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ABSTRACT

Nursery Cities: Urban Diversity, Process
Innovation, and the Life-Cycle of Products*

A simple model of process innovation is proposed, where firms learn about
their ideal production process by making prototypes. We build around this a
dynamic general equilibrium model, and derive conditions under which
diversified and specialised cities coexist. New products are developed in
diversified cities, trying processes borrowed from different activities. On
finding their ideal process, firms switch to mass-production and relocate to
specialised cities with lower costs. When in equilibrium, this configuration
welfare-dominates those with only diversified or only specialised cities. We
find strong evidence of this relocation pattern in establishment relocations
across French employment areas 1993–6.
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NON-TECHNICAL SUMMARY

What makes a city an attractive place in which to produce? Is it a diversity of
industries and people? Or is it the presence of many other producers engaged
in similar activities and many other people with similar skills? In the empirical
literature and economic policy discussions about urban economic structures,
the debate has been mostly framed in terms of diversity versus specialization,
as if the answer was one or the other. This Paper suggests instead that both
diversified and specialized urban environments are important in systems of
cities. There is a role for each type of local economic environment but at
different stages of a firm’s life-cycle. Diversified cities are more suited to the
early stages of a product’s life-cycle whereas more specialized places are
better to conduct mass-production of fully developed products. For
manufacturing and services, unlike for agriculture, ‘sowing’ and ‘reaping’ can
take place in different locations.

The study of the advantages of urban specialization, often called ‘localization
economies’, is commonly traced back to Marshall (1890). Localization
economies have been formalized in a manner very close to the spirit of
Marshall’s work, based either on firms’ ability to produce more efficiently when
using a wider range of intermediates (Fujita, 1988; Abdel-Rahman and Fujita,
1990), on the benefits of specialization for labour market matching (Helsley
and Strange, 1990), or alternatively on information spill-overs (Fujita and
Ogawa, 1982). They have also been the subject of detailed empirical work (for
example, Dumais, Ellison and Glaeser, 1997, and Henderson, 1999).

The advantages of urban diversity, called ‘urbanization economies’, are
frequently linked to the work of Jacobs (1969). She describes several
examples where diversity facilitated innovation through the borrowing of
processes from other sectors (such as 3M’s development of masking tape,
which took advantage of improvements in adhesives from the sandpaper
industry). More recently, several empirical studies have found that diversity
fosters growth in cities (Glaeser, Kallal, Scheinkman and Schleifer, 1992), or
at least in their most innovative sectors (Henderson, Kuncoro and Turner,
1995). Looking more directly at innovation, Feldman and Audretsch (1999),
Harrison, Kelley and Gant (1996), and Kelley and Helper (1999) show that
diversity fosters innovation in cities, while narrow specialization hinders it.
Surprisingly, however, there is no appropriate theoretical framework deriving
urbanization economies à la Jacobs starting from microeconomic foundations.
And, in consequence, there is no framework in which to compare the relative
advantages and disadvantages of urban diversity and specialization, and to
study their role in shaping urban systems. This Paper develops such a
framework.



This exercise is important for three main reasons. First, to understand urban
patterns, it is essential to consider both localization and urbanization
economies. If only localization economies exist, and congestion costs
increase with city size, all cities are fully specialized (as in Henderson, 1987,
and Becker and Henderson, 2000). Yet urban systems are characterized by
the coexistence of diversified and specialized cities.

Second, the answer to the question of whether diversity or specialization
makes a location more attractive is unlikely to be universal. In some
circumstances diversity is more important, while in others specialization
matters more. Modelling localization and urbanisation economies starting from
micro-foundations can help us understand the circumstances under which
each characteristic is more important. The model we develop suggests that
diversity and specialization matter more in different periods of the life-cycle of
products. This finding has implications for understanding not just urban
systems, but also process innovation, and firm location and relocation
patterns.

Third, there is a large empirical literature on diversity and specialization in
cities that reaches seemingly contradictory conclusions. Papers examining the
evolution of urban employment patterns (Glaeser et al., 1992; Henderson et
al., 1995; Combes, 2000) find marked advantages of diversity in fostering
urban employment growth and in attracting newer and more innovative
activities. By contrast, papers looking at the evolution of urban productivity
levels (Henderson, 1999) find weak effects of diversity and very strong effects
of specialization on productivity. A theoretical framework with both
endogenous location decisions and productivity changes can help reconcile
those conclusions.

Our model builds on two standard static ingredients. First, due to localization
economies, the cost of using a given production process diminishes as more
local firms use the same type of process. Second, urban crowding places a
limit on city size. This combination of localization economies and congestion
costs creates static advantages to urban specialization.

The main novelty of the model is the simple model of process innovation that
we develop and combine with those two more traditional ingredients. We start
from the assumption that a firm making a new product does not know how
best to produce it. Nevertheless, it can make prototypes with any one of the
types of production process already used locally (a firm does not want to be
the only one using a given type of process locally because the absence of
localization economies makes this prohibitively costly). Once a firm produces
a prototype with its ideal production process, it recognizes it as such and is
then able to begin mass-production. The combination of this learning process



that draws from local types of production processes with costly firm relocation
creates dynamic advantages to urban diversity.

We also incorporate firm turnover, by having some firms randomly close down
each period. Optimal investment then ensures they are replaced by new firms
producing new products. Finally, migration ensures that workers in all cities
are equally well off.

In our setting, three possible types of steady-states can occur: those with only
diversified cities, those with only specialized cities, and mixed configurations
with both diversified and specialized cities. We begin by studying the mixed
configuration. When both diversified and specialized cities coexist, it is
because each firm finds in its best interest to locate in a diversified city while
searching for its ideal process and later to relocate to a specialized city where
all firms are using the same type of process.

Location in a diversified city during a firm’s learning stage can be seen as an
investment. It is costly because all firms impose congestion costs on each
other, but only those using the same type of process create cost-reducing
localization economies. This results in comparatively higher production costs
in diversified than in specialized cities. However, bearing these higher costs
can be worthwhile for firms in search of their ideal process because they
expect to have to try a variety of processes before finding their ideal one and a
diversified city allows them to do so without costly relocation after each trial. In
this sense, diversified cities act as a ‘nursery’ for firms. Once a firm finds its
ideal production process, it no longer benefits from being in a diverse
environment. At this stage, if relocation is not too costly, the firm avoids the
congestion imposed by the presence of other sectors by relocating to a city
where all other firms share its specialization.

We also study alternative steady-states with only diversified or only
specialized cities. Then we turn to stability issues, derive optimal city size and
welfare-rank the steady-states. Our main result regarding welfare is that,
whenever a steady-state with only diversified and/or a steady-state with only
specialized cities exist for the same parameter values as a nursery steady-
state with both diversified and specialized cities, the nursery steady-state
provides a higher level of welfare. When a nursery configuration is a steady-
state, everyone prefers to have both diversified and specialized cities.
However, if there happen to be only diversified or only specialized cities,
localization economies prevent a mixed configuration from arising in the
absence of coordination. Once we introduce some mechanism for city
creation, such as perfectly competitive land developers, if a nursery
configuration with cities of optimal size is a steady-state, it becomes the
unique equilibrium configuration.



Turning to empirical issues, when both specialized and diversified cities co-
exist in steady-state, the model predicts that cities are stable in their size and
sectoral composition, but there is a constant turnover of firms. Some existing
firms close down every period and new firms enter to replace them with new
products. This turnover follows a life-cycle pattern. New products are created
and developed in diversified cities, but production eventually relocates to
specialized cities. All of this is consistent with the existing evidence. However,
while some of the relevant stylized facts are well established, the evidence on
firm relocation patterns is very indirect. For this reason, we make use of a new
data set that records the origin, destination, and sector of all establishment
relocations across French employment areas, for the period 1993–6. We find
that indeed most relocating establishments move from particularly diverse
cities to cities with a particularly strong specialization in the relevant sector.
Also, as suggested by the model, sectors that are both more innovative and
more geographically concentrated relocate more and follow this diversified-to-
specialized relocation pattern more often.



1. Introduction

What makes a city an attractive place in which to produce? Is it a diversity of industries and people?
Or is it the presence of many other producers engaged in similar activities and many other people
with similar skills? There is a long-standing interest in this question (see Duranton and Puga, 2000,
for a survey).

The study of the advantages of urban specialisation, often called ‘localisation economies’, is
commonly traced back to Marshall (1890). Localisation economies have been formalised in a
manner very close to the spirit of Marshall’s work, based either on firms’ ability to produce more
efficiently when using a wider range of intermediates (Fujita, 1988; Abdel-Rahman and Fujita,
1990), on the benefits of specialisation for labour market matching (Helsley and Strange, 1990), or
on the presence information spill-overs (Fujita and Ogawa, 1982). They have also been the subject of
detailed empirical work (for example, Dumais, Ellison, and Glaeser, 1997, and Henderson, 1999).

The advantages of urban diversity, often called ‘urbanisation economies’, are frequently linked
to the work of Jacobs (1969). She describes several examples where diversity facilitated innovation
through the borrowing of processes from other sectors (such as 3m’s development of masking
tape, which took advantage of improvements in adhesives from the sandpaper industry). More
recently, several empirical studies have found that diversity fosters growth in cities (Glaeser, Kallal,
Scheinkman, and Schleifer, 1992), or at least in their most innovative sectors (Henderson, Kuncoro,
and Turner, 1995). Looking more directly at innovation, Feldman and Audretsch (1999), Harrison,
Kelley, and Gant (1996), and Kelley and Helper (1999) show that diversity fosters innovation
in cities, while narrow specialisation hinders it. Surprisingly, however, there is no appropriate
theoretical framework deriving urbanisation economies à la Jacobs starting from microeconomic
foundations. And, in consequence, there is no framework in which to compare the relative advant-
ages and disadvantages of urban diversity and specialisation, and to study their role in shaping
urban systems. This paper develops such a framework.

This exercise is important for three main reasons. First, to understand urban patterns, it is
essential to consider both localisation and urbanisation economies. If only localisation economies
exist, and congestion costs increase with city size, all cities are fully specialised (as in Henderson,
1987, and Becker and Henderson, 2000).1 Yet urban systems are characterised by the coexistence
of diversified and specialised cities.

Second, the answer to the question of whether diversity or specialisation makes a location more
attractive is unlikely to be universal. In some circumstances diversity is more important, while
in others specialisation matters more. Modelling localisation and urbanisation economies starting
from micro-foundations can help us understand the circumstances under which each characteristic
is more important. The model we develop suggests that diversity and specialisation matter more
in different periods of the life-cycle of products. This finding has implications for understanding
not just urban systems, but also process innovation, and firm location and relocation patterns.

1A few papers introduce advantages from diversity in this kind of framework. However, they either assume those
advantages, or give them static foundations that are quite distinct from the dynamic role assigned by Jacobs to diversity
in fostering innovation (see Abdel-Rahman, 2000, and Duranton and Puga, 2000, for detailed references and discussion).
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Third, there is a large empirical literature on diversity and specialisation in cities that reaches
seemingly contradictory conclusions. Papers examining the evolution of urban employment
patterns (Glaeser et al., 1992; Henderson et al., 1995; Combes, 2000) find marked advantages of
diversity in fostering urban employment growth and in attracting newer and more innovative
activities. By contrast, papers looking at the evolution of urban productivity levels (Henderson,
1999) find weak effects of diversity and very strong effects of specialisation on productivity. A
theoretical framework with both endogenous location decisions and productivity changes can help
reconcile those conclusions.

Our model builds on two standard static ingredients. First, due to localisation economies,
the cost of using a given production process diminishes as more local firms use the same type
of process. Second, urban crowding places a limit on city size. This combination of localisation
economies and congestion costs creates static advantages to urban specialisation.

The main novelty of the model is the simple model of process innovation that we develop and
combine with those two more traditional ingredients.2 We start from the assumption that a firm
making a new product does not know how best to produce it. Nevertheless, it can make prototypes
with any one of the types of production process already used locally (a firm does not want to be the
only one using a given type of process locally because the absence of localisation economies makes
this prohibitively costly). Once a firm produces a prototype with its ideal production process, it
recognises it as such and is then able to begin mass-production. The combination of this learning
process that draws from local types of production processes with costly firm relocation creates
dynamic advantages to urban diversity.

We also incorporate firm turnover, by having some firms randomly close down each period.
Optimal investment then ensures they are replaced by new firms producing new products. Finally,
migration ensures that workers in all cities are equally well-off.

In our setting, three possible types of steady-states can occur: those with only diversified cities,
those with only specialised cities, and mixed configurations with both diversified and specialised
cities. We begin by studying the mixed configuration (Section 3). When both diversified and
specialised cities coexist, it is because each firm finds it in its best interest to locate in a diversified
city while searching for its ideal process, and later to relocate to a specialised city where all firms
are using the same type of process.

Location in a diversified city during a firm’s learning stage can be seen as an investment. It
is costly because all firms impose congestion costs on each other, but only those using the same
type of process create cost-reducing localisation economies. This results in comparatively higher
production costs in diversified than in specialised cities. However, bearing these higher costs can
be worthwhile for firms in search of their ideal process because they expect to have to try a variety
of processes before finding their ideal one, and a diversified city allows them to do so without
costly relocation after each trial. In this sense, diversified cities act as a ‘nursery’ for firms. Once a

2A significant literature addresses firms’ learning about their technology (see, in particular, Jovanovic, 1982, and
Jovanovic and MacDonald, 1994). However previous modelling approaches cannot be easily embedded in a general
equilibrium model of a system of cities. Furthermore, they focus on firms learning in isolation or, in the strategic
learning literature, on interactions based on imitations. The focus of this paper is instead on how the urban environment
affects learning, and how best firms can choose their environment.
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firm finds its ideal production process, it no longer benefits from being in a diverse environment.
At this stage, if relocation is not too costly, the firm avoids the congestion imposed by the presence
of other sectors by relocating to a city where all other firms share its specialisation.

We also study alternative steady-states with only diversified or only specialised cities (Section
4). Then we turn to stability issues, derive optimal city size, and welfare-rank the steady-states
(Section 5). Or main result regarding welfare is that, whenever a steady-state with only diversified
and/or a steady-state with only specialised cities exist for the same parameter values as a nursery
steady-state with both diversified and specialised cities, the nursery steady-state provides a higher
level of welfare. When a nursery configuration is a steady-state, everyone prefers to have both
diversified and specialised cities. However, if there happen to be only diversified or only special-
ised cities, localisation economies prevent a mixed configuration from arising in the absence of
coordination. Once we introduce some mechanism for city creation, such as perfectly competitive
land developers, if a nursery configuration with cities of optimal size is a steady-state, it becomes
the unique equilibrium configuration.

Turning to empirical issues, when both specialised and diversified cities co-exist in steady-state,
the model predicts that cities are stable in their size and sectoral composition, but there is a constant
turnover of firms. Some existing firms close down every period, and new firms enter to replace
them with new products. This turnover follows a life-cycle pattern. New products are created
and developed in diversified cities, but production eventually relocates to specialised cities. All of
this is consistent with the existing evidence (reviewed in Section 6). However, while some of the
relevant stylised facts are well established, the evidence on firm relocation patterns is very indirect.
For this reason, we make use of a new data set that records the origin, destination, and sector of
all establishment relocations across French employment areas, for the period 1993–1996. We find
that indeed most relocating establishments move from particularly diverse cities to cities with a
particularly strong specialisation in the relevant sector. Also, as suggested by the model, sectors
that are both more innovative and more geographically concentrated relocate more and follow this
diversified-to-specialised relocation pattern more often.

2. The model

There are N cities3 and a continuum L of infinitely lived workers in the economy. Each workers has
one of m possible discrete aptitudes. Let us index worker aptitudes by superscript j and cities by
subscript i so that Lj

i denotes the gross amount of labour with aptitude j in city i. There are equal
proportions of workers with each aptitude in the economy, but their distribution across cities is
endogenous. We make assumptions (detailed in Section 3) to ensure that migration equalises utility.

Time is discrete and indexed by t (but to make notation less cumbersome, we only index
variables by time when adding over different time periods). Each worker supplies one unit of
labour in each period. There are congestion costs in each city, which result in the loss of a fraction of
working time proportional to city size. The amount of labour net of congestion costs with aptitude

3N is assumed to be a continuous variable, but for simplicity we shall refer to it loosely as the ‘number’ of cities. For
the moment, we shall take N as exogenously given. Later, in Section 5, we determine it endogenously.

3



j in city i is

l j
i = Lj

i

(
1 − τ

m

∑
j=1

Lj
i

)
, τ > 0 . (1)

This expression corresponds to a situation in which workers live spread along linear cities in land
plots of unit length, work at the city centre, and lose in commuting a fraction of their labour equal
to 2τ times the distance travelled (one half of each city’s population lives on each side of the centre).
When workers receive the same wage, they are equally well off regardless of their location within
the city: differences in land rents offset differences in commuting costs. Further assuming common
ownership of the land, the expected wage income of a worker with aptitude j in city i is (1 −
τ∑m

j=1 Lj
i)wj

i , where wj
i denotes the wage per unit of net labour of aptitude j in city i (see Fujita,

1989, for details and several generalisations).
Setting up a firm involves a one-off start-up cost, which enables firms to start making trial

products, referred to as prototypes. Perfectly competitive and frictionless capital markets provide
firms with finance for their start-up cost and remunerate workers’ savings. Firms can eventually
engage in mass-production, with lower production costs, but this involves using a certain ‘ideal’
production process. This ideal process is randomly drawn when the firm is created from m possible
discrete processes, each with equal probability. There is a one-to-one mapping between each firm’s
possible production processes and workers’ aptitudes, so that each of the m possible processes
for each firm requires workers of a different aptitude. We say that two production processes for
different firms are of the same type if they require workers with the same aptitude.

A newly created firm does not know its ideal production process, but can find it by trying
different processes in the production of prototypes. After producing a prototype with a certain
process, the firm knows whether this process is its ideal one or not. Thus, in order to switch from
prototype to mass-production a firm needs to have produced a prototype with its ideal process
first, or to have tried all of its m possible processes except one. However, the precise time at which
a firms quits trying different processes is the result of an optimal stopping rule. Thus, we allow for
the possibility that a firm decides to stop searching before learning its ideal process.

Firms have an exogenous probability δ of closing down each period (we can think of this as
being due to the death of a shadow entrepreneur). Firms also lose a period of production whenever
they relocate from one city to another. Thus, the cost of firm relocation increases with the exogenous
probability of closure δ, a higher value of which makes firms discount future profits more relative
to the profits foregone in the period lost in relocation.

We index varieties of goods (both prototypes and mass-produced goods) by h. We also distin-
guish variables corresponding to prototypes from those corresponding to mass-produced goods
by an accent in the form of a question mark, ? (firms that can only produce prototypes are still
wondering about their ideal production process).

Technology in prototypes is summarised by the following cost function:

�Cj
i(h) = Qj

i �xj
i(h) , (2)

where Qj
i =

(
l j
i

)−ε
wj

i , ε > 0 . (3)
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Output of prototype h, made with a process of type j, in city i is denoted by �xj
i(h). Qj

i is the
unit cost for firms producing prototypes using a production process of type j in city i. Note that
Qj

i decreases as l j
i increases: there are localisation economies that reduce unit costs when there

is a larger amount of labour, net of congestion costs, with the relevant aptitude in the same city
(which also implies more firms using the same type of process in the same city). The Appendix
derives this cost function from first principles, and shows that Qj

i is the appropriate price index
of a monopolistically competitive intermediate sector à la Ethier (1982). As in Fujita (1988) and
Abdel-Rahman and Fujita (1990), each such intermediate sector hires workers of aptitude j and
sells process-specific non-tradable services to final-good firms using a process of type j. These dif-
ferentiated services enter the production function of final-good producers with the same constant
elasticity of substitution ε+1

ε .
When a firm finds its ideal production process, it can engage in mass-production at a fraction

ρ (0 < ρ < 1) of the cost of producing a prototype. Thus the cost function for a firm engaged in
mass-production is

Cj
i(h) = ρ Qj

ix
j
i(h) , (4)

where xj
i(h) denotes the output of mass-produced good h, made with a process of type j, in city i.

Turning to consumers, we assume that they have a zero rate of time preference.4 Each period
consumers allocate a fraction µ of their expenditure to prototypes and a fraction 1 − µ to mass-
produced goods.5 The instantaneous indirect utility of a consumer in city i is

Vi = �P−µP−(1−µ)ej
i , (5)

where ei denotes individual expenditure,

�P =

{
m

∑
j=1

∫∫ [
�pj

i(h)
]1−σ

dh di

}1/(1−σ)

, (6)

P =

{
m

∑
j=1

∫∫ [
pj

i(h)
]1−σ

dh di

}1/(1−σ)

(7)

are the appropriate price indices of prototypes and mass-produced goods respectively, and �pj
i(h)

and pj
i(h) denote the prices of individual varieties of prototypes and mass-produced goods re-

spectively. Double integration over h and i and summation over j include in the price indices all
varieties produced with any type of process in any city. These price indices are equal in all cities
because all final goods, whether prototypes or mass-produced, are freely tradable across cities. All

4Note that there is no form of accumulation in this model. All of consumers’savings are invested in financing firms’
start-up costs. Each firms’ expected profit stream must be sufficient to recover its start-up cost, and this limits investment
at every period. Given that, when calculating this expected profit stream, single-period profits are already discounted by
the probability that a firm closes down at any period, δ, introducing an additional discount rate through intertemporal
consumer preferences would only obscure expressions without changing the nature of our results.

5It is common practice for Japanese electronics firms to sell prototypes of their goods to consumers before producing
them at mass scale. However, these prototypes account only for a small fraction of sales. Similarly, some consumers are
willing to purchase a β-version of Microsoft’s latest operating system for us$60, whereas others are more than happy to
wait until after it is released. This separation between the prototype and mass-production markets greatly helps us to
obtain closed-form solutions.
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prototypes enter consumer preferences with the same elasticity of substitution σ (> 2), and so do
all mass-produced goods.6

Total income, Y, is the sum of expenditure, E, and investment:

Y = E + �PµP1−µF n̊ . (8)

Investment, �PµP1−µF n̊, comes from the aggregation of the start-up costs incurred by newly created
firms (this cost is incurred only once: firms pay it when they are first created and never again
— not even if they relocate their establishment, which simply involves the loss of one period of
production). To come up with a new product (but not with the ideal way to produce it) firms
must spend F on market research, purchasing the same combination of goods bought by the
representative consumer (hence the presence of the price indices in this expression). n̊ denotes
the total ‘number’(mass) of new firms. Total expenditure is

E =
m

∑
j=1

∫
Lj

ie
j
i di =

m

∑
j=1

∫
l j
i w

j
i di +

m

∑
j=1

∫∫
�π j

i(h) dh di +
m

∑
j=1

∫∫
π

j
i (h) dh di − �PµP1−µF n̊ . (9)

The first term on the right-hand-side of (9) is total wage income, the second and third terms are total
income from firm profits (where �π j

i(h) and π
j
i (h) denote the operational profits of each prototype

and mass-producer respectively). Subtracting total investment from the sum of these incomes
yields expenditure.

As a first step, it is insightful to take as given the number of new firms using a process of each
type in each city (which determines the period allocation of income between consumption and
savings) and also urban structure. By urban structure we mean the number of cities, the number
of prototype and mass-producers using a process of each type in each city (denoted by �nj

i and nj
i

respectively), and the number of workers of each aptitude in each city. This allows us to solve for
a short-run static equilibrium in which consumers allocate expenditure optimally, firms maximise
operational profits, and markets clear.

Lemma 1 (Output per worker) In equilibrium, output per worker by firms using processes of type j in

city i in a given period is

�nj
i �xj

i + ρ nj
i x

j
i

Lj
i

=
(

Lj
i

)ε
(

1 − τ
m

∑
j=1

Lj
i

)ε+1

.

Proof Total demand for each variety is the sum of consumer demand, obtained by application
of Roy’s identity to (5) and integration over all consumers, and demand by newly created firms,
obtained by application of Shephard’s lemma to their one-off start-up cost, �PµP1−µF, and multi-
plication by the number of new firms. The product market clearing conditions for, respectively,
prototypes and mass-produced goods made with a process of type j in city i are

�xj
i = µ( �pj

i)
−σ( �Pi)

σ−1Y , (10)

xj
i = (1 − µ)(pj

i)
−σ(Pi)

σ−1Y . (11)

6If σ � 2, the attractiveness of firm entry increases with the number of firms (see the Proof of Proposition 5 in the
Appendix for details).
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Note that we have dropped index h, since short-run equilibrium values may vary by city and type
of process/aptitude, but do not vary by variety. Using (2) and (4), single-period operational profits
can be written as

�π j
i =

(
�pi − Qj

i

)
�xj
i , (12)

π
j
i =

(
pi − ρ Qj

i

)
xj

i . (13)

Maximising (12) and (13) with respect to prices, and using (10) and (11), gives the profit-
maximising prices for each prototype and for each mass-produced good firm. They are fixed
relative markups over marginal costs:

�pj
i =

σ

σ − 1
Qj

i , (14)

pj
i = ρ

σ

σ − 1
Qj

i . (15)

Substituting (10), (11), (14), and (15) into (12) and (13) yields maximised operational profits for
prototype and mass-produced good firms:

�π j
i = µ

1
σ

[
σ − 1

σ

�Pi

Qj
i

]σ−1

Y , (16)

π
j
i = (1 − µ)

1
σ

[
1
ρ

σ − 1
σ

Pi

Qj
i

]σ−1

Y . (17)

Demand for labour can be obtained by application of Shephard’s lemma to (2)–(4) and integ-
ration over varieties. The labour market clearing condition for workers with aptitude j in city i is
then

l j
i = �nj

i
∂ �Cj

i

∂wj
i

+ nj
i

∂ Cj
i

∂wj
i

=
(

l j
i

)−ε(
�nj

i �xj
i + ρ nj

ix
j
i

)
. (18)

Substituting (1) into (18), rearranging, and dividing by Lj
i yields the result.

Corollary 1 With no need to learn and no market for prototypes ( �nj
i = 0), output per worker is maximised

when all workers in each city have the same aptitude (hence all firms use the same type of process) and

Li = ε
(2ε+1)τ

.

In the absence of a learning stage, the optimal urban configuration involves only fully specialised
cities, as in most models of systems of cities. This is also the equilibrium configuration if there is
some mechanism for city creation, such as land developers (see, for instance, Henderson, 1987, and
Becker and Henderson, 2000). Learning changes this, by creating dynamic advantages to diversity:
diversity allows learning firms to produce a sequence of prototypes with different processes
without costly relocations. This is a crucial innovation of this model, and will fundamentally affect
the equilibrium urban system, by providing a motivation for the coexistence of diversified cities
with specialised ones, and for production to change location over the life-cycle.

7



3. Mixed steady-states: Nursery cities

A steady-state equilibrium in this model is a configuration such that all of the following are
true. Each consumer/worker allocates her income between consumption and savings, allocates
her expenditure across goods, and takes her migration decisions so as to maximise expected
utility. Each firm chooses a location/production strategy and prices so as to maximise its expected
lifetime profits, given the location/production strategies and prices of all other firms. All profit
opportunities are exploited, and the urban structure ( �nj

i , nj
i, Lj

i , and n̊) is constant over time.
To the keep matters simple, we make assumptions about migration to ensure that we have at

most the following two kinds of cities.

Definition 1 (Specialised city) A city is said to be (fully) specialised if all its workers have the same

aptitude, so that all local firms use the same type of production process.

Definition 2 (Diversified city) A city is said to be (fully) diversified if it has the same proportion of

workers with each of the m aptitudes, so that there are equal proportions of firms using each of the m types

of production process.

We assume that each worker can migrate only every once in a while.7 Otherwise, all workers
could relocate simultaneously and there would be nothing by which to identify a city. This
once-in-a-while possibility of relocation is enough to ensure all workers are equally well-off in
equilibrium. Workers know the population in each city. However, they have imperfect information
about the distribution of each city’s workforce across aptitudes. Specifically, they know only
whether the largest group of workers with a common aptitude in each city is above some threshold
(sufficiently larger than 1

m ), and if so which is this dominant specialisation. Further, workers form
their expectations about wages in each city as if cities with a dominant specialisation were fully
specialised, and as if cities with no dominant specialisation were fully diversified. With all workers
forming their expectations in this way, their expectations turn out to be rational. A city with a
dominant specialisation attracts only workers with the dominant aptitude, and so in steady-state is
fully specialised. A city with no dominant specialisation seems equally attractive for workers of all
aptitudes, and so in steady-state is fully diversified.

These assumptions about migration simplify matters considerably by reducing the set of pos-
sible steady-states to three types of configurations, all of them with a large degree of symmetry:
those with only diversified cities, those with only specialised cities, and mixed configurations with
both diversified and specialised cities. We start by looking at the mixed configurations in this
section, and leave for the next section configurations with only diversified cities or only specialised
cities.

In all cases, the procedure we follow to characterise the steady-state is the same. We start by
specifying location/production strategies for all firms supporting the candidate steady-state.8 For

7This includes migrations within each city, so as to avoid issues related to endogenous neighbourhood formation
which are not the focus of this paper.

8We make explicit below all details about firms’ strategies except for the order in which each firm tries different
processes. The only concern here is that, for the sake of symmetry, in steady-state there must be the same proportion of
firms trying each type of process in each diversified city at any period. Let us suppose that each firm chooses its order
randomly. Since there is a continuum of firms, by the law of large numbers, that symmetry will be attained.
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simplicity, we restrict ourselves to symmetric equilibria. Then we establish conditions under which
no firm finds it profitable to deviate, so that the candidate steady-state is in fact a steady-state.

Definition 3 (Nursery configuration) A nursery configuration is one that satisfies all of the following.

Diversified and specialised cities coexist. There is the same proportion of cities specialised in each type

of process. Each new firm locates in a diversified city and produces prototypes using a different type of

production process each period. As soon as a firm finds its ideal production process, and only then, it

relocates to a city specialised in that particular type of process, and commences mass-production.

The remainder of this section studies when a nursery configuration is a steady-state. Let us start
by simplifying notation, and replace subindex i with subindex D for diversified city variables and
with subindex S for specialised city variables. Denote by ND the number of diversified cities, and
by �nD the number of prototype producers using each of the m types of production processes in each
diversified city. Since in a nursery configuration firms relocate to a city of the relevant specialisation
as soon as they find their ideal process, there are no mass-producers in diversified cities. Thus, the
total number of firms in each diversified city is m �nD. Denote by NS the number of cities specialised
in each of the m types of production processes (thus, the total number of specialised cities is mNS),
and by nS the number of mass-producers (and since there are no prototype producers in specialised
cities, also the number of firms) in each. This notation implicitly assumes that all diversified cities
are identical, and that all specialised cities are identical except in their specialisation. In Section
5 we show these are necessary conditions for a steady-state to be stable with respect to small
perturbations in the distribution of workers.9

The conditions for a nursery configuration to be a steady-state depend on three elements:
relative production costs in diversified and specialised cities, the relative number of prototype
to mass-producers, and the expected duration of the prototype and mass-production stages. Let us
derive these as a function of parameters in the following three lemmas.

Lemma 2 (Relative costs) Unit production costs in diversified cities relative to those specialised cities in

a nursery configuration are

QD

QS
=
(

LS

LD/m

)ε( 1 − τ LS

1 − τ LD

)ε+1

=
(

1 − µ

µ

ND

NS

)ε

1 − τ

(1−µ)L
mNS

1 − τ
µL
ND




ε+1

.

Proof By Definition 3, in a nursery configuration there are LD workers in each diversified city
earning a wage wD, and LS workers in each specialised city earning a wage wS. Hence the unit
production costs of (3) become

QD = [(LD/m) (1 − τ LD)]−εwD (19)

9Note that there are other possible steady-states in which diversified and specialised cities coexist (in particular,
configurations in which there are different numbers of cities with each specialisations). However, these are not robust
with respect to small perturbations in the distribution of workers and the introduction of land developers, which
we undertake in Section 5. Furthermore, they retain the main characteristics of the nursery configuration. The same
comment applies to the configuration with only specialised cities studied in Section 4.
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in diversified cities, and

QS = [LS (1 − τ LS)]
−εwS (20)

in specialised cities. Since each period some workers have the opportunity to move, and only wage
income depends on location, in steady-state wages net of commuting costs must be equal across all
locations:

(1 − τ LD) wD = (1 − τ LS) wS . (21)

There are m �nD prototype producers and no mass-producers in each of the ND diversified cities,
and there are nS mass-producers and no prototype producers in each of the mNS specialised cities.
Hence, using (14) and (15), the price indices of (6) and (7) become

�P =
σ

σ − 1

(
NDm �nD

)1/(1−σ)
QD , (22)

P = ρ
σ

σ − 1
(mNSnS)

1/(1−σ)QS . (23)

Substituting (22) into (16) and valuing this in a diversified city, and substituting (23) into (17)
and valuing this in a specialised city, yields operational profits in a nursery configuration for,
respectively, prototype and mass-producers:

�π D =
µY

σ
(

NDm �nD

) , (24)

πS =
(1 − µ)Y

σ (mNSnS)
. (25)

From (24), we see that total operational profits for all prototype producers are a fraction 1
σ

of expenditure on prototypes, which in turn is a share µ of income. Similarly, from (25), total
operational profits for mass-producers are a fraction 1

σ of expenditure on mass-produced goods,
which in turn is a share 1 − µ of income. Since operational profits and costs must add up to
expenditure, it follows that costs for all prototype producers (equal to the sum of the wage bill in
all diversified cities) are a fraction σ−1

σ of expenditure on prototypes. By the same reasoning, total
costs for all mass-producers (equal to the sum of the wage bill in all specialised cities) are a fraction
σ−1

σ of expenditure on mass-produced goods. The wage bill in all diversified cities relative to the
wage bill in all specialised cities is therefore µ

1−µ . With wages net of commuting costs equalised
across cities, the relative populations of cities are equal to the relative wage bills. It follows that, in a
nursery configuration, diversified cities account for a share µ of total population, L, and specialised
cities for a fraction 1 − µ:

ND LD = µL , mNS LS = (1 − µ)L . (26)

Dividing (19) by (20), and using (21) and (26) yields the result.

An increase in the size of each sector present in each city has a cost-reducing effect, by strength-
ening localisation economies, but also a cost-increasing effect, by increasing city size and worsening
congestion which raises labour costs. In specialised cities, all firms use the same type of production
process and contribute to both effects. In diversified cities, however, only firms using the same type
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of process at the same time (a fraction 1
m of the total) contribute to localisation economies, while

all firms impose on each other congestion costs. Thus, a diversified city is a more costly place to
produce than a specialised city of the same size.

Lemma 3 (Relative number of firms) The ratio of the total number of prototype producers to the total

number of mass-producers in a nursery configuration is

Ω ≡ ND �nD

NSnS
=

δ(m + 1) − 1 + (1 − δ)m−1(1 − 2δ)
(1 − δ)2 [1 − (1 − δ)m−2(1 − 2δ)]

.

Proof See the Appendix.

Ω can be seen as a measure of how unlikely a firm is to find its ideal production process. Since
firms can engage in mass-production only once they learn about their ideal process, whenever
firms are unlikely to find their ideal process, the number of prototype producers is large relative
to the number of mass-producers. Ω is a function of only two parameters, the number of types of
production process, m, and the probability of a firm closing down at any period, δ. The larger either
of these two parameters, the less likely that a firm will see itself through to the mass-production
stage ( ∂Ω

∂m > 0, ∂Ω
∂δ > 0). Intuitively, if there are many possibilities for a firm’s ideal production

process and the closure rate is high, there is a large chance that a firm will close down before it can
find its ideal process.

Lemma 4 (Expected duration of each stage) A firm that follows the nursery configuration strategy ex-

pects to spend

�∆ =
δ(m + 1) − 1 + (1 − δ)m−1(1 − 2δ)

mδ2

periods producing prototypes in a diversified city, and

∆ =
(1 − δ)2 − (1 − δ)m(1 − 2δ)

mδ2

periods engaged in mass-production in a city where all workers have the aptitude that corresponds to its ideal

process. A firm that instead locates first in a specialised city, relocates across specialised cities to try different

production processes, and on finding its ideal one fixes its location, expects to spend

�∆OSC =
(1 + m)(2 − δ)δ − 1 + (1 − δ)2(m−1) [1 − 2(2 − δ)δ]

m(2 − δ)2δ2

periods producing prototypes in different specialised cities, and

∆OSC =
(1 − δ) + (1 − δ)2(m−1) [(3 − δ)δ − 1]

m(2 − δ)δ2

periods engaged in mass-production in a city where all workers have the aptitude that corresponds to its ideal

process.

Proof See the Appendix.
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To close the model we need to solve the general equilibrium level of investment, which yields
the number of new firms created each period. It is particularly convenient to use Tobin’s q approach
(Tobin, 1969), in a way close to that in which it has recently been applied to endogenous growth
models with monopolistic competition (see, in particular Baldwin and Forslid, 2000). Tobin’s q

is the ratio of the value of one unit of capital to its replacement cost. In steady-state, the general
equilibrium level of investment is that for which q = 1. The asset value of a new firm is equal to
its expected stream of operational profits. The cost of its replacement is the start-up cost. In this
context, Tobin’s q = 1 condition is therefore equivalent to a condition of zero expected net profits
for firms:

q =
�∆ �π D + ∆πS

�PµP1−µF
= 1 . (27)

From (8), (9), and (22)–(27) we can calculate the number of firms using each type of process in each
diversified city, �nD, and the number of firms in each specialised city, nS. In steady-state, investment
therefore keeps this distribution of firms constant by supporting the creation each period of just
enough firms to replace those that have closed down.10 We now have everything we need to derive
necessary and sufficient conditions for the existence of a nursery steady-state.

Proposition 1 (Nursery steady-state) A nursery configuration with NS specialised cities of each type

and ND diversified cities is a steady-state if and only if the following five conditions are satisfied.11

Condition 1.1 (Firms relocate to a specialised city once they find their ideal process)(
QD

QS

)σ−1

� 1
1 − δ

Condition 1.2 (Firms switch to mass-production once they find their ideal process)(
QD

QS

)σ−1

� 1 − µ

µ
Ω

Condition 1.3 (Firms stay in diversified cities until they find their ideal process)(
QD

QS

)σ−1

� 1
1 − δ

+
1 − δ

2
1 − µ

µ
Ω

Condition 1.4 (Firms do not give up the search for their ideal process)(
QD

QS

)σ−1

� mδ

m − 1 + δ

[
�∆ +

(
∆ − 1 − δ

mδ

)
1 − µ

µ
Ω

]

Condition 1.5 (Firms do not search for their ideal process by relocating across specialised cities)

(
QD

QS

)σ−1

�
�∆

�∆OSC

+
∆ − ∆OSC

�∆OSC

1 − µ

µ
Ω

10By the law of large numbers, the proportion of firms closing down or finding their ideal process is constant over
time. So is the flow of new firms.

11Note that while unit production costs in diversified cities and specialised cities are variables, Lemma 2 solves their
ratio, QD

QS
, solely as a function of parameters. We have not substituted this ratio into Conditions 1.1–1.5 to ease the

intuition.
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Proof A nursery configuration is a steady-state if and only if, with all firms following the nursery
strategy, no firm finds it profitable to deviate from this strategy. Some deviations involve firms
engaging in mass-production in diversified cities. Substituting (23) into (17) and valuing this in
a diversified city yields operational profits for a firm doing this while all other firms follow the
nursery strategy:

πD =
(

QS

QD

)σ−1 (1 − µ)Y
σ (mNSnS)

. (28)

Some deviations involve firms producing prototypes in specialised cities. Substituting (22) into
(16) and valuing this in a specialised city, yields operational profits for a firm doing this while all
other firms follow the nursery strategy:

�π S =
(

QD

QS

)σ−1 µY

σ
(

NDm �nD

) . (29)

From (24), (25), (28), and (29) we obtain the following profitability ratios:

�π S

�π D
=

πS

πD
=
(

QD

QS

)σ−1

, (30)

πS

�π D
=

1 − µ

µ
Ω . (31)

Let us start ruling out possible deviations from the end. Consider a firm in a diversified city
that knows its ideal process. Following the nursery strategy, it can relocate to a city of the relevant
specialisation and, if it survives the relocation period (which happens with probability 1 − δ),
engage in mass-production there for an expected 1

δ periods. Alternatively, it could engage in
mass-production in the diversified city. The latter option is not a profitable deviation if and only if

πD

δ
� (1 − δ)

πS

δ
. (32)

Substituting (30) into (32) and rearranging yields Condition 1.1. For a firm to want to relocate once
it finds its ideal process, unit production costs need to be sufficiently higher in diversified cities
(as measured by QD

QS
) to make the relocation cost (a probability δ to close down during relocation)

worth incurring.
Another possible deviation for a firm that knows its ideal process is to nevertheless keep

producing prototypes. But this is not more profitable than engaging in mass-production in the
same type of city, provided that

�π S

πS
=

�π D

πD
� 1 . (33)

Using (30) and (31), (33) becomes Condition 1.2. For firms to want to switch to mass-production as
soon as they can, the market for mass-produced goods needs to be large relative to the market for
prototypes (as measured by 1−µ

µ ), and served by relatively few firms (as measured by Ω = NDm �nD
NSmnS

),
with relatively high operational profits per unit of output.

From Condition 1.2, a firm that knows its ideal process wants to engage in mass-production.
From Condition 1.1, it prefers to do so in a city of the relevant specialisation rather in a diversified
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city, even if that involves relocating. Thus, Conditions 1.1 and 1.2 jointly guarantee that any firm in
a diversified city that knows its ideal process wants relocate to a city of the relevant specialisation
and engage in mass-production there.

The next issue is whether a firm located in a diversified city stays there until it finds its ideal
process. Alternatively, it could relocate from a diversified to a specialised city after making m − 2
prototypes without finding its ideal process, not yet knowing which of the two remaining pro-
cesses is its ideal one. Such a deviant firm relocates one period earlier than under the nursery
strategy, and so has a lower probability, 1 − δ, of making its next prototype. On the other hand,
if it makes this next prototype, it will do so at a lower cost (if Condition 1.1 is satisfied), getting
the higher operational profits associated with specialised cities. However, it may turn out (with
probability 1

2 ) that its ideal process is not this next one but the one it left to try last, in which case
it has to relocate once more than under the nursery strategy, delaying the mass-production stage
in which it gets operational profits πS per period. Thus a firm does not find it profitable to deviate
from the nursery strategy by relocating from a diversified to a specialised city not yet knowing
which of two remaining processes is its ideal one if and only if

(1 − δ) �π S +
1
2

(1 − δ)3

δ
πS � �π D +

1
2

(1 − δ)2

δ
πS . (34)

Substituting (30) and (31) into (34) and rearranging yields Condition 1.3. This condition is satisfied
when the market for mass-produced goods is large relative to the market for prototypes, when the
number of firms serving this market is small, when the cost advantage of specialised cities is not
too large, and when (if Conditions 1.1 and 1.4 are satisfied) relocation costs (as measured by δ) are
not too low.

There are other possible deviations from the nursery strategy for a firm that initially locates in
a diversified city. A firm could relocate from a diversified to a specialised city, not just with two
processes left to try, but with any number of untried processes between 2 and m− 1. If it did so and
its ideal process did not correspond to this city’s specialisation, it could either keep trying to find
its ideal process by relocating further to other specialised cities, or it could at some point give up
the search for its ideal process and remain in a specialised city producing prototypes. Alternatively,
it could also decide at some point to return to a diversified city. The Appendix shows that none of
these deviations impose additional parameter constraints on a nursery steady-state beyond those
of Conditions 1.1–1.5.

The final step is to show that a firm does not find it profitable to locate initially in a specialised
rather than in a diversified city. The Appendix rules out deviations involving relocation from a
specialised to a diversified city, or a firm giving up the search for its ideal process after producing
more than one prototype. This leaves only two possibilities for a firm that deviates from the nursery
strategy by locating initially in a specialised city. First, it could remain in this specialised city
regardless of the outcome of the first trial. If it manages to survive the first period in a specialised
city (which happens with probability 1 − δ), it will be able to engage in mass production with
probability 1

m or else will keep producing prototypes. This is not a profitable deviation from the
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nursery strategy if and only if

�π S + (1 − δ)

[
1
m

πS

δ
+

m − 1
m

�π S

δ

]
� �∆ �π D + ∆πS . (35)

Substituting (30) and (31) into (35) and rearranging yields Condition 1.4. A firm is deterred from
giving up the search for its ideal process by a lower cost disadvantage of diversified cities, QD

QS
, a

larger market for mass-produced goods relative to the market for prototypes, 1−µ
µ , and a smaller

relative number of firms serving this market, Ω. It is also more likely to stick to the nursery strategy
when the expected number of periods producing prototypes, �∆, and the expected additional
periods engaged in mass-production under the nursery strategy, ∆ − 1−δ

mδ , are large relative to the
expected number of periods producing prototypes if it only tries one process, m−1+δ

mδ .
The remaining alternative for a firm locating initially in a specialised city is to search for its

ideal process solely in specialised cities, which would mean relocating from one specialised city to
another between prototypes in order to try different production processes until finding the ideal
one, and then stay in a city of the relevant specialisation engaged in mass-production. This is not a
profitable deviation from the nursery strategy if and only if

�∆OSC �π S + ∆OSCπS � �∆ �π D + ∆πS . (36)

Substituting (30) and (31) into (36) and rearranging yields Condition 1.5. A firm takes into account
the relative expected duration of the prototype and mass-production stages under each strategy
(note that �∆OSC only includes the expected periods producing prototypes, but not the periods of
relocation from one specialised city to another one during the prototype production stage). A firm
is also deterred from searching for its ideal process in specialised cities by a low cost advantage of
specialised cities, a large market for mass-produced goods relative to the market for prototypes,
and a small number of firms serving this market.

Therefore, if Conditions 1.1–1.5 are satisfied, with all firms following the nursery strategy, no
firm finds it profitable to deviate from this strategy.

The nursery strategy can be seen as a risky investment. Whether it is worthwhile or not depends
on its cost, on the payoff if successful, and on the likelihood of success. The nursery strategy
is costly because in a diversified city all firms impose congestion costs on each other, but only
those using the same type of process create cost-reducing localisation economies, and this results
in comparatively higher production costs (from Condition 1.1, QD

QS
> 1). If the cost advantage of

specialised cities is too large, a firm may find it worthwhile to produce in specialised cities before
finding its ideal process (Conditions 1.3-1.5). On the other hand, if the cost advantage is too small,
a firm may never want to incur the cost of moving away from a diversified city (Condition 1.1).
The payoff to learning is also important, and this increases with the size of the market for mass-
produced goods relative to the market for prototypes ( 1−µ

µ ). It also depends on how crowded each
market is, as measured by the relative number of firms (Ω, which in turn depends on m and δ).
Finally, the likelihood of a firm finding its ideal process depends on the number of alternatives (m),
and the chances of closure in any period (δ). Figure 1 illustrates the dependence of Conditions
1.1–1.5 on m and δ. This is plotted for parameter values given in the Appendix, and ignores that m
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Figure 1. Dependence of Conditions 1.1–1.5 on m and δ

is an integer for visual clarity. The area where this nursery configuration is a steady-state is shaded
in gray.

A larger value of m makes finding the ideal production process more difficult for firms. Con-
sequently, the nursery strategy becomes more attractive than other strategies that involve reloca-
tions while producing prototypes.12

Regarding δ, a low value of this parameter makes searching for the ideal process across spe-
cialised cities a less costly alternative to the nursery strategy (Condition 1.3 and downward sloping
portion of Condition 1.5). It also implies that, with all firms following the nursery strategy, a higher
proportion of them will get to the mass-production stage. This makes it more attractive for a firm
to deviate and stop looking for its ideal process (downward sloping portion of Condition 1.4), or to
keep on producing prototypes even if it finds its ideal process (Condition 1.2). On the other hand,
a high value of δ makes it unlikely that a firm makes it to the mass-production stage. This increases
the importance of getting higher operational profits while producing prototypes, encouraging
firms to search for their ideal process across specialised cities (upward sloping portion of Condition
1.5) or discouraging them from searching altogether (upward sloping portion of Condition 1.4). It
is therefore for intermediate values of δ that the nursery configuration is a steady-state.

4. Steady-states with only diversified or only specialised cities

Consider now two alternative configurations: only diversified cities and only specialised cities.

Definition 4 (Configuration with only diversified cities) A configuration with only diversified cities

is one that satisfies all the following. Each firm produces prototypes using a different type of production

12There are also circumstances (in particular, a very large share of demand being allocated to prototypes) under which
the increased uncertainty associated with a larger value of m can deter a firm from trying to find its ideal process (a
violation of Condition 1.4). This is, however, mostly an artifact of the convenient functional form chosen for consumer
preferences, which guarantees a share of expenditure to prototype producers.
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process each period, and as soon as it finds its ideal production process, it commences mass-production.

Firms never relocate.

Proposition 2 (Steady-state with only diversified cities) A configuration with only diversified cities

is a steady-state if and only if the following condition is satisfied.

Condition 2.1 (Firms switch to mass-production once they find their ideal process)

1 − µ

µ
(1 − δ)Ω � 1 .

Proof Without specialised cities and with symmetric diversified cities, the only possible deviation
is for a firm to keep producing prototypes in the same city after it finds its ideal production
production process. This deviation is not profitable whenever π D � �π D. From (6), (7), (14) and
(15), operational profits in the configuration with only diversified cities are a share 1

σ of revenue:

�π D =
µY

σ
(

NDm �nD

) , (37)

πD =
(1 − µ)Y

σ (NDmnD)
. (38)

The strategy that each firm follows in a configuration with only diversified cities is identical to
the nursery strategy up until it finds its ideal process. Then, instead of relocating to a specialised
city (of which there are not any), the firm switches to mass production without relocating. Thus,
the expected duration of the prototype production stage is the same as under the nursery strategy.
And, since there is no relocation, the expected duration of the mass-production stage is 1

(1−δ) times
that under the nursery strategy. Consequently the number of prototype producers relative to the
number of mass-producers is (1 − δ) times that under the nursery strategy: �nD

nD
= (1 − δ)Ω. Using

this, (37), and (38), the inequality π D � �π D becomes Condition 2.1.

Definition 5 (Configuration with only specialised cities) A configuration with only specialised cities

is one that satisfies all of the following. There are only specialised cities, and there is the same proportion of

cities specialised in each type of process. Each firms searches for its ideal production process by relocating

across specialised cities to produce different prototypes. As soon as a firm finds its ideal production process,

it commences mass-production.

Proposition 3 (Steady-state with only specialised cities) A configuration with only specialised cities

is a steady-state if and only if the following condition is satisfied.

Condition 3.1 (Firms do not give up the search for their ideal process)

1 − µ

µ
ΩOSC � m(1 − δ �∆OSC) − 1 + δ

mδ∆OSC − 1 + δ
,

where ΩOSC ≡ �nS

nS
=

δ(m + 1)(2 − δ) − 1 + (1 − δ)2(m−1)[1 − 2δ(2 − δ)]

(2 − δ){1 − δ − (1 − δ)2(m−1)[1 − (3 − δ)δ]}
.
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Proof See the Appendix.

In steady-states with only diversified or only specialised cities, firms want to engage in mass
production when the market for mass-produced goods is large relative to the market for prototypes
(as measured by 1−µ

µ ), and when the proportion of firms engaged in mass-production is low (as
measured by (1 − δ)Ω with only diversified cities, and by ΩOSC with only specialised cities).
Furthermore, in steady-states with only specialised cities, learning involves frequent relocations.
Consequently, a lower probability of closing down during relocation (δ) deters firms from giving
up.

5. City size and welfare

Since three possible configurations can be in steady-state, it is important to compare their ro-
bustness and welfare properties. To do this, we first derive optimal city size, and establish that
a steady-state can be stable with respect to small perturbations in the distribution of workers
only when all cities are no smaller than their optimal size. We then show that when a nursery
configuration is a steady-state, it provides a higher welfare level than the alternative configurations,
for given sizes of specialised and diversified cities. Finally, instead of treating the number of cities
parametrically, we open up a market for the development of cities through the activity of perfectly
competitive land developers. In this case, if the nursery configuration with cities of optimal size is
a steady-state then this becomes the unique equilibrium configuration.

Lemma 5 (Optimal city size) Optimal city size is ε
(2ε+1)τ

.

Proof This follows from maximising output per worker in each city, as derived in Lemma 1.

The size of a city affects its efficiency by changing the balance between the economies of local-
isation and congestion costs. Optimal city size increases with localisation economies, as measured
by ε, and diminishes with the congestion costs parameter, τ . Note that optimal size for any city is
independent of the composition of its population. This result stems directly from the assumption
of homothetic production function.13 Note also that, for any configuration, total welfare reaches its
restricted maximum when all cities are of this size.

Equilibrium stability is closely related to optimal city size. While mobility ensures that workers
in all cities are equally well-off, there might be configurations where this equality can be broken by
a small perturbation in the spatial distribution of workers. The three steady-states studied above
are such that all specialised cities (if any) are of the same size and all diversified cities (if any) are
also of the same size. Proposition 4 implies that no steady-state can be stable otherwise.

Proposition 4 (Stability) A steady-state is stable with respect to small perturbations in the spatial distri-

bution of workers if and only if all diversified cities (if any) are of the same size, all specialised cities (if any)

of the same type are of the same size, and no city is smaller than ε
(2ε+1)τ

.

13In particular, it might be more realistic to assume that the intensity of increasing returns is decreasing with net local
employment above a given threshold for each type of process. This would yield a larger optimal city size for diversified
cities than for specialised cities.
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Proof Steady state nominal wages are equal to output per worker, given by Lemma 1. Wage
equalisation then implies that cities of the same type (diversified cities, or cities with the same
specialisation) can be at most of two different sizes. One of these two possible sizes is no greater
than the optimal size, ε

(2ε+1)τ
, while the other one is no smaller than this. Taking the derivative

of output per worker, as derived in Lemma 1, with respect to the number of workers of each
type in each city, shows that a small positive perturbation increases output per worker and hence
wages in a city of suboptimal size (by (19) and (20) it also lowers costs). This makes this city more
attractive relative to other cities with a similar composition. As workers and firms move in, the
size of this city increases. A negative perturbation has the opposite effect of pushing more and
more workers and firms away from such a city. By contrast, in a city no smaller than the optimal
size, a positive perturbation makes the city less attractive, while a negative perturbation makes the
city more attractive to workers and firms. Consequently, stability requires that all cities of the same
type are of the same size, and that no city is smaller than ε

(2ε+1)τ
.

Whenever a nursery configuration is a steady-state, a configuration with only diversified cities
is also a steady-state (from Conditions 1.1, 1.2 and 2.1), and a configuration with only specialised
cities can also be a steady-state. It is thus important to compare their welfare properties, for
comparable city sizes (diversified cities of the same size under the nursery configuration as under
the configuration with only diversified cities, and specialised cities of the same size under the
nursery configuration as under the configuration with only specialised cities).

Proposition 5 (Welfare ranking of the steady-states) Whenever a nursery steady-state exists, it

provides a higher level of welfare than a steady-state with only diversified or only specialised cities, for

comparable city sizes.

Proof See the Appendix.

This result is easy to understand. Consider first the comparison of a nursery steady-state and
a steady-state with only diversified cities, assuming diversified cities are of the same size in both
configurations (which makes nominal wages equal). If the nursery configuration is a steady-state,
by Condition 1.1, each firm would like to relocate to a specialised city once it finds its ideal process.
There production costs are sufficiently lower as to offset the cost of relocation, increasing firms’
profits with respect to not relocating. As free entry and exit of firms exhausts profits net of the
start-up cost, this also gets translated into higher welfare by means of lower price indices. Since
without specialised cities a firm cannot exploit this opportunity, the nursery steady-state provides
higher welfare than the steady-state with only diversified cities. A similar argument can be made to
compare a nursery steady-state and a steady-state with only specialised cities, assuming specialised
cities are of similar size in both configurations. If the nursery configuration is a steady-state, by
Condition 1.5, each firm prefers to search for its ideal process in a diversified city rather than
by relocating across specialised cities, with all other firms following the nursery strategy. If
all other firms are searching for their ideal process across specialised cities, doing the same is
even less profitable. Again, free entry and exit of firms translates this into higher welfare in the
nursery steady-state relative to the steady-state with only specialised cities. Thus, when a nursery
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configuration is a steady-state, everyone prefers to have both diversified and specialised cities.
However, if there happen to be only diversified or only specialised cities, localisation economies
prevent a mixed configuration from arising in the absence of coordination. All of this highlights the
importance of looking at city formation as a way to resolve the coordination problem that results in
a multiplicity of equilibria.

Thus far, the number and type of cities has been treated parametrically. Nonetheless new cities
are being created, not just by the autonomous decisions of small agents, but also by private bodies
acting as land development companies (‘developers’) or by local governments pursuing active
development policies (see Fujita, 1989, and Becker and Henderson, 2000, for a discussion of this
issue and for an equivalence result between these two types of institutions).

Suppose that instead of there being public ownership of land, each potential site for a city is
owned by a different developer, and there is an unexhausted supply of such sites, all of which are
identical. Each developer seeks competitively to maximise land rents in the city net of all costs.
Each developer offers workers and firms a contract that cannot be renegociated over time. These
contracts specify the size of the city, whether it has a dominant sector, and any per worker or per
firm subsidies to those who locate there.14

Proposition 6 (Land developers) With competitive land developers, all cities achieve optimal size, and

all local land rents are transferred to local firms, filling the gap between the private and the public marginal

product of firms.

Proof The proof follows from the analysis of Becker and Henderson (2000).

It is immediate that this result, which is also known as the ‘Henry George Theorem’, also implies
in our model that if the nursery configuration with cities of optimal size is a steady-state, then this
is the unique equilibrium configuration.

6. Empirical implications

The scarcity of theoretical work on the relative advantages and disadvantages of urban diversity
and specialisation is in contrast with the wealth of empirical work on the topic. This section
discusses existing empirical evidence that relates to the implications of the model. It also presents
new evidence on establishment relocations across France in 1993–1996.

Coexistence of diversified and specialised cities

The model stresses the advantages of urban configurations in which diversified and specialised
cities coexist. This coexistence is a pervasive fact (see Henderson, 1988, for evidence for the United
States, as well as Brazil and India; Black and Henderson, 1998, and Duranton and Puga, 2000, for
for further us evidence, and Lainé and Rieu, 1999, for evidence for France).

14It may be nonetheless more realistic to assume that developers are ‘constrained’ (Helsley and Strange, 1997), and in
particular that they may develop specialised cities but not diversified cities. In this case, specialised cities reach optimal
size whereas diversified cities are too large.
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One interpretation of the coexistence of diverse and specialised cities is that patterns of spe-
cialisation and diversity are merely random outcomes. However, in their careful study of the
agglomeration of industries in the us, Ellison and Glaeser (1997) show that most four-digit sectors
are too concentrated geographically for their distribution to be the result of a random allocation.
A second interpretation is that patterns of specialisation and diversification in cities merely mirror
the spatial distribution of resources. However, the results of Ellison and Glaeser (1999) attribute
only about one-fifth of the concentration reported in their earlier paper to observable natural
advantages. Henderson (1997a) also looks at the role of natural advantages, using panel data to
separate externalities from persistent comparative advantage. He shows that, even when local fixed
effects are accounted for, externalities remain important. Patterns of specialisation and diversity are
thus to a large extent the result of economic interactions taking place both within sectors and across
sectors.

The relative advantages of diversity and specialisation

The relative advantages of diversity and specialisation for innovation and production are the basis
of our model. Glaeser et al. (1992) assess the importance of these advantages by examining the
evolution of urban employment patterns. They find that diversity fostered urban employment
growth in us cities between 1956 and 1987. Pursuing this line of research, Henderson et al. (1995)
look at differences across sectors. They find that, while urban diversity is indeed important for
attracting new and innovative sectors, a history of similar past specialisation appears to matter
more to retain mature industries. Combes (2000) finds similar results for France between 1984

and 1993, with service sectors as well as more innovative manufacturing sectors benefitting from
diversity.

Fujita and Ishii (1998) study the location of trial plants producing prototypes and mass-
production plants for nine major Japanese electronic firms. They show that trial plants are
overwhelmingly located in more diverse metropolitan areas, whereas mass-production plants are
almost always located in more specialised cities. Henderson (1997b) provides further evidence for
the us. He shows that the production of less standardised or non-traditional items tends to be
more concentrated in diversified metropolitan areas. On the other hand, the production of more
standardised or traditional items tends to be more heavily concentrated in cities which are often
quite specialised in terms of their exports to other cities.

Henderson (1999) takes a different approach, and looks at the evolution of productivity in us

manufacturing plants for nine industries (high-tech and machinery) over thirty years, conditioning
on the local composition of economic activities. He finds that local same-sector specialisation tends
to have a positive effect on productivity in both types of industries. The effects are stronger in
high-tech industries, consistent with these being more agglomerated. Regarding diversity, he finds
only weak effects of diversity on productivity. However, when he looks at employment changes,
his findings are in line with the previous literature, indicating that diversity matters for the spatial
allocation of activities.

All of this is fully consistent with the predictions of the model, where observed productivity is
higher in specialised cities. By contrast, diversity allows firms to find production processes that
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will help them attain higher future productivity. But since firms relocate to specialised cities to
exploit such processes, the positive effects of diversity cannot be observed in productivity levels
in diversified cities. They do, however, manifest in the presence of newer or less standardised
activities in diversified cities and of older or more standardised activities in specialised cities. The
advantages of diversity become particularly clear when one looks explicitly at process innovation.

Urban diversity and process innovation

The microeconomic foundations of the model specifically emphasise the benefits of diversity for
process innovation. Detailed evidence on this particular aspect is provided by Harrison et al. (1996)
and Kelley and Helper (1999).15 They study the adoption of new production processes, involving
the switch from traditional tools to numerically controlled or computer numerically controlled
machines, by individual establishments making machine tools. Kelley and Helper (1999) find that
a diversity of local employment contributes significantly towards the adoption of new production
processes, even after controlling for other geographical, technical and organisational character-
istics. Their sample includes us establishments from 21 different three-digit machine-making
industries (ranging from heating equipment and plumbing fixtures to guided missiles and aircraft).
A strong local presence of the aggregated 21 industries also has a positive effect on adoption, albeit
weaker than that of overall diversity. At the same time, when they look at local employment in
individual machine-making industries, Harrison et al. (1996) find that same-sector specialisation
hinders the adoption of the new processes. They also suggest that those plants that relocated away
from diverse urban areas to nearby suburban counties are amongst the most likely adopters of the
new processes. This link between process innovation and firms’ location and relocation decisions
is particularly important because it is at the core of our model.

Establishment turnover and location patterns

When both specialised and diversified cities co-exist in steady-state, the model predicts that cities
are stable in their size and sectoral composition, but there is a constant turnover of firms. Some
existing firms close down every period, and are replaced by new firms. The entrants prefer to
locate in diversified cities because they provide a better environment for process innovation, but
eventually relocate to specialised cities.

As predicted by the model, there is a great stability in the relative sizes of cities. The systematic
analysis of all us cities between 1900 and 1990 by Black and Henderson (1998) shows that, with
few exceptions (such as Phoenix, Detroit, or Pittsburgh), the relative sizes of us cities changed little
over the course of the last century. According to Eaton and Eckstein (1997), this pattern of overall
stability is even stronger in France and Japan. The economic structure of cities has also been shown
to be extremely stable over time. Over the long period between 1860 and 1987, Kim (1995) finds
a correlation of 0.64 for the coefficient of regional localisation at the State level for two-digit us

15Feldman and Audretsch (1999) look at product, rather than process, innovation. They study the location of estab-
lishments responsible for new products reported by trade journals in the us. Diversity across industries with a common
science base has a large positive effect on innovative output, whereas same-industry specialisation has a negative effect
on innovative output. The effect of city size is also positive but much weaker.
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industries. Dumais et al. (1997) provide further evidence, showing that for most us three-digit
industries the stability in their concentration across us States over 1972-1992 is striking. The same
picture of stability emerges from Henderson (1997b, 1999) who looks at some specific sectors across
us cities.

This stability of city sizes and sectoral composition is in contrast with the high rate of estab-
lishment turnover. According to Dumais et al. (1997), nearly three fourths of the plants existing
in 1972 were closed by 1992, and more than one half of all us manufacturing employees in 1992

worked in plants that did not exist in 1972. The same authors then show that plant openings and
closures are spatially biased. The opening of new plants tends to reduce the degree of agglomer-
ation of particular sectors, suggesting that new plants are created in locations with below-average
specialisation in the corresponding sector. On the other hand, the closure of existing plants tends
to increase the degree of agglomeration of particular sectors. This is consistent with our nursery
steady-state, where the larger rate of plant openings in diversified cities (due to new plants locating
in diversified cities) makes sectoral concentration lower than it would otherwise be, and the
corresponding larger rate of plant closures (due to relocations departing from diversified cities)
makes concentration higher than it would otherwise be.16

Unfortunately, the evidence on relocation patterns in these and most other papers is very indir-
ect, since the data rarely separates openings due to the creation of new plants from openings due
to the relocation of existing plants. A new exhaustive data set on establishment relocations across
France makes such distinction clear. We conclude this section by using that data to show that, at
least for France, there is strong direct evidence of the relationship implied by the model between
establishment relocations and urban economic structures.

Evidence from establishment relocations across France 1993–1996

The data, extracted from the sirene database of the Institut National de la Statistique et des Etudes
Economiques (insee), contains the geographical origin and destination and the sectoral classifica-
tion of every single establishment relocation that took place in France between 1993 and 1996 (see
Lainé, 1998, for a detailed description). Only complete relocations are included in the data (that is
to say, episodes in which the complete closure of an establishment is followed by the opening in a
different location of an establishment owned by the same firm and performing the full same range
of activities).

The geographical origin and destination of relocating establishments is identified at the level
of employment areas (zones d’emplois). Continental France is fully covered by 341 employment
areas, whose boundaries are defined on the basis of daily commuting patterns. Relocating estab-
lishments are classified by sector according to level 36 of the Nomenclature d’Activités Française
(naf) classification of the insee. The 18 sectors we study cover all of manufacturing and business-
services, with the exception of postal services.

16From equation (A 11) in the Appendix, per period plant openings and closures in diversified cities represent a
fraction δ(1 + 1

(1−δ)Ω
) of the local stock, whereas per period plant openings and closures in specialised cities represent

a lower fraction δ of the local stock.
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The model predicts that establishments will tend to relocate from particularly diversified areas
to particularly specialised areas. To characterise French employment areas in terms of diversity
and specialisation, we use sectoral employment data for each employment area from the Enquête
Structure des Emplois (ese) for December 1993. We measure the specialisation of employment
area i in sector j by the share of the corresponding naf36 sector in local manufacturing and
business-service employment, sj

i . We measure the diversity of employment area i by the inverse
of a Herfindahl index of sectoral concentration of local employment, 1/ ∑85

j=1 (sj
i)

2
, calculated in

this case at a higher level of sectoral disaggregation given by the naf85 classification. In order
to identify employment areas which are particularly specialised in a given sector or particularly
diversified, we normalise both measures by their median value for all employment areas. By
these measures, Lyon and Nantes are amongst France’s most diversified areas, Chateaudun has
the median diversity, while Lavelanet is both the least diversified and one of the most specialised
areas (in textiles, which in 1993 accounted for 84% of local manufacturing and business service
employment).

Results regarding relocation patterns are presented in Table 1. Looking first at the aggregate fig-
ures in the bottom row, we see that complete establishment relocations across French employment
areas represented 4.7% of the average stock over this period (29,358 relocations from an average
stock of 624,772 establishments). We find this number surprisingly high, given the restrictive
definition of relocations in the data. Firms can reallocate their productive activities in other ways.
For instance, they can can transfer to the plant being opened only some of the activities previously
carried out in the plant being closed, or (as in the study by Fujita and Ishii, 1998, for Japanese
electronics firms) they can maintain prototype and mass production plants and change over time
the products made in each. None of these partial relocations are included in our data.

An even more striking result is that 72% of all complete establishment relocations across em-
ployment areas were from an area with above median diversity to an area with above median
specialisation in the corresponding sector. The model not only predicts this pattern of relocations,
it also suggests that innovative sectors with strong localisation economies will have a stronger
tendency to relocate from particularly diversified to particularly specialised areas. More traditional
sectors, by contrast, will tend to experience fewer relocations and not necessarily with this ‘nursery’
pattern. That is precisely what comes out of Table 1 when we split relocations by sector. r&d,
pharmaceuticals and cosmetics, it and consultancy services, and business services have relocation
rates of between 5 and 8.1%. And between 75.8 and 93% of relocations in these sectors are from
an area with above median diversity to an area with above median specialisation. They also
appear to be some of the sectors where firms benefit more from being in the same locations, as
reflected in the geographic concentration indices on the right-most column. On the other hand,
food and beverages, furniture and fixtures, wood, lumber, pulp and paper, primary metals, and
non-metallic mineral products have relocation rates of only between 0.8 and 2.7%, and less than
35% of those relocations are from an area with above median diversity to an area with above
median specialisation. They are also not particularly agglomerated sectors.

One might not have expected this pattern had it not been for the model. More agglomerated
sectors are likely to be those where firms benefit most from being close to each other or from being
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% of relocations
from diversified to
specialised areasa

Relocations
as a % of

the stockb

Geographic
concentrationc

r&d 93.0 8.1 0.023
Pharmaceuticals and cosmetics 88.3 6.4 0.020
it and consultancy services 82.1 7.3 0.030
Business services 75.8 5.0 0.015
Printing and publishing 73.3 5.4 0.026
Aerospace, rail and naval equipment 71.6 3.3 0.026
Electrical and electronic equipment 69.1 4.2 0.011
Motor vehicles 62.5 2.7 0.020
Electrical and electronic components 60.9 5.9 0.007
Textiles 46.4 2.5 0.024
Chemical, rubber and plastic products 38.3 3.9 0.009
Metal products and machinery 37.6 3.2 0.005
Clothing and leather 36.3 3.4 0.013
Food and beverages 34.6 0.8 0.007
Furniture and fixtures 32.6 2.7 0.008
Wood, lumber, pulp and paper 30.6 1.7 0.009
Primary metals 30.0 2.5 0.009
Non-metallic mineral products 27.3 2.0 0.012
Aggregate 72.0 4.7

a Percentage of all establishments relocating across employment areas that move from an area with above median
diversity to an area with above median specialisation.

b Establishment relocations across employment areas relative to the average number of establishments.
c Ellison and Glaeser (1997) geographic concentration index.

Source: Authors’ calculations based on the sirene and ese data sets.

Table 1. Establishment relocations across French employment areas 1993–1996

at certain locations. This could make establishments in those sectors relocate less, and when they
do relocate to move to similar places. By contrast, the model suggests that firms in more innovative
and agglomerated activities benefit most from the advantages that diversity and specialisation offer
at different stages of the product-cycle. Therefore, they relocate more and tend to move from
particularly diversified to particularly specialised areas.

7. Concluding remarks

In the empirical literature and economic policy discussions about urban economic structures, the
debate has been mostly framed in terms of diversity versus specialisation, as if the answer was one
or the other. This paper suggests instead that both diversified and specialised urban environments
are important in systems of cities. There is a role for each type of local economic environment
but at different stages of a firm’s life-cycle. Diversified cities are more suited to the early stages
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of a product’s life-cycle whereas more specialised places are better to conduct mass-production of
fully developed products. For manufacturing and services, unlike for agriculture, ‘sowing’ and
‘reaping’ can take place in different locations.

A ‘balanced’ urban system may thus not be one where all cities are equally specialised or equally
diversified but one where both diversified and specialised cities co-exist. In such a system, some
cities specialise in churning new ideas and new products (which requires a diversified base),
whereas other cities specialise in more standardised production (which, in turn, is better carried
out in a more specialised environment).

The usefulness of a model in relation to the facts can come from helping make better sense of
facts we already know about, or from pointing to new facts to look for. In this paper we have
tried to do both. The distribution of economic activities emerging from the model and its mi-
croeconomic foundations have been shown to be consistent with seemingly contradictory findings
in the empirical literature attempting to measure spatial externalities and their relationship with
urban diversity and specialisation. At the same time, the model suggests that the varying relative
importance of diversity and specialisation at different stages of the product-cycle will lead many
firms (especially those in more innovative and agglomerated sectors) to relocate from particularly
diversified to particularly specialised cities. We have used data on complete plant relocations across
France to take a first cut at this prediction, and show that the pattern is strongly there. However,
casual observation and case studies suggest that the complete relocation of establishments may
only be a small component in the mobility of production. Production relocations across plants
within the same firm seem to play an important role in many industries, from electronics to
automobiles. Multi-establishment firms, by locating their facilities in different places, may be able
to take advantage of different types of environment at the same time. Thus, what our empirical
findings reflect may be just the tip of the iceberg in the relocation of production over the life-cycle.
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Appendix

Units costs as intermediate prices Here we derive from first principles the reduced-form cost
functions presented in the text. Suppose there are m monopolistically competitive intermediate
service sectors. Each of these sectors employs workers with one of the m possible aptitudes to
produce differentiated varieties. The cost function of a sector j service firm producing variety g in
city i is

CS
j
i(g) =

[
α + βyj

i(g)
]

wj
i , (A 1)

where yj
i(g) denotes the firm’s output. The expression in parenthesis is the unit labour requirement,

which has both a fixed and a variable component. Thus, there are increasing returns to scale in the
production of each variety of services.

Each of the m types of production process for final-good firms (whether prototype or mass-
producers) corresponds to the use as inputs of services from one of the m intermediate service
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sectors. Services are non-tradeable across cities. All potential varieties (only some of which will
be produced in equilibrium) enter symmetrically into the technology of final-good firms with a
constant elasticity of substitution ε+1

ε . The cost function of a final-good firm producing prototype
h, using a process of type j, in city i is

�Cj
i(h) = Qj

i �xj
i(h) , (A 2)

and that of a final-good firm mass-producing good h, which uses a process of type j, in city i is

Cj
i(h) = ρ Qj

ix
j
i(h) , (A 3)

where

Qj
i =

{∫ [
qj

i(g)
]−1/ε

dg
}−ε

, (A 4)

0 < ρ < 1, ε > 0, and qj
i(g) is the price of variety g of service sector j produced in city i.

Demand for each intermediate variety is the sum of demand by prototype producers and
demand by mass-producers, obtained by application of Shephard’s lemma to (A 2) and (A 3)
respectively and integration over final-good firms. The market clearing condition for each service
variety is then:

yj
i = �nj

i
∂ �Cj

i

∂qj
i

+ nj
i

∂ Cj
i

∂qj
i

=

(
�qj
i

�Qi

)−(ε+1)/ε

( �nj
i �xj

i + ρnj
i x

j
i) . (A 5)

where prices �qj
i still need to be replaced by their profit-maximising values, and we have dropped

index g since all variables take identical values for all service firms in the same sector and city. The
profit-maximising price for each service is a fixed relative markup over marginal cost:

qj
i = (ε + 1) β wj

i . (A 6)

Free entry and exit in services drives maximised profits to zero. From the zero profit condition,
the only level of output in services consistent with zero profits is

yj
i =

α

β ε
. (A 7)

Demand for labour can be obtained by application of Shephard’s lemma to (A 1) and integration
over varieties. Using (A 7), the labour markets clearing condition becomes

l j
i = sj

i
∂ CS

j
i

∂wj
i

= sj
i

[
α + βyj

i(g)
]

= sj
i α

ε + 1
ε

, (A 8)

where sj
i is the equilibrium ‘number’ of sector j service firms in city i.

By choice of units of intermediate output, we can set β = ( ε
α)ε(ε + 1)−(ε+1). Using (A 8) and

(A 6), the price indices of (A 4) simplify into

Qj
i =

[
sj

i

(
qj

i

)−1/ε
]−ε

=
(

l j
i

)−ε
wj

i . (A 9)

Equations (A 2), (A 3), and (A 9) are the reduced-form cost functions of equations (2)–(4) in the
main text.
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Proof of Lemma 3 Think of firms as drawing in advance the order in which they are going to try
the m types of processes. The process used to produce prototype number t has the same probability
of being the ideal one, 1

m , as any other one. But to calculate the probability of a firm that follows
the nursery strategy finding its ideal process in period t, for 1 � t � m − 2, we have to weight this
by the probability of such a firm’s not closing down before or on that period, (1 − δ)t. Finally, if
a firm following the nursery strategy gets to produce m − 1 prototypes and remains in operation
(which happens with probability 2

m (1 − δ)m−1), it leaves the diversified city at that point, since it
has either just found its ideal process or otherwise knows that the only process left to try must be its
ideal one. The total number of firms relocating from diversified to specialised cities each period is
therefore a fraction [∑m−2

t=1
1
m (1− δ)t + 2

m (1− δ)m−1] of the number of firms starting up each period,
n̊. After simplification, this becomes 1−δ

δm [1 − (1 − δ)m−2(1 − 2δ)] n̊. The number of firms arriving
each period in specialised cities is a fraction (1 − δ) of those that relocated from diversified cities
the previous period, since a fraction δ close down in the period of idleness that makes relocation
costly. With a constant number of firms in each city, this quantity must also equal the number of
firms closing down in specialised cities each period, δmNSnS:

(1 − δ)2

δm

[
1 − (1 − δ)m−2(1 − 2δ)

]
n̊ = δ mNSnS . (A 10)

In steady-state, the number of firms created each period must equal the total number of closures,
which is a fraction δ of all existing firms:

n̊ = δ

(
NDm �nD +

δ

1 − δ
mNSnS + mNSnS

)
. (A 11)

Denote the ratio of the total number of prototype producers, NDm �nD, and the total number of
mass-producers, mNSnS, by Ω. Then, eliminating n̊ from (A 10) and (A 11) yields the result.

Proof of Lemma 4 For t = 1, ..., m − 2, a firm following the nursery strategy can stop producing
prototypes after t periods for two reasons. First, it may find that its ideal process is the one it
has decided to try in attempt number t (which has the same probability of being the ideal one,
1
m , as any other process) if it gets to that point (this happens with probability (1 − δ)t−1). Second,
such a firm may stop producing prototypes after t trials because its ideal process is one of the
m − t it has decided to try later (this happens with probability m−t

m ), but it closes down right after
producing prototype number t (this happens with probability (1 − δ)t−1δ). Finally, a firm following
the nursery strategy that gets to produce prototype number m − 1 does so because its ideal process
is either the one it decided to try in attempt number m − 1 or the remaining one (this happens
with probability 2

m ), and remains in operation after m − 2 periods (this happens with probability
(1 − δ)m−2). The expected number of periods producing prototypes (equal to the expected stay in
a diversified city) for a firm following the nursery strategy is therefore

�∆ =
m−2

∑
t=1

t
[

1
m

(1 − δ)t−1 +
m − t

m
δ(1 − δ)t−1

]
+ (m − 1)

2
m

(1 − δ)m−2 , (A 12)

which simplifies to the expression in Lemma 4. Since firms have a probability δ of closing down
at any period, their expected duration is 1

δ . The expected duration of a firm following the nursery
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strategy after finding its ideal production process (taking into account the period of idleness when
relocating from a diversified to a specialised city) is ∆

1−δ , where ∆ denotes the expected number of

periods engaged in mass-production. Thus, �∆ + ∆
1−δ = 1

δ . Substituting �∆ and solving for ∆ yields
the expression in Lemma 4.

Consider now the expected duration of each stage for a firm locating initially in a specialised city,
relocating across specialised cities to try different production processes until it finds its ideal one,
and then staying in a city of the relevant specialisation engaged in mass-production. In this case, for
t = 1, ..., m − 2, such a firm can cease production of prototypes after t prototypes for two reasons.
First, it may find that its ideal process is the one it has decided to try in attempt number t if it gets
to that point (which has the same probability of being the ideal one, 1

m , as any other process). And
we have to take into account that this firm will only sometimes make it to that point (this happens
with probability (1 − δ)2(t−1), given that under this strategy every period producing a prototype is
followed by a period of relocation). Second, such a firm may cease production of prototypes after
t prototypes because its ideal process is one of the m − t it has decided to try later (this happens
with probability m−t

m ), but it closes down in period 2t − 1 right after producing prototype number
t or in period 2t while it is relocating (this happens with probability (1 − δ)2(t−1)[δ + (1 − δ)δ]).
Finally, a firm following this strategy that gets to produce prototype number m − 1 does so because
its ideal process is either the one it decided to try in attempt number m − 1 or the remaining one
(this happens with probability 2

m ), and remains in operation after 2(m − 2) periods (this happens
with probability (1 − δ)2(m−2)). The expected number of periods producing prototypes for a firm
sticking to specialised cities with this strategy is therefore

�∆OSC =
m−2

∑
t=1

t
[

1
m

(1 − δ)2(t−1) +
m − t

m
(1 − δ)2(t−1)

δ(2 − δ)
]

+ (m − 1)
2
m

(1 − δ)2(m−2) , (A 13)

which simplifies to the expression in Lemma 4. To calculate the expected number of periods
engaged in mass production for a firm sticking to specialised cities with this strategy, first note that
such a firm has a probability 1

m (1 − δ)2t−1 of finding its ideal process by producing its prototype
number t with it, for t = 1, ..., m − 1, and a probability 1

m (1 − δ)2(m−1) of finding it by trying
everything else and surviving relocation to a city specialised in the only type of process with which
it never made a prototype. Conditional on starting, the expected duration of the mass-production
stage is 1

δ . The unconditional expected duration of this stage for a firm following this strategy is
then

∆OSC =

(
m−2

∑
t=1

1
m

(1 − δ)2t−1 +
1
m

(1 − δ)2(m−1)

)
1
δ

, (A 14)

which again simplifies to the expression in Lemma 4.

Further deviations from the nursery strategy Besides the deviations from the nursery strategy that
are directly ruled out by Conditions 1.1–1.5, there are other possible deviations that do not impose
additional parameter constraints on a nursery steady-state.

Condition 1.3 guarantees that a firm will not relocate to a specialised city not knowing which
of two remaining processes is its ideal one, but instead wait until it knows which of them is its
ideal process. However, it could also relocate to a specialised city after producing m− t prototypes

31



without finding its ideal process, despite having another t processes left to try (where 2 � t �
m − 1). If it did so and its ideal process did not correspond to this city’s specialisation, it could
either keep trying to find its ideal process or it could give up.

Consider first deviations involving giving up the search for the ideal process. After producing
m − t prototypes in a diversified city and not finding its ideal process, a firm could relocate
to a specialised city where all firms are using a type of process it has not yet tried, and stay
there whatever happens (engaging in mass-production if it finds its ideal process by producing
its prototype number m − t + 1, or producing prototypes with the same process thereafter if it
does not). Such a firm has probability 1 − δ of still being in operation after the period lost in
relocation from the diversified to the specialised city, in which case it gets �π S by producing its
prototype number m − t + 1; and if it is still in operation one period later, it also gets for an
expected 1

δ periods πS if it just found its ideal process (which happens with probability 1
t ) and

�π S if it did not. Thus, the expected profits over its remaining operating life for such a firm are
(1 − δ)

{
�π S + (1 − δ)

[
1
t

πS
δ + t−1

t
�π S
δ

]}
. We need to compare this with the expected profits over its

remaining operating life for a firm following the nursery strategy. As defined by Lemma 4, �∆ is
the expected number of periods of prototype production for a firm that has m processes to try and
follows the nursery strategy. Thus, replacing m by t in �∆ gives the expected remaining number of
periods of prototype production for a firm that has t processes left to try and follows the nursery
strategy. Let us denote this by �∆(t). Similarly, denote by ∆(t) the expected number of periods of
mass-production for a firm that has t processes left to try and follows the nursery strategy, which
results from replacing m by t in ∆. The expected profits over its remaining operating life for a firm
that has t processes left to try and follows the nursery strategy is therefore �∆(t) �π D + ∆(t)πS. A
firm that has produced m − t prototypes in a diversified city without finding its ideal process will
therefore prefer to wait until it finds it before relocating to a specialised city, rather than relocate
immediately to a specialised city and remain there, if and only if

(1 − δ)

{
�π S + (1 − δ)

[
1
t

πS

δ
+

t − 1
t

�π S

δ

]}
� �∆(t) �π D + ∆(t)πS . (A 15)

Substituting (30) and (31) into (A 15) and rearranging yields

(
QD

QS

)σ−1

� tδ
(1 − δ)(t − 1 + δ)

[
�∆(t) +

(
∆(t) − (1 − δ)2

tδ

)
1 − µ

µ
Ω

]
. (A 16)

In principle, we would need to check that (A 16) is satisfied for 2 � t � m − 1. However, if
Conditions 1.1 and 1.2 are satisfied, the right-hand-side of (A 16) is decreasing in t: if a firm finds
it profitable to deviate from the nursery strategy by giving up the search for its ideal process, it
prefers to do so as early as possible. Hence, we only need to check that (A 16) is satisfied for
t = m − 1, which involves a firm relocating to a specialised city immediately after producing the
first prototype in a diversified city. But whenever this is a profitable deviation, locating initially in
a specialised city and staying there whatever happens must be even better, as long as Condition 1.1
is satisfied. Consequently Condition 1.4 is the necessary and sufficient condition for this deviation
not to be profitable.
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Consider now deviations involving early relocation to specialised cities to continue searching
for the ideal process. If a firm that leaves a diversified city before finding its ideal process does not
eventually come back to a diversified city (and we show below that, with Conditions 1.1 and 1.3–1.5
satisfied, it never finds such a deviation from the nursery strategy to be profitable), then it can only
try different processes by relocating from one specialised city to another between prototypes. As
defined by Lemma 4, �∆OSC is the expected number of periods of prototype production for a firm
with m processes to try that is located in a specialised city, and intends to relocate across specialised
cities to try different production processes until it finds its ideal one, and then stay in a city of
the relevant specialisation engaged in mass-production. Thus, replacing m by t in �∆OSC gives the
expected remaining number of periods of prototype production for a firm that follows this same
strategy with t processes left to try. Let us denote this by �∆OSC(t). Similarly, denote by ∆OSC(t) the
expected number of periods of mass-production for this firm, which results from replacing m by t

in ∆OSC. Thus, the expected profits over its remaining operating life for a firm that relocates from
a diversified to a specialised city not yet knowing which of the t processes it has not yet tried is its
ideal one, with the intention of finding this by relocating across cities of different specialisation, is
(1 − δ)[ �∆OSC(t) �π S + ∆OSC(t)πS] (note that it only remains in operation after relocating to the first
specialised city with probability 1 − δ). This will not be a profitable deviation from the nursery
strategy if and only if

(1 − δ)
[

�∆OSC(t) �π S + ∆OSC(t)πS

]
� �∆(t) �π D + ∆(t)πS . (A 17)

Substituting (30) and (31) into (A 17) and rearranging yields

(
QD

QS

)σ−1

�
�∆(t)

(1 − δ) �∆OSC(t)
+

∆(t) − (1 − δ) ∆OSC(t)

(1 − δ) �∆OSC(t)

1 − µ

µ
Ω . (A 18)

In principle, we would need to check that (A 18) is satisfied for 2 � t � m − 1. However, note first
that that Condition 1.4 is never satisfied for δ � 0.5, as long as Condition 1.1 is satisfied (for δ � 0.5,
since the right-hand-side of Condition 1.4 is no greater than 1, while Condition 1.1 requires the
left-hand-side to be greater than 1). Then, for δ < 0.5, dependence of the right hand side of (A 18)
on t is such that whenever this condition is not satisfied for some t in [2, m − 1], it is not satisfied
for one or both limits of this interval. Further, early relocation with t = 2 is already addressed by
Condition 1.3. Hence, we only need to check that (A 18) is satisfied for t = m − 1, which implies
early relocation to a specialised city immediately after producing the first prototype in a diversified
city. But note that whenever this is a profitable deviation, if Condition 1.1 is satisfied, a firm must
prefer instead to locate initially in a specialised city, relocate across specialised cities to try different
production processes until finding the ideal one, and then stay in a city of the relevant specialisation
engaged in mass-production. Consequently, Condition 1.5 is the necessary and sufficient condition
for this other deviation not to be profitable.

Thus, if Conditions 1.1–1.5 are satisfied, a firm that locates initially in a diversified city will
not find it profitable to do anything else than remain there until it finds its ideal process, and
then relocate to a city of the relevant specialisation to engage in mass-production. However, these
conditions also guarantee that a firm will not find it profitable to locate initially in a specialised city
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either. If it did so, it could try a single process and, if this is not its ideal process, give up trying
to find it altogether and produce prototypes with the same process thereafter. Condition 1.4 was
derived as necessary and sufficient for this deviation not to be profitable. A firm locating initially
in a specialised city could also search for its ideal process solely in specialised cities, which would
mean relocating from one specialised city to another between prototypes in order to try different
production processes. Condition 1.5 was derived as the necessary and sufficient condition for this
deviation not to be profitable either.

Alternatively, a firm locating initially in a specialised city could search for its ideal process by
relocating across specialised cities for up to its first t prototypes and, if it has not found its ideal
process by then and is still in operation, relocate to a diversified city and follow the nursery strategy
thereafter. The ideal process of a firm following this deviation from the nursery strategy is one of
the t it intends to try in specialised cities with probability t

m , in which case it expects to spend
in specialised cities (1−δ)[1−(1−δ)2t]

t(2−δ)δ2 periods producing prototypes, and (1+t)(2−δ)δ−1+(1−δ)2t[1−(2−δ)δ]
t(2−δ)2δ2

periods engaged in mass-production (the derivation of these expected durations follow those of
�∆OSC and ∆OSC above, except for the lack of asymmetry in the last prototype). This firm’s ideal

process is instead one of the m − t it intends to try in a diversified city with probability m−t
m , in

which case it expects to spend 1−(1−δ)2t

(2−δ)δ
periods producing prototypes in specialised cities, and

if it gets though this stage and to a diversified city (which happens with probability (1 − δ)2t)
it expects to spend another �∆(m − t) periods producing prototypes in this diversified city, and
∆(m − t) periods engaged in mass-production in a specialised city. Thus, the expected lifetime
profits of a firm following this deviation are

t
m

(
(1 − δ) [1 − (1 − δ)2t]

t(2 − δ)δ2 �π S +
(1 + t)(2 − δ)δ − 1 + (1 − δ)2t [1 − (2 − δ)δ]

t(2 − δ)2δ2
πS

)

+
m − t

m

(
1 − (1 − δ)2t

(2 − δ)δ
�π S + (1 − δ)2t( �∆(m − t) �π D + ∆(m − t)πS)

)
(A 19)

With Conditions 1.1, 1.4 and 1.5 satisfied, this expression is no greater than the left-hand-side of
(36), which in turn is no greater than the expected profits of a firm following the nursery strategy.
This is therefore not a profitable deviation.

This brings us back to the deviation alluded to above but not formally discussed, in which a
firm follows the nursery strategy for some periods, if unsuccessful continues the search for its
ideal process in specialised cities for some periods, and if still unsuccessful comes back to the
nursery strategy. The expected profits for such a firm from the point at which it first deviates from
the nursery strategy are the result of replacing m in (A 19) by the number of processes the firms
has not yet tried at that point, replacing t by the number of processes it intends to try if necessary
in specialised cities, and multiplying the result by 1 − δ. But, if Conditions 1.1 and 1.3–1.5 are
satisfied, this is no greater than the left-hand-side of (A 17), which in turn we have already shown
is no greater than the expected profits of continuing to follow the nursery strategy. So Conditions
1.1 and 1.3–1.5 guarantee that this deviation is not profitable either.

This also eliminates all other deviations involving location in diversified cities after some peri-
ods of prototype production in specialised cities. Given the strategy of other firms, the profitability
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of any strategy only depends on a firm’s current location and, if it does not know its ideal process,
on how many possibilities there are left. Deviations that result from replacing the nursery strategy
for some other strategy after moving from a specialised to a diversified city are therefore covered
by the conditions derived so far.

Therefore, if Conditions 1.1–1.5 are satisfied, with all firms following the nursery strategy, no
firm finds it profitable to deviate from this strategy.

Parameter values for Figure 1 If cities are of the same (possibly optimal) size, Conditions 1.1–1.5
depend only on three parameters other than m and δ: µ, ε, and σ . Figure 1 is plotted for µ = 0.2
(prototypes represent 20% of the market, with mass-produced goods accounting for the remaining
80%), ε = 0.07 (a 1% increase in the amount of labour with a certain aptitude net of commuting
costs increases a city’s output from that labour by 1.07%), and σ = 4 (firms mark-up marginal costs
by 1

3 ).

Proof of Proposition 3 Let us start from the end and consider first a firm that knows its ideal
production process and is located in a city of the relevant specialisation. This firm engages in
mass production if and only if π S � �π S. From (6), (7), (14) and (15), operational profits in the
configuration with only specialised cities are:

�π S =
µY

σ
(

mNS �nS

) , (A 20)

πS =
(1 − µ)Y

σ (mNSnS)
. (A 21)

By the same reasoning used for the nursery configuration, the number of prototype producers
relative to the number of mass-producers in the configuration with only specialised cities is ΩOSC,
as given in the text. Substituting (A 20),(A 21), and ΩOSC into π S � �π S, this becomes

1 − µ

µ
ΩOSC � 1 . (A 22)

The other possible deviations involve firms giving up the search for their ideal process. Consider
a firm arriving in a specialised city after producing m − t different prototypes and not finding
its ideal process. This firm can stay there whatever happens. With probability 1

t the process
tried by the firm is its ideal one. In this case, the firm gets �π S for the current period and with
probability 1 − δ survives this period and gets an expected intertemporal profit equal to πS

δ . With
probability t−1

t , the process tried by the firm is not its ideal one and in that case, it gets an expected

intertemporal profit equal to �π S
δ . If instead the firm keeps searching for its ideal process it gets

t �∆OSC �π S + ∆OSC(t)πS. Thus a firm does not want to give up the search for its ideal process after
m − t unsuccessful trials if and only if:

1
t

(
�π S +

1 − δ

δ
πS

)
+

t − 1
t

� t �∆OSC �π S + ∆OSC(t)πS . (A 23)

Substituting (A 20), (A 21) and ΩOSC into (A 23) and rearranging yields:

1 − µ

µ
ΩOSC �

t
[

1 − δ �∆OSC(t)
]
− 1 + δ

tδ∆OSC(t) − 1 + δ
. (A 24)
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The right hand side of this equation is maximised for t = m, when it becomes Condition 3.1.
Furthermore if this condition is satisfied, so is (A 22).

Proof of Proposition 5 Consider first indirect utility in the nursery steady-state. Let us choose as
numéraire the wage in a specialised city, wS. Wage income is equalised across workers and is equal
to expenditure so that e = 1 − τ LS. Inserting this expression and (27) into (5) yields:

V =
F(1 − τ LS)
�∆ �π D + ∆πS

. (A 25)

Substituting (25) and (31) into (A 25) and rearranging implies:

V =
σmΩF(1 − τ LS)

Y[ µ �∆ + (1 − µ)Ω∆]
NSnS . (A 26)

Then inserting (22), (23) and Ω (from Lemma 3) into (27) implies

�∆ �π D + ∆πS = Fρ1−µ σ

σ − 1
QD

µQS
1−µm

1
1−σ Ω

µ
1−σ (NSnS)

1
1−σ . (A 27)

Substituting (25) and (31) into the previous expression yields

(NSnS)
2−σ
1−σ =

Y(σ − 1)
Fσ2ρ1−µ

[
µ �∆ + (1 − µ)Ω∆

]
Ω−1− µ

1−σ m
σ−2
1−σ QD

−µQS
−(1−µ) . (A 28)

Note that this expression leads to a well-defined solution for nS only when σ > 2. (If σ < 2, an
increase in the number of firms reduces the start-up cost �PµP1−µF so much as to make further firm
entry more profitable). Income in a nursery configuration can be calculated from (8), (9), (21), and
(24)–(26):

Y =
σ

σ − 1
(1 − τ LS) L =

σ

σ − 1

(
1 − τ

(1 − µ)L
mNS

)
L . (A 29)

Inserting (19)–(21), (A 28), (A 29), Ω (from Lemma 3), and �∆ and ∆ (from Lemma 4) into (A 26)
gives V only as a function of parameters. Then the same exercise can be repeated for the other two
configurations to obtain welfare levels under these, VODC and VOSC. If Condition 1.1 is satisfied,
V ≥ VODC. If Condition 1.5 is satisfied, V ≥ VOSC.
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