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This paper proposes a simple macroeconomic model with staggered 
investment decisions. The expected return from investing depends on demand 
expectations, which are pinned down by fundamentals and history. Owing to 
an aggregate demand externality, investment subsidies can improve welfare 
in this economy. The model can be used to address questions concerning the 
timing of stimulus policies: should the government spend more on preventing 
the economy from falling into a recession or on rescuing the economy when 
productivity picks up? Results show the government should strike a balance 
between both objectives. 
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1 Introduction

The recent recession is often explained by a combination of fundamental shocks and pes-
simistic expectations. The narrative goes like this: a negative shock from the financial
sector spread to the rest of the economy and led firms to reduce investment. Low levels of
economic activity have since persisted because, owing to low demand expectations, firms
have been reluctant to resume previous levels of investment. In turn, this reduced invest-
ment has contributed to low demand, justifying pessimistic expectations. Hence a dynamic
coordination problem lies at the heart of the recession.

Following the large investment slump of 2008-2009, stimulus packages around the world
have been proposed and implemented.1 These fiscal packages can be seen as attempts
to mitigate dynamic coordination failures: by providing incentives for investment, govern-
ments hope to boost demand expectations and drive the economy to a situation with higher
expected and realized economic activity.

The dynamic coordination problem among firms has implications to the optimal timing
of stimulus policies. Is preventing a recession better than rescuing the economy after an
investment slump has already occurred? Or should policy makers give up early on avoiding
a recession and provide incentives for producers once fundamentals have improved? How
should incentives for investment vary with economic activity and fundamentals? This paper
develops a simple macroeconomic model that captures that dynamic coordination problem
among producers and can be used to answer these questions.

The model features monopolistic competition and staggered investment decisions. In-
vestment is a payment of a fixed cost that increases production capacity. Returns to invest-
ment depend on future demand, and hence on whether producers with subsequent invest-
ment opportunities choose to take them as well. Thus investment decisions are strategic
complements, as in Kiyotaki (1988). Producers of each variety receive investment opportu-
nities according to a Poison clock. That is a simple way to capture the idea that capital can
not adjust overnight, leaving an important role in the model for expected demand. When
deciding whether to invest or not, a producer has to form expectations about others’ future
decisions.

Investment decisions depend not only on expected demand but also on productivity.
If the increase in production resulting from investing is large enough, then investing is a
dominant strategy. Likewise, if productivity is very low, investing is a dominated strategy.
In an intermediate range, a producer’s decision depends on his expectations about the

1The objective of stimulating the economy has been translated into concrete policies in a number of
different ways, such as: cuts in energy prices, tax cuts, subsidized loans and fiscal incentives to investment
(either to the whole economy or to specific industries). Khatiwada (2009) provides a comprehensive review
of those policies.

2



actions of others. In a world with no shocks, that gives rise to multiple equilibria, but once
we allow for shocks, that is not true anymore, as in Frankel and Pauzner (2000).

Demand expectations are pinned down by fundamentals and history. The equilibrium
of the model is characterized by a cutoff strategy given by a threshold that depends on
the exogenous productivity parameter (fundamental) and the mass of producers that are
currently operating at full capacity, which results from their recent choices (history). For a
given level of fundamentals, producers choose to invest if the mass of producers operating
at full capacity is sufficiently high, since that positively affects both demand today and
the actions of others tomorrow. Recessions are triggered by shocks on fundamentals, but
expectations about others’ actions play a key role.

In order to study optimal policy in this model, we characterize the central planner’s
problem and obtain analytical results that relate the planner’s choices and the decentralized
equilibrium. We then calibrate the model and solve it numerically for cases we cannot get
analytical results. We are thus able to answer questions about the timing of stimulus policies
in a model where expectations about others’ actions (‘producers’ confidence’) are pinned
down in the model and play a key role.

Investment generates positive externalities because a producer does not take into account
the effects of her investment decisions on others’ profits. Thus investment subsidies can
mitigate coordination failures. Stimulus policies have a direct effect on agents’ incentives
for investment but also an indirect effect through beliefs about others’ actions. But what is
the optimal timing of stimulus policies?

The question can be posed in the following way: the equilibrium threshold can be repre-
sented as a curve in a two-dimensional space, with (log) productivity in the horizontal axis
and the measure of agents operating at full capacity in the vertical axis. Agents choose to
invest if the economy is at the right of the threshold. The threshold is negatively sloped,
implying that when the mass of producers operating at full capacity is larger, a producer
requires a smaller level of productivity to invest. The government intervention aims at
shifting the equilibrium threshold so that producers will require lower productivity or de-
mand to invest. Besides translating the threshold to the left, how should it try to rotate
the threshold? Should it try to stimulate investment primarily when most producers are
still operating at full capacity, despite relatively weak productivity, in order to avoid an
investment slump? Or should the policy maker focus on subsidizing investment when few
producers are operating at full capacity, but productivity is picking up?

Neither of those is the answer. The government should shift the threshold to the left,
increasing the region where investment occurs, but not rotate it. Trying harder to avoid
a recession when productivity is very low, or putting more emphasis on rescuing the econ-
omy when the mass of agents investing is very low are both inefficient. Notwithstanding
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the importance of the demand externality, the equilibrium threshold features a balance be-
tween changes in fundamentals and in economic activity that should not be affected by the
government intervention.

The externalities generated by investment are proportional to the private gains from
investing and related to the markup charged by firms. That helps understanding why the
equilibrium threshold should not be rotated. The slope of the threshold reflects the relative
effects of expected demand and productivity perceived by a producer. Since the externalities
from investment are proportional to a producer’s gains, there is no reason to affect this slope.

Another implication of the relation between the externalities and the private gains from
investment is that the distortion in producers’ decisions can be corrected by a constant sub-
sidy. That is also true if the planner faces costs to monitor investment. In case the planner
has limited resources to subsidize investment, an analogous result arises: the optimal policy
establishes a maximum level of subsidies to investment that is independent of productivity,
capacity utilization and economic activity.

The demand externalities that play a key role in this paper are in the seminal contribu-
tions by Blanchard and Kiyotaki (1987) and Kiyotaki (1988). When others produce more,
the demand for a particular variety shifts to the right, and its producer finds it optimal
to increase production. In Kiyotaki (1988), multiple equilibria arise because of increasing
returns to scale. The model in this paper would also give rise to multiple equilibria in the
absence of shocks to fundamentals or timing frictions, owing to the assumption of a fixed
cost that increases production capacity.

A branch of the literature takes expectations to be driven by some “sunspot” variable,
or simply, in the words of Keynes, by “animal spirits”. Depending on agents’ expectations,
coordination failures might arise and an inefficient equilibrium might be played.2 Despite
generating interesting insights, this approach does not allow us to understand how policies
affect expectations. In models with multiple equilibrium, government policies can only hope
to eliminate the “bad equilibrium”. Here, in constrast, policies affect agents’ beliefs about
others’ actions.

This paper is closely related to the theoretical contributions in Frankel and Pauzner
(2000) and Frankel and Burdzy (2005) that resolve indeterminacy in dynamic models. They
study models with time-varying fundamentals and timing frictions similar to the ones em-
ployed in this paper, and prove there is a unique rationalizable equilibrium in their models.3

The uniqueness result in Frankel and Pauzner (2000) requires very small mean reversion,
2See, e.g., Cooper and John (1988), Benhabib and Farmer (1994) and Farmer and Guo (1994).
3Models with time-varying fundamentals and timing frictions have been used to study other dynamic

coordination problems. Frankel and Pauzner (2002) employ a similar structure in order to analyze the
timing of neighborhood change. Guimaraes (2006) studies speculative attacks. Levin (2009) studies the
persistence of group behavior in a collective reputation model. He and Xiong (2012) study debt runs.
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but Frankel and Burdzy (2005) generalize some of the results in Frankel and Pauzner (2000)
for more general stochastic processes.4 We use some of their theoretical results to show
that a threshold equilibrium exists, and that there is a unique rationalizable equilibrium
for a sequence of models that converges to our model. This paper is also related to the
global games literature, which has been used to study a wide variety of economic problems
that exhibit strategic complementarities, but differently from that literature, there is no
asymmetric information in this model.5

There has been a lot of research incorporating strategics complementarities and coordi-
nation issues in macroeconomics.6 However, there has not been much work applying those
theoretical insights to understand the effects of stimulus packages on coordination. One
important exception is Sákovics and Steiner (2012). They build a model to understand
who matters in coordination problems: in a recession, who should benefit from govern-
ment subsidies? The results point that the government should subsidize sectors that have
a large externality on others but that are not much affected by others’ actions. Differently
from a large part of the literature that deals with coordination failures and expectations
in macroeconomics, our focus is not on noisy and heterogeneous information, fundamentals
are common knowledge here, all the action comes from dynamic frictions. This makes our
framework specially suitable to study the dynamic interplay between economic activity and
productivity.

The paper is organized as follows. Section 2 presents the model. Section 3 presents the
policies analyzed in the paper, Section 4 describes and analyzes the results and Section 5
concludes.

4See also Burdzy et al. (2001).
5See the seminal papers by Carlsson and Van Damme (1993) and Morris and Shin (1998). For a detailed

survey, see Morris and Shin (2003).
6Angeletos and La’O (2010) and Angeletos and La’O (2013) show in an environment with noisy and

dispersed information how self-fulfilling fluctuations can emerge. Expectations also play a key role in the
literature of news-driven business cycles (e.g., Beaudry and Portier (2006)), but here expectations about
future productivity depend solely on the current state of the economy. In the models of Lorenzoni (2009) and
Eusepi and Preston (2011), it is noisy information about current variables that leads to excessive optimism
or pessimism about the future. Nimark (2008) builds a model where pricing complementarities together
with private information help to explain the inertial behavior of inflation due to the inertial response of
expectations (see also Angeletos and La’O (2009)). Chamley (2013) presents a model with decentralized
trade, credit constraints and multiple equilibria where pessimistic expectations lead to precautionary savings,
which in turn lead to low production.
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2 Model

2.1 Environment

Time is continuous. A composite good is produced by a perfectly competitive representative
firm. At time t, Yt units of the composite good are obtained by combining a continuum of
intermediate goods, indexed by i ∈ [0, 1], using the technology:

Yt =
(ˆ 1

0
y

(θ−1)/θ
it di

)θ/(θ−1)

, (1)

where yit is the amount of intermediate good i used in the production of the composite good
at time t and θ > 1 is the elasticity of substitution. The zero-profit condition implies

ˆ 1

0
pityitdi = PtYt, (2)

where Pt is the price of the composite good and pit is the price of good i at time t.
There is a measure-one continuum of agents who discount utility at rate ρ. Agent

i ∈ [0, 1] produces intermediate good i. Her instantaneous utility at time t is given by
Ut = Ct, where Ct is her instantaneous consumption of the composite good. Since yit is the
quantity produced by agent i at time t, her budget constraint is given by

PtCt ≤ pityit ≡ wi.

Prices are flexible and each price pit is optimally set by agent i at every time. Since goods
are non storable, supply must equal demand at any time t.

The assumptions on technology aim at modelling staggered investment decisions in a
simple and tractable way. Investment is a binary decision, a payment of a sunk cost that
reduces marginal cost of production. As shown in Gourio and Kashyap (2007), the extensive
margin accounts for most of the variation in aggregate investment, so a binary choice set can
capture much of the action in investment. There are 2 production regimes, a High-capacity
regime and a Low-capacity regime. An agent in the Low regime can produce up yLt units
at zero marginal cost at every time t, and an agent in the High regime can produce up to
yHt units at zero marginal cost, with yHt = AtxH and yLt = AtxL, where xH > xL are
constants and At is a time-varying productivity parameter. Agents get a chance to switch
regimes according to a Poisson process with arrival rate α. Once an individual is picked up,
he chooses a regime and will be locked in this regime until he is selected again. Choosing
the Low regime is costless. Choosing the High regime implies a one-off cost ψ in units of
the composite good (ψ is a stock).
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Choosing the High regime is interpreted as an investment decision. The cost ψ can
be thought of as the cost of a machine and the difference yHt − yLt as the resulting gain
in productivity. This machine will become obsolete after some (random) time (so α also
plays the role of a depreciation rate). Moreover, agents are locked in a regime until the
next investment opportunity arises, which captures the idea that firms cannot change their
capital level overnight.7 Real world investments require a lot of planning and take time
to become publicly known, so investments from different firms are not syncronized. The
Poisson process generates staggered investment decisions in a simple way. As an implication,
investment decisions depend on expectations about others’ actions in the near future.

Investment requires agents to acquire a stock of composite goods, which cannot be funded
by their instantaneous income, so we assume agents can trade assets and borrow to invest.
Owing to the assumption of linear utility, any asset with present value equal to ψ is worth
ψ in equilibrium. For example, an agent might issue an asset that pays (ρ+α)ψdt at every
interval dt until the investment depreciates (ρψdt would be the interest payment and αψdt

can be seen as an amortization payment since debt is reduced from ψ to 0 with probability
αdt). Since agents are risk neutral, there are other types of assets that would deliver the
same results.8

Let at = log(At) vary on time according to

dat = η(µ− at)dt+ σdZt, (3)

where η ≥ 0, σ > 0 and Zt is a standard Brownian motion. The parameter η determines
how fast at returns to its mean, given by µ.

2.2 The agent’s problem

The composite-good firm chooses its demand for each intermediate good taking prices are
given. Using (1) and (2), we get

pit = y
−1/θ
it Y

1/θ
t Pt,

for i ∈ [0, 1], and the price of the composite good is given by:

Pt ≡
(ˆ 1

0
p1−θ
it di

)1/(1−θ)

.

7In another possible interpretation, ψ could be the cost of hiring a worker that cannot be fired until his
contract expires. In that case, the fixed cost would not be paid at once, but that makes no difference in the
model.

8The assumption of linear utility implies that consumption smoothing plays no role in the model, all
results come from investment decisions.
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Since marginal cost is zero and marginal revenue is always positive, an agent in the Low
regime will produce yLt, and an agent in the High regime will produce yHt. Thus at any
time t, there will be two prices in the economy, pHt and pLt (associated with production
levels yHt and yLt, respectively). Hence the instantaneous income available to individuals
in each regime is given by

wHt = pHtyHt = y
θ−1
θ

Ht Y
1
θ
t Pt (4)

and
wLt = pLtyLt = y

θ−1
θ

Lt Y
1
θ
t Pt. (5)

Moreover, using (1),

Yt =
(
hty

θ−1
θ

Ht + (1− ht)y
θ−1
θ

Lt

) θ
θ−1

, (6)

where ht is the measure of agents locked in the High regime.
The indirect utility over consumption goods for an agent with income equal to w is given

by wt/Pt. Combining (4), (5) and (6), we get the instantaneous utility of individuals locked
in each regime:

u(yHt, ht) = y
θ−1
θ

Ht

(
hty

θ−1
θ

Ht + (1− ht)y
θ−1
θ

Lt

) 1
θ−1

and
u(yLt, ht) = y

θ−1
θ

Lt

(
hty

θ−1
θ

Ht + (1− ht)y
θ−1
θ

Lt

) 1
θ−1

.

Let π(ht, at) be the difference between instantaneous utility of agents locked in the High
regime and agents locked in the Low regime when the economy is at (ht, at). Then, using
yLt = eatxL and yHt = eatxH ,

π(ht, at) = eat
(
htx

θ−1
θ

H + (1− ht)x
θ−1
θ

L

) 1
θ−1

(
x
θ−1
θ

H − x
θ−1
θ

L

)
. (7)

Function π is increasing in both at and ht. The effect of at captures the supply side incentives
to invest: a larger at means a higher productivity differential between agents who had
invested and those who had not. The effect of ht captures the demand side incentives to
invest: a larger ht means a higher demand for a given variety. The equilibrium price of
a good depends on how large yit/Yt is, so a producer benefits from others producing yHt

regardless of how much she is producing. Nevertheless, since θ > 1, an agent producing
more reaps more benefits from a higher demand.

One key implication of (7) is that there are strategic complementarities: the higher
the production level of others, the higher the incentives for a given agent to increase her
production level.

A strategy is as a map s(ht, at) 7→ {Low,High}. An agent at time t = τ that has to
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decide whether to invest will do so if
ˆ ∞
τ

e−(ρ+α)(t−τ)Eτ [π(ht, at)]dt ≥ ψ. (8)

In words, investing pays off if the discounted expected additional profits of choosing the
High regime are larger than the fixed cost ψ. Future profits π(ht, at) are discounted by the
sum of the discount rate and depreciation rate (ρ+ α).9

Investment decisions depend on expected profits. Producers will decide to invest not only
if productivity is high, but also if they are confident they will be able to sell their varieties at
a good price. Hence investment decisions crucially depend on demand expectations, which
in turn are determined by expectations about the path of at and ht.

2.3 Benchmark case: no shocks

Consider the case where the fundamental a does not vary over time, σ = 0. Proposition 1
characterizes conditions under which we have multiple equilibria in this case.

Proposition 1 (No Shocks). Suppose σ = 0 and a = µ. There are strictly decreasing
functions aL : [0, 1] 7→ < and aH : [0, 1] 7→ < with aL(h) < aH(h) for all h ∈ [0, 1] such that

1. If a < aL(h0) there is a unique equilibrium, agents always choose the Low regime;

2. If a > aH(h0) there is an unique equilibrium, agents always choose the High regime;

3. If aL(h0) < a < aH(h0) there are multiple equilibria, that is, both strategies High and
Low can be long-run outcomes.

Proof. See Appendix A.

Figure 1 illustrates the result of Proposition 1. If the productivity differential is suffi-
ciently high, agents will invest as soon as they get a chance and the economy will move to
a state where h = 1 (and there it will rest). If the productivity differential is sufficiently
low, the gains from investing are offset by the fixed cost, so not investing is a dominant
strategy. If the fundamental a is in an intermediate area, there are no dominant strategies:
the optimal investment decision depends on expectations about what others will do. Cycles
are possible in this economy, but their existence depends on exogenous changes in beliefs.
Demand expectations are not pinned down by the parameters that characterize the economy
and its current state. Small subsidies to investment in the multiplicity region have no effects
on beliefs.

9As a tie breaking convention, an agent chooses High whenever she is indifferent between regimes High
and Low.
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Figure 1: Equilibria without shocks

All choose Low

a

h = 1

h = 0 a

All choose HighMultiple Equilibria

a

2.4 The case without mean reversion

We now turn to the general case where productivity varies over time, σ > 0. We say that
an agent is playing according to a threshold a∗ : [0, 1] 7→ < if she chooses High whenever
at > a∗(ht) and Low whenever at < a∗(ht). Function a∗ is an equilibrium if the strategy
profile where every player plays according to a∗ is an equilibrium.

We start with the special case where η = 0, i.e., the fundamental process has no mean
reversion. The model is a particular case of Frankel and Pauzner (2000) and we can apply
Theorem 1 in their paper to show there is a unique rationalizable equilibrium where agents
play according to a decreasing threshold a∗(h). Figure 2 shows an example of equilibrium
in the model.

Figure 2: Equilibrium with shocks

All choose Low

a

h = 1

h = 0

All choose High

a∗

2.5 General case

We now turn to the general case where productivity varies over time, and there is mean
reversion η > 0.

Proposition 2 (Existence). Suppose σ > 0. There exists a strictly decreasing function a∗

such that a∗ is an equilibrium.

Proof. See Appendix A.

Proposition 2 builds on Frankel and Pauzner (2000) to show that a threshold equilibrium
always exists. The threshold function a∗ is decreasing in h, so a larger h implies that agents
are willing to invest for lower values of a, as in Figure 2. In a threshold equilibrium, beliefs
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about others’ investment decisions are pinned down by fundamentals (a) and history (h).
Demand expectations fluctuate because shocks to at and movements in ht might trigger
changes on expectations about others’ actions.

Let V (a, h, ã) be the utility gain from choosing High obtained by an agent in state (a, h)
that believes others will play according to threshold ã. Then

V (a, h, ã) =
ˆ ∞

0
e−(ρ+α)tE[π(ht, at)|a, h, ã]dt− ψ, (9)

where E[π(ht, at)|a, h, ã] denotes the expectation of π(ht, at) of an agent in state (a, h) that
believes others will play according to ã. An agent choosing when a = a∗(h) and believing
all others will play according to the cutoff a∗ is indifferent between High and Low, which
means that V (a∗(h), h, a∗) = 0, for every h.

2.5.1 On equilibrium uniqueness

We do not have a strong uniqueness result. However, we can show that our model can be
seen as a limiting case of a sequence of models that have a unique rationalizable equilibrium.

In order to apply the results of Frankel and Burdzy (2005), we need to make two changes
in the model. First, the diffusion process for at is given by (3), but the mean-reversion
parameter ηt varies over time so that

ηt =

η if t < T

0 otherwise
, (10)

where T is a large number. Second, the difference between the instantaneous utility of
agents locked in each regime is given by π̂ instead of π, where

π̂(h, a) =

π(h, a) if a < M

π(h,M) otherwise
, (11)

where M is a large number. One can verify that π̂(h, a) is Lipschitz in both a and h, and
continuous. Using the results in Frankel and Burdzy (2005), we can prove there is a unique
equilibrium in this model.

Proposition 3 (Uniqueness, Frankel and Burdzy (2005)). Suppose σ > 0, the mean rever-
sion parameter ηt is given by (10) and the relative payoff of investing is given by (11). Then
there is a unique rationalizable equilibrium in the model. Agents follow cut-off strategies,
and the cut-off can vary over time.

Proof. See Appendix A.
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As M and T approach infinity, this modified model converges to our model. For finite
values of M and T , the environment is not stationary anymore: the equilibrium strategies
might vary over time. Nevertheless, agents’ behavior at time 0 is determined by a threshold
that makes agents indifferent between High and Low. For large values of M and T , that
threshold is arbitrarily close to the function ã that makes the expression in (9) equal to zero.

Why does the mean reversion need to die out eventually? In case of no mean reversion
(η = 0), the iterative procedure in Frankel and Pauzner (2000) could be applied to show
equilibrium uniqueness. However, in the presence of mean reversion, the last step in the
proof of Frankel and Pauzner (2000) fails. Their proof relies on finding two boundaries,
a1(h) < a2(h) for every h ∈ [0, 1], with the same shape, such that: (i) in any equilibrium that
survives iterative elimination of strictly dominated strategies, agents play Low whenever the
economy is to the left of a1(h) and High if the economy is to the right of a2(h); and (ii)
there exists ĥ ∈ [0, 1] such that an agent B at (a1(ĥ), ĥ) and agent C at (a2(ĥ), ĥ) are
indifferent between High and Low. Since a1(h) < a2(h), for every h ∈ [0, 1], it cannot be
the case that both are indifferent because both expect the same dynamics for ht given any
realization of the Brownian motion, but C expect larger values of at (because a2(ĥ) > a1(ĥ)).
However, this argument fails when the process for at exhibits mean reversion. In order to
see this, consider the case where a1(ĥ) < µ and a2(ĥ) > µ. Now, C expects at to fall,
while B expects at to rise. Although C still expects larger values of at for any realization
of the Brownian motion, B expects better relative dynamics for at, which can imply a more
optimistic expectation about the dynamics of ht.

Frankel and Burdzy (2005) overcome this problem by transforming the space and time
of the stochastic process at, so the difference in instantaneous utility of agents locked in
each regime can be written as a function of an i.i.d. process and time. Then, we can
follow a procedure that is similar to Frankel and Pauzner (2000) for every date t in a
transformed time-and-fundamental space. However, technical complications arise when the
mean reversion lasts forever. For a given time t, in the transformed time-and-fundamental
space, we may not be able to find a translation of a boundary such that every agent at every
date τ > t chooses Low (or High), that is, the region where no action is dominant keeps
expanding in time in the transformed fundamental space.

3 Stimulus policies

The price of a particular variety depends positively on the quantity produced of other
goods. For instance, if others are selling yLt units of their goods, a producer will face low
demand and will only be able to sell yHt units at a low price. Consequently, one’s profits are
increasing on others’ output. Since investing has a positive externality on other agents, we
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expect that without any intervention there will be underinvestment in this economy. The
natural questions that emerge are: what would a benevolent central planner choose, i.e., in
which states would he invest? How would he implement this first-best?

Suppose we have already verified that the central planner’s choice is to invest according to
a threshold (we will show this later). Since we expect that agents underinvest in equilibrium,
one should expect that the planner’s threshold would be to the left of agent’s threshold,
meaning that the planner will invest in more states than agents do. But how would this
threshold look like?

Figure 3: Policy alternatives

a

h = 1

h = 0

a∗a∗p a∗p′a∗p′′

The thresholds a∗p, a∗p′ and a∗p′′ depicted in Figure 3 correspond to different policy objec-
tives. A stimulus policy that implements the threshold a∗p is not particularly concerned with
either preventing the economy from falling into a recession or rescuing the economy when
productivity picks up. In contrast, a policy that implements a∗p′ prescribes investment when
a is relatively low while h is still high, which might keep the economy away from the region
where h falls down and avoid an investment slump. In the other extreme, a central planner
could implement a vertical threshold (a∗p′′ in Figure 3), implying little effort in preventing
recessions but a lot of effort to stimulate the economy as soon as possible when fundamentals
pick up.

Each of the thresholds a∗p, a∗p′ and a∗p′′ correspond to different timings of stimulus policies.
For example, consider the economy is in some state with h = 1 and to the right of both a∗p

and a∗p′ . Suppose productivity begins to fall. The central planner that chooses according
to the threshold a∗p will give up investing sooner than the central planner that implements
a∗p′ . The latter will invest even when fundamentals are relatively lower. Now suppose the
economy got into recession, a is to the left of both planner’s thresholds and h is low. If
productivity starts to increase, the social planner that implements a∗p will start to invest
earlier than the central planner that chooses according to a∗p′ .
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3.1 The Central planner problem

We now characterize the central planner’s problem. The planner maximizes expected wel-
fare, given by:

Eτ (W ) = Eτ

ˆ ∞
τ

e−ρ(t−τ) (Y (h, a)− αψI(t)) dt (12)

where Y (h, a) is given by (6) and I(t) ∈ [0, 1] is the decision of the planner about investing
at time t.

The path of a is exogenously given and the path of h depends on future decisions of the
planner, which is taken as given by the planner at a certain point in time. The planner
chooses investment I(τ) at every point in time, which affects h in the following way: investing
dI today raises h by αdI, but that increase depreciates at rate α. Hence

dh

dI
= αe−α(t−τ)

Maximizing Eτ (W ) with respect to investment I(τ) at a given time τ implies that the
planner is indifferent between any level of investment if:

ˆ ∞
τ

e−ρ(t−τ)Eτ

(
dY (h, a)

dh
αe−α(t−τ)

)
dt− αψ = 0

Since
dY (h, a)

dh
= eat

θ

θ − 1

(
htx

θ−1
θ

H + (1− ht)x
θ−1
θ

L

) 1
θ−1

(
x
θ−1
θ

H − x
θ−1
θ

L

)
we get that the planner chooses to invest at time τ (I(τ) = 1) if:

ˆ ∞
τ

e−(ρ+α)(t−τ)Eτ

[
θ

θ − 1π(ht, at)
]
dt ≥ ψ (13)

where π(ht, at) is given by (7).
The expression for the planner decision is thus very similar to the agent’s problem. The

only difference is the term θ/(θ − 1) multiplying the benefit from investing.
In order to get some intuition, consider an expression for welfare that is given by the

sum of individual agents’ payoffs (which depend on others’ actions as well): W (h, a) =
huH(h, a) + (1− h)uL(h, a). We get that:

dW

dh
= (uH(h, a)− uL(h, a)) +

(
h
∂uH(h, a)

∂h
+ (1− h)∂uL(h, a)

∂h

)

The agent considers only the first term in brackets, and not the externality on others’
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payoffs. However, in this case it turns out that:(
h
∂uH(h, a)

∂h
+ (1− h)∂uL(h, a)

∂h

)
= 1
θ − 1 (uH(h, a)− uL(h, a))

Intuitively, the agent is taking into account the effect on its income but not the positive
effect on others that come from her selling at a lower price. The lower the price elasticity,
the larger the externality. Importantly, the externality is just a fraction of the agent’s
payoff from investing. In consequence, for a given return to investment, the externality is
independent of h or a.

3.1.1 The timing of stimulus policies

The key implication of (13) for the timing of stimulus policies is in the next proposition:

Proposition 4. Optimal policy:

1. [Optimality of a constant subsidy] The planner’s solution can be implemented by a
constant subsidy of ψ/θ whenever an agent invests.

2. [Parallel shift of the threshold] When η → 0, the planner invests according to a thresh-
old a∗P such that for any h ∈ [0, 1],

a∗P (h) = a∗(h)− log
(

θ

θ − 1

)

where a∗ is the threshold for the decentralized equilibrium.

Proof. First statement: The solution to the planner’s problem prescribes investment if (and
only if) the condition in (13) is satisfied. Multiplying both sides of (13) by (θ − 1)/θ yields
the condition for an agent to invest in (9) in an economy where the cost for investing is
ψ − ψ/θ.

Second statement: Since π(ht, at) can be written as eatg(ht), for some function g(·), we
can rewrite condition 13 as

ˆ ∞
τ

e−(ρ+α)(t−τ)Eτ

[
e(at+log( θ

θ−1))g(ht)
]
dt ≥ ψ (14)

Define bt = at + log
(

θ
θ−1

)
and consider the planners’ problem in the (b, h)-space. The

expression for the planner’s decisions is identical to the expression in (9) for the agents’
decisions in the decentralized equilibrium (in the (a, h)-space). Moreover, if η = 0, the law
of motion for bt is exactly the same as the law of motion for at. Therefore, the solution for
the problem must be the same as well.
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We know there is a unique decentralized equilibrium given by a threshold a∗, hence
a∗ = b∗, which implies a∗(h) = a∗P (h) + log

(
θ
θ−1

)
and yields the claim.

Figure 4: Planner’s problem

a

h = 1

h = 0

a∗a∗p

The solution to the planner’s problem in (13) considers the benefits from investing by
an individual producer multiplied by a constant larger than 1. Hence the only problem
with the individual decision is that it requires a benefit from investing that is too high. A
constant subsidy takes care of this problem.

As shown in (14), the expressions for the planner’s problem in (13) is the same as
the solution for the decentralized problem in (9) when a constant is added to the log of
productivity. Without mean revertion in the process for at, that implies a translation of the
equilibrium threshold, where that constant is subtracted from the productivity threshold.
The slope of the equilibrium threshold a∗ reflects the relative effects of expected demand and
productivity on the expected profits from investing, and there is no reason for the planner’s
solution to affect this balance.

The argument does not work when the process for at exhibits mean reversion because in
this case translating the threshold is not isomorphic to re-labeling the a-axis. A translation
of a∗ also implies a different path of at and, consequently, a different balance between
expected demand and productivity around that threshold. Thus with mean reversion, the
planner’s decision is still given by (13), but Proposition 4 does not apply. However, we
show in Section 4 that for a reasonable amount of mean reversion, the results are essentially
unchanged.

The next proposition compares the return of investment and the gross product when the
economy is about to enter (leave) an investment slump under the planner’s threshold.

Proposition 5. When η → 0 we have that:

1. ∂Y (1,a∗p(1))
∂h

>
∂Y (0,a∗p(0))

∂h
: when the economy is at the planner’s threshold, the instanta-

neous return of investing is higher when h = 1 than it is when h = 0.

2. Y (1, a∗p(1)) > Y (0, a∗p(0)): when the economy is at the planner’s threshold, the gross
product is higher when h = 1 than it is when h = 0.
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Proof. See Appendix A.

Proposition 5 states that the planner requires a smaller instantaneous return to invest
when the economy is at an investment slump and output is low. The intuition is that when
economic activity is high, the planner knows it might fall and therefore is willing to invest
only if the current return is really worth it. Conversely, when the economy is in recession,
the planner expects activity to go up in the future (it can not go below zero), and therefore
is willing to invest today even if the current return is not that high.

This idea seems to be in line with the Keynesian intuition that when economic activity
is low, the government should be more willing to stimulate investment in order to help coor-
dinate investment, even if the return to investment is not so large. However, as Proposition
4 shows, the government should not pay larger subsidies when economic activity is low,
the planner’s problem prescribes a constant subsidy. The conundrum is solved by noting
that agents also internalize the possibility of an increase in h when the economy is at an
investment slump. A corollary of Proposition 5 is that π(1, a∗(1)) > π(0, a∗(0)): agents
also require a smaller instantaneous return to invest when h is low. The only thing they
do not take into account is the positive effect of their investment on others’ payoffs, but
Proposition 4 shows that is proportional to the private return to investment, it does not
vary with economic activity.

3.1.2 The planner’s problem with a monitoring cost

One potential objection to this analysis is that it ignores the costs of subsidizing investment.
When the economy is close to the planner’s threshold a∗P , the planner is close to indifferent
between investing or not, so any cost to subsidize investment would make the planner choose
no investment.

Subsidizing investment requires that the planner monitors firms’ investments. One sim-
ple way to capture that is to assume the planner faces a cost c for each unit of investment
it subsidizes. Assume c < ψ/(θ − 1).10 Then the planner chooses to maximize:

Eτ (W ) = Eτ

ˆ ∞
τ

e−ρ(t−τ) (Y (h, a)− α(ψ + c)I(t)) dt

which means the planner chooses to invest if:
ˆ ∞
τ

e−(ρ+α)(t−τ)Eτ

[
θ

θ − 1π(ht, at)
]
dt ≥ (ψ + c)

which is basically what we got before, and an argument similar to the one in Proposition 4
10In case c ≥ ψ/(θ − 1), monitoring costs are so large that subsidizing investment is never worth it.
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shows that it leads to different translation of the threshold, but no rotation. The paralell
shift of the equilibrium threhsold is robust to the inclusion of a monitoring cost.

3.2 Minimal spending policies

Proposition 4 shows that a constant subsidy implements the first best. However, in a large
set of states, much less generous subsidies would be enough to coax agents to invest. This
leads to the following question: suppose the government has a limited budget to spend
with stimulus policies, cannot implement the planner’s solution, but can commit to a given
stimulus policy. Would it do anything different? For example, it could commit to subsidize
investment when h is high but a is low, hoping agents would expect larger demand and
invest more. Would it do so? Would it rotate the threshold?

A stimulus policy consists in a potentially state-dependent investment subsidy for agents
that choose to invest. Formally, a policy specifies a subsidy ϕ(h, a) that will be given in
state (h, a) for those who pay the fixed cost ψ. We assume the policy is perfectly anticipated
by all agents.

We now focus on minimal spending policies, which are the cheapest way to subsidize
producers that implements a certain threshold.11

Definition 1. Let a∗ be an equilibrium of the game and a∗p a continuous function such that
a∗p(h) < a∗(h), for every h. Let â be the boundary where an agent is indifferent between
High and Low when others are playing according to a∗p. The function ϕ(h, a) is the minimal
spending policy that implements a∗p if

ϕ(h, a) =

ψ −
´∞

0 e−(ρ+α)tE[π(ht, at)|a, h, a∗p]dt if a∗p(h) ≤ a ≤ â(h)

0 otherwise
. (15)

Figure 5 shows 3 thresholds: a∗p is the threshold implemented by the policy, â is the best
response of a player that believes others will play according to a∗p and a∗ is the equilibrium
threshold without intervention. By definition, a∗ is the best response to others playing
according to a∗. Now, the sheer change in beliefs affects agents’ strategies: once they
believe others will play according to a∗p, they will be indifferent between High and Low at a
threshold â such that â(h) < a∗(h) for all h ∈ [0, 1].

A government following a minimal spending policy is committed to give an investment
subsidy to each agent in the region between a∗p and â (the gray area in figure 5). The

11There would be cheaper ways to implement a threshold if policies were allowed to determine payments
from producers that strictly prefer to invest or that are not investing. However, that would not be a stimulus
policy. The objective of this paper is to understand which policies minimize spending. It is also important
to understand which policies minimize dead-weight losses from taxation, but that is beyond the scope of
this paper.
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Figure 5: Example of minimal spending policy

a

h = 1

h = 0

a∗a∗p â

subsidy ϕ(h, a) makes her indifferent between choosing High and Low given others will play
according to a∗p. Under those beliefs, playing according to a∗p is a best response under this
policy, so a∗p is an equilibrium. Interestingly, no subsidies are needed in the area between â

and a∗.12

For a given initial condition (hτ , aτ ), the planner chooses a threshold a∗p(h) to maximize
(12) subject to ˆ ∞

τ

e−ρ(t−τ)Eτ [ϕ(h, a)] ≤ C

where C is a constant and ϕ(h, a) is given by (15).
In principle, the solution to this problem would depend on where the planner starts. In

order to understand what a government would do in case of commitment, we consider the
solution of a planner born in some random state, being the probability of being in a given
state proportional to the frequency of that state (once the policy is implemented). That is
similar in spirit to the idea of pre-commitment under a timeless perspective in Woodford
(1999).

4 Numerical results

We now calibrate and solve the model numerically. That has three objectives: (i) to get
a better understanding of the workings of the model; (ii) to check whether a reasonable
amount of mean reversion affects the solution to the central planner problem; and (iii) to
check whether commitment to minimal spending policies could lead to threshold rotation.

In order to solve the model numerically, we work with an approximation of the model
presented in Section 3. Now time is discrete and each period has length ∆, where ∆ is a
small number. Hence time t ∈ {0,∆, 2∆, 3∆, ...}. The stochastic process of at is given by

at = at−1 + η(µ− at−1)∆ + σ
√

∆εt,
12Notice that the equilibrium under the minimal spending policy is no longer unique. If agents believe

others will play according to a∗ their best response is to play according to a∗, and thus the policy has no
effect at all.
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where εt is an iid shock with a standard normal distribution. In the beginning of each
period, after at is observed, (1− e−α∆) individuals are randomly selected and get a chance
to switch regime. The instantaneous payoffs of being locked in each regime are the same
as before, but now agents discount utility by the factor e−ρ∆t. When ∆ → 0, this model
converges to the model of Section 2.

4.1 Threshold Computation

Our algorithm aims at finding a threshold where agents are indifferent between actions High
and Low if they believe others will play according to that threshold. The steps are basically
the following: first, pick an arbitrary threshold a∗0 and choose a finite grid for h in the
interval [0, 1]. Then, for every point h in the grid, simulate n paths of at and ht departing
from (a∗0(h), h) assuming every agent will play according to a∗0. Use those paths to estimate
the gain in utility from picking High of an agent choosing at (a∗0(h), h). That yields an
estimate of V (a∗0(h), h, a∗0). If the gain in utility is close to zero in every point of the grid,
stop. Otherwise, update a∗0 and repeat the simulation process that leads to the estimation
of V (a∗0(h), h, a∗0) until it converges.13

4.2 Calibration

In the baseline calibration, parameters were chosen to satisfy the following criteria:

• The mean of output in peaks is about 4% higher than in troughs, which is roughly
consistent with the data using the two-quarters definition of business cycles.14

• The economy stays 30% of time at the left of the threshold, that is, agents are not
investing 30% of the time, approximately.15

• Once the economy goes to the left of the threshold, the mean time it stays there is 5
quarters. We consider that the economy went to the left of the threshold if it crossed
it and remained there for at least 36,5 days.16

13Alternatively, we can assume every agent is choosing Low, find the threshold that determines the region
where playing High is a dominant strategy (call it aH0 ), then assume all agents play according to aH0 , find
again the best response and keep iterating until it converges. We can also start by assuming all agents
play High, find the region where playing Low is dominant and start the iterative process of eliminating
dominated strategies from there. Both equilibrium thresholds and the one found using the first algorithm
presented coincide, but these are more expensive in terms of computing time.

14According to the two-quarters definition of business cycles, a recession starts when output goes down
for two consecutive quarters and ends when it increases for two consecutive quarters.

15When the economy is to the left of the threshold, no agent is investing. If that is interpreted as a
recession, this calibration implies the economy is in recession 30% of the time. Owing to the lack of a
positive trend in our productivity parameter, output is increasing roughly 50% of the time.

16That is because it is not reasonable to consider an economy is in a recession if unemployment fell for 3
consecutive days.
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Output is computed net of depreciation, so the present value of output is equivalent to the
present value of consumption (and thus utility) in the economy. The user cost of capital
for an agent locked in the High regime is equal to (ρ + α)ψ. At time t, there are ht agents
in the High regime, so we subtract the cost of capital in the economy ht(ρ + α)ψ from the
total amount produced, given by (6).

The parameters µ and xL were normalized to zero and one, respectively. The chosen
values of the parameters θ and ρ are standard in the literature, and α was made equal to 1,
meaning that investment decisions are made once a year on average. All other parameters
in the model were chosen to match the desired statistics. Table 1 shows the parameters (the
time unit is years, when needed). In Appendix B we show that our results are robust to
different specifications.

Table 1: Parameters
Parameter Symbol Value
Production regime High xH 1.1
Production regime Low xL 1
Elasticity substitution θ 6
Fixed cost of investing ψ 0.0806
Mean of fundamental process µ 0
Arrival rate of Poisson Process α 1
Standard deviation of shocks σ 0.03
Discount rate ρ 0.03
Mean reversion intensity η 0.7
Time interval lenght ∆ 0.005

4.3 Results

4.3.1 Equilibrium

Figure 6 shows the equilibrium threshold and the path of the economy following a random
realization of at. At the left of the threshold, agents do not invest, so h decreases; at the right
of the threshold, agents invest, so h increases. A point (a, h) describes the current state of
the economy and, together with the equilibrium threshold, determines agents’ expectations
about the future. In this example, the economy starts to the right of the threshold at
(0, 0.5), so h initially increases. About a year later, negative shocks to a bring the economy
to the left of the equilibrium threshold and h starts to decrease. At that point, it is optimal
for agents to choose Low because they expect others will do so.

Figure 7 shows output in the economy and what output would be in case h = 1. The
variance of output in this economy is about 20% higher relative to the case where h is
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Figure 6: Estimated threshold
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always equal to 1, because low values of the productivity parameter a lead to periods of
low expected demand where agents choose not to invest. In this model, policies can do
nothing about the exogenous movements in a but can increase the region where agents
invest. Investment subsidies can bring output closer to the h = 1 curve.

Besides amplifying the effects of negative shocks, the endogenous and staggered reaction
of h also implies that low productivity periods have long-lasting negative effects. As shown
in Figure 7, output when the economy is coming back from a recession is lower than right
before the recession for the same productivity parameter a. That occurs not only because
staggered investment decisions mechanically add persistence to output, but also because
agents require a higher productivity to invest when h is low.

4.3.2 The planner’s problem

The result concerning the central planner’s choice in Proposition 4 does not apply when
the stochastic process of productivity is mean reverting. In what follows, we show that
for reasonable values of the mean reversion parameter, the threshold implemented by the
central planner is very close to a parallel shift of the equilibrium threshold.

Figure 8 shows the estimated planner’s threshold together with a translation of the
original threshold. As one can see in the figure, both thresholds practically coincide. The
difference between the slope (measured here as the distance in the horizontal axis of a
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Figure 7: Output fluctuations
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Figure 8: Planner’s threshold with mean reversion
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threshold extreme points, i.e., |a(1) − a(0)|) of the planner’s threshold and the agent’s
threshold was no more than 0.1% of the slope of the agent’s threshold. In appendix B
we show that results are robust to alternative parametrizations: we did the same exercise
under different specifications and the difference between the slope of both thresholds was
on average around 2%.

Another interesting feature of the mean reverting process is that the shift in the thresh-
old is larger than in the case without mean reversion. That is because the productivity
parameter is expected to return to its mean in the near future, so the planner is more
willing to invest for a given level of fundamentals.

4.3.3 Minimal spending policies

Once the equilibrium threshold a∗ has been obtained, we consider some minimal spending
policies parameterized in the following way:

a∗c,ξ(h) = a∗(h) + ξϑ(h)− c,

where ϑ(h) = 1 − 2h, c > 0 and ξ is a real number. A policy is then a pair (ξ, c), where
c > 0 implies the threshold is shifed to the left and ξ 6= 0 implies the threshold is rotated.

For the sake of computational efficiency, instead of solving the problem proposed in Sec-
tion 3.2, we approximate the solution of the dual of problem of minimizing the government
spending subject to some utility level. Therefore, for some random initial state (hτ , aτ ) the
government chooses a threshold a∗p(h) to minimize

ˆ ∞
τ

e−ρ(t−τ)Eτ [ϕ(h, a)] dt

subject to
Eτ [W ] ≥ U,

where U is a constant and ϕ(h, a) is given by (15).
Initially, we set a grid for ξ that includes zero and a value for c.17 We then estimate the

lifetime utility of a representative agent born in a random state (we simulate the economy
and take out the first 50 years), given the stimulus policy (0, c). We then do the same for
different values of ξ and adjust the value of c for each policy so that the utility gain from all
policies is (approximately) the same. At the end of this process, we have different stimulus
policies that deliver the same utility but different slopes.

For each policy, we find the best response of an agent (the curve â in figure 5) given
17We chose a value c such that under the parallel stimulus policy the economy stayed approximately 12%

of the time to the left of threshold.
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that others will follow the threshold prescribed by the policy. Then we compute the gain in
utility from picking High for a set of points (in the gray area in Figure 5). Using interpo-
lations, we can find the subsidy needed at each point ϕ(h, a) to make the agent indifferent
between investing or not. Finally, we simulate the economy several times and estimate the
government spending under each policy by applying the formula given by (15).

We now turn to the comparison of different policies. Figure 9 shows different stimulus
policies corresponding to different values of ξ, that deliver the same welfare improvement.
The average duration of a recession decreases with the slope of the threshold. In the exam-
ples we tested, it varies from about 3 quarters in the policy represented by the threshold
with a higher slope to almost 5 quarters in the policy corresponding to the lower slope.18

Figure 9: Policies
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Figure 9 helps understanding the different effects of each policy. Consider an economy
in a recession, with h = 0 and a = −0.045, and at is moving up towards zero. The stimulus
policy that implements the threshold with higher slope (the almost vertical line in Figure 9)
kicks in as soon as fundamentals hits a = −0.03 and keeps paying subsidies for a long time.
In contrast, the policy that implements the threshold with lower slope prescribes subsidies
only when fundamentals are close to a = −0.0075. The flipside of these policies can be seen
when the economy is in good times but heading to a recession, say a = 0, h = 1 and the
productivity parameter is moving down towards −0.045. The key difference is that now, if

18A comparison between Figures 9 and 8 shows that the planner’s threshold is very far from the policies
simulated in this section, so that the economy experiences almost no recession under the planner’s solution.
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productivity keeps going down, the policy that implements the high-slope threshold soon
gives up investing and the economy falls into a recession as soon as the value of a goes
below −0.03. Subsidies will be given again whenever productivity gets past that point. In
contrast, the low-slope stimulus policy prescribes a lot more subsidies to be spent in order
to prevent the economy from falling into a recession.

This discussion highlights the trade-off involved in the choice of the timing of fiscal
stimulus. The subsidies paid according to the low-slope policy to producers when h is high
but a is low might prevent an investment slump. Anticipating that, demand expectations
for a given variety will be larger, so producers will be more willing to invest – they will
require less subsidies to choose High. However, the anticipation that a recession will last for
a long time if negative shocks to a bring the economy to the no-investment region reduce
incentives for investment. The choice of the timing of fiscal stimulus has to take into account
that a subsidy for a producer at (a, h) affects not only her incentives to invest but also the
incentives for other producers choosing before the economy might reach that point.19

Figure 10: One-off and Anticipated Subsidies
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Figure 10 shows the amount of subsidies required to coax agents to invest in two situa-
19In the model, the timing of investment is exogenous. That assumption would have some important

undesired effects if the stimulus policies analysed here provided incentives for producers to delay investment.
However, that does not occur in the case of minimal spending policies, in equilibrium producers that receive
subsidies are actually indifferent between investing or not. Larger subsidies only compensate for a lower
productivity and lower expected demand.
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tions: when the government is not intervening in the economy, and when it is implementing
the stimulus policy with ξ = 0 in Figure 9. Under the stimulus policy, agents expect a larger
demand for their goods. As a result, they require less subsidies to invest. The difference
between both lines in Figure 10 corresponds to the gains from the increase in expected
demand caused by the stimulus policy. In this model, policies that are expected to last
and affect other agents are cheaper owing to the strategic complementarities in investment
decisions.

Figure 11 shows the amount of spending needed to implement each of the 5 policies
depicted in Figure 9 and confirms the main result of this paper. The amount of subsidies
required for the obtention of a given utility level is convex in ξ with a minimum at ξ = 0.
The cheapest policy is the one that shifts the threshold to the left without rotating it.
In Appendix B, we show that the result is robust: the minimum spending policy under
alternative parameters prescribes ξ = 0 in all specifications we tried.

Figure 11: Government spending
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5 Concluding remarks

This paper proposes a tractable dynamic macroeconomic model with staggered investment
decisions where demand expectations affect investment and might lead to coordination fail-
ures. Stimulus policies affect beliefs about the probability of an investment slump in a
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continuous and intuitive way. The model generates a rich pattern of fluctuations in output
and capacity utilization that can be illustrated in a simple diagram with 2 variables: pro-
ductivity and measure of agents operating at full capacity. However, such simplicity comes
at a price, in particular, producers are restricted to a binary set of actions, there are no
other relevant state variables, agents are risk-neutral and expectations are pinned down by
only 2 variables. Future research might be able to extend this environment and relax some
of those assumptions.

The model is consistent with policies that try to restore market confidence when the
economy is at a recession, and was used to study the impact of different policies aiming
at mitigating coordination failures. The equilibrium threshold for investment features a
balance between economic activity and productivity. Stimulus policies should try to shift
the threshold without affecting this balance. That means establishing a maximum level of
subsidies (or tax cuts) to investment that is independent on productivity, capacity utilization
and economic activity. In other words, the maximum level of subsidies should be the same
when the economy is about to enter the no-investment region or when it is about to leave it.
Too much emphasis on preventing an investment slump is sub-optimal, but so is focusing
exclusively on productivity.
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A Proofs

A.1 Proof of Proposition 1

Consider an agent deciding at time normalized to 0 who believes that every agent that will
get an opportunity to change regime will choose Low. He assigns probability 1 that the path
of ht will be h↓t = h0e

−αt, which is independent of a. Thus, choosing High raises his payoff
by

U(h0, a) =
ˆ ∞

0
e−(ρ+α)tπ(h↓t , a)dt− ψ

= ea
(
x
θ−1
θ

H − x
θ−1
θ

L

)ˆ ∞
0

e−(ρ+α)t
(
h↓tx

θ−1
θ

H + (1− h↓t )x
θ−1
θ

L

) 1
θ−1

dt− ψ.

Therefore this agent will choose High iff U(h0, a) ≥ 0. Now, U(h0, a) is continuous and
strictly increasing in a, lima→∞ U(h0, a) = ∞, and lima→−∞ U(h0, a) = −ψ. Thus for any
h0, there is a = aH(h0) such that U(h0, a) = 0. Since U(h0, a) is strictly increasing in a, for
any a′ > aH(h0) we have U(h0, a

′) > 0 and thus choosing High is a strictly dominant strategy
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(any other belief about the path of ht will raise the relative payoff of choosing High). Notice
that U(h0, a) is strictly increasing in both a and h0 and thus aH(h0) is strictly decreasing.

A similar argument proves that there exists a strictly decreasing threshold aL such that
if a < aL(h0), Low is a dominant action. Consider an agent who believes others will choose
High after him. He believes that the motion of ht will be given by h↑t = 1− (1− h0)e−αt, so
choosing High instead of Low raises his payoff by

U(h0, a) =
ˆ ∞

0
e−(ρ+α)tπ(h↑t , a)dt− ψ

= ea
(
x
θ−1
θ

H − x
θ−1
θ

L

)ˆ ∞
0

e−(ρ+α)t
(
h↑tx

θ−1
θ

H + (1− h↑t )x
θ−1
θ

L

) 1
θ−1

dt− ψ.

This agent will choose Low whenever U(h0, a) < 0 and, as in the previous case, we can
show that there exists a strictly decreasing threshold aL such that if a < aL(h0), Low is a
dominant action. Since for every h0 and t > 0 we have h↑t > h0 > h↓t , U(h0, a) > U(h0, a).
This implies aH(h0) > aL(h0).

Take a pair (a, h0) such that aL(h0) < a < aH(h0). Since a < aH(h0), if an agent believes
that the path of ht will be h↓t , then U(h0, a) < 0 and thus his optimal strategy is to play
Low. Therefore this belief is consistent and the strategy profile where every player plays
Low is an Nash equilibrium. Likewise, since a > aL(h0) the strategy profile where every
player plays High is also a Nash equilibrium. Hence, there is multiplicity in this set.

A.2 Proof of Proposition 2

In order to apply the existence arguments in Frankel and Pauzner (2000), it suffices to show
that playing High is a dominant choice for some large enough a and that Low is a dominant
choice for some small enough a. This is so because i.i.d. shocks are needed just to show
uniqueness, and Corollary 1 in Burdzy et al. (1998) guarantees that Lemma 1 in Frankel
and Pauzner (2000), used in their proof, holds for our more general process for at.

Solving dat = η(µ− at)dt+ σdZt we get that

at = a0e
−ηt + µ(1− e−ηt) + σ

ˆ t

0
eη(s−t)dZs.

And thus at conditional on a0 is normally distributed with mean

E0 [at] = µ+ e−ηt(a0 − µ).

and variance
V ar0 [at] = σ2

2η
(
1− e−2ηt

)
.
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Therefore, eat conditional on a0 follows a log-normal distribution with mean

E0 [eat ] = exp
{
µ+ e−ηt(a0 − µ) + 1

4
σ2

η

(
1− e−2ηt

)}
. (16)

Consider an agent deciding at some point (0, a0) who believes that ht = 0 for every t ≥ 0.
His utility gain from choosing High is

W (a0) =
(
x
θ−1
θ

H − x
θ−1
θ

L

)
x

1
θ
L

ˆ ∞
0

e−(ρ+α)tE0 [eat ] dt− ψ

>
(
x
θ−1
θ

H − x
θ−1
θ

L

)
x

1
θ
L

ˆ 1

0
e−(ρ+α)t inf {E0 [eat ]}t∈(0,1) dt− ψ.

By (16), we have that lima0→∞ inf {E0 [eat ]}t∈(0,1) =∞. Thus, there exists some large enough
a∗∗ such that High is a strictly dominant action when a > a∗∗.

Now consider an agent deciding at some point (1, a0), with a0 < µ, who believes that
ht = 1, for every t ≥ 0. His gain in utility of choosing High is given by

W (a0) =
(
x
θ−1
θ

H − x
θ−1
θ

L

)
x

1
θ
H

ˆ ∞
0

e−(ρ+α)tE0 [eat ] dt− ψ

<
(
x
θ−1
θ

H − x
θ−1
θ

L

)
x

1
θ
H

(ˆ Q

0
e−(ρ+α)t

(
sup {E0 [eat ]}t∈(0,Q)

)
dt

+
ˆ ∞
Q

e−(ρ+α)t
(
µ+ σ2

4η

)
dt

)
− ψ.

By (16), we have that lima0→−∞ sup {E0 [eat ]}t∈(0,1) = 0. For large enough Q, the integral
term is small enough, so W (a0) < 0. Hence there exists some small enough a∗∗ such that
Low is a strictly dominant action when a < a∗∗.

We have shown the existence of dominant regions. Now, as in Frankel and Pauzner
(2000) we can iteratively eliminate strictly dominated strategies. This process converges to
a threshold a∗ such that agents are indifferent between investing or not at (a∗(h), h) for all
h ∈ [0, 1], if they believe the others will play according to a∗. Given a threshold a∗, notice
that payoffs are increasing in a and h. Thus, playing according to a∗ is an equilibrium.

A.3 Proof of Proposition 3

Before we prove Proposition 3, it is useful to establish the following results.

Lemma 1. Let ât be the following latent variable
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ât =

at if at < M

ã otherwise
,

where at is given by dat = ηt(µ−at)dt+σdZt, with ηt given by (10). Then limaτ→∞Eτ
[
eât
]

=
eM and limaτ→−∞Eτ

[
eât
]

= 0, for every t > τ and every τ ≥ 0. Moreover, eM and zero
are, respectively, an upper bound and a lower bound for rτ (t) ≡ Eτ [ât], for every τ ≥ 0.

Proof. First assume τ < T . It follows from (A.2) that when τ < t < T , at|aτ has a normal
distribution with mean and variance given by (A.2) and (A.2), respectively. In that case we
have

Eτ
[
eât
]

= 1
Σt

√
2π

ˆ M

−∞
exp

at − 1
2

(
at − µ− e−ηt(aτ − µ)

Σt

)2
 dat

+
(

1− Φ
(
M − µ− e−ηt(aτ − µ)

Σt

))
eM , (17)

where Φ is the standard normal distribution and Σt ≡ σ
√

1
2η (1− e−2ηt).

Now fix t ≥ T . In that case, we have that at|aT follows a normal distribution with mean
aT and variance σ2(t− T ). Therefore, by the law of iterated expectations,

Eτ [at] = Eτ [Eτ [at|aT ]] = Eτ [aT ] = µ+ e−ηT (aτ − µ),

where the last equality follows from (A.2). Moreover,

V arτ [at] = Eτ [V arτ [at|aT ]] + V arτ [Eτ [at|aT ]] = σ2(t− T ) + Σ2
T .

We can show that at|aτ follows a normal distribution, 20 and so,

Eτ
[
eât
]

= 1√
(σ2(t− T ) + Σ2

T ) 2π

ˆ M

−∞
exp

at − 1
2

at − µ− e−ηT (aτ − µ)√
(σ2(t− T ) + Σ2

T )

2
 dat

+
1− Φ

M − µ− e−ηT (aτ − µ)√
(σ2(t− T ) + Σ2

T )

 eM . (18)

Notice that both (17) and (18) are continuous on aτ and that they coincide at t = T . Taking
limits with aτ →∞ and aτ → −∞ of (17) and (18) completes the proof for the case where

20We know that aT |aτ ∼ N(µ + e−ηT (aτ − µ), σ
2

2η (1 − e−2ηT )) and at|aT , aτ ∼ N(aT , (t − T )σ2). Since
Eτ [at|aT ] is linear on aT and V arτ [at|aT ] does not depend on aT we guarantee bivariate normality of the
vector (at, aT ) conditional on aτ (see Arnold et al. (1999), p. 56) and therefore its marginal distributions
are normal.
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τ < T . The proof for the case where τ ≥ T is very similar and therefore omitted. The last
sentence of the Lemma comes directly from inspection of (17) and (18).

Lemma 2. Suppose σ > 0, the mean reversion parameter ηt is given by (10) and the relative
payoff of investing is given by (11). Then, if M is sufficiently high, there are constants a′

and a′′, with a′ < a′′ such that if a(h) > a′′ it is strictly dominant to play High and if
a(h) < a′ it is strictly dominant to play Low.

Proof. First, notice that we can write π̂(ht, at) = π(ht, ât), for every t. Assume that an
agent deciding at some period normalized to 0 has the belief that ht = 0, for every t ≥ 0.
Thus, his payoff of investing is given by

U(a0) ≡ x
1
θ
L

(
x
θ−1
θ

H − x
θ−1
θ

L

)ˆ ∞
0

e−(ρ+α)tE0
[
eât
]
dt− ψ

> x
1
θ
L

(
x
θ−1
θ

H − x
θ−1
θ

L

) ˆ 1

0
e−(ρ+α)tE0

[
eât
]
dt− ψ

> x
1
θ
L

(
x
θ−1
θ

H − x
θ−1
θ

L

)
e−(ρ+α) inf

{
E0
[
eât
]}

t∈(0,1)
− ψ.

But inf
{
E0
[
eât
]}

t∈(0,1)
converges to eM when a0 goes to∞. Thus as long as M is suficiently

high, we can get an a′′ such that U(a′′) > 0.
Now consider an agent deciding at some period τ normalized to zero that believes that

ht = 1 for every t ≥ 0. His gain in utility of investing is given by

U(a0) ≡ x
1
θ
H

(
x
θ−1
θ

H − x
θ−1
θ

L

)ˆ ∞
0

e−(ρ+α)tE0
[
eât
]
dt− ψ

< x
1
θ
H

(
x
θ−1
θ

H − x
θ−1
θ

L

)(ˆ Q

0
e−(ρ+α)t sup

{
E0
[
eât
]}

t∈(0,Q)
dt+

ˆ ∞
Q

e−(ρ+α)teMdt

)
− ψ.

But sup
{
E0
[
eât
]}

t∈(0,Q)
goes to zero as a0 goes to −∞. For large enough Q, the second

integral term is small enough, so for sufficiently small a′, we get U(a′) < 0.

Proof of Proposition 3. Since we have proved the existence of dominance regions, it
follows from Theorems 1 and 4 in Frankel and Burdzy (2005) (since our model is a special
case of their model).

A.4 Proof of Proposition 5

First statement
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Suppose the planner is investing according to a threshold a∗p(h). For any initial state,
there is always a positive probability that the economy will reach states where ht < 1 or
ht > 0. That yields the following inequalities:

ˆ ∞
τ

e−(ρ+α)(t−τ) θ

θ − 1E
[
π(1, at)

∣∣∣aτ = a∗p(1)
]
dt >

ˆ ∞
τ

e−(ρ+α)(t−τ) θ

θ − 1E
[
π(ht, at) | hτ = 1, aτ = a∗p(1)

]
dt = ψ (19)

ˆ ∞
τ

e−(ρ+α)(t−τ) θ

θ − 1E
[
π(0, at)

∣∣∣aτ = a∗p(0)
]
dt <

ˆ ∞
τ

e−(ρ+α)(t−τ) θ

θ − 1E
[
π(ht, at) | hτ = 0, aτ = a∗p(0)

]
dt = ψ, (20)

where the last equality in both equations comes from the fact that equation (13) is satisfied
with equality on the planner’s threshold. Combining (19) and (20), rewriting π(h, a) =
eag(h) and rearranging we get
ˆ ∞
τ

e−(ρ+α)(t−τ)g(1)E
[
eat
∣∣∣aτ = a∗p(1)

]
dt >

ˆ ∞
τ

e−(ρ+α)(t−τ)g(0)E
[
eat
∣∣∣aτ = a∗p(0)

]
dt.

Using the fact that for any initial condition a0, at can be written as at = a0 +Bt, where Bt

is a Brownian motion with B0 = 0,

g(1)ea∗p(1)
ˆ ∞
τ

e−(ρ+α)(t−τ)E
[
eBt
]
dt > g(0)ea∗p(0)

ˆ ∞
τ

e−(ρ+α)(t−τ)E
[
eBt
]
dt.

which implies that g(1)ea∗p(1) = π(1, a∗p(1)) > g(0)ea∗p(0) = π(0, a∗p(0)). Using the fact that
∂Y (h,a)
∂h

= θ
θ−1π(h, a) concludes the proof.

Second statement
Doing some algebra, one can show that:

Y (1, a∗p(1))/π(1, a∗p(1))
Y (0, a∗p(0))/π(0, a∗p(0)) =

(
xH
xL

) θ−1
θ

> 1

and since π(1, a∗p(1)) > π(0, a∗p(0)), that yields the claim.

B Robustness

We ran our policy exercise using different sets of parameters. In order to get sufficiently dif-
ferent statistics from those in the baseline calibration, we did not try to match any business
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cycle features. In all of the following specifications, the economy experiences both crisis and
recessions and minimal spending policies do not completely shut down recessions. Table 2
reports the parameters chosen and the implied average time in recession with no interven-
tion and under the intervention with ξ = 0. The values of ξ were chosen to contemplate
the cases of an almost vertical threshold and a threshold were the government barely pays
subsidies when fundamentals are picking up and the economy is leaving from a situation
with h = 0, as in Figure 9.

Table 2: Robustness check parameters
Specification

Parameter Symbol 1 2 3 4 5 6
Production regime High xH 1.1 1.1 1.1 1.05 2 1.1
Production regime Low xL 1 1 1 1 1 1
Elasticity substitution θ 6 6 6 6 6 6
Fixed cost of investing ψ 0.0408 0.0806 0.0408 0.0413 0.795 0.0278
Mean of fundamental process µ 0 0 0 0 0 0
Arrival rate of Poisson Process α 2 1 2 1 1 3
Standard deviation of shocks σ 0.03 0.1 1 0.03 0.3 0.03
Discount rate ρ 0.03 0.03 0.03 0.01 0.03 0.03
Mean reversion intensity η 0.7 0.7 2 1.5 0.7 0.7
Time interval lenght ∆ 0.005 0.005 0.005 0.005 0.005 0.005
Average time in recession (%) - 26.15 43.20 33.39 38.50 37.70 55.95
Average time in recession - 10.15 35.96 14.03 4.79 16.88 24.61
with stimulus policies (%)
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The results were the following:

1. The planner’s threshold: The maximum difference between the slope (measured
here as the distance in the horizontal axis of a threshold extreme points, i.e., |a(1)−
a(0)|) of the planner’s threshold and the agent’s threshold was 4.4% of the slope of
the agent’s threshold. The minimum was below 0.1%. The mean of this difference
was 2.14%. In some calibrations the planner’s threshold had a higher slope and in
others we obtained the opposite. Since it is very close to zero we cannot say precisely
the direction of the change in the slope, since it could be only due to a measurement
error. The fact is that the slope did not change very much.

2. Minimal spending policies: Figure 12 reports the results for government spending.
The stimulus policies with ξ = 0 are the cheapest in all cases we tried.

Figure 12: Government spending in each specification

−5 0 5 10

x 10
−3

1.05

1.1

1.15

1.2

x 10
−3

ξ

T
o
ta
l
S
p
en

d
in
g

(1)

−5 0 5 10

x 10
−3

6.5

7

7.5
x 10

−4

ξ

T
o
ta
l
S
p
en

d
in
g

(2)

0 0.1 0.2
0.03

0.035

0.04

0.045

ξ

T
o
ta
l
S
p
en
d
in
g

(3)

−5 0 5 10

x 10
−3

2.1

2.12

2.14

x 10
−3

ξ

T
o
ta
l
S
p
en

d
in
g

(4)

−0.05 0 0.05 0.1
0.13
0.14
0.15
0.16
0.17

ξ

T
ot
al

S
p
en
d
in
g

(5)

0 10 20

x 10
−3

3.5

4

4.5

x 10
−3

ξ

T
ot
al

S
p
en
d
in
g

(6)

37


