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1 Introduction

Why do agents trade in financial markets? Under which conditions do they trade in response

to past price changes, either following the trend or acting contrarian? Do these trades threaten

financial market stability? The unprecedented recent growth of quantitative trading by large

financial institutions, as well as their use of proprietary automated algorithms (e.g., Osler

(2003), Hendershott, Jones, and Menkveld (2011)) has raised fresh questions and concerns

about the determinants of such trading and its effects on market stability, particularly in the

wake of the recent financial crisis.

Conventional academic accounts view quantitative trading and algorithms almost exclu-

sively as tools to implement quantitative models of portfolio selection in the tradition of Black,

Scholes, and Merton, pretty much in the same way as the representative agents of those models

would do, just much faster than any human could. Accordingly, Kirilenko and Lo (2013 p.52)

define algorithmic trading as “the use of mathematical models, computers, and telecommuni-

cations networks to automate the buying and selling of financial securities”. In these accounts,

quantitative trading is fully automated, aiming to rebalance portfolio positions in response to

changes in market prices and quantities, which in turn are taken as given. Conversely, in these

accounts little or no role is played by discretionary (“human”) trading, by algorithms’ secrecy,

by research about asset fundamentals, by research about the market impact of trades, or by

trend-following (trades in the direction of past prices, aka positive-feedback, or “momentum”)

and contrarian strategies.

Practitioners on the other hand, while acknowledging the role of standard portfolio selection

models, hold a very different view of quantitative trading and algorithms. In the practitioners’

view, algorithmic trading is primarily about implementing a combination of trend-following

and contrarian trading strategies (e.g., see Chan (2013), Clenow (2013), Durenard (2013), and

Narang (2013), among others).1 In addition to that, Kissell (2014) emphasises the crucial

importance that quants evaluate the market impact of algorithmic trading, and Narang (2013)

underscores the role of fundamental research and stresses that algorithmic trading is never fully

automated, as “there is almost never any attempt to eliminate human contributions to the

investment process” (p.14-15). And in fact, practitioners are highly protective of their trading

strategies, use proprietary algorithms and keep their exposures strictly secret.

This gap between the academics and practitioners’ view of algorithmic trading is at first

1All these monographs describe algorithmic trading primarily in terms of trend-following and contrarian

strategies. Further distinctions are then made between time series and cross-sectional momentum and mean

reversion (Chan (2013)); and between data-driven, theory-driven and news-driven strategies (e.g., Durenard

(2013), Narang (2013)). It is also worth noting that these strategies typically trade daily or weekly, which is

a time horizon most appropriate to interpret our model. Durenard (2013) and Narang (2013) also consider

intraday trading and high-frequency trading in the millisecond environment.
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glance surprising–after all, a large body of literature has studied deviations from the neo-

classical model and focused on trend-following and contrarian trading (e.g., Barberis, Shleifer,

and Vishny (1998), Daniel, Hirshleifer, and Subrahmanyam (1998), Hong and Stein (1999)).

However, this literature typically associates trend-following and contrarian trading to port-

folio losses by individual and retail investors stemming from behavioral biases, imperfect or

bounded rationality, non-standard preferences (e.g., for liquidity), or institutional frictions (see

Shleifer (2000) and Barberis and Thaler (2003) for surveys). Because quantitative trading by

large financial institutions is systematically profitable, it is at odds with both the neoclassical

paradigm–in which there is no scope for price-contingent trading–and with the recent finance

literature on deviations from perfect rationality.

In this paper we attempt to take seriously the practitioners’ view of algorithmic trading by

studying theoretically in a micro-founded model under which conditions a rational uninformed

trader may want to systematically trade in response to past price changes. In the neoclassi-

cal paradigm there is no scope for such automated trading, as rational strategic agents with

standard preferences trade only insofar as they have private information about the fundamen-

tal value of the asset being traded. Similar agents who are not informed and only observe

market prices do not trade. The reason, as noted by Easley and O’Hara (1991), is that in stan-

dard rational expectations models any trading strategy that is contingent on observed prices

would earn zero or negative profits against any rational, risk-neutral counterparty who ob-

serves the same prices. Crucially, in these standard models the types of all traders are public

information–everybody knows if a trader is informed or uninformed about the fundamental.

We argue that price-contingent trading strategies naturally emerge as optimal and fully

rational behavior in a setting with a single departure from an otherwise standard rational

expectations framework. We relax the assumption that the types of all traders are public infor-

mation, and introduce a large trader that may or may not be informed about the fundamental,

whereby his type is not known to the market. By itself, such uncertainty about a trader’s

type generates an information advantage for that same trader who knows his own type, which

triggers price-contingent trading. The interpretation of this information advantage is a natural

one: at any point in time a sophisticated financial institution such as a hedge fund knows better

than the rest of the market which trading strategies it is pursuing and in general its portfolio

positions and its exposures to all kinds of risks.

We aim to establish our results on price-contingent trading in a stylized setting with as

small a departure as possible from the standard framework. Consistent with the practitioner’s

account, we study a financial market where large traders have market impact.2 There are two

2While the specific setting we consider is in the tradition of Kyle (1985), we discuss in Section 2 that our

results are more general and apply whenever large rational traders have market impact, that is, move prices

with their trades.
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trading rounds, one risky asset, a large risk-neutral trader, type , who is informed about

the fundamental value of the asset, and noise traders who trade for reasons outside the model

and uncorrelated with the fundamental. Our main innovation is to introduce another large

risk-neutral trader, type  (for potentially "price-contingent"), who may be informed or not

about the fundamental, and focus on  ’s trading incentives.

Strategic traders  and  submit market orders before knowing the execution price and

taking into account the expected price impact of their order. As standard in this class of models,

we impose that prices are set such that the market is semi-strong efficient, i.e., prices reflect

all public information, which includes the total order flow but does not include knowledge of

 ’s type. Such market efficiency condition is implemented through a hypothetical agent, the

Market (often referred to as market maker in the literature). At the same time, the market is

not strong-form efficient because traders will profit from private information. Indeed,  always

holds private information about the fundamental, and  always knows his own type — informed

() or uninformed () — while the Market does not know  ’s type. This is true even when 

does not directly observe the fundamental, which is crucial for our results.

In the first trading round  trades only if he knows the fundamental. This is because his

only other information is the prior, which is publicly known. Our main result arises in the

second period if  ends up being uninformed. In such case,  knows he has not traded in the

previous round, so that the order flow was generated by  and the noise traders. By contrast,

the Market learns from prices and order flow and updates the probability that  is uninformed,

but in equilibrium still rationally weighs the possibility that the order flow reflected trades by

informed  . As a result, price=E[fundamental|public information]. The uncertainty about  ’s
type leads different agents to hold different expectations about the fundamental value upon

observing date 1 order flow. Namely, we show that

E[fundamental|public info type =  ] 6= E[fundamental|public info] = price

simply because date 1 order flow is in general not independent of the number of informed

traders. Therefore, uninformed  has incentives to trade at date 2. We start by assuming

that noise trading is normally distributed, as it naturally stems from the central limit theorem

when applied to a large number of small exogenous orders. The date 2 trading problem is non-

trivial, as  ’s expected payoff depends on how much the Market will learn about  ’s type after

observing date 2 order flow, which in turn depends on the unobservable noise trading shock.

Still, we prove that there is a unique optimal pure strategy for  . This strategy is characterized

by a non-zero trade contingent on past prices and proportional to the standard deviation of

noise trading. As a result, when uninformed, trader  follows an automated trading strategy,
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mapping past prices into a non-zero order.3

There are two ways to interpret this equilibrium, both of which consistent with the practi-

tioners’ view of quantitative trading. First, one can think of quantitative trading as a portfolio

of fundamental-based strategies and automated strategies (e.g., Kissell (2014), Narang (2013)).4

Alternatively, one can think of quantitative traders writing down their automated algorithm

at time 0, after which either there is no arrival of information and the algorithm proceeds

as planned, or, upon the arrival of information that makes the algorithm outdated (e.g., ru-

mors of a takeover bid), they disregard or override their algorithm and trade directly on their

information about the fundamental (e.g., Narang (2013)). In addition, our model provides

the novel insight, which the informal accounts of practitioners cannot generate, that it is the

very possibility of informed trading that makes automated trading possible and profitable in

equilibrium.

We then study under which conditions price-contingent trading is trend-following or con-

trarian. We already noted that the Market’s expectation of the fundamental differs from that

of trader  who knows his own type. As a result, from  ’s perspective the Market will always

make a ’mistake’ in setting the sensitivity of prices to order flow. Either the price is too in-

sensitive to the order flow, as the Market reacts too little to informed trading by , thereby

generating incentives for a trend-following strategy by  ; or the price is too sensitive to the or-

der flow, as the Market reacts too much to a noise trading shock, thereby generating incentives

for a contrarian strategy by  .

In the context of a symmetric three point distribution for the fundamental value, we find

that with enough probability of “no news” and a small order flow the first effect prevails and

 ’s optimal strategy is trend-following. By contrast, with little probability of “no news” and

a large order flow  ’s optimal strategy is contrarian.  ’s optimal strategy is contrarian also in

the special case without trader  and with only trader  and noise traders. This is because

in an environment without  the order flow can never reflect fundamental information if 

is uninformed (the first effect is absent), while the Market still believes that there may be

fundamental information (the second effect is present).

In section 6 we discuss the empirical implications. At the most basic level, our theory ratio-

nalizes why algorithmic trading is profitable on average, over and above standard remunerations

for risk, as it is better able to chase information than the rest of the market. Of course, algo-

rithms can occasionally end up chasing noise trading shocks, thereby incurring losses, both in

3When traders are informed the rationale for their trading is similar to Kyle (1985), even though there are

additional complications because after observing the order flow the Market needs to update his beliefs both

about the fundamental and the number of informed traders.
4Because algorithms can respond fast to changes in prices, one can view the time period between date 1 and

2 in our model to be relatively short compared with that between date 0 and 1.
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our model and in real world episodes such as the Flash Crash of May 2010 and the Quant Melt-

down of August 2007. In turn, such episodes of market turmoil are triggered by noise trading

shocks and not by automated trading, both according to real world accounts (e.g., CFTC and

SEC (2010)) and in our model. Indeed, we find that automated trading typically moves prices

closer to fundamentals, consistent with the empirical evidence of Hendershott et al. (2011) and

the practitioners’ accounts in Kissell (2014), Durenard (2013), and others.

In terms of strategies, our theory of automated trading under human supervision most

closely rationalizes trend-following strategies by Commodity Trading Advisors (CTAs) in fu-

tures markets (e.g., Clenow (2013); Baltas and Kosowski (2014)) and by AQR and other hedge

funds in various asset classes; as well as contrarian strategies by various investors in equity

markets (e.g. Lehmann (1990), Jegadeesh (1990)). Furthermore, in financial markets at suffi-

ciently high frequencies that the likelihood of informed trading is essentially zero, our model

predicts that any price-contingent trading should be contrarian.

Finally, our theory predicts that the order flow is predictable from past information, con-

sistent with the empirical evidence of Biais, Hillion, and Spatt (1995), Ellul, Holden, Jain, and

Jennings (2007), and Lillo and Farmer (2004). Remarkably, and contrary to previous literature,

we obtain our prediction in a setting in which the market is semi-strong efficient by construc-

tion and therefore future returns are unpredictable. The reason is that in our setting, while the

Market cannot be sure whether  is uninformed, still the Market knows that if  is uninformed

he will trade in a predictable, price-contingent direction. Therefore, our results demonstrate

that order flow predictability can be consistent with market efficiency.

Section 2 discusses some of the related literature. Section 3 outlines the setup. Section 4

presents the main results. Section 5 discusses some special cases and extension, as well as the

generality of our results. Section 6 discusses the empirical implications, and Section 7 concludes.

2 Literature

The broad literature on asset pricing and learning in micro-founded financial markets is surveyed

in Brunnermeier (2001) and Vives (2008), among others. Our work relates to the part of the

literature that studies trading in markets with asymmetric information. Our results on the

profitability of rational price-contingent trading require that informed traders be large, i.e.,

that their trades have market impact.5 Our model shows that rational traders with market

impact and superior information about their own type can learn from prices better than average

market participants. Another strand of the literature studies whether past prices contain useful

5We develop our model in a setting that generalizes the Kyle (1985) framework, but similar implications

could be obtained in a Glosten and Milgrom (1985) framework in which trades arrive probabilistically and

market makers observe individual trades (see also Back and Baruch (2004)).
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information for a rational trader (e.g., Grossman and Stiglitz (1980), Brown and Jennings

(1989)). However, in these papers there are no profits from uninformed trading in excess of

the risk premium. It is worth noting that this is because uninformed traders do not have

market impact in these models and the number/share of such traders is known to all market

participants.

Our paper also relates to the literature on stock price manipulation, that is, the idea that

rational traders may have an incentive to trade against their private information. Provided ma-

nipulation is followed by some (exogenously assumed) price-contingent trading, short run losses

can be more than offset by long term gains (see Kyle and Viswanathan (2008) for a review).

Somewhat closer to our work, Chakraborty and Yilmaz (2004a, 2004b) study the incentives

of an informed trader when there is uncertainty about whether such trader is informed, or is

a noise trader instead. If this trader turns out to be informed, he may choose to disregard

his information and trade randomly, in order to build a reputation as a noise trader. In their

model, uninformed traders are assumed to always act as noise traders and are never strategic

and rational. Therefore, Chakraborty and Yilmaz do not analyze the trading incentives of

rational agents when they are uninformed, which is our main focus.

Goldstein and Guembel (2008) show that if stock prices affect real activity then a form

of trade-based manipulation such as short-sales by uninformed speculators can be profitable

insofar as it causes firms to cancel positive NPV projects, and justifies ex post the "gamble" for

a lower firm value. Such manipulation is possible because there is uncertainty about whether

speculators are informed. In their setting, both uninformed trading and successful stock price

manipulation stem from the feedback effect between stock prices and real activity. By contrast,

in our paper there is price-contingent trading but no manipulation. Therefore, our results

demonstrate that price-contingent trading does not make uninformed investors the inevitable

prey of (potentially informed) speculators.6

Our work relates to the literature on rational herding (see Chamley (2004) for a review).

Unlike our setting in which traders never disregard their private information, these models–e.g.,

Avery and Zemsky (1998)–characterize conditions under which, when information precision

is uncertain, rational traders ignore their noisy private signal and follow the actions of other

traders instead. In a recent paper Park and Sabourian (2011) generalize the setting of Avery

and Zemsky (1998) and identify in a framework with a three-point prior the signal structures

that gives rise to rational herd and contrarian-like behavior. In their setting, all strategic

traders observe some relatively imprecise private signal about the fundamental. By contrast, in

our setting strategic traders observe either a precise private signal or only quantifiable public

information that they interpret better than the market.

6Allen and Gale (1992) also study a setting with manipulation but without price-contingent trading.
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One notable strand of this herding literature has focused on understanding the stock market

crash of October 1987 (Grossman (1988), Gennotte and Leland (1990), Jacklin, Kleidon, and

Pflederer (1992) and Romer (1993)). A common theme of these papers is that market par-

ticipants are assumed to have strongly underestimated the extent of portfolio insurance–i.e.,

positive-feedback trading–which in turn is assumed to be exogenous. Our focus instead is on

deriving endogenously price-contingent trading, and characterize conditions under which it is

trend-following as opposed to contrarian.

Finally, we should note that our model is most appropriate to understand quantitative

strategies that trade daily or weekly, so that there is both some probability that trading reflects

information, and some benefit from a relatively fast execution in response to changes in market

prices. It is less appropriate for the millisecond environment in which high frequency traders

may benefit from momentary imbalances between supply and demand. With this in mind, our

paper is also related to a few recent papers that focus on the speed advantage of quantitative

traders. Clark-Joseph (2013) studies a partial equilibrium model in which prices are exogenous,

and finds empirical support for the idea that high-frequency traders learn from their own trades

better than the rest of the market, very closely related to the ideas developed in our model.

Biais, Foucault, and Moinas (2013) consider the decision of a financial institution to invest in a

high-speed trading technology and derive conditions under which such investment is excessive

from a social welfare standpoint; and Pagnotta and Philippon (2012) consider trading exchanges

competing on speed to attract future trading activity. Unlike us, these papers do not focus on

price-contingent trading.7

3 Setup

A single asset with a fundamental value  is traded at date 1 and 2 and the fundamental

is realized at date 3.8 As we are interested in understanding the incentives of large traders

who have market impact, we adopt a setting similar to Kyle (1985). Namely, we assume

that large strategic risk-neutral traders and non-strategic noise traders submit market orders

before knowing the execution price. As in Kyle (1985) we assume that there is a large risk-

neutral trader , who learns the value of fundamental  before date 1 and trades only in date

7Somewhat related are also Banerjee and Green (2013), who study a rational expectations model with myopic

mean-variance investors who are learning about the presence of informed traders; and Li (2013), who studies

a continuous time Kyle model in which the large trader may or may not be informed. None of these papers

however considers price-contingent trading.
8For our main results in Sections 4.1 and 4.2 we consider the broad class of all symmetric distributions, as

the exact distribution of the prior is not crucial. In our illustrative example on the direction of price-contingent

trading, which we study in Section 4.3, we assume a symmetric three-point distribution. We also explore other

distributions, including the normal prior in Appendix C.
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1. The presence of this trader guarantees that the asset price always reflects at least some

fundamental news.9 Our main innovation is to introduce another large risk-neutral trader,  ,

whose type/state,  ∈ { }, is not known with certainty by the Market. In our baseline
setting, we assume that state  is independent of the fundamental and noise trading. We

denote

 =

(
 if  is "informed" (i.e., knows )

 if  is "uninformed" (i.e., does not know )
.

The prior probability is Pr () = , where 0    1.10 When the state is  = , then  is

identical to and only trades at date 1. We are particularly interested in  ’s trading incentives

when the state is  =  . If he is uninformed, he still observes past information such as order

flows and prices, and can trade on both dates. Provided that date 1 price is an invertible

function of the order flow, then past order flow and prices have exactly the same information

content - so if he trades at date 2, then he can be viewed as a "price-contingent trader".

While not crucial for our main results, we make the assumption that traders informed about

the fundamental can only trade at date 1 for two reasons. First, this assumption captures the

realistic feature that quantitative trading based on simple observable information such as past

prices or order flows can be implemented relatively faster by an algorithm. This is in contrast

to any trading based on fundamentals, which requires a more thorough analysis and is likely

to require more time.11 Accordingly, one can view the time interval between dates 1 and 2

as being relatively short compared to the time interval between dates 0 and 1. Second, this

is also the most transparent setting to analyze the trade-off faced by a large trader who is

uninformed about the fundamental. We abstract from the additional effects that arise from

informed traders’ incentives to split their orders, which are well understood in the literature.

It is natural to assume that  knows his own type. We also assume that  knows  ’s type

with certainty, but this is not crucial for our results.12

Strategic traders  and  do not take the (expected) asset price as given, but know that

their market orders have a non-negligible impact on prices. Denote the market order by trader

 ∈ {} in state  ∈ { } at date  ∈ {1 2} as  . If both traders are informed,  = ,

9The presence of a trader who is always informed allows to derive richer effects. See Section 5 for the special

case where there is no trader  and there is uncertainty about the presence of any informed traders.
10We also assume that  is not arbitrarily close to one (see Appendix B). This realistically avoids a situation

in which  is uniformed, but the Market is convinced that he is informed and is very reluctant to update his

beliefs about  ’s type.
11We can also view  ’s type as an outcome of  ’s previous unobservable decision where he decided whether

to invest in acquiring fundamental information about  or to invest in a "machine" that allows him to trade

faster.
12This assumption makes it ex ante harder for  to develop an information advantage as  never has more

information than . It also helps to highlight that for rational price-contingent trading to emerge as optimal,

it is important that typical market participants (the Market) do not know large trader’s types with certainty,

even if (some) other sophisticated traders do.
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then trader  solves

max
1

1 = E
£
1 ( − 1) | 

¤
, (1)

where  ∈ {}. If only  is informed about the fundamental,  =  , then  solves

max
1

1 = E
£
1 ( − 1) | 

¤
 (2)

and  solves13

max
1

1 = E
£
1 ( − 1) + 2 ( − 2) |

¤
(3)

max
2

2 = E
£
2 ( − 2) |1 

¤
.

The total order flow is

1 = 1 + 1 + 1 for  = { } (4)

2 =

(
2 if  = 

2 + 2 if  = 

where  is date  ∈ {1 2} demand by noise traders.14 We assume that noise traders demand
is drawn from a normal distribution with mean zero and variance 2 , serially uncorrelated and

independent of fundamental and state. We denote the probability density function with  ()

for  ∈ {1 2}. While being a standard assumption in this literature, there is also a natural
economic argument for this choice of distribution. In fact, we can interpret noise trading as the

total demand by a large number of small traders who trade for idiosyncratic reasons unrelated

to the fundamental (such as liquidity shocks, private values etc.). In such case, the normality

of the distribution of noise trading follows directly from the central limit theorem.

Technically, a useful property of the normal distribution is that it is strictly log-concave,

allowing us to use some general properties of log-concave functions.15 Log-concavity of noise

trading also guarantees some desirable properties of the model, and we discuss generality further

in Section 5.16

13We condition  ’s expectation on the order flow (instead of the price or both), because date 1 order flow is

always at least as informative as date 1 price. If price is monotonic in the order flow, then the two have the

same information content.
14As usual, the presence of noise traders is needed to avoid the Grossman and Stiglitz’s (1980) paradox about

the impossibility of a fully revealing price in equilibrium.
15A function  (x) (where  is a -component vector) is log-concave if ln ( (x)) is concave. In the univariate

and differentiable case, the following are equivalent: 1) 2 ln ( ())   0, 2)  0 ()  () is decreasing in
, 3)  00 ()  ()− ( 0 ())2  0.
16Many other well known distributions are log-concave and symmetric. Notable examples include the beta
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The equilibrium prices are set by a hypothetical agent, the Market, who observes the total

order flow and implements the market efficiency condition.17 Namely, he sets period  price,

 = E
£
|Ω



¤
, (5)

where Ω
1 is the information set available to the Market in  ∈ {1 2}, which includes all

publicly available information such as the current and past order flows. The Market knows

all distributions, and observes the total order flow  before setting . Crucially, he does not

know the realization of  ’s type, i.e., the value of . Hence, Ω
1 = {1} and Ω

2 = {1 2}. It
is worth highlighting that in this setting the order flows provide noisy information about both

the fundamental, , and  ’s type,  ∈ { }. This is in contrast to standard settings where
all types are known with certainty and the total order flow only reveals information about

the fundamental. Using the law of total expectations, we can expand the Market efficiency

condition (5) as

1 = E [|1] = 1E [|1 ] + (1−1)E [|1  ] (6)

2 = E [|1 2] = 2E [|1 2 ] + (1−2)E [|1 2  ] ,

where 1 ≡ Pr (|1) and 2 ≡ Pr (|1 2) are the probabilities of  being informed con-

ditional on the observed total order flows. We also use notation 1 (1), 2 (2), 1 (1) and

2 (2) to express these prices and probabilities as functions of contemporaneous order flows.

To summarize the setup, the timing of events is as follows:

• date 0 - Nature draws  ∈ { } and .  and  learn . If  = , then both  and

 learn . If  =  , only  learns .

• date 1 - ,  , and noise traders submit market orders before knowing the price. The
Market observes total order flow and sets the price 1 based on the market efficiency

condition (5).

• date 2 - Noise traders submit market orders. If  =  , then  also submits a market

order before knowing the price. The Market observes total order flow and sets the price

2 based on the market efficiency condition (5).

(with parameters  =   1) and truncated normal. See Bagnoli and Bergstrom (2005) for an overview and

further examples of log-concave densities.
17In models based on Kyle (1985), this agent is frequently referred to as the "market maker". We prefer to

call him the Market to emphasize that such agent proxies for the information observed by the whole market, as

opposed to any individual broker. The market efficiency condition (5) can also be interpreted as the outcome

of Bertrand competition between market makers or as the equilibrium outcome of a large number of small

risk-neutral agents who take prices as given.
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• date 3 - uncertainty resolves and  and  consume profits given the realization of .

As standard in the literature we focus on equilibria in pure strategies by  and  .

4 Results

4.1 Importance of uncertainty about types

We start by highlighting why uncertainty about  ’s type is crucial by considering a benchmark

case where  is known to be uninformed with certainty, i.e., Pr () =  = 0.

Proposition 1 If  = 0: E [|1  ] = E [|1] = 1 = 2; P can never earn positive expected

profits from trading; consequently P does not trade in date 1.

Proof. See Appendix A.

Proposition 1 shows that in the special case in which  = 0, our model supports the Easley

and O’Hara (1991) argument against the possibility of uninformed traders profiting from ratio-

nal price-contingent trading. Indeed, in such a case uninformed  cannot earn positive profits,

because prices already reflect all information that an uninformed  could have. To be more

specific, at date 1 uninformed  ’s best guess of the fundamental is the prior mean and any

non-zero quantity traded would move prices and lead to an expected loss from trading at date 1

(this is because the price is an increasing function of the order flow). Therefore, it is optimal for

 not to trade, which yields a zero profit. At date 2, uninformed  does learn new information

from the order flow, but the information he obtains is exactly the same as the information that

the Market has already obtained, E [|1  ] = E [|1] = 1. Because prices will not change

between date 1 and 2, he cannot earn positive profits from trading.18 It should be also noted

that Proposition 1 holds for any symmetric prior and log-concave and symmetric noise trading.

The latter is important as it guarantees that the price is an increasing function of the order

flow.19

18Note that in our setting the Market knows that date 2 order flow is not informative and thus prices will

not change, 2 = 1. As a result  would earn zero profits from any quantity traded. In this setting 2 = 0,

but also any other constant quantity traded by uninformed  at date 2 can be sustained as an equilibrium.

However, the latter only holds because of risk neutrality of  . Only the equilibrium with 2 = 0 could be

sustained with even a very small degree of risk aversion.
19Log-concavity of noise trading implies that the likelihood function (1| ) has monotone likelihood ratio

property (MLRP). As known fromMilgrom (1981) MLRP guarantees that the expected value of the fundamental

is increasing in the order flow due to first-order stochastic dominance. See Appendix A.
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4.2 Date 2 problem

Assume   0 and notice that all date 1 quantities, E [|1 ]  1 and 1 = Pr (|1) depend on
1 and are known to  and theMarket before date 2. Date 2 problem is only interesting if there is

a difference between  ’s and the Markets expectations about the fundamental (E [|1  ] 6= 1

or equivalently E [|1  ] 6= E [|1 ]) and the Market has not fully learned  ’s type (1  0).

For now, we conjecture that this is the case. We verify it later when analyzing the date 1

problem.

As there is no informed trading at date 2, it holds that conditional on a given state  ∈
{ } and 1, the date 2 order flow only depends on  through 1, which is already incorporated
in prices and expectations and therefore E [|1 2 ] = E [|1 ]. Using (6) we obtain

2 = 1 +
(1 −2)

1

(E [|1  ]− 1) . (7)

Clearly prices change between date 1 and 2 only if2 6= 1, which implies that they only change

if the Market updates its beliefs about  ’s type after observing date 2 order flow. Provided

that the true state is  =  , the Market updates in the "correct" direction if 2  1. In such

case prices increase (decrease) if E [|1  ]  () 1. Using (7), we can restate  ’s problem (3)
as

max
2

2 = 2 E [2|1  ] (E [|1  ]− 1)

1

= (8)

= 2

µZ ∞

−∞
2

¡
2 + 2

¢
 (2) 2

¶
(E [|1  ]− 1)

1



We can make some immediate observations. Suppose that E [|1  ]  1, i.e., uninformed

 expects the fundamental to be higher than date 1 price. On the one hand,  can profit

from trading any positive quantity. Ignoring the effect of his trade on 2 () would make him

to want to buy an infinitely large quantity of the asset at date 2. On the other hand, the

term E [2|1  ] captures the expected updating of  ’s type by the Market. Because 2

depends on date 2 order flow,  knows that his trade will affect the Markets’ beliefs about his

type. Since these beliefs directly affect 2, one would expect the traditional trade-off between

transaction size and information disclosure to be present, but to establish this formally we need

to investigate further the properties of 2.

As we focus on pure strategies and uninformed  ’s trading strategy, we can see that the

beliefs of the Market are characterized by the quantity it expects  to trade. Thus, consider

that the market expectes  to trade some quantity ̄2, whereby ̄2 can take any value in R.

Then, from (4) 2 = ̄2 + 2 if  =  and 2 = 2 if  = , we can derive 2 by using Bayes’
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rule, as

2 =
1 (2|1 )

1 (2|1 ) + (1−1)  (2|1 ) =
1

1 + (1−1)  (2)
, (9)

where

 (2) ≡


¡
2 − ̄2

¢
 (2)

(10)

is the likelihood ratio and we used the fact that conditional on the state  the date 2 order

flow is normally distributed with density  ().

Lemma 1 The following properties hold for 2 = Pr (|1 2)

1. 2 is decreasing (increasing) in 2 for any ̄2  () 0.

2. If ̄2  0 then 2  ()1 for any 2  () ̄2
2
. If ̄2  0 then 2  ()1 for any

2  ()
̄2
2
.

3. 2 (0) = 1 ·
µ
1 + (1−1)

(̄2)
(0)

¶−1
= 1 ·

µ
1 + (1−1) exp

µ
−(̄2)

2

22

¶¶−1
,

4. If ̄2  () 0 then lim
2→∞

2 (2) = 0 (= 1) and lim
2→−∞

2 (2) = 1 (= 0).

5. 2 (2) is a log-concave function.

Proof. Part 1: Differentiating and simplifying we obtain 22 = −2
2 (11 − 1) 0 (2).

Because Lemma A.1 in Appendix A shows that log-concavity of  implies the monotone

likelihood ratio property (MLRP), i.e., 0 (2)  () 0 for any ̄2  () 0. This is because



¡
̃2 − ̄2

¢
 (̃2)  ()

¡
2 − ̄2

¢
 (2) for any ̃2  0 and ̄2  () 0. Parts 2-4

are straightforward from (9), (10) and the expression for the normal density. Part 5: Taking

logs and differentiating, we obtain that
2 ln(2)

22
= − (1−1)

2[(11−1)00(2)+00(2)(2)−(0(2))2]
(1+(1−1)(2))2 . It is

sufficient to show that the likelihood ratio (10) is (at least weakly) log-convex.20 Indeed from

using the normal density in (10) we find that ln ( (2)) is linear in 2 and therefore weakly

convex.

Part 1 of Lemma 1 implies that the Market updates its beliefs about  ’s type (the state

) in a "sensible" manner. For example, if the Market believes that trader  in state  = 

trades a finite and positive quantity, then observing a higher order flow always leads the Market

to assign a lower probability on  being informed. This also confirms that  indeed faces a

meaningful trade-off - the presence of a profit opportunity gives  incentives to trade, but

20 (2) is log-convex if ln ( (2)) is convex. Equivalently, it must hold that 
00 (2)  (2) − (0 (2))2 ≥ 0.

This, together with  (2)  0 also implies that 
00 (2)  0.
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trading too aggressively will reduce  ’s expected profit as he expects the Market will assign a

higher probability on him being uninformed and to adjust the price accordingly.21 It is worth

emphasizing that such realistic tradeoff is always guaranteed because the likelihood ratio (10)

is monotone (for a similar argument, see also Milgrom (1981)).22

While Bayesian updating itself guarantees that the Market updates its beliefs in the correct

direction on average, we can see from part 2 of Lemma 1 that depending on the realized date

2 order flow, the Market can update the probability that  is informed, 2, in the "correct"

or "incorrect" direction. This is because the total order flow includes a random noise trading

component. Namely, if the realized order flow is relatively small (i.e., less than half of the volume

that the Market expects uninformed  to trade) or has an opposite sign to  ’s expected trade,

then the Market updates in the "correct" direction if the state is  =  and in the "incorrect"

direction if the state is  =  . It is also immediate from parts 2-4 of Lemma 1 that the Market

never learns  ’s type perfectly for finite order flows. Therefore, despite some learning about

 ’s type, it is clear from (8) that  would always earn positive profits from trading any finite

quantity that has the same sign as the difference E [|1  ]− 1.

Part 4 of Lemma 1 confirms that the Market’s learning about  ’s type is unbounded. This

is necessary to guarantee that  has an incentive to trade a finite amount.23

While the previous analysis gives some confidence that it may be optimal for uninformed 

to trade a finite quantity in equilibrium, it is not yet clear whether  ’s problem has a unique

(interior) solution. Namely, from (8)  ’s expected profit involves an integral over a non-trivial

function 2 () that depends on uninformed  ’s demand and is always positive for 

2  () 0

provided that (E [|1  ]− 1)  () 0.

Lemma 2 If (E [|1  ]− 1)  () 0 then uninformed  ’s expected profit (8) is strictly

log-concave in 2  () 0.

Proof. Assume without loss of generality that (E [|1  ]− 1)  0 and 2  0. Taking

logs of (8), we obtain ln
¡
2

¢
= ln

¡
2

¢
+ ln (E [2|1  ]) + ln (E [|1  ]− 1) − ln (1)

and 2 ln
¡
2

¢
2 2 = − ¡2 ¢−2

+2 ln (E [2|1  ]) 2 2 , which is negative if

E [2|1  ] is log-concave. By change of variables 2 = 2 + 2, we can express

E [2|1  ] =
Z ∞

−∞
2 (2)

¡
2 − 2

¢
2. (11)

21If  trades 2 , then the order flow is 2 = 2 + 2 and E [2|1  ] =
R∞
−∞2

¡
2 + 2

¢
 () . It

is clear that E [2|1  ] 2 =
R∞
−∞02

¡
2 + 2

¢
 ()   0

22The monotone likelihood ratio property holds for the whole family of log-concave distributions, to which

the normal belongs (see Lemma A.1 in Appendix A).
23Suppose instead that learning was bounded (i.e., 2 was always larger than some constant ̄2  0) and

consider a candidate equilibrium where  trades a finite amount. It is easy to prove that this cannot be an

equilibrium as  would earn infinite profits by deviating to trade an infinite quantity. See also Section 5.
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Using Theorem 6 of Prékopa (1973), restated as Theorem A.3 in Appendix A, a sufficient con-

dition for (11) to be log-concave is that the function 2 (2)

¡
2 − 2

¢
is log-concave in 2

and 2. We can then derive 
2 ln

¡
2 − 2

¢
2 2 = −−2 and 2 ln

¡
2 − 2

¢
2 2 =

2 ln

¡
2 − 2

¢
2


2 = −2 . As by part 5 of Lemma 1 2 ln (2 (2)) 22  0, it

is immediate that the Hessian24 is negative definite, and therefore E [2|1  ] and 2 are

log-concave. The proof for the case (E [|1  ]− 1)  0 and 2  0 is similar.

Since any univariate log-concave function is also quasi-concave with a unique maximum, we

can now state our main result25:

Theorem 1 Uninformed P ’s unique equilibrium strategy is to demand a finite amount

2 = ̄2 =

(
 if E [|1  ]− 1  0

− if E [|1  ]− 1  0
, (12)

where   1 for any 1 ∈ (0 1) and  depends on 1 only.

Proof. It is immediate from (8) that 2  () 0 when E [|1  ] − 1  () 0 cannot be

optimal as it leads to strictly negative profits. By Lemma 2, the uninformed  ’s problem then

has a unique maximum at a non-negative 2 . Therefore it is sufficient to look at the first

order condition only and then impose that in equilibrium beliefs must be consistent with the

optimal strategy 2 = ̄2. The first order condition, the expression for  and the proofs of

the statements that   0 and only depends on 1 are in Appendix B.

Because  only depends on 1, it is most illustrative to present the solution
26 on a graph

(see Figure 1). We find that whenever E [|1  ] 6= 1 = E [|1], it is generally optimal for
uninformed  to trade at date 2. The volume traded by  is proportional to the standard

deviation of noise trading and is increasing in 1. Both effects are intuitive. When the order

flow is more noisy (high ), it is harder for the Market to update its beliefs about the state and

it is less costly for uninformed  to trade more aggressively. Because the Market’s posterior

belief that the state is  = , 2 = Pr (|1 2), is increasing in 1 (its belief about  ’s type

before date 2 trading), it is clear that a higher1 also makes it less costly for an uninformed  to

trade more aggressively as the Market is learning about his type more slowly. Overall  trades

24The Hessian is

¯̄̄̄−−2 −2
−2 2 ln (2 (2)) 22 − −2

¯̄̄̄
25An alternative proof of quasi-concavity is to require that the negative of the first derivative of the objective

function is single crossing in 2 . The sufficient conditions for single crossing under uncertainty have also been

explored by Athey (2002) and Quah and Strulovici (2012). In both cases we can derive that log-concavity of

2 () and  () are sufficient for strict single crossing.
26It is relatively easy to show that if 1 = 05 then  =

√
2. The other values are derived using numerical

integration.
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Figure 1: Uninformed  ’s trading volume at date 2.

a finite quantity as he faces a trade-off between profiting from his superior information and

revealing his type too much. This trade-off is fundamentally similar to the one in Kyle (1985),

however differently from that setting  ’s private information is not about the fundamental

directly, but about his impact or lack of impact on date 1 price. Theorem 1 is in stark contrast

to Proposition 1, because Theorem 1 demonstrates that price-contingent trading is profitable.

Before analyzing the date 1 problem, we can now formally define the two traditional types

of price-contingent strategies within the context of our model.

Definition  ’s date 2 strategy is called27

- trend-following (momentum) for some 1 if 1  0 and 2  0, or 1  0 and 2  0

- contrarian for some 1 if 1  0 and 2  0, or 1  0 and 2  0.

Provided the price is monotonic in the order flow (as in all our examples below), it would

be equivalent to define  ’s strategy through date 1 price.

27The words "momentum" and "contrarian" only refer to  ’s strategy. They should not be confused with

positive and negative autocorrelation in returns. By the assumption of efficient markets (5), there is zero

autocorrelation by construction. See also Section 4.4.
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4.3 Date 1 problem

As discussed above, we illustrate our date 1 results by assuming a symmetric three-point prior

as follows:

 =

⎧⎪⎨⎪⎩
−̄ wpr. 1−

2

0 wpr. 

̄ wpr. 1−
2

 (13)

where 0 ≤   1 and ̄  0. By varying the mass in the centre of distribution, , we

cover distributions with very different shapes, i.e., how likely are "good" or "bad news" about

the fundamental compared to "no news". The case with  = 0 corresponds to a two-point

distribution and is of special interest because it is a common assumption in the literature. We

will show that assuming a two-point distribution is not without loss of generality in our setting

- the size of the mass in the center of the prior distribution, relative to that in the tails, turns

out to be crucial in determining the direction of price-contingent trading.

As we focus on pure strategies, the demand of  and  must be known to the Market

for given realizations of the fundamental  =
©−̄ 0 ̄ª. To shorten the argument, we limit

our attention only to the cases where the Market’s beliefs about traders’ strategies have some

natural properties given the symmetry of the distributions and the fact that  has no superior

information at date 1. Namely, we conjecture that in state  =  , the informed trader ’s

optimal demand is some real number ̄ if  = ̄, zero if  = 0 and 1 = −̄ if  = −̄; and
uninformed trader  does not trade. In state  = , the total demand by informed traders 

and  is a real number ̄ if  = ̄, zero if  = 0 and −̄  0 if  = −̄. Given these beliefs,
we can derive the expressions and main properties of E [|1 ], the price, and 1 as described

by the following lemma.

Lemma 3 For the equilibrium price and conditional expectations of the fundamental, it holds

that

1. The price is given by

1 (1) = ̄
 (1)− (1)

 (1) + (1)
(14)

where  (1) ≡ 1−
2

³
 (1 − ̄) + (1− ) (1 − ̄) +



1− (1)
´

and  (1) ≡ 1−
2

³
 (1 + ̄) + (1− ) (1 + ̄) +



1− (1)
´
;

2. The conditional expectation of the fundamental is

E [|1 ] = ̄
 (1 − ̄)−  (1 + ̄)

 (1 − ̄) +  (1 + ̄) +
2

1− (1)
; (15)
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3. The updated probability of state  =  is

1 (1) = Pr (|1) =

¡
 (1 − ̄)

1−
2
+  (1)  +  (1 + ̄)

1−
2

¢
 (1) + (1)

; (16)

4. The price is increasing in the order flow, i.e., 01 (1)  0;

5. The price is symmetric around zero, i.e., 1 (1) = −1 (−1) ;

6. It holds that lim
1→∞

1 (1) = ̄ and lim
1→−∞

1 (1) = −̄;

7. ̄ − 1 (1)  0 for all (finite) 1;

Proof. See Appendix B.

Lemma 3 confirms some reasonable and desirable properties of date 1 price, e.g., the price

is increasing in the order flow, symmetric around zero and always between −̄ and ̄. If the

state is  =  then the expected profit (2) of  can be written as

1 = 1

Z ∞

−∞

¡
 − 

¡
1 + 1

¢¢
 (1) 1. (17)

If the state is  =  then the expected profit (1) of trader  ∈ {} can be written as

1 = 1

Z ∞

−∞

¡
 − 

¡
1 + 1 + 1

¢¢
 (1) 1. (18)

As in Section 4.2, we cannot be immediately sure if the informed trader’s expected profit has

a unique maximum in own demand. The reason is that, unlike in the date 2 problem, we cannot

be sure that the traders’ objective function is log-concave. Namely, one sufficient condition for

this would be that  −  (1) is log-concave and this only holds for some parameters. However

log-concavity is only a sufficient, but not a necessary condition for a unique maximum. What

we need is that the trader’s profit is quasi-concave in own demand, i.e., that −1
1

is a single

crossing function of 1 . In Appendix B we prove that this is always the case for  = 0 and

we identify some conditions where this is also the case for  =
©−̄ ̄ª. Intuitively, a sufficient

condition is that the expected slope of the price at high order flows is not too flat relative to

that same slope at low order flows, or, at a minimum, the slope of the price does not decrease

too rapidly in expectation. Provided that the informed trader’s problem has a unique maximum

in own demand, we can state

Proposition 2 There is a pure strategy equilibrium at date 1, where the following holds:
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1. Informed traders’ demand is given by

1 =

⎧⎪⎨⎪⎩
̄ =  if  = ̄

0 if  = 0

−̄ = − if  = −̄
and 1 = 1 =

⎧⎪⎨⎪⎩
̄
2
= 


2
if  = ̄

0 if  = 0

− ̄
2
= − 2 if  = −̄

,

where  and  only depend on  and .

2. Total demand by informed traders in the event of news (  = ̄ or  = −̄) is always higher
in absolute value in state  =  compared to state  =  , i.e.,    (equivalently

  ).

3. In state  =  , the uninformed trader  does not trade at date 1, i.e., 1 = 0.

Proof. See Appendix B.

Proposition 2 states some intuitive properties of date 1 equilibrium. First, informed traders

face the standard trade-off as in Kyle (1985) and Holden and Subrahmanyam (1992). On the one

hand, whenever they have private information that indicates  6= 0 they earn positive expected
profits from trading, so they have an incentive to trade a high volume. On the other hand,

they know that due to market impact, trading a high volume reveals information about the

fundamental (and also–less importantly for these traders–about the state ) to the Market.

Therefore, they trade a finite amount and the price will not adjust immediately to equal the

fundamental value.

The trading volume is always proportional to the standard deviation of noise trading. This is

because informed traders benefit on average at the expense of noise traders andmore noise allows

them to hide private information more easily. Because the equilibrium price is proportional to

the fundamental (see (14)), the magnitude of the fundamental value does not affect the informed

trader’s optimal strategy, but clearly profits are higher if ̄ is higher. By Proposition 2 we know

that the optimal strategy only depends on two parameters that are between 0 and 1.28 Figure

2 illustrates these dependences by plotting on the vertical axis  and  against  (on the

left panel, assuming  = 0) and against  (on the right panel, assuming  = 05). These plots

are qualitatively similar for different values of  and  First, if the prior probability of the

state with two informed traders  =  (i.e., Pr () = ) is higher, then the informed traders

are trading less aggressively. This is because    and the Market expects more informed

28While the solution does not generally have a nice analytical expression, we can find the benchmark cases

corresponding to Kyle (1985) and to the two-traders version of Holden and Subrahmanyam (1992) by extending

these to a different prior distribution. Namely if  = 0 and  = 0, it holds that  = 1; if  = 0 and  = 1, it

holds that 
2
=
√
2
2
.
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Figure 2: Informed trading volume for different values of  and 

trading and is updating its beliefs faster. This in turn increases the informed traders’ market

impact and reduces their willingness to trade aggressively. Second, if the prior probability of

"no news" () is higher, the informed traders trade more aggressively whenever they observe

 6= 0. This is because by Bayes’ rule the Market is relatively reluctant to update its beliefs
toward the more extreme realizations of the fundamental. This reluctance reduces the market

impact of the informed traders and gives them incentives to trade more.

The most important part of Proposition 2 is part 3 which states that the total order flow by

informed traders is different in the two states, as we can see when comparing the expressions for

1, E [|1 ] and E [|1  ]. If the state is  =  , then  again obtains superior information

exactly because he knows that he did not trade and we can explore the direction of his trade

at date 2.

4.3.1 Direction of price contingent trading

We start by examining the two-point prior, i.e., for now we set  = 0.

Proposition 3 When the prior distribution of the fundamental is a symmetric two-point dis-

tribution, it holds that

E [|1  ]  ()E [|1 ] , for any 1  () 0.

Whenever 0    1, the optimal strategy of  in state  =  at date 2 is contrarian.

Proof. See Appendix B.
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With a discrete two-point distribution we find that if the true state is  =  , i.e.,  is

uninformed, then  ’s optimal strategy at date 2 is always contrarian. Note that when assuming

a two-point prior we are focusing on an enviroment where any "news" about the fundamental is

either "good" or "bad" and the Market always expects informed traders to trade. Any positive

order flow is more likely to be associated with  = ̄ compared to  = −̄ Furthermore, by part
2 of Proposition 2, we know that two informed traders would always trade a larger quantity

in absolute value than one informed trader and therefore whenever the order flow is positive it

holds that Pr
¡
̄|1 

¢
 Pr

¡
̄|1 

¢
and Pr

¡−̄|1 ¢  Pr ¡−̄|1 ¢.29 As the Market prices
the asset considering that both states are possible, it tends to overprice the asset whenever the

order flow is positive and the true state is  =  . Effectively the Market tends to underestimate

the fact that it may have been a positive noise trading shock rather than the demand of the

informed traders that generated a positive order flow.

The above conclusion is specific to a two-point distribution with no mass in the center.

With a three-point prior, we can establish some more general properties about the direction of

price-contingent trading.

Proposition 4 When the prior distribution of the fundamental is a symmetric three-point

distribution and  =  , then for any 0    1 the following conditions hold for large and

very small order flows

1. for order flows |1| ≥
¯̄
̄+̄
2

¯̄
,  always pursues a contrarian strategy at date 2.

2. for order flows 1 in the neighborhood of zero (i.e., for 1 → 0),  pursues a trend-

following strategy at date 2 iff the following condition holds.

1 + exp
³
2
2

´


1−

1 + exp
³
2


2

´


1−





(19)

3. Provided that (19) holds, there exists a threshold order flow in the interval of (0  ̄+̄
2
)

below which P ’s optimal strategy is trend-following and above which it is contrarian.

Proof. See Appendix B.

Proposition 4 shows that with a three-point prior both trend-following and contrarian strate-

gies are possible at date 2. We also gain further insights on how the characteristics of the prior

distribution drive the direction of price-contingent trading.

29This is straightforward to verify using part 3 of lemma 3 and the properties of log-concave functions in

Appendix A.
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Part 1 of Proposition 4 shows that, when the date 1 order flow is large in absolute value,

then at date 2 uninformed  always pursues a contrarian strategy. The reason for this is similar

to our argument about the two-point prior. Intuitively, high order flows in state  =  are

relatively more likely to be driven by high noise trading shocks compared to what the Market

expects. For example, if the true state is  =  , then any order flow that exceeds ̄ must

mean that there was a positive noise trading shock, while the Market will still consider order

flows between ̄ and ̄ to be potentially reflecting small or even negative noise trading shocks.

And this generates incentives for  to pursue a contrarian strategy.

Part 2 of Proposition 4 shows that if the probability of no-news is large enough, then

at least for small order flows uninformed  ’s optimal strategy at date 2 is trend-following.

Namely, there is a threshold level for , above which this inequality (19) holds30 and back-of-

the-envelope calculations indicate that this threshold is quite low.31 This observation highlights

the fact that for trend-following trading there should be at least some mass in the center of

the distribution. The intuition for why at small order flows it is optimal for  to pursue a

trend-following stategy again relates to part 2 of Proposition 2. Consider for example a small

positive order flow. If the true state is  =  , then the Market is now reluctant to believe that

it is driven by informed traders who observed ̄ (as it considers the possibility that two informed

traders who would trade a much larger quantity, ̄ in total, while the actual informed trading

could have been at most ̄) and sets the price relatively close to zero. Because uninformed

 knows at date 2 that his trading did not contribute to date 1 order flow, he benefits from

trend-following trading on average. What is crucially different in the situation where not

just extreme events, but also moderate events regarding the fundamental are possible is that

the Market tends to underestimate the probability that there were very good (or bad) news

regarding the fundamental when it observes a small order flow, as it would expect two informed

traders to always trade much more agressively than one. This tendency to underestimate the

possibility of big fundamental news is what gives incentives for  to pursue a trend-following

strategy.

Figure (3) illustrates the equilibrium difference, E [|1  ]− 1, (vertical axis) for different

values of , assuming that  = 05. On the horizontal axis, there is always the date 1 order flow,

1 and the shaded area point out the values of 1 where  ’s optimal strategy is trend-following.

We can see that when  is high enough, then there is a set of order flows around zero where

|E [|1  ]|  |1| and uninformed  ’s optimal strategy at date 2 is trend-following. As the

30Note that the right hand side of (19) is always bigger than 1 as    by point 2 in Proposition 3. The

right hand side is 1 if  = 0, strictly increasing in  and converges to exp
¡
2
¢
 exp

¡
2
¢
when  → 1. We can

also verify that exp
¡
2
¢
 exp

¡
2
¢
  at the limit. This is because exp

¡
2
¢
 is strictly increasing in

 for any   05. Hence (19) will hold at  → 1 if     05 It can also be shown that  is at its

lowest when  = 1 and  = 0, and from Figure (2) that in such case  is noticeably higher than 0.5.
31For example, if  = 05 then the threshold is around  ≈ 021.
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Figure 3: The difference E [|1  ]− 1 for different values of .

informed trading volume is proportional to the standard deviation of noise trading, the values

along the horizontal axis reflect the order flows normalized by the standard deviation of noise

trading. We can see that at already  = 025 order flows up to the magnitude of one standard

deviation of noise trading will lead to trend-following trading. The magnitude of such order

flows doubles if  = 075. At very high order flows in absolute value, it always holds that

|E [|1  ]|  |1| and uninformed  ’s optimal strategy at date 2 is contrarian.

The three-point distribution also allows to derive richer empirical implications. We find

that price-contingent traders are likely to react differently when they observe order flows of

different magnitude. It is plausible to expect that quantitative traders who typically trade in

the direction of past price changes will adjust their behaviour and become contrarian at extreme

order flows that are most likely driven by noise trading shocks.

4.4 Predictability of order flow and the effect of price-contingent

trading on market efficiency.

Here we point out some natural consequences of equilibrium price-contingent trading under

either the semi-strong or weak form of market efficiency.

Proposition 5 While there is no predictability in returns, the order flow is predictable.

Proof. The lack of predictability in returns is immediate and is due to imposing the efficient

market condition (5). By construction 2 = E [|1 2] and 1 = E [|1], and by application of
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the law of iterated expectations, it is clear that E [2 − 1|1] = E [E [|1 2] |1]−1 = E [|1]−
1 = 0. At the same time by Theorem 1 we know that if the state is  =  then  trades at

date 2 a known amount ̄2 Therefore, E [2|1] = Pr (|1)E [2|1 ] +Pr ( |1)E [2|1  ] =
1E [2|1 ] + (1−1)E

£
̄2 + 2|1 

¤
= (1−1)E

£
̄2|1 

¤ 6= 0.
In Kyle (1985) and Holden and Subrahmanyam (1992) and subsequent models that build on

their framework, imposing the market efficiency condition implies both the lack of predictability

of returns and the lack of predictability of the order flow. As discussed in Section 4.1, there

is no profitable and predictable price-contingent trading and future order flow can only reflect

unpredictable noise trading and informed trading. Matters differ considerably in our more gen-

eral setting, because the Market cannot be perfectly sure of whether there is a price-contingent

trader  or not, but the Market still knows that if there is one, he will trade in a predictable

direction, described in Propositions 4 and 6. For example, if the optimal strategy is trend-

following, the Market expects a positive order flow with some probability; if the actual order

flow is zero, the prices fall.

It should also be noted that the type of price-contingent trading we analyze as emerging

in a fully rational setting without other frictions, on average facilitates price discovery by

moving prices closer to the fundamental. In state  =  , the best estimate of the fundamental

conditional on all the information apart from the fundamental itself is E [|1  ], and not
E [|1], so that uninformed  ’s price-contingent trading on average pushes date 2 price 2

closer to E [|1  ].
Importantly, in our model there is also no sense in which contrarian trading is more sta-

bilizing than momentum trading. For example, it is true that in our setting a rare situation

can arise whereby prices change purely because of a noise trading shock and  ’s optimal trend-

following strategy moves prices further away from the fundamental, but similarly there can be

a rare situation whereby following some draws of noise trading  ’s optimal contrarian trading

delays information about the fundamental from being reflected into prices. As a result, while

both contrarian and momentum trading are on average stabilizing, both can end up pushing

prices away from fundamentals.

5 Discussion of Special Cases and Extensions

In this Section we discuss some special cases and alternative assumptions and extensions. We

examine the number of traders in Section 5.1, alternative distributions of the fundamental in

Section 5.2, and other assumptions in Section 5.3.
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5.1 Number of traders

We have assumed that in any state there is always an informed trader . The reason was to

guarantee that asset prices always reflect fundamental information at least from , which 

may learn from prices. The presence of trader  allows for a rich set of effects and generates a

rationale for trend-following trading under some conditions. However, we should emphasise that

uncertainty about  ’s type alone is sufficient for rational price-contingent trading to emerge

even if there is no fundamental information. Namely, assume that there is no trader , but

the Market still does not know  ’s type as in the baseline model of Section 3. Consider a

symmetric prior and normal noise trading.

Proposition 6 If there is no informed trader K, then uninformed P will pursue and profit from

a contrarian strategy at date 2.

Proof. See Appendix B.

Proposition 6 further highlights why profitable price-contingent strategies emerge in a ratio-

nal setting where traders’ types are not perfectly observable by the average market participants,

as it leads to "mistakes" in interpreting the order flow. In this example, prices would never

change if the Market knew that  is uninformed. However, the possibility that the order flow

may contain fundamental information is enough to make the Market sometimes change prices

unnecessarily based on order flows. Naturally  ’s optimal strategy in this example is always

contrarian because uninformed  knows that the best guess about the fundamental is still the

prior and would profit from speculating against any changes of prices.

It would be trivial to add more type and type  traders. All the effects would be the same

as long as the number of sophisticated traders of type  and  is finite. The reason why 

and  trade finite amounts and earn returns on their information is because they have market

impact and they are aware of it. If the number of type  traders were infinite, then they would

be indistinguishable from the Market; if the number of type  traders were infinite, then in the

limit prices would tend towards strong-form market efficiency, but also towards an information

acquisition paradox in the spirit of Grossman and Stiglitz (1980). Second, it would also be

possible to add more trading rounds in which uninformed  can trade. This would complicate

the model as  would likely have a Kyle’s (1985) type of incentive to split his orders and reveal

information more slowly. However, it is intuitive that the Market will then still be imperfectly

and slowly learning about the true state until the price eventually converges to E [|1 ].
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5.2 Alternative distribution of the fundamental and some more gen-

eral properties

As we discussed in Sections 3, 4.1, and 4.2 above, our results on existence and uniqueness

of an optimal price-contingent trading strategy at date 2 are general and do not depend on

any particular prior distribution of the fundamental. However, we showed in Section 4.3 that

the choice of prior distribution is crucial for determining the qualitative results, and most

notably for the direction of price contingent trading. Therefore, for more concrete applications

of the mechanisms identified in our paper to different assets and time frame, the assumptions

about the fundamental should be predominately driven by economic arguments specific to the

situation at hand. Here we extend our discussion about the robustness of our findings and of

some important effects by considering more explicitly other prior distributions.

We focused on the examples of a two-point and a three-point prior. While the former is a

common assumption in the literature (e.g., Cho and El Karoui (2000)), the latter allowed us

to derive richer and more realistic results. Another common assumption in the literature is a

normal prior, used for example in Kyle (1985) and Holden and Subrahmanyam (1992). Given

the intuitition we have built in Section 4.3 with the three-point distribution, it is intuitive to

expect the presence of the force pushing towards trend-following trading, due to the sizable mass

in the centre of the normal prior distribution. Furthermore, the normal prior has also infinite

support and thin tails, which also implies that very high order flows are not necessarily driven

by extreme noise trading, but may be still driven by very high draws of the fundamental. In

Appendix C we explore the normal prior and show that in such case the optimal price-contingent

strategy is trend-following. The reason is that the tendency for the market to underestimate the

fundamental at a given order flow is always present and dominates the tendency to overreact to

noise trading shocks. Namely, at any given fundamental two traders will always trade more than

one, and it is also true that at a given level of demand by informed traders, the fundamental is

always higher if there is one informed trader rather than two. This force leads the Market to

setting prices too insensitive to the order flow, which makes trend-following trading profitable.

While there is also a secondary effect where the Market underestimates the contribution of noise

traders to the total order flow if the true state this  =  , we find that this latter effect never

dominates. Appendix C includes the case where  and  are independent as in our baseline

setting, but we also give an example with a particular joint density of  and  that keeps the

date 1 equilibrium linear. Results in both cases are similar, but the latter allows for comparable

equations to the aforementioned papers that are a special cases with  = 0 and  = 1 in our

setting.

We can further derive some more general properties of our model with other prior distribu-
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tions. For clarity, assume that the fundamental, , is a continuous variable;32 that noise trading

is also continuous in the interval [−̄,̄]; and  () is log-concave and symmetric. Provided that
the price is increasing in the order flow and the date 1 problem is quasi-concave (with interior

maximum)33, there exists a pure strategy equilibrium where a set of properties are true, and we

can derive some properties using the tools from the monotone comparative statics literature.

Namely, we establish

Proposition 7 If date 1 price is increasing in the order flow and the informed traders’ problem

is quasi-concave (with interior maximum), then:

1. The total demand of informed traders,  () in state  ∈ { } is strictly increasing in
.

2. It holds that  ()  ()  () for any   () 0.

Proof. See Appendix B.

The most important implication of Proposition 7 is that, holding fixed any fundamental, two

informed traders trade a higher quantity in equilibrium than one informed trader. This implies

that conditional on date 1 order flow 1, the state  and the fundamental  are not independent.

In particular, Pr ( | 1) = (1− ())Pr( |)
(1− ())Pr( |)+(1−()) Pr(|) is generally a function of . This

allows to conclude that in general there will be a difference between uninformed  ’s and the

markets expectations. Namely, it holds that

E [|1  ]− 1 =
E [ · Pr ( | 1) |1]

Pr ( |1) − E [|1] =  (Pr ( | 1))
Pr ( |1) ,

where we used the market efficiency condition (5) and Bayes’ rule  (|1 ) = (|1)Pr( |1)
Pr( |1) .

As we argued that Pr ( | 1) is a function of , it is clear that  and Pr ( | 1) are not
independent, which means that the covariance will generally not be zero. Therefore, our main

result that price-contingent trading is profitable in a setting where there is uncertainty about

traders’ types is very general.

Also, given Proposition 7, the forces that affect the direction of the difference E [|1  ]−1
are also present more generally. As an example, assume that both noise trading and the fun-

damental  are continuous and have support in (−∞∞) and noise trading has symmetric
log-concave density. In such case, by Proposition 7 part 1, we know that  () is an invert-

ible function. Therefore, in state  we obtain the following signal from the order flow only:

32Similar arguments hold for a discrete fundamental.
33Sufficient conditions for this are similar to those discussed in Appendix B.
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given 1 and unknown noise trading shock ∗1, the fundamental is 
∗ = −1 (1 − ∗1). The

cumulative distribution function (c.d.f.) of  conditional on the order flow only is therefore,

Pr (∗  ) = Pr
¡
−1 (1 − ∗1)  

¢
= 1 −  (1 −  ()), where  is the c.d.f. of noise

trading. By part 2 of Proposition 7 and the fact that the c.d.f. is monotonically increasing,

1 −  (1 −  ())  () 1 −  (1 −  ()) for any  ()  ()  () ⇐⇒   () 0. This

confirms that the distribution of  conditional on the order flow only is more dispersed in

state  =  compared to state  =  for any order flow 1. The probability density func-

tion of the fundamental conditional on order flow only is 0 ()  (1 −  ()). We find that

the expected value conditional on the order flow only is then
R∞
−∞ 0 ()  (1 −  ()) 

=
R∞
−∞ −1 ()  (1 − )  =

R∞
0

−1 () ( (1 − )−  (1 + )) . It then holds that

the difference in expectations is
R∞
0

¡
−1 ()− −1 ()

¢
( (1 − )−  (1 + ))   () 0

if 1  () 0. The inequality follows from (25) and Lemma A.1 in Appendix A. Therefore, if

1  0, then in state  =  the order flow signal has a higher mean (which pushes toward

trend-following trading) and a more dispersed distribution (which pushes toward contrarian

trading) than in state  = . Any Bayesian updating trades off these two effects, and which

one dominates depends on the prior. If, additionally, the distributions are bounded then the

same effects are present and there are additional effects due to these bounds - most importantly,

large order flows in absolute value are always more likely in state  = .34

5.3 Normal noise trading and other assumptions

As discussed in Section 3, we view the noise traders in our model as capturing a large number

of traders who trade for idiosyncratic reasons outside the main focus of our model. Therefore,

the main argument for assuming normally distributed noise trading stems from the central limit

theorem. However, technically, many realistic properties of our model rely on the less restrictive

assumption of log-concave noise trading. Indeed, a log-concave distribution guarantees that the

Market updates at date 2 in the "correct direction" - that is, in state  =  , if trader 

submits a positive quantity in equilibrium, then higher order flows at date 2 always signal

a higher posterior probability that the state is indeed  =  . It also guarantees that the

expected value E [|1 ] is increasing in date 1 order flow, which in turn often implies that
also the price is increasing in order flow. Both of these properties hold because log-concavity

implies the monotone likelihood ratio property (MLRP). These properties are realistic in the

34If the prior has bounded support
£−̄ ̄¤ and noise trading support is noticeably wider (such that any order

flows can be generated by a noise trading shock), then conditional on the order flow only in state  the cdf

of  is
(1+(̄))−(1−())
(1+(̄))−(1−(̄)) and the probability density function is

0()(1−())
(1+(̄))−(1−(̄)) . With some

algebra we can then identify the same effects, and find that informed trading at the highest fundamental, 
¡
̄
¢

in  = { } affect both the mean and the dispersion.
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context of financial markets and guarantee that sophisticated large traders in our model face

a meaningful trade-off in the spirit of Kyle (1985). Namely, an informed trader (either with

superior information about the fundamental directly or indirectly due to superior knowledge of

his own past actions) benefits from trading a higher volume due to positive expected returns,

but trading a higher volume is costly due to market impact as it reveals more about his private

information–whether about the fundamental or about his own type.

In our proofs we frequently relied only on log-concavity rather than on the explicit form of

the normal density. For example, the determinants of the direction of price-contingent trading

in the case of two- and three-point prior distribution hold for any (symmetric) log-concave noise

trading.

It should also be noted that to avoid a situation whereby  at date 2 has an incentive to

trade an infinite amount–which cannot occur in equilibrium–we need at least that the noise

trading distribution,  (), is such that the likelihood ratio  (2) =
(2−̄2)
(2)

is unbounded,

which is true for some, but not all log-concave densities.35

Finally, one could also model more complex information structures where also informed

traders can trade more frequently. It is well known from Kyle that traders with superior

information and market power have incentives to split orders and not push prices immediately

to be equal to fundamentals. For this reason allowing other large informed traders to trade at

date 2 in parallel to  does not eliminate  ’s gains from price-contingent trading. We have

explored such setting and the results are available upon request.

6 Empirical Implications

We have presented a theory of algorithmic trading as an automated system under constant

human supervision. In section 6.1 we discuss how our equilibrium helps understand basic

features of algorithmic trading in the real world, and in section 6.2 we discuss the impact of

algorithmic trading on market stability and market crashes.

6.1 Understanding Algorithmic Trading

Algorithmic trading is systematically profitable. While hedge funds and quantitative traders

are shrouded in secrecy and systematic data is thus hard to come by, it is becoming increas-

ingly evident that quantitative trading with algorithms generates large profits on a regular

35By unbounded, we mean that lim
2→̄

 (2) →∞ for 0  ̄2  ̄. For example, not just the normal, but also

the  ( ) distribution with parameters ,  1 is strictly log-concave and has an unbounded likelihood

ratio. However,  ( ) with   0 is strictly log-concave, but the likelihood ratio is not unbounded

(Gamma is also not symmetric around zero).
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basis.36 These regular profits are hard to reconcile with a view of algorithmic trading as mere

implementation of standard portfolio selection models, and do suggest the need to examine the

micro-foundation of algorithmic trading strategies.

Our paper does offer such a micro-foundation of algorithmic trading. In our equilibrium,

when trader  ends up uninformed about the fundamental, he trades a systematic non-zero

quantity based on past prices, whose direction–trend-following or contrarian–depends on the

parameters of the distribution. By contrast, when  ends up informed (e.g., rumors of a

takeover bid), he trades on that information and disregards or override the algorithm (e.g.,

see the illustration based on rumors about the Merrill Lynch and Bank of America merger

in Narang (2013, p.15-16)). Thus, in our equilibrium automated algorithmic trading needs

constant human supervision: it is the very possibility of submitting an informed order at some

point that makes algorithmic trading systematically profitable.37 Interestingly, this view of

automated trading under human supervision is consistent with the accounts of the source of

hedge funds’ profits that are typically found in the press.38

Given the mechanics of automated trading under human supervision and its interplay with

fundamental trading described above, our model most closely rationalizes price-contingent

strategies at short horizons by Commodity Trading Advisors (CTAs) in futures markets and

by various hedge funds in equity markets.39 CTAs are popular recent investment vehicles that

execute profitable trend-following strategies in futures markets at daily, weekly, and monthly

frequencies (e.g., see Clenow (2013), and Baltas and Kosowski (2014)). By contrast, various

hedge funds execute profitable contrarian strategies in equities at weekly (Lehmann (1990)) and

monthly (Jegadeesh (1990)) frequency. Our model can account for both types of strategies, by

noticing that futures markets are typically characterized by a distribution of the fundamental

with substantial mass in the center, similar to our normal case examined in Section 5.2, or

the three-point distribution with enough probability of no news of Section 4; and that equity

markets at short horizons are rarely characterized by informed trading, so that they resemble

the case examined in Proposition 6 without trader . Along similar lines, in any financial

36Quantitative hedge funds such as Citadel, CQS, Renaissance Technologies, and others, which implement

multiple trading strategies with a strong emphasis on directional trading, feature regularly among the top

performing hedge funds, e.g., see http://media.bloomberg.com/bb/avfile/rMz9ZuocMhKo.
37Alternatively, one can also think of quantitative trading as being a portfolio of various trading strategies,

some of which based on prices, such as trend following or contrarian strategies, and others based on fundamen-

tals, such as for example ’value’ or ’growth’ strategies (albeit not based on publicly observed ’factors’ but on

proprietary research, e.g., see Kissell (2014) and Narang (2013)).
38For example, Fortune Magazine (16 July, 2003) features an article on the success of Barclays Global In-

vestors, which describes the fund’s strategy as “They don’t follow hunches; they follow computer models. /. . . /

This is modern quantitative investing. It falls somewhere between stock picking as it has been practiced for

generations and the computer-driven "black box" techniques”.
39Some large and prominent funds that are known to use systematic trend-following and contrarian strategies

are AQR, Renaissance Technologies, D.E. Shaw, Citadel, Barclays Global Investors.
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market at such high frequencies that the likelihood of informed trading is essentially zero, our

model predicts that any price-contingent trading should be contrarian.

Finally, one testable implication of our model is that the order flow should be predictable

from past information even when returns are not. The reason is that, even if the Market does not

know if trader  is informed, still the Market knows the direction of  ’s trade when uninformed.

Therefore, we expect a non-zero autocorrelation of the order flow, and we expect its sign to go

hand in hand with the direction of price-contingent trading in equilibrium: contrarian trading

should imply a negative autocorrelation, and trend-following trading should imply a positive

autocorrelation. Importantly, these predictions differ from those of Barberis et al. (1998),

Daniel et al. (1998), and Hong and Stein (1999), as in these models order flow predictability is

a direct consequence of return predictability, which is ruled out in our model.

6.2 Market Quality and Crashes

In terms of the impact of the introduction of quantitative trading on various aspects of market

quality such as volatility and liquidity, we find that quantitative trading is on average stabilizing,

in the sense that price contingent trading typically moves prices closer to the fundamental,

consistent with the empirical evidence of Hendershott et al. (2011) and the practitioners’

accounts in Kissell (2014), Durenard (2013), and Narang (2013). However, there is a concern

that in particular circumstances quantitative trading can propagate adverse negative shocks

and generate instability, as in the Quant Meltdown of August 2007, and the Flash Crash of

May 6, 2010. For example, the report on the "events of May 6," (CFTC and SEC (2010)) stated

that a large ‘mistaken’ sell order triggered algorithms to start selling; soon after the volume

of sell orders increased, and algorithms started to buy. Eventually, many algorithms incurred

large losses and just stopped trading, so that the mismatch of supply and demand became so

large that the entire system went to a halt for a few minutes.

Remarkably, while not specifically designed to describe these events, our model does capture

some of their key features. First, algorithms did not trigger either episode–the trigger was a

noise trading shock such as the ‘mistake’ by a large investor in 2010; and a series of large

trades on the news of problems with subprime mortgages in 2007. Second, and consistent

with our model, the initial response of algorithms in both cases was trend-following trading,

as long as total order flow was ‘small enough’. Third, and again consistent with our model,

when total order flow became larger, algorithms started pursuing contrarian strategies. On the

other hand, by its very design our model does not capture the failures of market efficiency that

occurred when many algorithms just stopped trading and prices could no longer equate supply

and demand. Most important, though, the events of August 2007 and May 2010 underscore a

key feature of our model: quantitative trading through algorithms is profitable on average, as
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it is better able to chase information than the rest of the market, but it can occasionally end

up chasing noise trading shocks, thereby incurring losses.40

7 Concluding Remarks

We have presented a theory of quantitative trading as an automated system under human

supervision. We establish that price-contingent trading is the optimal strategy of large rational

agents in a setting in which there is uncertainty about whether large traders are informed about

the fundamental. We provide conditions under which price-contingent trading is trend-following

(momentum) or contrarian in equilibrium. A robust implication of our results is that the order

flow is predictable from current prices even if the market is semi-strong efficient and future

returns are thus unpredictable.

Our model explains why hedge funds and other large financial institutions who engage

in automated trading with algorithms are systematically profitable; and it explains why the

secrecy of their algorithms, trading portfolios, and exposures is key to their success. By having

market impact and by being relatively less known than other agents, hedge funds can learn any

information that is reflected into prices better than any other investor who does not perfectly

know their trading strategies and portfolios. As a result, hedge funds can successfully implement

a broader range of strategies, such as trend-following and contrarian trading, than individual

and retail investors without market impact that would lose money from those same strategies.

Quantitative trading with algorithms has recently come under attack in the popular press,

and the profitability of these strategies has been occasionally attributed to illegal practices

such as front-running.41 We have demonstrated that the superior systematic performance of

trend-following and contrarian strategies needs not stem from illegal practices, as the simple

and perfectly legitimate market impact of trades, together with uncertainty about access to

fundamental information, is sufficient to generate systematic profits.

Of course, in the real world quantitative strategies can be a lot more sophisticated than

our simple equilibrium momentum and contrarian strategies, and can use as input an array of

quantifiable public information in addition to prices and order flows. One robust insight of our

model is that quantifiable information can arise from superior knowledge of market participants’

trading styles rather than economic fundamentals as traditionally thought. Extending our

model to capture the additional nuances of real-world quantitative strategies would seem to be

an interesting area for future research.

40See Mendel and Shleifer (2012) for a related account of the Quant Meltdown of 2007.
41Even though such critique is most applicable to the subset of trading strategies at the highest frequencies in

the millisecond environment, it is the full universe of quantitative trading that has lately come under scrutiny

from the popular press.
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A Background theorems and lemmas

Lemma A.1 If  () is strictly log-concave, then it holds that

 (2 − 2)

 (2 − 1)


 (1 − 2)

 (1 − 1)
for any 2  1 and 2  1. (20)

Proof. By definition of log-concavity it must hold that

 ln ( (1 − 2)) + (1− ) ln ( (2 − 1))  ln ( ( (1 − 2) + (1− ) (2 − 1))) and

(1− ) ln ( (1 − 2)) +  ln ( (2 − 1))  ln ( ((1− ) (1 − 2) +  (2 − 1))) for any

0    1. Let  = 2−1
2−1+2−1 . Then ln ( ( (1 − 2) + (1− ) (2 − 1))) = ln ( (1 − 1))

and

ln ( ((1− ) (1 − 2) +  (2 − 1))) = ln ( (2 − 2)). Adding up the inequalities, we ob-

tain that ln ( (1 − 2))+ln ( (2 − 1))  ln ( (1 − 1))+ln ( (2 − 2)). Exponentiating

both sides and rearranging, we obtain (20).

Note that, in probability theory, this implies that if we interpret  as a signal about some

random variable such that  =  + , where the density  () is strictly log-concave, then

the conditional distribution of  (|) =  (− ) satisfies the strict monotone likelihood ratio

property (MLRP).

Corollary A.1.1 If  () is strictly log-concave and symmetric ( () =  (−)), then for any
  0, it holds that

 (− )  ()  (+ ) for any   () 0

Proof. For the case   0, let 2 =  1 = − and  = 2  1 = 0. By (20)
(−)
()


(−−)
(−) =

(+)

()
=⇒  (− )   (+ ). For the case   0, let 2 =  1 = − and

 = 1  2 = 0 to obtain that
()

(−) 
(−)

(−−) =
()

(+)
=⇒  (+ )   (− ).

For the next Lemma, assume that the prior distribution in state  ∈ { } is  (|) ≡
 () =  (−) in between −̄ and ̄ (the case ̄ = ∞ is easy to incorporate in this frame-

work). We consider a continuous prior, but a similar argument applies to a discrete prior. As-

sume that the informed trader’s total demand at date 1 is symmetric around zero and strictly

increasing, i.e., 1 =  () and 1 + 1 =  (), where  () =  (−) and 0 ()  0

for  ∈ {0 1}. Assume that uninformed  ’s demand at date 1 is some constant ̄1 .

Lemma A.2 If the noise trading distribution is log-concave and symmetric,  (1), it holds

for any prior distribution that E [|̃1 ] − E [|1 ]  0 for any ̃1  1. It also holds that

E [|1 ] = E [| (−1)  ] and E
£
| ¡1 − ̄1

¢
 
¤
= −E £| ¡−1 + ̄1

¢
 
¤
.

Proof. The proof uses Milgrom (1981) and log-concavity of  (). Define the observable part

of the order flow in state  as follows: 1 = 1 if  =  and 1 = 1 − ̄1 if  =  . It then
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holds that 1 =  () + 1 for  = { }. We first show that E [|̃1 ] − E [|1 ]  0

for any ̃1  1. It is well known that E [|̃1 ]  E [|1 ] if the cumulative distri-
bution  (|̃1 ) dominates  (|1 ) in the sense of first order stochastic dominance, i.e.,
 (|̃1 ) ≤  (|1 ) for all  with strict inequality for some . Given that the order flow
1 =  ()+ 1,  () is increasing, we know from Lemma A.1 that log-concavity of  () im-

plies that 

³
̃1 − (̂)

´

¡
1 − (̌)

¢
 

¡
̃1 − (̌)

¢


³
1 − (̂)

´
for every ̂ 

̌. We can equivalently write this inequality as 
³
̃1|̂ 

´

¡
1|̌ 

¢
 

¡
̃1|̌ 

¢

³
1|̂ 

´
for every ̂  ̌. The fact that the latter inequality implies first order stochastic dominance for

any prior density  (|) is Proposition 1 in Milgrom (1981). As in state  = , 1 = 1, this

immediately proves that  [|̃1 ]− [|1 ]  0 for any ̃1  1. For the state  =  , notice

that because ̄1 is known, conditioning on 1 is equivalent to conditioning on 1 = 1−̄1 and
it must always hold that  [|1 ] =  [|1 ] so we know that  [|̃1  ]− [|1  ]  0
for any ̃1 − ̄1  1 − ̄1 ⇔ ̃1  1. For the second part, note that we can express that

E [|1 ] =
R ̄
−̄  (|1 )  =

 ̄
−̄ (1−())() ̄
−̄ (1−())()

. Using the symmetry of  () and

 (), we then find that E [|− 1 ] =
R ̄
−̄  (|− 1 )  =

 ̄
−̄ (−1−())() ̄
−̄ (−1−())()

=

−
 ̄
−̄ (1−())() ̄
−̄ (1−())()

= −E [|1 ]. Using then the definition of 1 proves the lemma.

Theorem A.3 (Prékopa (1973) Theorem 6) Let (xy) be a function of + variables where

x is an -component and y is an -component vector. Suppose that  is logarithmic concave

in R+ and let  be a convex subset of R. Then the function of the variable x:Z


(xy)y

is logarithmic concave in the entire space R.

Theorem A.4 (Chebyshev’s integral inequality) Let   : [ ] → R and  : [ ] → R

be a probability density function. Suppose that  is monotonically increasing. Define  :

( ]→ R,  () =
 

()() 

()

. If  () ≤  () for all  ∈ ( ] thenZ 



 () ()  ()  ≥
Z 



 ()  () 

Z 



 ()  () 

Proof. See for example Theorem 1 in Wagener (2006). Also see Mitrinovíc, Pec̆aríc, and Fink

(1993).
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B Proofs

Proof of Proposition 1

As this statement does not rely on any specific distribution of the fundamental, we prove a

more general case. Therefore, assume more generally that the prior distribution is symmetric

(and prior mean exists) and noise trading distribution is log-concave. Assume that informed

trader ’s optimal strategy is given by  () and it holds 

³
̃
´
  () for any ̃   and

 () = − (−).42
By a straightforward application of Bayes’ rule, it holds that  = 0 =⇒ 1 = 0 and 2 = 0.

Also, notice that in this case date 2 order flow is not informative about the fundamental, i.e.,

E [|1 2  ] = E [|1  ]. From (6), we then find that 1 = E [|1] = E [|1  ] = 2.

From (3),  ’s expected date 2 profits are E
£
2 ( − 2) |1 

¤
= 2 (E [|1  ]− 1) = 0.

Therefore,  earns zero profit at date 2 irrespective of the quantity he trades. For date 1,

suppose that the Market sets the price under the belief that  trades some known quantity ̄1

at date 1. Given these beliefs,  chooses 1 that corresponds to an order flow (see (4)) 1 =

1 +1+ (). The order flow is uncertain at the time of  ’s date 1 trading decision due to the

presence of 1 and . Using that  ’s profit at date 2 is always zero and E [| ] = 0, (3) can be
written as 1 = −1 E [1| ]. Denoting the prior distribution of the fundamental with  (),
we find that E [1| ] =

R


R

1
¡
1 + 1 +  ()

¢
 (1)  () 1.

43 The first derivative

of the profit is 1 1 = −E [1| ] − 1
¡
E [1| ] 1

¢
. Because 1 = E [|1  ],

by Lemma A.2 in Appendix A, the price is increasing in the order flow, and it holds that

−1
¡
E [1| ] 1

¢
 () 0 for any 1  () 0. Due to the symmetry of distributions

and the fact that prices increase in the order flow, it also holds that −E [1| ]  () 0 for any
1  () 0.44 Therefore,  ’s profit is maximized at 1 = 0. In equilibrium, the beliefs of

the Market must be consistent with  ’s optimal strategy, i.e., it holds that 1 = ̄1 = 0. In

such a case, also 1 = 0.

Proof of the remaining parts of Theorem 1

Assume that E [|1  ]− 1  0. It is clear from (8) that the optimal demand 2 cannot

be negative. Because by Lemma 2  ’s problem at date 2 is log-concave, it is sufficient to

42Proposition 6 in Section 5 proves that the total demand by informed traders must be increasing in  due to

supermodularity of the problem. Symmetry follows from the symmetry of all distributions.
43A similar argument holds for a discrete distribution of the fundamental and/or of noise trading.
44From Lemma A.2 in Appendix A it also holds that 1

¡
1 − ̄1

¢
=

−1
¡−1 + ̄1

¢
. Therefore, E [1| ] =

R
0

R
10

1
¡
1  1  ̄1

¢
 (1)  () 1, where

1
¡
1  1  ̄1

¢ ≡ 1
¡
1 + 1 +  () + ̄1 − ̄1

¢
+ 1

¡
1 + 1 −  () + ̄1 − ̄1

¢ −
1
¡−1 + 1 −  ()− ̄1 + ̄1

¢ − 1
¡−1 + 1 +  ()− ̄1 + ̄1

¢
 As prices are increasing in

the order flow, it holds that 1
¡
1  1  ̄1

¢
is always non-negative and strictly positive for some values of

1   0 iff 1  0.
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explore the first order condition. Using (8), (9), (10), (11) and noticing that
(2−2 )

2
=

2−2
2



¡
2 − 2

¢
, we obtain that

2
2

=

Z ∞

−∞

1 (2)

1 (2) + (1−1)

¡
2 − ̄2

¢ µ1− (2 )2
2

+
2 2
2

¶


¡
2 − 2

¢
2 (21)

Define  ≡ ̄2

and  ≡ 2


, where 2 =  , which implies that 

¡
2 − ̄2

¢
= 1


 ( − )

and  (2) =
1

 (), where  () is the p.d.f. of a standard normal. The optimal demand

must solve
2
2

= 0 and it must hold in equilibrium that optimal demand
¡
2

¢∗
= ̄2 = .

Using all this, in (21), we obtain that  is the positive solution ofZ ∞

−∞

1 ()

1 () + (1−1) ( − )

¡
1− 2 + 

¢
 ( − )  = 0 (22)

which we know to be unique by Lemma 2. Because  does not enter in (22), it also proves that

 ’s demand is proportional to  and only depends on 1. The proof for the case E [|1  ]−
1  0 is similar and in such a case we need the unique negative solution of (22). It is easy to

verify that if   0 solves (22), then also −  0 solves (22).

Next let us prove that   1 by contradiction. Suppose instead that 0    1 solves (22).

From (22), it must then be the case that 
R∞
−∞ 

1()

1()+(1−1)(−) ( − )   0. Using that

 () is an even function, we can rewrite this as



Z ∞

0

1 ()

Ã
1

1
()

(−) + (1−1)
− 1

1
()

(+)
+ (1−1)

!
  0

Because  () is log-concave, it holds that  ( − )   ( + ) for all    0 by Corollary

A.1.1 from Appendix A. This implies that 1

1
()

(−)+(1−1)
 1

1
()

(+)
+(1−1)

. So all terms inside

the integral are non-negative for all  ≥ 0 (with strict inequality for   0), which leads to a

contradiction and therefore 0    1 does not hold.

Proof of Lemma 3

For parts 1-3 note that (6) implies that, 1 (1) = 1E [|1 ]+(1−1)E [|1  ]. By the
law of total expectations E [|1 ] = ̄Pr

¡
 = ̄|1 

¢−̄Pr ¡ = −̄|1 ¢ and by Bayes’ rule
Pr (|1 ) = 1−

2
 (1|)  (1|), where 

¡
1| = ̄ 

¢
=  (1 − ̄);  (1| = 0 ) =

 (1); 
¡
1| = −̄ 

¢
=  (1 + ̄) and  (1|) = 

¡
1| = ̄ 

¢
1−
2
+

¡
1| = −̄ 

¢
1−
2
+

 (1| = 0 ). By Bayes’ rule 1 (1) =
(1|)

(1|)+(1−)(1|) . Combining all this proves

parts 1-3. For part 4, note that  (1 − ) 1 = −1−
2

 (1 − ) for any constant ,

and therefore  0
 (1) = − 1

2
 (1) + (1) and  0

 (1) = − 1
2
 (1) − (1), where

37



 (1) ≡ 1−
2

³
 ̄
2
 (1 − ̄) + (1− ) ̄

2
 (1 − ̄)

´
 0 and  (1) ≡

1−
2

³
 ̄
2
 (1 + ̄) + (1− ) ̄

2
 (1 + ̄)

´
 0. Using the above and differentiating, 01 (1) =

2̄
(1)(1)+(1)(1)

((1)+(1))
2  0. Parts 5-7 are straightforward when using (14), the expression

of the normal density, and the fact that  () is an even function that is always non-negative

and positive at finite values.

Quasiconcavity of informed traders’ date 1 problem.

Let us focus on the state  =  . If  = 0 then from (17), we obtain the first order condition

−1
1

=
R∞
−∞
¡

¡
1 + 1

¢
+ 1 0

¡
1 + 1

¢¢
 (1) 1 =

=
R∞
−∞
¡
 (1) + 1 0 (1)

¢


¡
1 − 1

¢
1 = 0. It is clear that 


1 = 0 satisfies the first

order condition as  (1) (1) is an odd function of 1 and therefore −1
1

|1 =0 = 0. Fur-

thermore, the negative of the first derivative can be expressed as

−1
1

=
R∞
0

 (1)
¡


¡
1 − 1

¢− 

¡
1 + 1

¢¢
1 + 1

R∞
−∞ 0 (1)

¡
1 − 1

¢
1.

Note that  () ≥ () 0, for all (some) 1 and 1 ,  (1) ≥ () 0 for all (some) 1 ≥ 0

and 0 (1) ≥ 0 for all (some) 1. Furthermore, from Corollary A.1.1 in Appendix A, we know

that 

¡
1 − 1

¢
 

¡
1 + 1

¢
if and only if 1  0 and 1  0. Therefore, −1

1

is strictly single-crossing, which proves that the objective function (17) is quasiconcave and

achieves the maximum at 1 = 0.

If  = ̄, then it is clear from (17) that 1  0 cannot be the best response as it leads to neg-

ative expected profits, and there would be a profitable deviation to 1 = 0. The negative of the

first derivative is now−0 ¡1 ¢
= −1

1
=
R∞
−∞
¡

¡
1 + 1

¢
+ 1 0

¡
1 + 1

¢− ̄
¢
 (1) 1

=
R∞
−∞
¡
 (1) + 1 0 (1)− ̄

¢


¡
1 − 1

¢
1. The solution on −0

¡
1

¢
= 0 is a unique

maximum if −0 ¡1 ¢
is a strictly single crossing function–that is −0 () ≥ 0 implies that

−0
³
̃
´
 0 for any 0    ̃. Using the expression for −0 ¡1 ¢

we require that³
̃− 

´R∞
−∞ 0 (1)

³
1 − ̃

´
1 +

R∞
−∞ (

0 (1) +  (1)− )

³
1 − ̃

´
1  0. The first

term is clearly positive. The second term can be written asR∞
−∞ (

0 (1) +  (1)− )
(1−̃)
(1−)  (1 − ) 1, where

(1−̃)
(1−) is increasing in 1 due to log-

concavity (see Lemma A.1).

Notice that if 0 (1) +  (1) −  is single crossing in 1, we can prove that this integral

is non-negative similarly to Lemma 5 and Extension to Lemma 5 in Athey (2002). Namely,

suppose that 0 (1) +  (1) −  is single crossing in 1 then there exists 1 = ̄ such that

0 (1) +  (1) −   () 0 for any 1  () ̄. Furthermore, it is clear that
(1−̃)
(1−) 
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()
(̄−̃)
(̄−) for any 1  () ̄. Then we obtain that

Z ∞

−∞
(0 (1) +  (1)− )



³
1 − ̃

´
 (1 − )

 (1 − ) 1 =

Z ̄

−∞
(0 (1) +  (1)− )



³
1 − ̃

´
 (1 − )

 (1 − ) 1+

Z ∞

̄

(0 (1) +  (1)− )


³
1 − ̃

´
 (1 − )

 (1 − ) 1 



³
̄ − ̃

´
 (̄ − )

Z ∞

−∞
(0 (1) +  (1)− ) (1 − ) 1 =



³
̄ − ̃

´
 (̄ − )

· (−0 ()) ≥ 0,

where the first inequality follows from the monotonicity of
(1−̃)
(1−) . Overall in such case

−0 () ≥ 0 indeed implies that −0
³
̃
´
≥ 0. Note that a sufficient (but not necessary)

condition for 0 (1) +  (1)−  to be single crossing in 1 is that
−(1)
0(1)

is decreasing in 1,

i.e.,  −  (1) is log-concave.
45

We can also identify a somewhat more general sufficient condition for the termR∞
−∞ (

0 (1) +  (1)− )
(1−̃)
(1−)  (1 − ) 1 to be non-negative using Chebyshev’s integral

inequality. Namely, using Theorem A.5 from Appendix A, it holds that the sufficient condition

for
R∞
−∞ (

0 (1) +  (1)− )
(1−̃)
(1−)  (1 − ) 1 ≥

R∞
−∞ (

0 (1) +  (1)− ) (1 − ) 1 =

−0 () is that for every R 
−∞ (

0 (1) +  (1)− ) (1 − ) 1R 
−∞  (1 − ) 1

≥
Z ∞

−∞
(0 (1) +  (1)− ) (1 − ) 1.

This condition can also be written as

E [0 (+ 1) +  (+ 1) |1 ≤ − ] ≥ E [0 (+ 1) +  (+ 1) |1  − ] 

As E [ (+ 1) |1 ≤ − ] ≥ E [ (+ 1) |1  − ] due to the fact that the price is increas-

ing in the order flow, this condition essentially requires that the slope of  (1) at high order

flows is not too small compared to the slope at small order flows and is less restricive than

requiring 0 (1) +  (1)−  to be single crossing.

While numerically both sufficient conditions clearly hold for a wide set of parameters, to the

best of our knowledge there are no more mathematical results that we can apply to our setting

45Using the results from Lemma 3, we can prove that this is indeed the case for  close to 0 or 1 and  = 0.
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to derive further analytical results. Overall, the necessary (and the least restrictive) condition

for quasiconcavity is that if −0 ()  0 then³
̃− 

´R∞
−∞ 0 (1)

³
1 − ̃

´
1+

R∞
−∞ (

0 (1) +  (1))

µ
(1−̃)
(1−) − 1

¶
 (1 − ) 1  0,

which appears to always hold, at least numerically.

As the problem is symmetric, similar arguments apply for  = −̄ as well as for the quasi-
concavity in own demand in the state  = .

Proof of Proposition 2

We already know from the previous part that when  = 0, the unique solution is 1 =

1 = 1 = 0. So let us focus on the case  = ̄. Provided that the trader’s problem has a

unique maximum in own demand, we focus on the first order conditions.

− 2
1

=

Z ∞

−∞

¡
 (1) + 1 0 (1)− ̄

¢


¡
1 − 1

¢
1 = 0

− 2
1

=

Z ∞

−∞

¡
 (1) + 1 0 (1)− ̄

¢


¡
1 − 1 − 1

¢
1 = 0

which by integration by parts can be also expressed as

− 2
1

=

Z ∞

−∞

¡
̄ −  (1)

¢Ã1
¡
1 − 1

¢
2

− 1
!


¡
1 − 1

¢
1 = 0 (23)

− 2
1

=

Z ∞

−∞

¡
̄ −  (1)

¢Ã1
¡
1 + 1 − 1

¢
2

− 1
!


¡
1 − 1 − 1

¢
1 = 0

It is straightforward to prove that and  and must trade the same quantity in equilibrium

in state  =  and that the solution is symmetric for  = ̄ and  = −̄. In equilibrium the

Market’s beliefs must be consistent with optimal strategies, i.e., it must hold that 1 =

1 = ̄
2
and 1 = ̄ . Define  ≡ ̄


for  ∈ { } and  ≡ 2


. Using the expression for

normal density we can express  (2 − ̄) =
1

 ( − ),  (2) =

1

 () and  (2 + ̄) =

1

 ( + ), where  is the p.d.f. of a standard normal. Using (14), we then find that

̆ () ≡ 1 () = ̄
 ( − ) + (1− ) ( − )−  ( + )− (1− ) ( + )

 ( − ) + (1− ) ( − ) +  ( + ) + (1− ) ( + ) +
2

1− ()

that clearly does not depend on  and it holds that 1 () = −1 (−). Using these in
(23) and equating

2
1

= 0 for  ∈ {}; 2
1

= 0, we find that  and  are the positive
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solutions of

2
1

|1 =̄
= −

³
1− 2



2

´Z ∞

−∞

¡
̄ − ̆ ()

¢
 ( − ) +


2

Z ∞

−∞

¡
̄ − ̆ ()

¢
 ( − )  = 0

(24)

2
1

|1 =̄
= − ¡1− 2

¢ Z ∞

−∞

¡
̄ − ̆ ()

¢
 ( − )  + 

Z ∞

−∞

¡
̄ − ̆ ()

¢
 ( − )  = 0

For part 2 notice that from (24), we can express the first order condition of trader  ∈ {}
in state  =  as

2
1

|1 =̄
= −1

2

Z ∞

−∞

¡
̄ − ̆ ()

¢
 ( − )  − 1

2

2
1

|1 =̄
= 0

By part 6 of Lemma 3
¡
̄ − 1 (1)

¢
 0 for all finite 1. Therefore, also

¡
̄ − ̆ ()

¢
 0 for all

finite  and
¡
̄ − ̆ ()

¢
 ( − ) ≥ 0 with strict inequality for some . This implies that it

must hold that

−

2

1
|1 =̄

 0.

Because −2
1

is a single-crossing function and
2
1

|1 =̄
= 0, it then follows that ̄  ̄ .

For the uninformed trader’s strategy, we need to verify that it is optimal for him to trade

zero. We now verify that the first order condition of his problem indeed holds at zero. Define

∆ (1) ≡ E [|1  ] − E [|1 ] and 1 (1) ≡ E [2|1  ]. By (15) in Lemma 3 (and also
by Lemma A.1 in Appendix A), it holds that ∆ (1) = −∆ (−1). Also, it is clear from

(16) that it holds that 1 (1) = 1 (−1). Using this in (9) and (11) we confirm that (11)

1 (1) = 1 (−1).
Recalling uninformed  ’s optimal trading strategy at date 2 from (12) in Theorem 1 and

using (6) and (8), we can then find  ’s expected profit at date 2 conditional on 1 as

2 =

(
1 (1)∆ (1) if ∆ (1)  0

−1 (1)∆ (1) if ∆ (1)  0

Suppose that at date 1, uninformed  trades 1 , then he also knows that the distribution of

the total order flow is 
¡
1 − 1 − ̄

¢
if  = ̄; 

¡
1 − 1

¢
if  = 0 and 

¡
1 − 1 + ̄

¢
if  = −̄. Using all this, E [| ] = 0, and we can use the law of iterated expectations to express
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the expected profit of uninformed  before date 1 trading as

1 = −1
∞R
−∞

1 (1)
¡

¡
1 − 1

¢−
¡
1 + 1

¢¢
1+R

∆(1)0

1 (1)∆ (1)
¡

¡
1 − 1

¢
+

¡
1 + 1

¢¢
1,

where  () ≡ 1−
2
 (− ̄)+ ()+

1−
2
 (+ ̄). Because of symmetry  ( ) it holds

that  () =  (−) and 0 () = −0 (−).
The first derivative of the profit is

1
1

= −
∞R
0

1 (1)
¡

¡
1 − 1

¢−
¡
1 + 1

¢¢
1

+ 1

∞R
0

1 (1)
¡
0 ¡1 − 1

¢
+0 ¡1 + 1

¢¢
1

− R
∆(1)0

1 (1)∆ (1)
¡
0 ¡1 − 1

¢−0 ¡1 + 1
¢¢

1

Replacing in 1 = 0, we can now verify that
1
1

|1 =0 = 0. For the intuition that

1 = 0 is also a global maximum, notice that −
∞R
0

1 (1)
¡

¡
1 − 1

¢−
¡
1 + 1

¢¢
1 =

− R∞−∞ ¡1 ¡1 + 1
¢− 1

¡
1 − 1

¢¢
 (1) 1. Due to increasing prices, the first term is

negative iff 1  0. Also, using integration by parts, the second term is

1

∞R
0

1 (1)
¡
0 ¡1 − 1

¢
+0 ¡1 + 1

¢¢
1 = −1

∞R
0

01 (1)
¡

¡
1 − 1

¢
+

¡
1 + 1

¢¢
1

and negative iff 1  0. Both of these effects alone would guarantee that −1
1

is strictly

single crossing at 0 as any trading by  at date 1 would lead to short term losses in expec-

tations. The sign of the last term is ambiguous and reflexts the fact that by deviating to a

non-zero demand at date 1,  could affect the probability he expects the market to assign on

him being informed at date 2 and the area where  would pursue different price-contingent

strategies. However, it can be verified that this term is relatively small compared to the first

two terms and −1
1

remains single crossing at 0. This is true at least as long as  is not too

close to one.

Proof of Proposition 3

Assuming  = 0, we obtain from (15) that  (E [|1  ]− E [|1 ]) =


³
(1− )
(1+ )

− (1−̄)
(1+̄)

´
= 

³
(1−̄ )
(−1−̄ ) −

(1−̄)
(−1−̄)

´
. Because  () is log-concave and

̄  ̄ by part 2 in Proposition 2, it holds by the property of log-concave distributions in

Lemma A.1 in Appendix A that 
³

(1−̄ )
(−1−̄ ) −

(1−̄)
(−1−̄)

´
= −1 if 1  −1 ⇔ 1  0 and
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
³

(1−̄ )
(−1−̄ ) −

(1−̄)
(−1−̄)

´
= 1 if 1  −1 ⇔ 1  0. By (6)  (E [|1  ]− E [|1 ]) =

 (E [|1  ]− 1) for any 0  1  1, which is true for any 0    1. Uninformed  ’s

optimal strategy at date 2, equation (12) in Theorem 1, and the definition of contrarian strategy

in Section 4.2 complete the proof.

Proof of Proposition 4

To prove part 1 we use (15) to find that  (E [|1  ]− E [|1 ]) =


³
(1−̄ )
(1+̄ )

− (1−̄)
(1+̄)

+
(1)

(1−)(1+̄ )(1+̄) (1)
´
, where

 (1) ≡  (1 − ̄) −  (1 + ̄) −  (1 − ̄) +  (1 + ̄). Consider 1  0 and let us

focus on the sign of  (1). Because  () has a maximum at zero and is decreasing for any

positive values, it also holds for any 1  0 and ̄  ̄ that − (1 + ̄) +  (1 + ̄)  0.

We can then prove that the necessary and sufficient condition for  (1 − ̄)− (1 − ̄) ≤ 0
is that 1 ≥ ̄+̄

2
. Namely, defining  ≡ 1 − ̄+̄

2
, it holds that  (1 − ̄) −  (1 − ̄)

= 

¡
+ ̄−̄

2

¢−

¡
− ̄−̄

2

¢
, which is indeed non-positive if and only if  ≥ 0 (see Corollary

A.1.1 in Appendix A and recall that ̄  ̄). Therefore, for any 1 ≥ ̄+̄
2

it holds that

 (1)  0. From the proof of Proposition 3 (and Lemma A.1 in Appendix A), we already

know that
(1−̄ )
(1+̄ )


(1−̄)
(1+̄)

for any 1  0. Therefore,  (E [|1  ]− E [|1 ]) =
 (E [|1  ]− 1) = −1 for any 1 ≥ ̄+̄

2
and 0    1. The definition of contrarian

strategy in Section 4.2 completes this part of the proof. The proof for 1 ≤ − ̄+̄
2

is similar

due to symmetry.

To prove part 2, notice that the function determining the sign of E [|1  ]−E [|1 ] can be
expressed as

 (1) ≡
³
(1−̄ )
(1+̄ )

− 1
´³
1 +

(1)

(1−)(1+̄)

´
−
³
(1−̄)
(1+̄)

− 1
´³
1 +

(1)

(1−)(1+̄ )

´
,

which using the expression for the normal density becomes

 (1) =
³
exp

³
2̄1
2

´
− 1
´³
1 + 

1− exp
³
2̄1+̄

2


22

´´
−
³
exp

³
2̄1
2

´
− 1
´³
1 + 

1− exp
³
2̄1+̄

2


22

´´
It is clear that  (0) = 0. Let us consider  arbitrarily close to zero. By Taylor approximation,

we find that  () = 0 (0) , where 0 (0) = 2̄
2

³
1 + 

1− exp
³

̄2
22

´´
− 2̄

2

³
1 + 

1− exp
³

̄2
22

´´
.

Using then ̄ = , it is clear that 
0 (0)  0 iff (19) holds, which by  (E [|  ]− E [| ]) =

 ( ()) = 1 (−1) if   () 0 and definition from Section 4.2 implies a trend-following strat-
egy.

If the condition (19) hold, then  ()  0 for some small   0, while 
¡
̄+̄
2

¢
 0. As

 (1) is a continuous function of the order flow 1, there must exist an order flow in the interval

of ( ̄+̄
2
), where  (1) changes its sign.
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Proof of Proposition 6

Recall from (12) and the definition of strategies in Section 4.2 that  will optimally pursue

and profit from contrarian strategy if E [|1  ]−1 has an opposite sign compared to 1. Then
from (6), it holds that E [|1  ] − 1 = 1 (E [|1  ]− E [|1 ]). It is clear that without
the presence of any informed traders at date 1, no fundamental information can be contained

in date 1 order flow in state  =  , i.e., with any symmetric prior  [|1  ] =  [| ] = 0.
Therefore,  [|1  ]− 1 = −1 = −1 [|1 ]. Also, similarly to the proof of Proposition
7, we know that  ()must be increasing in  and symmetric  () =  (−). These facts and the
log-concavity of noise trading together with Lemma A.2 in Appendix A ensure that  [|1 ] is
an odd function that is increasing in 1 and the sign of  [|1  ]−1 is opposite to the sign of .
Using Bayes’ rule 1 =

(1|)
(1|)+(1−)(1|) =



+(1−) (1|)
(1|)

, where
(1|)
(1|) =

(1)

(1−())() .
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As
(1|)
(1|) is finite, it is clear that   0 is sufficient for 1  0

Proof of Proposition 7

Part 1 follows from results in the monotone comparative statics literature that we can use

to explore informed traders’ profits (2) and (1). Denote in state  =  trader ’s expected

price when demanding 1 as 
¡
1

¢ ≡ R ̄
−̄ 1

¡
1 + 1

¢
 (1) 1. From Milgrom and

Shannon (1994) it is known that  () = argmax1 1
¡
 − 

¡
1

¢¢
is weakly increasing

in  if the trader’s problem has increasing differences (which also implies the payoff is super-

modular) in 1 and . This is indeed true as for any ̃   and ̃1  1 , it holds that

̃1

³
̃ − (


1 )

´
− ̃1

³
 − (̃


1 )

´
 1

³
̃ − (


1 )

´
− 1

¡
 − (


1 )

¢ ⇐⇒
(̃1 −1 )(̃−)  0. From Edlin and Shannon (1998), it is also known that  () is strictly
increasing if the first derivative of the payoff (profit) is strictly increasing in , which is also

true in our model, as 1
¡
 − 

¡
1

¢¢
1 =  − 

¡
1

¢ − 1 0
¡
1

¢
is clearly

increasing in . The proof is similar for the state  = , where the same monotone comparative

statics establish that ’s and  ’s individual demand is increasing in , and so is the sum of

their demands.

For part 2, notice that given the above assumptions, it is enough to only look at the first order

conditions to find the unique equilibrium demands by all informed traders. Also, it is easy to

verify that given , both  and  demand the same quantity in state  = We find that the

46Without explicitly solving, we expect and impose in this expression that  does not trade in date 1 equilib-

rium if uninformed. Similar arguments would also hold if there existed an equilibrium where  trades at date

1.
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equilibrium total informed demand  () in state  solves

 =

Z ̄

−̄
(1 (1 +  ()) +  () 

0
1 (1 +  ()))  (1) 1

 =

Z ̄

−̄

µ
1 (1 +  ()) +

 ()

2
01 (1 +  ())

¶
 (1) 1

As by part 1  () is invertible, it must also hold that

−1 () =

Z ̄

−̄
(1 (1 + ) + 

0
1 (1 + ))  (1) 1 (25)

−1 () =

Z ̄

−̄

³
1 (1 + ) +



2
01 (1 + )

´
 (1) 1,

where an order flow  ≡  (). It is straightforward to verify that  () = − (−) and
clearly   0 iff   0. Because date 1 equilibrium price is increasing in the order flow, it

holds that −1 ()− −1 () =

2

R ̄
−̄ 

0
1 (1 + )  (1) 1  () 0 for any   () 0. Taken

 =  ()  0, we find that −1 ()  −1 () ⇐⇒   −1 ( ()) ⇐⇒  ()   () for

any   0. The case   0 is immediate by symmetry.

C Normal prior

We consider two cases. First, we explore a particular dependence structure of  and  that

guarantees the linearity of date 1 equilibrium and is thus directly comparable to the benchmark

of Kyle (1985). Second, we explore a normal prior independent of the state that is comparable

with our baseline setting.

C.1 Normal prior with a particular dependence structure

Assume that

 () = Pr (|)  () = Pr ()  (|) = (26)

=
1√
2

µ



exp

µ
− 2

22

¶¶1̃ µ1− 


exp

µ
− 2

22

¶¶1−1̃
,

where 1̃ is an indicator function that takes values 1̃ = 1 if  =  and 1̃ = 0 if  = 

and where  and  are the standard deviations of the prior distribution in state  =  and

 =  respectively. Furthermore, assume that  =
3
4
 . As shown shortly, this assumption

will guarantee that date 1 order flow does not allow updating the types and therefore preserves
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linearity.

We solve this problem using the standard technique. We conjecture and later verify that

there is a rational expectations equilibrium where  does not trade in date 1 and that date 1

price is linear in the order flow, i.e.,

1 = 11 (27)

where 1 is a constant to be solved for in the equilibrium.
47

Lemma C.1 When the prior is given by (26), then there exists a rational expectations equilib-

rium where the following holds.

1. Informed traders’ optimal demand in date 1 is

1 =


21
; 1 = 1 =



31

 () ≡ 1 =


21
and  () ≡ 1 + 1 =

2

31

2. There is no updating about P ’s type in the first trading round, i.e.,

1 = Pr (|1) = .

3. Equilibrium price is given by

1 = 11

where 1 =

2

q
(2−)
2

and it holds that

E [|1 ] = 3

4− 
1  1 

4

4− 
11 = E [|1  ]

4. Uninformed  does not trade at date 1, 1 = 0.

Proof. Part 1: Given the conjectured price (27) and the total order flow (4), we find that

in state  =  , the informed trader’s expected profit (2) is given by E
£
2 ( − 1)

¤
=

2
¡
 − 1


2

¢
and ’s optimal demand is 1 = 

21
. From (27) and (4), trader  ’s

expected profit is E
£
2 ( − 1)

¤
= 2

¡
 − 1


2 − 1

̄
2

¢
, where  ̄ ∈ {} and  6= ̄

and we find that the optimal demand is the same for  and  , and 1 = 1 = 31. Part 2:

The total order flow at date 1 in state =  is 2 = 21+1. As | ∼ N (0 2) it holds that
2| ∼ N (0 2421 + 2). The total order flow in state  =  is 2 =

2
31
+1. Using that  =

47The problem can also be solved without immediately imposing this conjecture (see, e.g., Cho and El Karoui,

(2000)).
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3
4
 , | ∼ N (0 2 ) ∼ N (0 9216) and 2| ∼ N (0 42921 + 2) ∼ N (0 2421 + 2).

Clearly  (1|) =  (1|), so by Bayes’ rule 1 = Pr (|1) = (|)
(|)+(1−)(|) = . Part 3: If

 =  , then the signal that the Market obtains from the order flow is 212 = +211, where

212| ∼ N ( 4212). As well known in the case of normally distributed prior and signals,
the posterior is a precision-weighted average of the signals, hence we can simplify E [|1  ]
=

2
421

2
+

2


212. If  =  then the signal that the Market obtains from the order flow is
3
2
12 =  + 3

2
11, where

3
2
12| ∼ N

¡
 9

4
21

2


¢
. Using  =

3
4
 and simplifying, we find

E [|1 ] = 2
421

2
+

2


3
2
1. Given this and 1 = , (6), we obtain that 1 =

2 [(32)+2(1−)]
421

2
+

2


12.

Equating coefficients with those in the conjectured prices (27), we find that 21 = 2 (2− ) 82

and the positive solution of this proves the first part of the proposition. We then use the

equilibrium value of 1 in the expressions of E [|1  ] and E [|1 ]. For part 4, it is easy to
verify that 1 = 0 satisfies the first order condition.

We find from Lemma C.3. that while uninformed  optimally does not trade at date 1, the

first trading round generates his information advantage for date 2 trading. We can see that

for any non-zero order flow, there will be a difference between the expected value conditional

on knowing the state, E [|1 ], and date 1 equilibrium price. Furthermore, by the definition

of  ’s strategy in Section 4.2 and Theorem 1, we find that in this setting  always pursues a

trend-following trading strategy in date 2, i.e., he buys at date 2 if date 1 order flow is positive

(or equivalently, if the price has increased at date 1) and sells when date 1 order flow is negative

(or equivalently, if the price has decreased).48

Under this prior, uninformed  always perceives the price at date 2 to be too close to

the prior mean. Indeed, the sensitivity of prices to order flow, 1, in Theorem 1 is too low

given that the true state is  =  . (If the Market knew the state, he would set 1 =

2

as in Kyle (1985)). This is the outcome of two competing effects. The first effect is related

to the value of the fundamental revealed by the order flow alone. The fundamental is the

inverse of total informed trader’s demand at 1 − 1  = −1 (1 − 1) = 21 (1 − 1) and

 = −1 (1 − 1) =
3
2
1 (1 − 1). It is clear that, conditional on the order flow alone, the

expected value of the fundamental is higher in state  =  . This is true because the expected

value 21 
3
2
1. This effect tends to make the Market set the price too low at date 1. The

second effect relates to the dispersion of the fundamental conditional on the order flow alone,

which is higher in  =  (because the variance 421
2
  9

4
21

2
). Because the Market uses

Bayes’ rule to set the price and puts higher weight on signals that are less noisy, this effect

tends to make the Market set the price too high at date 1. With a normal prior given by (26),

the first effect always dominates.

48When we refer to price changes at date 1, we adopt the convention that date 0 price equals the prior

0 = E [] = 0, which is consistent with our assumption of market efficiency.
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C.2 Normal prior independent of the state

We now consider the prior density of the fundamental  () =
1√
2

exp
³
− 2

22

´
and assume

that the fundamental is independent of the state, i.e.,  (|) =  () for  ∈ { }. We can
no longer conjecture that the price is linear in the order flow, because the Market will learn

about the state from the order flow. Instead, we conjecture that the Market believes that total

informed trading in state  ∈ { } is  () = − (−) and  does not trade at date one if

the state is  =  . Conditional on the state, E [|1 ] =
R∞
−∞  (|1 )  as we know the

distributions and by Bayes’ rule it holds that  (|1 ) = (1|)(|)
(1|) =

(1−())()
(1|) and

 (1|) =
R∞
−∞  (1 −  ())  () . Also by Bayes’s rule 1 = Pr (|1) = (1|)

(1|)+(1|) .

Using this in (6), we find that date one price is

1 (1) =

R∞
−∞  ( (1 −  ()) + (1− ) (1 −  ()))  () R∞
−∞ ( (1 −  ()) + (1− ) (1 −  ()))  () 

. (28)

It is easy to verify that 1 (1) = −1 (−1).
To characterize the equilibrium, we also need the first order conditions of the trader’s prob-

lem.49 After taking the first order conditions in (2) and (1), it is easy to verify that it must

hold that in state  = , both informed traders trade the same optimal quantity ∗1 = ∗1 .

Imposing then that the equilibrium beliefs must be consistent with the actual trades, we find

after changing variables and simplifying that  () and  () solve

 =

Z ∞

−∞
1 (1)

µ
1− 2 ()

2
+

 () 1

2

¶
 (1 −  ())  (29)

 =

Z ∞

−∞
1 (1)

µ
1− 2 ()

22
+

 () 1

22

¶
 (1 −  ()) .

and it is straightforward to verify the symmetry of strategies:  () = − (−). Furthermore,
Proposition 2 applies and it must hold that  ()   () for any   0. Equations (28) and

(29) characterize the functions that determine equilibrium strategies and price. To derive the

analytical solution, we can approximate  () with a polynomial, derive the price (28) and

change the constants in the polynomial until (29) holds.

For the numerical exercise assume that  = 05, which is the case in which there is most

updating about the state  and hence the solution should in principle be most non-linear.

Without loss of generality assume  = 1 and  = 1 (note that similarly to other settings in

this paper, it can be verified that informed trading is proportional to the noise trading variance

). It turns out that informed trader’s strategies do not need to be approximated with a

49In particular, it will be shown shortly that the price and equilibrium strategies are almost linear, and

therefore quasiconcavity of the trader’s problem is trivial to verify ex post.
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Figure 4: Date 1 price 1, updated probability1 = Pr (|1), and the difference in expectations
E [|1  ]− E [|1  ] as a function of the order flow.

high order polynomial, but are already very well approximated by a linear function, namely

 () ≈ 10284 ·  and  () ≈ 13712 · . Figure (4) presents the relevant results. The reason
why trader’s strategies are close to linear is that the price under linear strategies is "almost

linear," i.e., the north-west panel of Figure (4) shows that it is hard to notice nonlinearity of

price (the 2 of the trendline is effectively 1) - only when we zoom in and show the difference

between the price and a linear trendline (south-west panel), do we see that it is slightly non-

linear. Because informed traders care about the expected price that they do not know when

they submit their orders, these small nonlinearities have very little effect on their optimal

strategies. On the north-east panel we see that there is some but limited updating of trader’s

types. Because two informed traders jointly trade more than one in absolute value, larger order

flows in absolute value tend to signal a higher probability that the state is  = . At small

order flows, the Market tends to believe that the state is  =  , but even at zero, there is

not much learning about  ’s type and therefore  ’s trading opportunities remain. Finally

on the south-east panel, we see that the direction of  ’s trading at date 2 is the same as in

Section 4.3 - trend-following. For any 1  () 0, it holds that E [|1  ]  ()E [|1 ] ⇔
E [|1  ]  () 1.
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