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ABSTRACT 

Network Dynamics and Knowledge Transfer in Virtual 
Organizations: Overcoming the Liability of Dispersion* 

Product development within and across community-based and geographically 
dispersed virtual organizations is becoming an increasingly important 
mechanism through which individual knowledge holders create and 
disseminate knowledge in joint efforts to generate products. Without the 
benefits of face-to-face communication, such organizations face a particular 
set of constraints in their exposure to knowledge and know-how. This “liability 
of dispersion” increases the importance of the architecture of network ties that 
undergird the distinct development efforts, the embedded social structures, 
and the particular relationships involved in their product-generating efforts. In 
this paper, we examine whether particular network structures foster 
knowledge transfer among distinct open-source projects. We conjecture that 
Star developers—actors characterized by increasing levels of embeddedness 
and the associated ability to form ties with several projects within a network—
serve boundary-spanning functions that facilitate an organization’s ability to 
collect, assimilate, and apply external information. We find support for this 
conjecture in our investigation of a network of open-source software projects 
and developers compiled from a dataset drawn from Sourceforge.net. We also 
show that becoming part of a giant network component is associated with 
relatively large changes in project performance. 
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I. Introduction  

Product development in community-based organizational settings is becoming an increasingly 

important mechanism through which individual knowledge holders create and disseminate 

knowledge in joint efforts to generate products. In its traditional form, open-source software 

(OSS) development is a collaborative effort of loosely coordinated and geographically dispersed 

developers who contribute their time and knowledge to establishing and improving software and 

whose underlying knowledge is made accessible to the general population. 

OSS generally implies that a particular computer software source code is available to the 

broad public under an OSS license (Laurent, 2004.). Such licenses grant the rights to use an 

entire work, to create a derivative work, or to share or market such work subject to the license 

governing the specific open-source project (Bonaccorsi, Rossi, & Giannangeli, 2006; Von Hippel 

& Von Krogh, 2003; Lerner & Tirole, 2002). Accordingly, one of the central aspects of OSS 

development is the project’s ability to share and absorb knowledge that has been created within 

or outside of a distinct OSS project. Such spillovers facilitate the transfer of knowledge and ideas 

within and across researchers and development teams. External knowledge may provide a 

particular project with highly specialized competencies and technical flexibility through the 

formation of informal “learning alliances” that may result in accelerated learning processes and a 

contraction of the product development life cycle, which means stronger value proposition.  

Clearly, the evolving social structure that underlies distinct OSS development efforts is a 

critical point of distinction from traditional proprietary, closed-innovation development 

mechanisms. The open-source structure emphasizes the significance of social capital in defining 

organizational traits such as the accessibility of diverse knowledge, the aptitude to recruit 

qualified human capital (Lacetera, Cockburn, & Henderson, 2004), and/or the capacity to 
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increase product visibility and increase adoption rates (Burt, 1992; Granovetter, 1985, 2005; 

Uzzi & Gillespie, 2002). This architecture of network ties offers a glimpse into the extent to 

which an entity is a) rooted in a network, b) connects with other entities, and c) connects with 

other structurally embedded entities. Accordingly, an entity that is characterized by higher levels 

of embeddedness is expected to possess higher levels of social capital, which should, in turn, 

exert a positive impact on both the technical and commercial successes of the open-source 

project with which the entity is associated (Grewal, Lilien, & Mallapragada, 2006).  

We contribute to research on organizational learning by studying how changes in network 

structures can foster knowledge transfers. We show that changes in the network architecture are 

associated with changes in project success. We also find that actors who are characterized by 

high levels of embeddedness serve boundary-spanning functions that facilitate a project’s ability 

to collect, assimilate, and apply external information. Thus, we demonstrate the positive 

performance implications of collaboration across project boundaries.  

As network structures evolve over time, projects connect (and disconnect) from one 

another. Typically, mature network structures reflect one giant and many small components 

Thus, we also can compare organizations that were in the giant component of a network for 

relatively long periods of time with organizations that joined such giant components during the 

sample period. We find that established projects within the giant component benefit differently 

from changes in network structures than projects that only recently entered such giant component 

of a network.  

Some recent studies have examined the relationship between network structure and 

behavior (e.g., Ballester, Calvó-Armengol, & Zenou, 2006; Calvo-Armengol & Jackson, 2004; 

Jackson & Yariv, 2007; Karlan, Mobius, Rosenblat, & Szeidl, 2009) or performance (Ahuja, 
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2000; Calvó-Armengol, Patacchini, & Zenou, 2009). Our paper is closest to that of Fershtman 

and Gandal (2011), who focus on spillovers that occur by means of the interactions of different 

researchers or developers in OSS projects. Using cross-sectional data, these authors demonstrate 

that the structure of the product network is associated with the project’s success, which provides 

support for knowledge spillovers. Nevertheless, no paper discussed above focuses on the 

relationship between changes in the network architecture and changes in success over time, 

which is the focus of our paper.
2
  

In the following section, we provide the theoretical foundations for our empirical work. 

Based on these foundations, we develop several hypotheses that we test empirically. 

 

II. Theoretical Foundations and Hypotheses  

Virtual teams are semi-structured groups of geographically dispersed and skilled individuals 

working on interdependent tasks using informal, non-hierarchical, and decentralized 

communication with the common goal of creating a valuable product (Lipnack & Stamps, 1997). 

Virtual teams, as opposed to traditional work teams that enjoy the benefits of face-to-face 

communication, encounter a particular set of challenges that negatively impact a team’s ability to 

form personal relationships (Beyerlein, Johnson, & Beyerlein, 2001), team communication 

(Pinto & Pinto, 1990),  and performance and satisfaction (Jehn & Shah, 1997). The resulting lack 

of strong connections (Wong & Burton, 2000) impacts commitment (Whiting & Reardon, 1998), 

whereas the lack of social support has a negative effect on productivity (Cascio, 2000; 

Townsend, DeMarie, & Hendrickson, 1998) through reduced willingness to share knowledge, 

                                                 

 
2
 Goyal, van der Leij and Moraga-Gonzalez (2006) constructed a co-authorship network using data on published 

papers that were included in EconLit between 1970 and 2000 to study network properties over time. Nonetheless, 

they were interested in different issues than we are. 
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trust, creative output, and leadership. Accordingly, by the nature of its organizational design and 

structure, members of dispersed development teams are restricted in their exposure to knowledge 

and know-how. However, these organizations can benefit from cooperation among actors in the 

social network and can enhance development teams’ cohesiveness and growth (Borgatti, Jones, 

& Everett, 1998; Chung, Singh, & Lee, 2000). Indeed, an entity that is characterized by higher 

levels of embeddedness should possess higher levels of social capital and, in turn, demonstrate a 

positive impact on both the technical and commercial successes of the open-source project with 

which the entity is associated (Grewal et al., 2006). 

 

II. Hypotheses 

The performance implications of knowledge Spillovers via Star Contributors 

If social capital is the lock with respect to knowledge networks, who holds the key with which to 

disperse knowledge and facilitate knowledge spillovers? We argue that a development team’s 

ability to innovate depends on developers with distinct network characteristics who have 

boundary-spanning abilities (Rothaermel & Hess, 2007). In particular, developers who work in 

multiple organizations can take software code from the other organizations in which they work. 

We define developers who work on a large numbers of projects as ‘Stars.’ Because they are 

boundary spanners, Stars can bridge organizational and environmental boundaries to identify 

novel knowledge and evaluate, streamline, and organize knowledge flows from external sources 

(Cohen & Levinthal, 1990; De Jong & Freel, 2010). A developer who works in a large number of 

organizations has a greater capacity to access external knowledge. Stars thus facilitate an 

organization’s ability to collect, assimilate, and apply external information. 
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 In community-based organizational settings, Stars are contributors who work on multiple 

projects and thus play important roles in knowledge spillovers. Clearly, having a Star contributor 

join a project increases the potential for access to external knowledge and positive spillovers 

across a project. Moreover, the broader that the potential reach (i.e., scope) of Star developers is 

to external organizations and developers, the greater the potential is for novel and valuable 

external knowledge access and positive spillovers. As Stars mature with respect to their network 

positions over time, the scope of their reach across distinct organizations is enhanced such that 

they enjoy greater potential access to external knowledge and positive spillovers. Thus, Star 

developers can improve the innovative output of development teams and, in turn, exert a positive 

impact on both the technical and commercial successes of the product. In summary, Star 

developers are actors characterized by higher levels of embeddedness and the associated ability 

to transfer knowledge across organizations within a network. Accordingly, it is expected that 

Stars have higher social capital and occupy boundary-spanning functions that facilitate their 

ability to collect, assimilate, and apply external information. 

 

Hypothesis 1: Star developers, through their exposure to external organizations and 

developers, have a positive impact on an organization’s performance beyond the associated 

network structures they create. 

 

The performance implications of knowledge Spillovers via Contributors 

The characteristics of knowledge and its exchange properties are best captured in the 

distinction between tacit and explicit knowledge (Nonaka, 1994). Tacit knowledge is not easily 

shared, communicated, or codified and is acquired through experience and skill (Polanyi, 1967). 

Tacit knowledge is highly personal, is deeply rooted in both action and an individual's 
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commitment to a specific context, and consists of technical skills, mental models, beliefs, and 

perspectives (Nonaka et al., 1995). Explicit knowledge, however, can be more easily expressed, 

captured, stored, and reused through text or speech. Tacit knowledge is important for innovation, 

and converting tacit knowledge into explicit knowledge is essential to creating organizational 

knowledge. Tacit knowledge can be transferred among individual knowledge holders through 

observation, imitation and practice, at which point it can be reconfigured and diffused to the 

development team at large (Nonaka, 1995). How can teams gain access to tacit knowledge across 

distinct organizations? Organizational members—both Stars and non-Stars—can join other 

organizations and spread knowledge from one project to another. With OSS, this result typically 

ensues in the form of bringing code (or variations of code) from one project to another. The 

shorter the distance that a particular project is from other projects, the greater the amount of 

knowledge that will spread to such project.  

 

Hypothesis 2: Organizations with high closeness centrality enjoy greater ease with which 

developers can absorb and diffuse knowledge within and across organizations and, thus 

enhance performance.  

 

Two organizations are directly connected if they have at least one contributor in common. In 

such a case, the knowledge transferred directly by a particular contributor might be more tacit 

and of greater value than explicit knowledge that is transferred indirectly via several 

contributors. Thus, directly connected projects potentially receive more tacit knowledge from 

their neighbors. By engaging in boundary-spanning activities, organizations can internalize and 

leverage resources and capabilities that are distant from their core competencies (Rosenkopf & 

Almeida, 2003). Searching beyond organizational boundaries enables the discovery of 
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opportunities that are unavailable internally and that are situated beyond the span of local search. 

In fact, such variety-seeking supports project flexibility and innovation, which are characteristics 

that are associated with enhanced performance (Burgelman, 2002; March, 1991).  

 

Hypothesis 3: Organizations with high degree centrality enjoy greater direct access to tacit 

knowledge that enhances organizational performance. 

 

Effect of Joining the Giant Component 

Which network structures are most conducive to providing boundary-spanning activities? 

Network structures evolve over time as organizations connect (and disconnect) from one another. 

Typically, mature network structures reflect one giant and many small components. In turn, the 

dynamics of network formation will generate the following two different sets of organizations in 

a giant component: (i) organizations that were in the giant component throughout a specified 

period of time and (ii) organizations that joined the giant component sometime during such 

specified period of time. What differences are there between these two sets of organizations? 

Members of the giant component have greater access to knowledge beyond project boundaries. 

Thus, we expect that projects that move into the giant component would receive a substantial 

benefit from being exposed to spillovers within the giant component.  

 

Hypothesis 4: The addition of a Star will do more for a project that moves into the giant 

component of a network than for an organization already in such giant component.  

 

Hypothesis 5a: Associations between the change in closeness and the change in an 

organization’s performance will be stronger for organizations moving into the giant 

component compared with organizations that have always been in the giant component.  
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Hypothesis 5b: Associations between the change in degree and the change in an 

organization’s performance will be stronger for organizations moving into the giant 

component compared with organizations that have always been in the giant component.  

 

III. Methods 

Research Setting and Data 

This paper uses a replica of publicly available data from Sourceforge.net that is hosted at 

Notre Dame University. Sourceforge.net facilitates software developer collaboration by 

providing a free online platform for managing projects, communications, and software code. 

Sourceforge.net is the largest repository of registered OSS development projects during the 

period of our study.  

Each SourceForge.net project contains a list of registered team members who contribute 

their time and knowledge to the advancement of an OSS project. Each project links to a 

“developer page” that contains meta information on a particular contributor, including the date 

the developer joined the project, the developer’s functional description (e.g., administrator, 

developer) and his or her geographic location. These projects are managed by project 

administrators. Because accessibility to the OSS projects is unrestricted and because the 

contributors can be identified by their unique user names, we utilize this information to construct 

a two-mode network that relates projects via registered contributors. Accordingly, we define two 

OSS projects as being connected when there are common contributors who participate in both 

projects.
3
  

                                                 

 
3
 We assume that project members are added to the list because they make a contribution to the project that involves 

an investment of time and effort. A project is thus understood as a collaborative effort by its contributors. 
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Each project links to a standardized “Project page” that lists descriptive information on a 

particular project, including a statement of purpose, the intended audience, the license, and the 

operating system for which the application is designed. Moreover, a “Statistics page” shows 

various project activity measures, including the number of project page views and downloads 

registered for the focal project. Although some data are available for other periods, statistics on 

downloads are available only for the 2006–2009 period.
4
 Therefore, we deploy panel data from 

2006–2009 to construct two distinct two-mode networks: (i) the project network and (ii) the 

contributor network. In the former, the nodes are the OSS projects, and two projects are linked 

when there are common contributors who work on both. In the latter, the nodes of the contributor 

network are the contributors, and two contributors are linked if they participated in at least one 

OSS project together.  

Regarding the project network in 2009, we find that 84.3% percent of the projects have 

either one or two contributors, 9.2% have three to four contributors and 6.5% have five or more 

contributors (see Table 1). With regard to the contributor network in January 2009, 91.3% of the 

contributors worked on one or two projects, 6.5% of the contributors worked on three to four 

projects, and 2.1% of the contributors worked on five or more projects.
5
 In our analysis, we focus 

on the project network, but we also include a key feature of the contributor network in the 

analysis: contributors who work on five or more projects. We define such contributors as ‘Stars.’ 

As we will see, these ‘Stars’ play an important role in knowledge spillovers. 

 

 

 

 

                                                 

 
4
 Page view data are not available over time, but page views are highly correlated with downloads. 

5
  These percentages were virtually identical in 2006 as well. 
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Table 1: Distribution of components in project networks—January 2009 

Project Network Contributor Network 

Contributor 

s per project 

Percent of  

total projects 

Projects per 

contributor 

Percent of 

Contributors 

1 69.9 1 77.2 

2 14.4 2 14.1 

3-4 9.2 3-4 6.5 

5-9  4.8  5-9  1.9  

10 or more  1.7  10 or more  0.2  
 

 

Variables 

Having panel data from 2006 to 2009 allows us to focus on differences over time. This is helpful 

because it is difficult to determine causality from cross-sectional data, and, therefore, unobserved 

fixed project effects might be driving success. Because we do not have data on these fixed 

project effects, they are included in the error term when running cross-sectional analyses. If these 

unobserved effects are correlated with the right-hand-side variables, the estimates from the cross-

sectional analysis will be biased; however, this problem is eliminated when using data on 

differences over time. 

 

Dependent Variable 

We wish to examine whether knowledge spillovers play a significant role in the 

development of OSS projects and evaluate the importance of Stars. Consistent with prior 

research, we measure project performance by examining the number of times a project has been 

downloaded (Fershtman & Gandal, 2011; Grewal et al., 2006). We focus on downloads of the 

executable, compiled product because users will not typically download the source code. We 

define ∆Downloads as the difference between the total number of downloads in January 2009 
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and January 2006. We further define l∆Downloads ≡ ln(1+∆Downloads), where “ln” means the 

natural logarithm, and ∆ is the difference operator.  

 

Independent Variables 

Knowledge spillovers from project to project occur via individuals. In the case of OSS 

projects, contributors frequently port code that is embedded in one project into another project to 

which they contribute. Direct spillovers occur when projects have a common developer who 

transfers information and knowledge (primarily code) from one project to another. Project 

spillovers may also be indirect, i.e., when knowledge is transferred from one project to another 

when the two projects are not directly linked (there is no common contributor). Because we do 

not directly observe spillovers, we will examine the relationship between the network structure 

and project success to identify the relative importance of knowledge spillovers.  

We define two network centrality measures: (i) a project’s degree is defined as the 

number of projects with which the focal project has a direct link or common developers and (ii) a 

project’s closeness centrality, which is defined as the inverse of the sum of all distances between 

a focal project and all other projects multiplied by the number of other projects.
6
 Intuitively, 

closeness centrality measures how far each project is from all the other projects in a network.7  

Accordingly, we define ∆Degree as the difference in the degree centrality the project 

between January 2009 and January 2006. Similarly, we define ∆Close as the difference in the 

closeness centrality of the project between January 2009 and January 2006.  

                                                 

 
6
 See Freeman (1979), pp. 225-226 and Faust and Wasserman (1994), pp. 184-185 for details on how closeness 

centrality is calculated. 
7
 Closeness centrality lies in the range [0,1]. In the case of a Star network with a single project in the middle that is 

connected to all other projects, the closeness centrality of the project in the center is one. 
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Next, we define ∆Cpp as the change in the number of contributors that participated in the 

project during the three-year period from January 2006 to January 2009. Since the number of 

contributors might fall or rise over time, ∆Degree, ∆Close, and ∆Cpp can be either positive or 

negative. 

In addition to downloads and the project network variables described above, we have data 

for a group of control variables. In Sourceforge.net, projects evolve through six stages, beginning 

with planning (1) and continuing to pre-alpha (2), alpha (3), beta testing (4), production (5), and 

finally maturity (6). We define a dummy variable, ∆stage, that assumes the value one if there 

was stage progression (e.g., from alpha (3) to production (4)) and zero if there was no change in 

stage. 

To control for the amount of time that the project has been in existence, we define the 

variable years_since as the number of years that have elapsed since the project first appeared at 

Sourceforge.net: lyears_since = ln(years_since). 

Finally, we define a Star as a contributor who worked on five or more projects. This 

variable comes from the contributor network, not the project network. Clearly, having a "Star" 

contributor join a project gives that project more connections to other projects. An interesting 

question is whether adding a "Star" to the team of developers has an effect on the success of a 

project. To examine this effect, we include a variable, denoted as ∆Star5, which can take on 

positive or negative values and is defined as the change in the number of Stars on a project from 

2006 to 2009. 
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Discussion of the Data 

In our panel data set, we have 42,796 projects with complete information.8 Complete 

information indicates that the projects existed in both 2006 and 2009 and that we have data for 

all the relevant variables discussed above. We exclude observations for ∆degree, ∆closeness, and 

∆Cpp that are (approximately) in the lowest 5% of these distributions. Specifically, we exclude 

961 observations of ∆degree that are greater than or equal to -4, an additional 394 observations 

of ∆Cpp that are greater than or equal to -1, and an additional 557 observations of ∆closeness 

that are less than -0.0037. We exclude these observations because large negative changes in Cpp, 

degree, and closeness might simply be explained by those particular projects being more likely to 

remove any inactive programmers from their projects’ websites in comparison with other 

projects. Our results are also robust to including all 42,796 observations. We report these results 

in the appendix. 

After excluding the 1,912 projects discussed above, we are left with 40,884 observations 

for the analysis. Approximately one-third of the projects in the main part of the paper (13,474) 

are in the giant component, and the second-largest component is small (64 projects.). This 

distribution (one giant component and many small components) is typical of many networks.  

Particularly interesting are the 2,656 projects that were not in the giant component in 2006 

but were included in the giant component in 2009. These projects comprise 20% of the giant 

component. Not surprisingly, these observations exhibit relatively large changes in degree, Cpp, 

closeness, stage and Stars. An interesting question is whether these projects have different 

properties than other projects in the giant component.  

                                                 

 
8
 Importantly, because we have data on the participants in every project, our networks are constructed using all 

projects, including projects without complete information. 
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Descriptive statistics are shown in Table A1 in the appendix. The mean and median 

download changes for projects in the giant component (mean = 66,819 and median = 930) is 

much greater for projects in the giant component than for projects outside of the giant component 

(mean = 20,734 and median = 373).  

When we compare the two subgroups within the giant component—namely the projects in 

the giant component throughout the 2006–2009 period and the projects that moved into the giant 

component during the 2006–2009 period—we find no difference in the mean or median changes 

in downloads among the groups. Projects that moved into the giant component have much higher 

changes in degree, closeness, and the number of Stars than projects in the giant component 

throughout the 2006–2009 period (see Table A1). 

Correlations between changes in degree, closeness, Stars, and Cpp are all relatively low, as 

shown in Table A2 of the appendix. The highest correlation is between ∆Cpp and ∆degree, but 

that correlation is only 0.53. No other correlation exceeds a magnitude of 0.34. 

 

VI. Empirical Analysis: 

The relationship between the number of contributors and downloads is likely non-linear: 

additional contributors are likely associated with a larger number of downloads, but the marginal 

effect of each additional contributor declines as the number of contributors increases. The same 

is likely true for the relationship between network variables and downloads as well, which 

suggests that a "log/log" model is appropriate.
9
 Thus, we use the following estimating equation: 

                                                 

 
9
 We estimate a log/log specification. As with the case of downloads, all independent variables (except changes in 

the number of Stars and changes in stage) are in logarithmic form, and we denote this situation by including an 'l' 

before the variable name—e.g., l∆Cpp is the logarithm of the change in the number of contributors. We add a 

constant to l∆Closeness, l∆Cpp, and l∆Degree such that the logarithm is defined. 
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 [1] l(∆Downloads) = β0 + β1 (l∆Cpp) + β2 (l∆Degree) + β3 (l∆Close) + β4 (∆Star5) +  

β5 (∆Stage) + β6 (lyears_since) + ε, 

 

where ∆ is the difference operator and ε is a white-noise error term.
 10

 We estimate [1] for the 

following four cases: 

Case I:  Projects outside of the giant component 

Case II:  Projects in the giant component in January 2009 

Case IIA: Projects in the giant component throughout the 2006–2009 period 

Case IIB: Projects that moved into giant component during the 2006–2009 period 

 

Knowledge spillovers via Star contributors 

Hypothesis 1 proposed that Star developers have a positive impact on product success. 

Table 2 shows that a change in the number of Stars does not significantly influence downloads 

for projects outside the giant component (Case I: β = -0.016, p = 0.81). However, changes in the 

number of Stars is significantly positively associated with changes in the number of downloads 

for projects that are in the giant component (Case II: β = 0.14, p = 0.01). Thus, in support of 

Hypothesis 1, changes in the number of Stars is positively associated with changes in the number 

of downloads in the giant component even after controlling for the network structure. This effect 

does not exist for projects outside the giant component, which suggests that the spillovers via 

Stars are due in part to being in the giant component. 

                                                 

 
10

 We examine alternative functional forms as well. Not surprisingly, we find that the log/log specification has a 

much higher adjusted R-squared than the log/linear specification and a linear/linear specification performs even 

more poorly. 



 

 

17

To test Hypothesis 4, we compare the impact of Star developers who were in the giant 

component consisting of 10,818 projects throughout the entire period of the study (Case IIA) to 

those associated with the 2,656 projects who later joined the giant component sometime between 

January 2006 and 2009 (Case IIB). Table 2 shows that, whereas changes in the number of Stars 

on a project is not significantly associated with changes in downloads for projects that moved 

into the giant component (Case IIB: β = 0.064 p = 0.60), changes in the number of Stars is 

significantly positively associated with changes in the number of downloads for projects that 

were always in the giant component (Case IIA: β = 0.14, p = 0.04). Although this result initially 

surprised us, we believe that the result can be explained as follows: the more prolonged that the 

exposure of projects to external projects and developers is, the greater the positive impact that 

the addition of a Star has on project success.  

 

Knowledge Spillovers via contributors 

Case II in Table 2 also shows that changes in closeness centrality are positively 

associated with changes in project performance, which supports Hypothesis 2.
11

 Table 2 also 

shows that changes in closeness are positively and significantly associated with changes in 

downloads for both the projects that moved into the giant component (Case IIB: β = 0.89, p < 

0.01) and the projects that were always in the giant component (Case IIA: β = 0.15, p < 0.0001). 

However, the effect is much stronger for the projects that moved into the giant component, 

which supports Hypothesis 5a. Spillovers on project success are particularly pronounced for late 

bloomers, which suggests that joining a large pool of knowledge (i.e., the giant component) 

allows projects to gain access to high-impact, novel knowledge and ideas.  

                                                 

 
11

 Recall that when we employ closeness in the analysis, we must restrict attention to connected projects.  
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Hypothesis 3 argues that a high degree centrality is associated with enhanced project 

success. Table 2 shows that a change in the degree centrality is indeed positively associated with 

a change in the number of downloads for projects outside the giant component (Case I: β = 0.42, 

p<0.0001) and projects in the giant component (Case II: β = 0.34, p < 0.0001), which provides 

support for Hypothesis 3.  

In fact, table 2 also shows that the effect is approximately twice as large for the projects 

that moved into the giant component (Case IIB: β = 0.63, p < 0.0001) than for the projects that 

were always in the giant component (Case IIA: β = 0.30, p < 0.0001). Thus, we find support for 

Hypothesis 5b. These projects enjoy enhanced boundary-spanning capacities, thereby enabling 

the organization to discover opportunities that are unavailable internally and that exist outside of 

the reach of a local search. 

Table 2 also shows that changes in the number of contributors are positively associated 

with changes in the number of downloads. This association is true for projects outside the giant 

component (Case I) and projects in the giant component (Case II). When we split the giant 

component into two groups, we see that this result holds as well for projects always in the giant 

component (Case IIA) and projects that moved into the giant component between 2006 and 2009 

(Case IIB). 
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Table 2: Main results 

DV: l∆downloads 

Case I 

Outside the Giant 

Component 

Case II 

In the Giant 

Component 

Case IIA 

Always in the 

Giant Component 

Case IIB 

Moved into the 

Giant Component 

Constant 6.30 (32.42) 5.00 (14.95) 4.71 (12.92) 7.65 (5.53) 

l∆Cpp 1.32 (18.83) 1.73 (33.33) 1.80 (30.19) 1.42 (13.25) 

l∆degree 0.42 (7.07) 0.34 (6.53) 0.30 (5.39) 0.63 (3.76) 

l∆closeness  0.15 (4.41) 0.15 (4.22) 0.89 (2.73) 

∆Stars5 -0.016 (-0.25) 0.14 (2.48) 0.14 (2.08) 0.064 (0.53) 

∆stage 1.04 (17.07) 0.92 (10.56) 0.99 (8.97) 0.76 (5.53) 

lyears_since -0.87 (-12.41) 0.41 (3.69) 0.54 (4.18) -0.04 (-0.18) 

Moved into Giant 

Component 
 -0.59 (-6.41)   

# of Observations 27,410 13,474 10,818 2,656 

Adjusted R-squared  0.04 0.14 0.14 0.16 

 

VII. Robustness Tests 

Projects with more than one contributor 

We repeat the analysis for projects with more than one contributor. Table 3 shows that all of the 

main results discussed above continue to hold; thus, our results are robust to excluding projects 

with just a single contributor. The result for Stars has borderline significance in Case IIA; again, 

however, Stars seem to matter more for projects that have benefitted from being in the giant 

component for a relatively long period of time than for projects that moved into the giant 

component more recently (Case IIB). 

Table 3: Projects with more than one contributor  

Dept Variable: 

l∆downloads 

Case I 

Outside the Giant 

Component 

Case II 

In the Giant 

Component 

Case IIA 

Always in the 

Giant Component 

Case IIB 

Moved to the Giant 

Component 

Constant 6.00 (16.46) 4.67 (10.78) 4.35 (9.24) 8.25 (4.51) 

l∆Cpp 1.51 (17.54) 1.54 (26.88) 1.61 (24.94) 1.18 (9.31) 

l∆degree 0.41 (4.28) 0.37 (6.25) 0.33 (5.31) 0.65 (3.03) 

l∆closeness  0.15 (3.42) 0.14 (3.24) 1.08 (2.45) 

∆Stars5 -0.036 (-0.32) 0.14 (1.89) 0.13 (1.62) 0.062 (0.39) 

∆stage 0.89 (8.50) 0.75 (7.11) 0.80 (6.15) 0.63 (3.61) 

lyears_since -0.61 (-4.38) 0.77 (5.21) 0.90 (5.37) 0.23 (0.74) 

Moved into Giant Component  -.060 (-5.10)   

# of Observations 8,094 8,632 7,061 1,571 

Adjusted R-squared 0.07 0.15 0.15 0.15 



 

 

20

In Table A3 in the appendix, we include all observations. Although the R-squared 

coefficients are much smaller in the regressions in Table A3 than in Table 2, the results are 

qualitatively unchanged, which greatly strengthens the main results of the paper. 

 

VIII. Testing For Endogeneity 

Although our discussion focuses on how the network structure affects success, the 

reverse may be true as well: contributors may want to join popular projects. Developers may 

want to be associated with more successful projects, thereby making the number of contributors 

(and thus the degree) endogenous.
12

 In fact, the Sourceforge.net website states that, “as a 

project's activity rises, SourceForge.net's internal ranking system makes it more visible to other 

developers who may join and contribute to it. Given that many open-source projects fail due to a 

lack of developer support, exposure to such a large community of developers can continually 

breathe new life into a project.” 

Here, we discuss the tests that we employ to investigate potential endogeneity. Because 

we are using panel data with network variables, several approaches to test for the endogeneity of 

Cpp, degree and closeness are possible. We believe that the most convincing test for endogeneity 

is to restrict ourselves to those projects that had no changes in the number of contributors over 

the 2006–2009 period. In such a case, reverse causality (i.e., the effect that describes the 

tendency to join popular projects) is absent.
13

 Note that the degree can change for projects that 

have no changes in the number of their contributors. The mechanism by which this change can 

                                                 

 
12

 Closeness can also be endogenous, but only under an unlikely scenario. Nevertheless, we test for endogeneity here 

as well. 
13

 Of course, it is possible that some contributors joined and some left with a net change of zero, but the 

overwhelming majority of projects had no changes in personnel.   
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occur is that the degree centrality of the original project also increases when a contributor on a 

particular project joins another project.14  

Our results describing what occurs when we restrict the analysis to projects that had no 

change in the number of contributors are reported in Table 4 for Cases II, IIA, and IIB. As 

expected, we find that the effect of changes in closeness on changes in downloads is completely 

robust to all these ‘tests’ for endogeneity, which is not surprising because closeness can only be 

endogenous under an unlikely scenario. Similarly, the results regarding Stars are virtually 

unchanged from the results provided in Table 2. 

In the case of degree, a comparison between Tables 2 and 4 shows that the results for 

degree are slightly smaller in Table 4 because of the 'joining popular projects effect.' 

Nevertheless, in all three cases (II, IIA, and IIB,) the estimated coefficients for degree are 

statistically significant. This analysis suggests that reverse causality is not driving the results.   

 

Table 4: Testing for Endogeneity 

                                                 

 
14

  Similar to degree, the number of Stars on a project can change even when the number of contributors does not, 

which occurs when a contributor on one project joins other projects and transitions from working on fewer than five 

projects to working on five or more projects. 

Dept Variable: 

l∆downloads 

Case II: 

In the Giant 

Component: 

∆Cpp = 0 

Case IIA: 

Always in the Giant 

Component 

∆Cpp = 0 

Case IIB: 

Moved into the Giant 

Component 

∆Cpp = 0 

Constant 7.28 (19.41) 7.13 (17.48) 9.06 (6.09) 

l∆Cpp    

l∆degree 0.25 (3.98) 0.22 (3.35) 0.50 (2.53) 

l∆closeness 0.17 (4.54) 0.17 (4.39) 0.81 (2.21) 

∆Stars5 0.17 (2.53) 0.16 (2.10) 0.11 (0.82) 

∆stage 0.86 (8.71) 1.31 (8.80) 0.93 (4.81) 

lyears_since -0.077 (-0.62) 0.0043 (0.03) -0.38 (-1.47) 

Moved to Giant Component -0.64 (-6.30)   

# of Observations 10,421 8,578 1,843 

Adjusted R-squared 0.02 0.02 0.03 
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IX. Discussion: 

Prior research studying the relationship between network structure and performance has 

ignored the implications of the dynamics of knowledge spillovers that occur by means of the 

interaction of different developers collaborating in different research projects over time. We 

contribute to the research on organizational learning by studying how network structures can 

foster knowledge transfer that occurs through developers interacting across distinct development 

projects. We show that changes in the network architecture are indeed associated with changes in 

project success. 

Our findings reveal that actors characterized by increasing levels of embeddedness and the 

associated ability to transfer knowledge across projects within a network have higher levels of 

social capital and serve boundary-spanning functions that facilitate a project’s capacity to collect, 

assimilate, and apply external information. We demonstrate the positive performance 

implications of collaboration across project boundaries and link the benefits to knowledge 

spillovers across projects. In fact, we show that the shorter the distance is between projects, the 

greater will be the ease with which developers can absorb and diffuse knowledge within and 

across projects and thus enhance performance.  

We further demonstrate the benefits that the members—in particular, the Stars—of giant 

components enjoy when seeking to leverage their access to knowledge beyond project 

boundaries. Thus, network structures are conducive to providing boundary-spanning activities. In 

fact, the dynamics of network formation reflect additional benefits to organizations that were in 

the giant component throughout an extended period of time, which suggests that projects that 

move into the giant component enjoy the substantial benefit of being exposed to spillovers within 
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the giant component. Thus, the more prolonged the exposure of developers to external projects 

is, the greater will be the positive impact of such exposure on project performance.  

Our study advances the understanding of the link between network structures, agent network 

position, and organizational performance; nevertheless, it is subject to a few limitations. First, we 

have theorized about Stars’ capacities to access, assimilate, and diffuse explicit and tacit 

knowledge via boundary-spanning activities. Future research should attempt to measure these 

latent variables that underlie the innovativeness and productivity of development teams.  

Second, we have not fully studied the characteristics and capabilities of Star developers that 

allow these individuals to develop into Stars and that facilitate exploitation of their idiosyncratic 

resources. Future research may take a deeper look at the importance of Star developers. Given 

the strategic importance to project success of having Star developers, such research might seek to 

identify distinct demographic characteristics of Stars and their relative contributions to projects. 

Thus, such research could evaluate the technological overlap between the skill sets of Stars and 

their peers within distinct projects and then mighty study the relative importance of connected 

projects and the directionality of knowledge flow.  

Finally, our sample is limited to the software industry; however, the concept of 

crowdsourcing has been applied to other industries, including hardware, biology, and astronomy, 

to name a few. Future research may generalize our findings to other industries. The software 

industry relies extensively on the internalization of external knowledge to complement internally 

developed products. Future research may study the link between network structures, the agents 

within such structures, and performance in industries in which product development relies on 

specialized knowledge. 
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In spite of these limitations, we believe that we have helped advance research on 

organizational learning by relating changes in the network architecture to changes in project 

success and by revealing that actors characterized by increasing levels of embeddedness possess 

boundary-spanning functions that facilitate a project’s capacity to collect, assimilate, and apply 

external information. In so doing, we demonstrate the positive performance implications of 

collaboration across project boundaries.  
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Appendix: 

 

Table A1: Descriptive Statistics 
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Variable Observations Mean  Std. Dev. Min Max 

∆download 27410 20733.59 1109424 0 1.71e+08 

∆between 27410 -1.08e-07 1.52e-06 -.0000842 9.55e-09 

∆Closeness 27410 -.0015933 .0067119 -.0418276 .0001101 

∆Degree 27410 -.0322875 1.134059 -4 19 

∆Cpp 27410 .0694637 .5928583 -1 20 

∆Stage 27410 0.0444728 .2061469 0 1 

∆Stars5 27410 -.0048887 .2240058 -1 1 

years_since 27410 6.57 1.55 3.97 10.15 
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Variable Observations Mean Std.Dev. Min Max 

∆download 10818 69818.77 2052881 0 1.98e+08 

∆between 10818 8.90e-07 . 0000388 -.0007162 .0024578 

∆Closeness 10818 .0000653 .002364 -.0036971 .0200627 

∆Degree 10818 .6863561 3.905711 -4 103 

∆Cpp 10818 .5878166 3.099011 -1 104 

∆Stage 10818 .0444629 0.2061308 0 1 

∆Stars5 10818 .0086892 .3565553 -1 1 

years_since 10818 7.34 1.59 3.97 10.16 
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Variable Observations Mean Std. Dev. Min Max 

∆download 2656 54599.41 878090.8 0 3.74e+07 

∆between 2656 3.66e-06 .0000167 -9.03e-09 .0006224 

∆Closeness 2656 .0297832 .004486 .0160351 .0454347 

∆Degree 2656 1.907003 3.467798 -4 81 

∆Cpp 2656 .8524096 3.349011 -1 86 

∆Stage 2656 .  1125753  0.316 0 1 

∆Stars5 2656 .1716867 .4432846 -1 1 

years_since 2656 6.34 1.60 3.97 10.11 

 

Table A2: Correlation Among All Centrality Variables (Giant Component: N=13,474) 

 

 

 

 

 

  

∆Cpp ∆degree ∆closeness Star 

∆Cpp 1.00    

∆Degree 0.53 1.00   

∆Closeness 0.06 0.18 1.00  

Star 0.09 0.34 0.21 1.00 
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Table A3: Replicating Analysis in Table 2 Using All Observations  

 

Dependent Variable: 

l∆downloads 

Case II: 

In the Giant Component 

Case IIA: 

Always in the Giant 

Case IIB: 

Moved into the Giant 

Constant -12.45 (-7.86) -11.18 (-6.61) -29.29 (-5.92) 

l∆Cpp 4.30 (13.25) 3.94 (11.16) 5.63 (6.71) 

l∆Degree 1.10 (3.87) 0.93 (3.13) 5.26 (4.71) 

l∆Closeness 0.46 (2.95) 0.34 (2.04) 1.97 (3.94) 

∆Stars5 0.33 (6.03) 0.29 (4.59) 0.18 (1.52) 

∆Stage 1.52 (17.55) 1.69 (15.75) 01.00 (7.13) 

lyears_since .33 (2.87) 0.45 (3.46) -0.10 (-0.44) 

Moved into giant -0.64 (-4.19)   

# of Observations 14,939 12,251 2,688 

Adjusted R-squared 0.05 0.04 0.11 


