top �gure shows the time series process for the risk premium related to the 10
year yield. In the bottom �gure the cross sectional relation to this risk premium is
given.
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Table 1: Summary statistics

(A) Yield Levels: Yt(� )

Standard Auto

Maturity Average Deviation Minimum Maximum Correlation

1 month 6.99 2.98 2.49 16.97 0.904

2 months 7.05 2.87 2.52 16.37 0.962

3 months 7.13 2.83 2.64 15.93 0.971

4 months 7.21 2.82 2.90 15.96 0.968

5 months 7.30 2.82 2.89 16.21 0.962

6 months 7.38 2.83 2.92 16.55 0.960

1 year 7.54 2.65 2.94 15.89 0.968

2 years 7.89 2.52 3.77 16.31 0.973

3 years 8.07 2.39 4.20 15.88 0.975

4 years 8.23 2.33 4.52 16.00 0.978

5 years 8.33 2.23 4.81 15.50 0.979

6 years 8.42 2.16 4.99 14.93 0.980

7 years 8.49 2.14 5.16 14.71 0.982

8 years 8.54 2.14 5.32 14.80 0.983

9 years 8.56 2.13 5.47 15.04 0.983

10 years 8.58 2.12 5.57 15.28 0.983

(B) Lagged Forward Rates minus Yields : Ft�1;t(� )� Yt(� )

Standard Auto Average

Maturity Average deviation Minimum Maximum Correlation Risk Premium

1 month 0.13 1.11 -3.13 4.61 0.300 0.01

2 months 0.14 0.88 -2.77 4.75 0.287 0.02

3 months 0.16 0.84 -2.69 4.85 0.091 0.04

4 months 0.17 0.85 -2.55 4.87 -0.014 0.06

5 months 0.16 0.87 -2.47 4.82 -0.070 0.07

6 months 0.13 0.85 -2.72 4.72 -0.053 0.07

1 year 0.09 0.70 -2.92 4.21 0.113 0.09

2 years 0.05 0.59 -2.85 3.53 0.161 0.10

3 years 0.05 0.54 -2.42 2.78 0.115 0.15

4 years 0.04 0.50 -2.18 2.29 0.152 0.14

5 years 0.03 0.46 -2.08 1.93 0.160 0.16

6 years 0.03 0.43 -1.95 1.68 0.124 0.16

7 years 0.02 0.41 -1.78 1.59 0.083 0.16

8 years 0.02 0.40 -1.58 1.58 0.066 0.15

9 years 0.02 0.39 -1.38 1.57 0.079 0.14

10 years 0.01 0.39 -1.17 1.57 0.089 0.13
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Table 2: Correlation matrix

(A) Yield Levels: Yt(� )
� 1/12 2/12 3/12 4/12 5/12 6/12 1 2 3 4 5 6 7 8 9 10

1

12
1.00 0.98 0.96 0.95 0.95 0.95 0.94 0.91 0.90 0.88 0.87 0.85 0.83 0.82 0.82 0.82

2

12
0.98 1.00 0.99 0.99 0.98 0.98 0.97 0.95 0.93 0.91 0.89 0.87 0.86 0.84 0.84 0.85

3

12
0.96 0.99 1.00 1.00 0.99 0.99 0.98 0.96 0.93 0.92 0.90 0.88 0.86 0.85 0.85 0.85

4

12
0.95 0.99 1.00 1.00 1.00 1.00 0.99 0.96 0.94 0.92 0.91 0.89 0.87 0.86 0.85 0.86

5

12
0.95 0.98 0.99 1.00 1.00 1.00 0.99 0.97 0.94 0.93 0.91 0.89 0.87 0.86 0.86 0.86

6

12
0.95 0.98 0.99 1.00 1.00 1.00 0.99 0.97 0.95 0.93 0.91 0.89 0.88 0.87 0.86 0.87

1 0.94 0.97 0.98 0.99 0.99 0.99 1.00 0.99 0.97 0.96 0.95 0.93 0.91 0.90 0.90 0.90

2 0.91 0.95 0.96 0.96 0.97 0.97 0.99 1.00 0.99 0.99 0.98 0.97 0.96 0.95 0.95 0.95

3 0.90 0.93 0.93 0.94 0.94 0.95 0.97 0.99 1.00 1.00 0.99 0.99 0.98 0.97 0.97 0.97

4 0.88 0.91 0.92 0.92 0.93 0.93 0.96 0.99 1.00 1.00 1.00 0.99 0.99 0.98 0.98 0.98

5 0.87 0.89 0.90 0.91 0.91 0.91 0.95 0.98 0.99 1.00 1.00 1.00 0.99 0.99 0.99 0.99

6 0.85 0.87 0.88 0.89 0.89 0.89 0.93 0.97 0.99 0.99 1.00 1.00 1.00 1.00 0.99 0.99

7 0.83 0.86 0.86 0.87 0.87 0.88 0.91 0.96 0.98 0.99 0.99 1.00 1.00 1.00 1.00 0.99

8 0.82 0.84 0.85 0.86 0.86 0.87 0.90 0.95 0.97 0.98 0.99 1.00 1.00 1.00 1.00 0.99

9 0.82 0.84 0.85 0.85 0.86 0.86 0.90 0.95 0.97 0.98 0.99 0.99 1.00 1.00 1.00 1.00

10 0.82 0.85 0.85 0.86 0.87 0.90 0.95 0.97 0.98 0.99 0.99 0.99 1.00 1.00 1.00 1.00

(B) Lagged Forward Rates minus Yield: Ft�1;t(� )� Yt(� )
� 1/12 2/12 3/12 4/12 5/12 6/12 1 2 3 4 5 6 7 8 9 10

1

12
1.00 0.86 0.58 0.43 0.42 0.44 0.46 0.42 0.40 0.39 0.40 0.38 0.35 0.33 0.33 0.33

2

12
0.86 1.00 0.90 0.75 0.68 0.67 0.69 0.63 0.58 0.56 0.54 0.52 0.50 0.47 0.45 0.44

3

12
0.58 0.90 1.00 0.95 0.87 0.84 0.81 0.75 0.69 0.65 0.60 0.58 0.57 0.55 0.52 0.50

4

12
0.43 0.75 0.95 1.00 0.97 0.95 0.84 0.79 0.73 0.68 0.61 0.59 0.59 0.57 0.55 0.52

5

12
0.42 0.68 0.87 0.97 1.00 0.99 0.82 0.79 0.73 0.68 0.61 0.59 0.59 0.58 0.56 0.54

6

12
0.44 0.67 0.84 0.95 0.99 1.00 0.84 0.81 0.76 0.71 0.64 0.63 0.63 0.61 0.59 0.57

1 0.46 0.69 0.81 0.84 0.82 0.84 1.00 0.94 0.89 0.85 0.81 0.79 0.78 0.77 0.74 0.71

2 0.42 0.63 0.75 0.79 0.79 0.81 0.94 1.00 0.97 0.94 0.89 0.88 0.87 0.85 0.82 0.80

3 0.40 0.58 0.69 0.73 0.73 0.76 0.89 0.97 1.00 0.98 0.93 0.92 0.91 0.90 0.88 0.86

4 0.39 0.56 0.65 0.68 0.68 0.71 0.85 0.94 0.98 1.00 0.98 0.96 0.95 0.93 0.91 0.89

5 0.40 0.54 0.60 0.61 0.61 0.64 0.81 0.89 0.93 0.98 1.00 0.99 0.96 0.93 0.91 0.88

6 0.38 0.52 0.58 0.59 0.59 0.63 0.79 0.88 0.92 0.96 0.99 1.00 0.99 0.96 0.92 0.89

7 0.35 0.50 0.57 0.59 0.59 0.63 0.78 0.87 0.91 0.95 0.96 0.99 1.00 0.99 0.96 0.92

8 0.33 0.47 0.55 0.57 0.58 0.61 0.77 0.85 0.90 0.93 0.93 0.96 0.99 1.00 0.99 0.95

9 0.33 0.45 0.52 0.55 0.56 0.59 0.74 0.82 0.88 0.91 0.91 0.92 0.96 0.99 1.00 0.99

10 0.33 0.44 0.50 0.52 0.54 0.57 0.71 0.80 0.86 0.89 0.92 0.95 0.99 1.00 1.00 1.00
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Table 3: Results univariate regressions

� � s:e:(�) � s:e:(�) �[�(� ))] LR R2 DW

1
12

0.039 0.173 0.976 0.023 0.092 1.10 0.863 1.39
2
12

0.136 0.139 0.962 0.018 0.146 4.60 0.907 1.38
3
12

0.159 0.132 0.957 0.017 0.208 6.46 0.914 1.75

4
12

0.194 0.136 0.950 0.017 0.280 8.31 0.911 1.96

5
12

0.211 0.140 0.950 0.018 0.358 8.16 0.908 2.07
6
12

0.175 0.139 0.959 0.017 0.420 5.67 0.912 2.05

1 0.090 0.124 0.977 0.015 0.692 2.27 0.932 1.74

2 0.086 0.114 0.983 0.014 1.174 1.55 0.946 1.65

3 0.117 0.110 0.979 0.013 1.602 2.50 0.950 1.74

4 0.106 0.107 0.982 0.012 1.984 1.90 0.955 1.67

5 0.010 0.105 0.984 0.012 2.315 1.68 0.957 1.65

6 0.110 0.101 0.983 0.012 2.593 1.96 0.960 1.72

7 0.117 0.098 0.983 0.011 2.870 2.22 0.963 1.81

8 0.116 0.095 0.984 0.010 3.176 2.14 0.966 1.84

9 0.113 0.094 0.985 0.011 3.506 2.03 0.967 1.82

10 0.113 0.094 0.985 0.011 3.855 1.91 0.967 1.80

Notes: The table shows the estimation results for the univariate regression of a yield with maturity

� , Yt+1(� ) on a constant plus the forward rate Ft;t+1(� ). The constant is denoted as �, the slope is

�. With �[�(� ))] we denote the standard deviation of the error term. We present the corresponding

standard errors, R2 and Durbin-Watson statistic (DW). LR denotes the values of the likelihood

ratio statistic for the joint test of � = 0 and � = 1, which has a critical value of �20:95(2) = 5:99.

The sample consists of monthly observations for the period January 1970-December 1994.
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Table 4: Results pooled regression

Pooled Maturity e�ects

� 0.994 0.945

(0.001) (0.056)

! 1.34 1.34

(0.052) (0.056)

� 0.962 0.963

(0.003) (0.003)

d -0.312 -0.323

(0.003) (0.003)

lnL 3306 3385

Notes: The table shows the estimation results for the pooled

regression of �Yt+1(� ) on �Ft;t+1(� ). With � we denote the

regression coe�cient. The covariance matrix is speci�ed by the

parameters !, � and d, lnL denotes the value of the loglikelihood

function in the optimum. In the Pooled model, we pool the data

for all yields with di�erent maturities. The Maturity e�ects model

incorporates a dummy parameter for each maturity. The sample

consists of monthly observations for the period January 1970-

December 1994. Standard errors are within parentheses.
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Table 5: Results �xed maturity e�ects:  (� )

�  (� ) se( (� )) risk premium

1
12

0.022 0.035 0.01

2
12

0.042 0.044 0.02

3
12

0.061 0.051 0.04

4
12

0.078 0.056 0.06
5
12

0.103 0.061 0.07

6
12

0.139 0.065 0.07

1 0.334 0.087 0.09

2 0.775 0.126 0.10

3 1.190 0.166 0.15

4 1.675 0.207 0.14

5 2.142 0.249 0.16

6 2.624 0.292 0.16

7 3.117 0.335 0.16

8 3.613 0.378 0.15

9 4.104 0.422 0.14

10 4.596 0.465 0.13

Notes: The table shows the estimation results

for the �xed maturity e�ects  (� ) and the

associated standard errors in the case of the

pooled regressions with �xed individual e�ects.

The third column quanti�es the risk premium.

The sample consists of monthly observations for

the period January 1970 - December 1994.

28



Table 6: Results �xed maturity/random time e�ects panel model

I II

� 0.791 "1"

(0.005) -

! 0.540 0.516

(0.023) (0.026)

� 0.834 0.806

(0.01) (0.02)

d -0.252 -0.246

(0.004) (0.005)

� 0.675 0.115

(0.045) (0.055)

� 17.57 0.206

(0.99) (0.31)

� 4.18 3.68

(0.165) (0.173)

lnL 4076 3960

Notes: The tabel reports estimation results for

the pooled regression model with a covariance

structure that takes account of the correlation

between yields. An AR(1) process is incorpo-

rated for the 10 year yield risk premium. The

remaining risk premia are related to this proces

by multiplying with Z(� ). Model I is the general

case, in model II we restrict � to 1. Standard

errors are within parentheses.
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Table 7: Results risk premium speci�cation: Z(� )

� I (pars) I (s.e.) II (pars) II (s.e.)

1
12

0.007 (0.008) 0.008 (0.044)

2
12

0.013 (0.008) 0.019 (0.043)

3
12

0.020 (0.011) 0.033 (0.062)
4
12

0.027 (0.009) 0.047 (0.051)
5
12

0.034 (0.011) 0.061 (0.060)

6
12

0.042 (0.011) 0.074 (0.059)

1 0.088 (0.012) 0.148 (0.061)

2 0.186 (0.011) 0.275 (0.057)

3 0.284 (0.010) 0.395 (0.048)

4 0.387 (0.009) 0.499 (0.044)

5 0.487 (0.007) 0.575 (0.035)

6 0.589 (0.010) 0.649 (0.049)

7 0.692 (0.011) 0.732 (0.064)

8 0.795 (0.009) 0.823 (0.053)

9 0.898 (0.005) 0.917 (0.032)

10 1 - 1 -

Notes: The tabel reports the estimation results for Z(� ), which

relates the risk premium of the yield to the risk premium process

for the 10 year yield. Model I is the most general case and in

model II we restrict � to 1. Standard errors are within parentheses.
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