
 
 
 
 

DISCUSSION PAPER SERIES 

 
 
 

     ABCD 
 

www.cepr.org 
 
 

Available online at: www.cepr.org/pubs/dps/DP9956.php
 www.ssrn.com/xxx/xxx/xxx

  

 
 

 
 
 
 

No. 9956 
 

THE RATCHET EFFECT RE-
EXAMINED: A LEARNING 

PERSPECTIVE  
 
 

V Bhaskar 
 
 

  INDUSTRIAL ORGANIZATION 
 
 

 



ISSN 0265-8003 

THE RATCHET EFFECT RE-EXAMINED: A 
LEARNING PERSPECTIVE  

V Bhaskar, University College London and CEPR 
 

Discussion Paper No. 9956 
May 2014 

Centre for Economic Policy Research 
77 Bastwick Street, London EC1V 3PZ, UK 

Tel: (44 20) 7183 8801, Fax: (44 20) 7183 8820 
Email: cepr@cepr.org, Website: www.cepr.org 

This Discussion Paper is issued under the auspices of the Centre’s research 
programme in  INDUSTRIAL ORGANIZATION.  Any opinions expressed 
here are those of the author(s) and not those of the Centre for Economic 
Policy Research. Research disseminated by CEPR may include views on 
policy, but the Centre itself takes no institutional policy positions. 

The Centre for Economic Policy Research was established in 1983 as an 
educational charity, to promote independent analysis and public discussion 
of open economies and the relations among them. It is pluralist and non-
partisan, bringing economic research to bear on the analysis of medium- and 
long-run policy questions.  

These Discussion Papers often represent preliminary or incomplete work, 
circulated to encourage discussion and comment. Citation and use of such a 
paper should take account of its provisional character. 

Copyright: Venkataraman Bhaskar 



CEPR Discussion Paper No. 9956 

May 2014 

ABSTRACT 

The Ratchet Effect Re-examined: A Learning Perspective * 

We study dynamic moral hazard where principal and agent are symmetrically 
uncertain about job difficulty. Since effort is unobserved, shirking leads the 
principal to believe that the job is hard, increasing the agent's continuation 
value. So deterring shirking requires steeper incentives, which induce the 
agent to over-work today, since he can quit if the principal believes that the job 
is easy. With continuous effort choices, no interior effort is implementable in 
the first period. The agent's continuation value function is non-differentiable 
and convex, since the principal makes the agent indifferent between his 
discrete (participation) choices in the second period. The problem can be 
solved if the agent's participation decision is made continuous, or if there are 
long-term commitments, and we provide conditions for the first order approach 
to work. However, the impossibility result recurs in other agency models that 
combine discrete and continuous choices. 

JEL Classification: D83 and D86 
Keywords: envelope theorem, first-order approach, learning, moral hazard and 
ratchet effect 

V Bhaskar 
Department of Economics  
University College London, UCL  
Gower Street  
London  
WC1E 6BT  
  
Email: v.bhaskar@ucl.ac.uk  
 
For further Discussion Papers by this author see: 
www.cepr.org/pubs/new-dps/dplist.asp?authorid=135477 

 

*Thanks to Sunjoo Hwang, George Mailath, Meg Meyer, Alessandro Pavan, 
Caroline Thomas and seminar audiences at Arizona State, Austin, Bonn, 
Chicago, Duke-UNC, Mannheim, Michigan, Northwestern and UCL for helpful 
comments. 

Submitted 22 April 2014 



1 Introduction

The ratchet effect is one of the earliest problems noted by modern incentive theory,

and was prominent in discussions of Soviet planning (Berliner, 1957). If the fac-

tory met or exceeded its plan target, the target for subsequent years was increased,

reducing current effort incentives for the manager (Weitzman, 1980). The problem

also arises in capitalist firms, as Milgrom and Roberts (1990) note. When a firm

installs new equipment, firms and workers have to learn what is the appropriate work

standard. It is efficient to use future information to adjust the standard. But this

reduces work incentives today. Time and motion studies may reduce the degree of

uncertainty regarding the technology, and ameliorate the effect, but their role is lim-

ited in contexts where a worker’s performance improves with experience. Mathewson

(1931), Roy (1952) and Edwards (1979) are workplace studies that document the

importance of ”output restriction”.1 The ratchet effect is also prominent in the mar-

keting literature. Salesmen are often paid bonuses that depend on the excess of sales

over a quota, that is usually adjusted based on past performance. It also arises in a

regulatory context, where both the regulator are uncertain about the effects of new

technology (see Meyer and Vickers, 1997).

Theoretical work on optimal contracts in the presence of the ratchet effect usually

assumes that agent already has private information. It studies the dynamic mech-

anism design problem without commitment, on how to induce the agent to reveal

her private information. This work includes Lazear (1986), Gibbons (1986), Freixas,

Rochet & Tirole (1985), Laffont & Tirole (1986) and Carmichael and Macleod (2000).

Lazear (1986) argues that high powered incentives are able to overcome the ratchet

effect, and without any efficiency loss, assuming that the worker is risk neutral. Gib-

bons (1986) shows that Lazear’s result depends upon an implicit assumption of long

term commitment; in its absence, one cannot induce efficient effort provision by the

more productive type. Laffont and Tirole (1988) prove a general result, that one can-

not induce full separation given a continuum of types. Malcomson (2013) shows that

the no full-separation result also obtains in a relational contracting setting, where

the principal need not have all the bargaining power, as long as continuation play

1Interestingly, they find that workers collectively enforce norms of lower output, and sanction
individuals who break the norm, highlighting the limitations of yardstick competition in overcoming
the ratchet effect.
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following full separation is efficient. A comprehensive discussion of the problem is

found in Laffont and Tirole (1993), who consider both the case of binary types and of

a continuum of types. We will relate our findings to their discussion after presenting

our main result, theorem 8.

This paper studies the ratchet effect in a situation where both employer and

the worker are learning about the technology, with ex ante symmetric information.

When uncertainty pertains not to the worker’s innate characteristic, but rather to

the nature of the job or match specific productivity — as, for example, when new

machinery is introduced – learning becomes important. If the worker does acquire

private information, this takes time, and one must allow for contractual remedies

that could address this at the outset. In hidden information environments, it is well

known that contracting at the ex ante stage, before the agent has private information,

is more efficient than ex post contracting. Indeed, if the agent is risk neutral, ex ante

contracting enables full efficiency. One might expect similar results in our setting.

Milgrom and Roberts (1990) present an illuminating (albeit somewhat informal)

discussion of the ratchet effect in a learning context. They assume a linear tech-

nology and normally distributed shocks, and argue that the ratchet effect implies

that incentives need to be more high powered at the beginning of the relationship.

Long term commitments alleviate the problem, but it may be hard to stick to these

commitments since they are likely to be inefficient ex post. While their discussion is

extremely insightful, they do not make explicit their assumptions.

This paper also relates to the literature on dynamic moral hazard with learn-

ing/experimentation. Holmstrom’s (1982,1999) career concerns model is pioneering

in this regard.2 A crucial difference is that in the present paper, learning relates to

the nature of the job rather than the agent’s talent, and does not affect the outside

option of the agent. More recently, there has been increased interest in agency mod-

els with learning, where the uncertainty also pertains to the nature of the project.

Bergemann and Hege (1998, 2005), Manso (2011), Horner and Samuelson (2009) and

Kwon (2011) analyze agency models with binary effort and binary signals. One key

difference is that these papers usually assume limited liability, so that the agent’s

participation constraint does not bind, as it does for the main part of our analysis.

Bhaskar and Mailath (2014) analyze a model of the ratchet effect with binary effort,

2Extensions of the career concerns model include Gibbons and Murphy (1992) and Dewatripont,
Jewitt and Tirole (1999).
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without limited liability. The signal structure is similar to that assumed here, and

the dynamic incentive problem arises since the agent can increase his continuation

value by shirking. They examine how the costs of incentivizing high effort vary with

the length of the interaction, and show that the difficulty of the incentive problem

increases at least linearly with time horizon, so that inducing high effort consistently

becomes unprofitable.

There is also recent work on learning in agency models with private actions

in continuous time and continuum action spaces including De Marzo and Sannikov

(2011), Cisternas (2012) and Prat and Jovanovic (2013), that examines the agent’s

incentives for belief manipulation. We will see that a crucial difference is that our

paper allows both continuous choices (in the effort dimension) and discrete choices

(regarding participation), whereas other papers allow either only discrete or only

continuous choices.

We study optimal contracting where the firm (the principal) and the agent (the

worker) are ex ante symmetrically informed and uncertain about the difficulty of the

job, and learn about this over time. To focus on the ratchet effect, we assume that

the principal cannot commit to long term contracts, but chooses short-term contracts

optimally. In our baseline model, there is no limited liability and the principal has all

the bargaining power, and thus the agent need not be paid any more than his outside

option. Furthermore, since uncertainty pertains to the nature of the job, the outside

option does not depend upon what is learnt regarding the job.

In our context, the ratchet effect arises from the possibility that the agent can

manipulate the beliefs of the principal, by shirking. Consider a contract where the

principal seeks to induce an interior effort level e∗. If the agent shirks and chooses

e < e∗, then his beliefs will differ from that of the principal, since the principal updates

her beliefs assuming that e∗ has been chosen. If the agent becomes more pessimistic

than the principal, he incurs no loss – the job only pays him his reservation utility

in equilibrium, and he can quit if he earns less. If he becomes more optimistic than

the principal, he earns a rent. Under our assumptions, that there must always be

some signal such that the agent is more optimistic than the principal when he shirks.

Thus the agent raises his continuation value by shirking a little, and incentives have

to be high powered in order to deter shirking. However, if the principal provides high

powered incentives, this makes it profitable for the agent to over-work, i.e. to choose

e > e∗, since by doing so, he increases his current payoff. This may cause the job to
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be more unattractive tomorrow, but since the agent is always free to quit, he incurs

no loss in consequence. Thus, at any interior effort level e∗, the left hand derivative

of the agent’s continuation value function is negative, while the right hand derivative

is non-negative. This implies that the first order conditions for implementing e∗ can

never be satisfied, as long as e∗ is in the interior of the agent’s choice set.

The underlying reason for the failure of implementability is that we have an agency

model where the agent makes choices from a continuum set (effort) as well as a

discrete choice set (participation), so that the standard envelope theorem does not

hold. If the agent’s participation decision is continuous – e.g. because his outside

option is uncertain and private information – then the continuation value is smooth

at e∗, and the first order conditions for implementing interior effort are no longer

inconsistent. Similarly, the problem does not arise in limited liability models with

continuous effort choices, where the agent always has positive rents. We analyze

such a limited liability model, and provide conditions under which the first-order

approach (to the principal’s optimization problem) can be applied to our dynamic

context. Substantively, we find that under limited liability, the ratchet effect takes a

different form as compared to a model where participation constraints bind. Indeed,

for some parameter values, it is possible that the agent has increased incentives to

work, so that dynamic considerations reduce the incentive problem. Similarly, if

both principal and agent can commit to a binding long-term contract, implementing

interior effort is possible.

Notwithstanding these positive result, we show that the impossibility result also

arises in other agency settings that combine discrete and continuous choices, and

where the principal cannot make long-term commitments. We analyze a limited

liability model where effort is chosen a continuum in the initial period, and from

a discrete choice set in the final period. If the agent faces discrete choices in the

final period, then in equilibrium, the principal makes him indifferent between these

choices, i.e. the incentive constraint binds. Any variation in the agent’s beliefs

causes this indifference to be broken, and in different ways, depending upon whether

beliefs are more optimistic or pessimistic. This gives rise to a perverse kink in the

agent’s continuation value function, and ensures that the first order conditions for

implementing interior effort in the first period cannot be satisfied. Thus the problem

identified in this paper is more general than the specific contexts that we examine.

Here again, the problem can be resolved if the principal can commit to the second
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period contract, and can also commit not renegotiate it.

The remainder of this paper is as follows. Section 2 sets out our basic model of

the ratchet effect. examining in turn deterministic effort and random effort. Sec-

tion 3 shows that if we make the participation decision continuous, this eliminates

discrete choice, and helps overcome the problem of implementability. We show that

if the agent’s future reservation utility is random, and private information, then his

participation decision becomes continuous, and this restores differentiability of the

value function. It examines in detail a limited liability model, where participation is

irrelevant, and provides conditions for applying the first order approach. Full bilateral

commitment also resolves the problem, since the agent can bind himself not to quit in

the second period. Section 4 modifies the limited liability model by allowing for dis-

crete choices in the final period, and show that it gives rise to non-implementability,

just as in the baseline model with discrete participation.

2 The Model

Our model combines moral hazard with uncertainty regarding job difficulty. There

are two states of the world ω ∈ {B,G}, with the job being good (easy) in G, and

bad (hard) in B, with λ ∈ (0, 1) denoting the common prior that ω = G. The

uncertainty concerns how difficult it is to succeed on this job. Importantly, learning

does not affect outside option of the agent, which is fixed, and normalized to 0. The

agent chooses effort e ∈ [0, 1], at cost c(e), which is increasing, strictly convex and

differentiable. The agent learns knowing his own effort choice and a realized public

signal, y ∈ Y , where Y := {y1, y2, . . . , yK} is a finite set of signals. The principal

learns knowing only the signal, since the agent’s effort is not public (i.e., it is not

observed by the principal). The agent’s flow utility from a wage payment w ∈ R and

choosing e ∈ [0, 1] is

u(w)− c(e),

where u is strictly increasing and strictly concave (so the agent is risk averse) – we

show in section 2.2 that our analysis extends to the case where the agent is risk

neutral. We assume that wage payments are unrestricted, so that there is unlimited

liability (section 4) examines limited liability). Since u is concave, this implies that

utility payments are unbounded below.
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A spot contract specifies the wage payment as a function of the realized signal.

It is more convenient to work with utility schedules, so we write a spot contract as

u := (u1, . . . , uK), where uk is the utility the agent will receive after signal yk. Let

w(.) = u−1(.) denote the inverse function corresponding to u(.).

The principal is risk neutral and her flow utility is y − w(u). In each period, the

principal makes a take-it-or-leave-it offer of a spot contract to the agent. If the agent

refuses, the relationship is dissolved and the game ends.

The probability of signal yk at action e and state ω ∈ {B,G} is pkeω. Consider first

the extremal efforts, e ∈ {0, 1}. We will assume that a “high” signal is both a signal

of the good state and of high effort. We capture this by the following assumption.

Assumption 1

1. There exists an informative signal, i.e., ∃yk ∈ Y such that pk0B 6= pk1G. For any

informative signal yk ∈ Y ,

min
{
pk0B, p

k
1G

}
< pk0G, p

k
1B < max

{
pk0B, p

k
1G

}
.

2. Signals have full support: pkeω > 0 for all k, e, ω.

The probability of signal yk at a belief µ on G is pkeµ = µpkeG + (1− µ)pkeB. Order

the signals so that pk0µ/p
k
1µ is decreasing in k.

Partition the set of signals into a set of “high” signals Y H , “low” signals Y L, and

neutral Y \ (Y H ∪ Y L) by defining

yk ∈ Y H ⇐⇒ pk1G > pk0B

and

yk ∈ Y L ⇐⇒ pk1G < pk0B.

Assumption 1 implies

yk ∈ Y H ⇐⇒ pk1G > pk1B, y
k
0G > pk0B ⇐⇒ pk0µ > pk0µ

and

yk ∈ Y L ⇐⇒ pk1G < pk1B, y
k
0G < pk0B ⇐⇒ pk1µ < pk0µ.
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In other words, high signals arise with higher probability when either the agent

exerts effort or the state is good. An important implication of this property is that if

the principal believes that the agent is exerting effort, but the agent is in fact shirking,

then on average, the principal is more pessimistic than the agent.

Our second assumption extends the information structure to all effort levels in

[0, 1].With a continuum of effort levels, we need to employ the first-order approach

to solve for the optimal contract, even in the static case. We therefore assume the

Hart-Holmstrom (1987) sufficient conditions for the validity of this approach, and our

assumption is an adaptation of their conditions.

Assumption 2: For any yk ∈ Y, and any ω ∈ {G,B}, pkeω = epk1ω + (1− e)pk0ω.3

We assume that the principal and agent interact for two periods – two periods

suffice to make the main points of our paper (since our main result is a negative one,

it will be immediate that it also extends to any finite length interaction). The agent

discounts future payoffs at rate δ ∈ (0, 1]. The principal’s discount factor is possibly

different, but will play little role in the analysis. A key assumption is the absence

of inter-temporal commitments – neither the principal nor the agent can commit in

period one regarding the contract in period two. This implies that payments must

satisfy incentive compatibility and individual rationality period by period.

We study the dynamic game induced by this contracting problem, and solve for

perfect Bayesian equilibria that satisfy sequential rationality, with beliefs given by

Bayes rule. Sequential rationality is required to ensure that the contract offered by

the principal at t = 2 is optimal, and so the agent’s participation constraint binds.

We do not have to deal with out of equilibrium beliefs, since we have a game with

no observable deviations by the informed party. Since effort choice by the agent is

private and public signals have full support, the principal does not see an out of

equilibrium action, except when the game ends by the agent refusing the contract (at

which point, beliefs are moot). Deviations by the uninformed party (the principal)

have no implications for beliefs.

3Hart and Holmstrom (1987) assume a linear cost of effort and that the probability of yk is
a convex combination of two distributions, a ”good” one and a ”bad”. They assume that the
weight on the good distribution is an increasing and concave function of effort. To see that our
parameterization is equivalent to theirs, define a new effort variable, c(e). This gives linear costs and
a concave weighting function.
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2.1 Deterministic effort

We begin by considering pure strategy equilibria, where the effort choice by the agent

in period one is deterministic. If the agent chooses effort e∗ at t = 1, and output yk is

realized, then the common belief of the principal and agent at t = 2 is denoted by µke∗ .

Sequential rationality implies that the principal offers a profit maximizing contract

at t = 2. We assume that the project is profitable at all beliefs at t = 2, so that the

principal always induces the agent to participate.

2.1.1 The Final Period

Let µ denote the belief of the principal, given the observed output yk and the in-

duced first period effort, e∗. Since we are focusing on a pure strategy equilibrium, the

principal’s second order beliefs are degenerate – she believes that the agent also has

beliefs µ. Let u = (uk)Kk=1 denote a spot contract.

Definition 1 Effort ê is implementable at t = 2 if there exists a spot contract u such

that ê is optimal for the agent under belief µ.

Definition 2 A period 2 contract (ê, û) is optimal given belief µ if it maximizes the

principal’s profits Ee,µ(y − w(u)) over all (e, u) such that e is implementable.

Claim 3 In the final period, for any public belief µ, every effort e ∈ [0, 1] is im-

plementable. The profit maximizing contract , (ê(µ), u(µ)), satisfies the first order

conditions for the principal’s maximization problem, and the agent’s individual ra-

tionality constraint binds. The agent’s incentive constraint binds if e > 0. For any

contract u, there is a unique effort level that maximizes the agent’s utility given.

We omit the proof the first two parts of this claim, since it is straightforward,

and almost identical to the argument in Hart and Holmstrom (1987). To prove the

final part, note that the agent’s payoff from choosing e equals peµ.u− c(e). Since the

peµ is linear in e, and c(e) is strictly convex, there is a unique solution to the agent’s

maximization problem.

Sequential rationality implies that the principal always chooses the optimal con-

tract at t = 2, given any belief µ. Assume that for any µ, the effort induced by the

principal, ê(µ), is non-zero – this assumption is a mild one if ce(0) = 0.
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We now analyze the agent’s payoff in the final period when his belief is π and

differs from the principal’s belief µ. Let V̂ (π, µ) = maxe (peπ.uµ − c(e)) denote the

payoff to the agent, conditional on accepting the job and choosing effort optimally.

Since the agent will quit when he gets less than his outside option, let V (π, µ) =

max{V̂ (π, µ), 0} denote his payoff given optimal participation. V (µ, µ) = 0 when

π = µ since the agent’s participation constraint binds under the optimal contract

if he has the same beliefs. Finally, when the principal and agent’s beliefs differ, V

is computed under the distribution peπ, i.e. this reflects the fact that the agent has

the correct beliefs, since the difference in beliefs arises due to the fact that the agent

knows his actual effort choice at t = 1. The following lemma summarizes the relevant

properties of V.

Lemma 4 V (π, µ) > 0 if π > µ, V (π, µ) = 0 if π ≤ µ. V̂ (π, µ) is a differentiable

function of π. V (.) is convex in π.

Proof. From claim 3, the optimal contract in the final period, u, must satisfy the

first order conditions for ê to be optimal at µ, i.e. 4

u.(p1µ − p0µ) = ce(ê) > 0. (1)

In an optimal static contract, utility payments uk must be increasing, since they are

ordered in terms of the likelihood ratio. Thus u can be written as u = z.1+ũ, where

z.1 is a vector where each component equals z, and ũk > 0 if yk ∈ Y H , and if ũk < 0

if yk ∈ Y L.The agent’s payoff from his optimal effort choice at π is no less than his

payoff from choosing ê at π, which equals

[u.pêπ − c(ê)]− [u.pêµ − c(ê)] = (π − µ)u.(pêG − pêB) = (π − µ)ũ.(pêG − pêB),

since 1.(pêG − pêB) = 0. Assumption 1 implies that pkêG − pkêB > 0 if yk ∈ Y H and

pkêG − pkêB < 0 if yk ∈ Y L, and thus ũ.(pêG − pêB) > 0.

Letting ẽ(π) denotes the optimal effort choice at belief π,

V̂ (π, µ) = pẽ(π)π.u− c(ẽ(π).

4If ê(µ) = 1, then equation (1) applies to the left hand derivative of c(e) at 1.
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The derivative with respect to π equals

dV̂ (π, µ)

dπ
=

(
pẽ(π)G − pẽ(π)B

)
.u+

dẽ

dπ
[(p1π − p0π) .u− ce(ẽ(π))]

=
(
pẽ(π)G − pẽ(π)B

)
.u, (2)

since the second term is zero by the envelope theorem.

Given any π > µ and any π′, V̂ (π′, µ) is bounded below by the linear function

(π − µ)ũ.(pẽ(π)G − pẽ(π)B), and is thus convex in π. Since V equals the maximum of

V̂ and 0, it is also convex in π.

2.1.2 The First Period

Suppose that the principal seeks to induce effort level e∗ at t = 1. If the agent deviates

and chooses e different from e∗, then the principal and agent will have different second

period beliefs after output yk. The principal will have belief µke∗ , while the agent will

have belief πke . Thus the expected second period continuation value of the agent from

choosing e when the principal induces e∗ equals

W (e, e∗) =
∑
yk∈Y

pkeλV (πke , µ
k
e∗).

Each term under the summation sign is non-negative, since V (πke , µ
k
e∗) ≥ 0, given

that the agent can always quit when πke < µke∗ . Thus W (e, e∗) is strictly positive as

long as there is some yk such that πke > µke∗ .The following two lemmata show that

downward deviations are strictly profitable, in terms of increasing agent’s continuation

value.

Lemma 5 There exist a partition of Y into Y D, Y U and Y \ (Y U ∪ Y D) such that

for any e, e∗ ∈ [0, 1] with e < e′ : πke > µke∗ if yk ∈ Y D, πke < µke∗ if yk ∈ Y U and

πke = µke∗ if yk ∈ Y \ (Y U ∪ Y D).

Proof.

πke − µke∗ =
λpkeG
pkeλ
− λpke∗G

pke∗λ

=
λ

pkeλp
k
e∗λ

(
pkeGp

k
e∗λ − pke∗Gpkeλ

)
.
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Using the fact that pkeG is a convex combination of pk1G and pk0G (and similarly

pke∗G, p
k
e∗λ and pkeλ), this can be re-written as

πke − µke∗ =
λ(1− λ)

pkeλp
k
e∗λ

(e∗ − e)
[
pk0Gp

k
1B − pk0Bpk1G

]
. (3)

For any e < e∗,the sign of πke − µke∗ only depends on the sign of pk0Gp
k
1B − pk0Bpk1G,

proving the lemma.

The following lemma is key for our results, since it shows that Y D is non-empty –

there is at least one signal such that the agent is more optimistic than the principal

when he shirks. We prove a more general result, that the agent is on average more

optimistic than the principal, since it is of independent interest, especially under

limited liability, where the agent’s participation constraint need not bind.

Lemma 6 E0,λ(π
k
0) > E0,λ(µ

k
1), so that Y D is non-empty.

Proof. From the martingale property of beliefs, E0,λ(π
k
0) = E1λ(µ

k
1) = λ, i.e.

∑
Y

pk0λπ
k
0 =

∑
Y

pk1λµ
k
1.

Subtract
∑

Y p
k
0λµ

k
1 from both sides to get

∑
Y

pk0λ(π
k
0 − µk1) =

∑
Y

(pk1λ − pk0λ)µk1.

Since λ
∑

Y (pk1µ − pk0µ) = 0 (the sum of the difference between two probability

distributions equals zero),

∑
Y

pk0λ(π
k
0 − µk1) =

∑
Y

(pk1λ − pk0λ)(µk1 − λ).

Under assumption A1, for any k, (pk1λ− pk0λ) has the same sign as (µk1 −λ) – i.e. a

signal that has higher probability under high effort is also informative of the job being

easier. Since there is some informative signal, we conclude that
∑

Y p
k
0λ(π

k
0 −µk1) > 0,

i.e. the expectation of the difference in beliefs under the experiment e = 0 is strictly

positive. Thus there must be some signal yk such that πk0 > µk1.

We have shown that the expectation of the ”false belief” held by the principal, µk1,

that is induced when the agent performs the experiment e = 0, is strictly smaller than
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the expectation of the true belief πk0 . Thus there must be some signal realization for

which πk0 > µk1. This immediately proves that the agent can increase his continuation

value by deviating to low effort.

Lemma 6 follows from assumption 1 and implies that the agent can always increase

his continuation value by shirking, since there is at least one signal where he is more

optimistic than the principal. Thus the ratchet effect obtains under a fairly general

information structure – most existing work assumes either binary or normal signals.

Assumption 1 plays a similar role in Bhaskar and Mailath (2014), which examines in

the long run consequences of belief manipulation. Lemmata 5 and 6 are robust to

some weakening of assumption 1 – one can have some signals that violate assumption

1, as long as the probability of these signals is small. This follows from the fact

that the established inequalities in the lemmata are strict, so that they will continue

to apply if we have a small perturbation of an information structure that satisfies

assumption 1.

If Y U is empty, so that downward effort deviations cause the agent to become

more weakly optimistic after every signal realization, the signal structure satisfies

uniform optimism.

The following binary example with Y = {H,L} is illustrative. Assume that the

probability of H is given by the table below:

e = 1 e = 0

G p q + θ

B p− γ q

Table 1: Binary signals: Pr(H|e, ω)

Let p > q, so that H is in fact a high signal. This signal structure satisfies

Assumption 1 if θ, γ ∈ (0, p − q), so that e = 1 makes H more likely independent of

the state, and also ω = G makes H more likely independent of the effort level.

For our first parameterization, suppose that γ ' 0 and θ ' p−q, so that effort has

a larger effect on the probability of high output in state B. In this case, lower effort

makes for a more informative experiment. If the agent shirks, he is more optimistic

than the principal when he succeeds, and less optimistic when he fails, i.e. Y D = {H}
and Y U = {L}.
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For a second parameterization, suppose that γ ' p − q and θ ' 0, so that effort

has a larger effect on the probability of high output in state G. Higher effort makes

for a more informative experiment. If the agent shirks, he is more optimistic than

the principal after L and less optimistic after , i.e. Y D = {L} and Y U = {H}.
Finally, consider the case where γ ' θ, so that effort has similar effects in both

states. If the agent shirks, he is more optimistic than the principal after both signals,

so that Y D = {H,L}. Thus the signal structure satisfies uniform optimism.

In the light of lemma 5 we may re-write W (e, e∗) as

W (e, e∗) =

{ ∑
yk∈Y D p

k
eλV (πke , µ

k
e∗) if e < e∗∑

yk∈Y U p
k
eλV (πke , µ

k
e∗) if e > e∗.

The overall payoff of the agent from effort choice e in the first period, given a

contract u that seeks to induce effort level e∗, is given by

v(e, e∗;u) = u.peλ − c(e) + δW (e, e∗).

Definition 7 Effort e∗ is implementable in period 1 if there exists a spot contract u

such that e∗ maximizes v(e, e∗;u).

Theorem 8 Assume that optimal effort at t = 2 is not zero, for all relevant beliefs.

If e∗ ∈ (0, 1), then e∗ is not implementable at t = 1.The extremal efforts 0 and 1 are

implementable.

The proof is as follows. We evaluate the left-hand and right-hand derivatives of

W (e, e∗) at e = e∗ ∈ (0, 1), and show that these are inconsistent with the first order

conditions for implementing e∗.The left hand derivative is given by

∂W−(e, e∗)

∂e

∣∣∣∣
e=e∗

=
∑
yk∈Y

∂pkeλ
∂e

V (πke∗ , µ
k
e∗) +

∑
yk∈Y D

pke∗λ
∂V +(πke , µ

k
e∗)

∂πke

∣∣∣∣
πke=µk

e∗

∂πke
∂e

∣∣∣∣
e=e∗

.

Since V (πke∗ , µ
k
e∗) = 0, and since (by lemma 4) the right-hand derivative of V is

the derivative of V̂ , this equals

13



∂W−(e, e∗)

∂e

∣∣∣∣
e=e∗

=
∑
yk∈Y D

pke∗λ
∂V̂ (πke , µ

k
e∗)

∂πke

∣∣∣∣∣
πke=µk

e∗

∂πke
∂e

∣∣∣∣
e=e∗

. (4)

The derivative of V̂ equals
(
pẽ(µ)G − pẽ(µ)B

)
.u > 0. From equation 3, ∂πke

∂e

∣∣∣
e=e∗

has

the same sign as
[
pk1Gp

k
0B − pk1Bpk0G

]
, which is strictly negative if yk ∈ Y D. Since each

term in the summation is strictly negative, ∂W−(e,e∗)
∂e

∣∣∣
e=e∗

< 0.

The right-hand derivative, ∂W+(e,e∗)
∂e

∣∣∣
e=e∗

, is bounded below by zero, sinceW (e, e∗) ≥

0 and W (e∗, e∗) = 0. If there is uniform optimism, ∂W−(e,e∗)
∂e

∣∣∣
e=e∗

= 0, since Y U is

empty. If Y U is non-empty, then similar arguments as for the left-hand derivative

show that ∂W+(e,e∗)
∂e

∣∣∣
e=e∗

> 0. Figures 1a. and 1b. graph the two possible shapes

for the continuation value function W (e, e∗), as a function of e. In either case, the

function is kinked at e = e∗, with the right-hand derivative being strictly larger than

the left-hand derivative.

The agent’s current payoff at t = 1 is a smooth function of effort, given the differ-

entiability of the cost of effort and expected utility. Thus the first order conditions

for e∗ to be optimal for the agent at t = 1 are:

(p1λ − p0λ) .u− ce(e∗) + δ
∂W−(e, e∗)

∂e

∣∣∣∣
e=e∗
≥ 0.
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(p1λ − p0λ) .u− ce(e∗) + δ
∂W+(e, e∗)

∂e

∣∣∣∣
e=e∗
≤ 0.

Since ∂W
−

∂e

∣∣∣
e=e∗

< ∂W+

∂e

∣∣∣
e=e∗

, the two conditions cannot be simultaneously satisfied,

thereby proving the main part of theorem.

The extremal efforts, 0 and 1, can be implemented, since one has to only deter

deviations in one direction. For implementing e = 0,if the signal structure satisfies

uniform optimism, then a constant utility schedule with uk = c(0)∀k is the optimal

contract. However, if the signal structure does not satisfy uniform optimism, then the

agent may have to be punished for higher output levels – he may have an incentive

to deviate upwards, since he will be more optimistic than the principal after some

output realizations. Let W (e, 0) denote the agent’s expected continuation value from

effort level e given that the principal induces 0. It suffices to choose utility payments

u such that peλ.u− c(e) +W (e, 0) is maximized at e = 0. If c(.) is sufficiently convex

(to offset the convexity of the W function), then the first order condition suffices:

(p1λ − p0λ) .u− ce(0) + W+
e (e, 0)

∣∣
e=0
≤ 0.

Similarly, if ce(e) is bounded above, e = 1 can also be implemented, by choosing u

so that peλ.u − c(e) + W (e, 1) is maximized at e = 1. This completes the proof of

theorem 8.

The negative result in theorem 8 is striking: no interior effort level can be im-

plemented in the first period. The ratchet effect is totally destructive of incentives.

The ratchet effect implies that the agent can raise his continuation value by shirking

a little relative to e∗. To overcome this, incentives today must be high powered, so

that a little shirking reduces the agent’s current payoff. However, this implies that

the agent can also increase his current payoff by over-working relative to e∗ – this

follows from the fact that current costs and benefits are smooth functions of effort.

But over-working cannot reduce the agent’s continuation value relative to e∗, since the

agent can always quit. In other words, the principal can deter downward deviations,

but this makes upward deviations profitable. Thus high powered incentives cannot

overcome the ratchet effect, contrary to the suggestion in some of the literature.

It is also striking that the negative result even though one has contracting before

the agent has any private information. Thus ex ante contracting does not help,
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in contrast with models of hidden information, where contracting at the ex ante

stage improves efficiency. The key reason appears to be the lack of inter-temporal

commitment. In this context, there is some recent work on mechanism design that

studies the effect of quitting rights, and how participation constraints at various stages

affect efficiency (see Compte and Jehiel, 2007).

We now compare our result with those in models of the ratchet effect arising

from ex ante private information – see Laffont and Tirole (1993, chapter 10) for a

comprehensive discussion. With a continuum of types, the main result is that one

cannot have full separation of types, so that there must be some pooling. With binary

types, full separation may be possible, but may also be vulnerable to the ”take the

money and run” strategy, whereby the low type mimics the high type in the first

period, and quits in the second period (this is somewhat similar to our finding in

theorem 8). In this case, the equilibrium involves partial separation, and mixed

strategies. As we will see shortly, mixed strategies may not resolve the problem in

our model.

2.2 Risk Neutral Agent

Our results do not depend upon the agent being risk averse, but they do depend upon

the absence of long term commitments. Suppose that the agent is risk neutral, but

that contracts are only for one period. In the final period, suppose that the belief

is µ. Then the principal can make the agent the residual claimant of the project, by

charging a fixed rental, R(µ). This must satisfy the individual rationality constraint:

max
e

[Ee,µ(y)− c(e)]−R(µ) ≥ 0.

The optimal contract maximizes R (µ) subject to this constraint, so that

R(µ) = max
e

[Ee,µ(y)− c(e)] .

Thus the principal charges the agent a fee R (µ) , that is increasing in µ under our

assumptions. If the agent is offered R(µ), but has belief π > µ, his payoff will be

V (π, µ) = max
e

[Ee,π(y)− c(e)]−R(µ) = R(π)−R(µ).

In particular, the derivative is given by
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dV +(π, µ)

dπ

∣∣∣∣
π=µ

=
(
pê(µ)G − pê(µ)B

)
.y > 0,

where ê(µ) is optimal effort given µ. Now consider the first period problem. Sup-

pose that the principal wants to implement effort level e∗. The second period continu-

ation value of the agent when he deviates to e < e∗ is given by W (e, e∗) > 0. The left

hand derivative evaluated at e = e∗ is strictly negative, since dV +(π,µ)
dπ

∣∣∣
π=µ

> 0. Thus,

in order to prevent downward deviations, the agent must be offered more high pow-

ered incentives than residual claimancy – his wage payments have to more variable

than y. However, this implies that the agent has earn more than his outside option

today by increasing his effort level beyond e∗, and quitting the job tomorrow, when

signals in Y D are realized. Thus no interior effort level is implementable even when

the agent is risk neutral.

This problem can be solved if the agent can sign a long term contract, whereby

he commits to buying the project for both periods. The total expected return from

this project is

max

{∑
k

pkeλ
{
yk + δ

[
Eê(µke ),µke

(y)− c(ê(µke))
]}}

.

Thus the agent would be willing to buy this project for this sum.This illustrates

that long-term commitment can solve the ratchet effect, and we discuss this in more

detail in sub-section 3.3.

2.3 Random effort

A natural question is whether interior effort levels are implementable with positive

probability. That is, can the principal design a contract where the agent randomizes

over effort levels in period 1, using a mixed strategy σ. In the static context (e.g. in

period 2), random efforts can never be implemented, since the optimization problem

induced by a contract u is strictly concave.

Randomization by the agent at t = 1 induces asymmetric information at t = 2,

and may be a way for the principal to commit to pay some rents to the agent in

the second period. Let S(σ) denote the support of σ. On observing output yk, the

principal now believes that the agent has beliefs in the set {µke}e∈S(σ), where the
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probability he assigns to µke is

θ(µke) =
σ(e)pkλe∑

e′∈S(σ) σ(e′)pkλe′
.

The principal’s problem at t = 2 is a screening/mechanism design problem with

moral hazard, and without quasi-linear utilities (since the agent is risk-averse). The

agent has beliefs in the set {µke}e∈S(σ), and the principal assigns probabilities θ(µke) to

each of these beliefs. A general analysis of this problem is interesting but involved,

and would take us far from the focus of this paper. We therefore restrict ourself to

the question of whether randomization resolves the implementability problem.

Let us now consider the screening problem more generally. Let M be an arbitrary

set of types, where µ ∈M is a belief regarding ω, and belongs to [0, 1]. Let θ denote

a probability distribution on M. Let RK ∪ ∅ denote the set of feasible contracts that

can be offered by the principal. That is the principal may either offer a utility vector

u specifying signal contingent payments or she may offer the null contract ∅, and

not employ the agent. A direct mechanism ζ specifies an element of RK ∪ ∅ for each

member in the set M. In addition, we assume that ζ always contains ∅, regardless

of what the principal offers, so that the agent always has the option of not taking

the job. Fix a direct mechanism, and let uµ 6= ∅ denote the contract for type µ,

who the principal would like to participate. Let ê(µ) denote the payoff maximizing

effort choice for the agent given belief µ and contract uµ. We shall call ê(µ) the effort

induced by the contract uµ.

The participation constraint for the agent implies

pê(µ)µ.uµ − c(ê(µ)) ≥ 0.

The truth-telling constraint, that type µ does not prefer a contract uπ is

pê(µ)µ.uµ − c(ê(µ)) ≥ max
e

[peµ.uπ − c(e)] .

A direct mechanism ζ is incentive-compatible if for any µ, the participation con-

straint is satisfied, and the truth-telling constraint is satisfied relative to any π ∈M.

Consider a contract uµ such that µ finds it optimal to participate. If π > µ, then
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the payoff of type π from accepting contract µ is

Ṽ (π, µ) = max
e

[peµ.uπ − c(e)]

≥ pê(µ)π.uµ − c(ê(µ)) = (π − µ)(pê(µ)G − pê(µ)B).uµ + Ṽ (µ, µ).

If ê(µ) > 0, Ṽ (π, µ) > Ṽ (µ, µ), since the inner product (pê(µ)G − pê(µ)B).uµ has

the same sign as (p1µ − p0µ).uµ under assumption 1. Thus if type µ is induced to

participate and exert positive effort, then incentive-compatibility implies that type

π > µ must be given a strictly positive rent. Conversely, if either type µ does not

participate or if ê(µ) = 0, then the contract uµ does not impose any cost in terms of

additional rent for type π > µ. (If ê(µ) = 0, the agent’s risk-aversion implies that the

cost-minimizing contract uµ is a constant vector, and thus Ṽ (π, µ) = Ṽ (µ, µ)).

With asymmetric information, it may be optimal to exclude low types in the set

M, as a way of reducing the rents paid to types with higher beliefs. Alternatively, the

principal can allow their participation, but induce zero effort, since this has identical

effects in terms of the rents that must be paid to higher belief types. We shall now

assume that for any µ, the principal gets strictly higher profits from exclusion than

from inducing zero effort – this could be due to fixed costs, that are not incurred if

the agent is not employed. Thus, ê(µ) > 0 for any uµ that induces participation. We

shall also assume that for any set M and distribution θ on M, the probability that

the agent participates under the optimal mechanism ζ is non-zero. 5

Suppose that the principal induces a random effort level σ at t = 1. Let (Mk, θk)

denote the type/distribution pair following signal realization yk. Sequential rational-

ity implies that the principal offers an optimal mechanism ζk at (Mk, θk). Let V̄ k(µ)

denote the payoff of type µ under ζk. Let µ̄k denote the lowest type that is induced

to participate by ζk. Let π > µ̄k be an arbitrary belief, i.e. π need not be an element

of Mk, and let V̄ k(π) denote its optimal payoff under ζk. This is at least at least

(π− µ)(pê(µ)G− pê(µ)B).uµ̄ > 0. Thus the right-hand derivative of V k(π) with respect

to π, evaluated at π = µ̄k is (pê(µ̄k)G − pê(µ̄k)B).uµ̄k > 0. (The left-hand derivative is

zero, since types below µ̄k choose not to participate).

Define the ex-ante expected continuation value from choosing e, given that the

principal induces σ by

5Recall that when the principal was certain regarding µ, we assumed that the principal induced
participation and non-zero effort at any µ.
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W̄ (e, σ) =
∑
Y

pkeλV̄
k(µke).

The overall payoff from e is v(e, σ) = peλ.u − c(e) + δW̄ (e, σ), where u is vector of

utilities in the first period contract.

Theorem 9 Let σ be a probability distribution over effort levels where maxS(σ) ∈
(0, 1). If the signal structure satisfies uniform optimism, σ is not implementable.

Proof. Let v∗ denote the overall payoff to the worker from any strategy in the support

of σ. Let < en >, en ∈ S(σ)∀n, converge to ē = maxS(σ). Since v(en, σ) = v∗∀n, and

since both current payoffs and continuation values are continuous in e, v(ē, σ;u) =

limn→∞ v(en, σ;u) = v∗. Thus ē must be optimal for the agent.

Under uniform optimism, if e > e′, µke < µke′∀k. Let ẽk denote the supremum of

the effort levels in set of included types after signal yk. Let ẽ = max{ẽk}Kk=1. We

show that ẽ = ē. Clearly, W̄ (e, σ) = 0 if e ≥ ẽ since the principal never induces the

participation of any type e > ẽ after any signal. Thus the right hand derivative of

v(e, σ) at ẽ equals the derivative of peλ.u− c(e), and this must be less than or equal

to zero for ẽ to be optimal. If it is negative, then ẽ cannot be optimal since it is

profitable to reduce effort, and thus ẽ maximizes peλ.u − c(e). Since peλ.u − c(e) is

strictly concave, ẽ must be the unique maximizer, and so we deduce that ẽ = ē, and

thus ẽ ∈ (0, 1).

If e < ẽ, µke > µkē for any k, and Ṽ (µke , µ
k
ē) > 0 since ê(µkē) > 0. Hence W̄ (e, σ) =

> 0. Since the right-hand derivative of V̄ (µke) at µ̄ke is strictly positive, the left-hand

derivative of W̄ (e, σ) at ē is negative. The right-hand derivative W̄ (e, σ) at ē is zero,

and so ē cannot satisfy the first order conditions for maximizing the agent’s overall

payoff.

This theorem has the following implication. Assume that there is uniform opti-

mism, and suppose that ce(0) = 0. Suppose that the principal offers a contract u at

t = 1 with positive incentives, so that e = 0 does not maximize the agent’s current

payoff. However, c(1) is sufficiently large so that it is a dominated choice given u.

Theorem 9 implies that the continuation game induced by this contract does not have

a perfect Bayesian equilibrium.

The theorem assumes that the inducing zero effort is less profitable for the prin-

cipal than exclusion, so that any participating type exerts positive effort. If we did
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not make this assumption, we can still show that the conclusions of the theorem hold

for any random effort σ with finite support. The theorem also assume uniform op-

timism, and it remains an open question as to whether a random effort level with

upper bound ē < 1 can be sustained in the absence of uniform optimism, i.e. when

there are signals in Y U where downward deviations make the agent more pessimistic.

The non-participation of some effort types is necessary for a possibility result – if

the principal ensures the participation of all types, W̄ has a kink at ē, and the im-

possibility result applies. The critical factor that removes such a kink is if the type

that chooses ē is induced to participate after signals in Y U , but not after signals in

Y D. This ensures that downward deviations from ē do not increase the continuation

value W̄ , thereby overcoming the problem of the perverse kink in the value function

at ē. However, such an equilibrium must also satisfy additional constraints, especially

those implied by sequential rationality, and it is not clear that such a construction is

feasible.

3 Solutions: Rents or Commitment

The impossibility result in theorem 8 is drastic – the first order conditions for im-

plementing any interior effort cannot be satisfied. We now examine the underlying

reason for this result, and also how it may be overcome. The underlying reason is

that the agent has discrete choices – stay on the job or quit – due to which there

is a failure of the standard envelope theorem. In consequence, the maximum value

function of the agent fails to be differentiable, as a function of his beliefs. Envelope

theorems exist for problems involving discrete choices (see Milgrom and Segal, 2002),

but they do not deliver differentiability of the maximum value function. Now, kinks

the maximum value function arise in other contexts, e.g. when the consumer has dis-

crete choices, but they occur only at an isolated set of prices, and are therefore rare.

However, in our agency context, the principal designs the contract so as to make the

consumer indifferent between his discrete choices. Thus non-differentiability of the

maximum value function is inevitable, at precisely the point that is relevant.

We now show that the impossibility result can be overcome – in the sense that the

first order conditions for implementing interior effort can be satisfied – if make the

agent’s participation decision a continuous one. Suppose that the agent’s reservation
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value at t = 2 is randomly drawn at the beginning of that period, and is private

information. From the standpoint of the agent at t = 1, his participation is random

and therefore continuous. This restores differentiability of the agent’s continuation

value function, W. Similarly, if one considers a limited liability model, where the

agent always participates, the differentiability of W is ensured. Since the analysis

of the limited liability model is simpler than (and a pre-requisite for) the analysis of

the random reservation value model, we turn to this first. Finally, we show that full

commitment can also resolve the impossibility since the agent can commit ex ante

not to quit.

3.1 Rents via Limited Liability

Consider first the situation where utility payments are bounded below, due to the

limited liability of the agent (see e.g. Innes, 1990). In this case, the participation

constraint may not bind in the final period, and so the agent gets rents. Let us sup-

pose that this is always the case, i.e. for all public beliefs µke∗ that arise in the second

period, the optimal contract u offered by the principal is such that V (µ, µ) > 0. Now

if the agent makes a small deviation e different from e∗, and has belief πke , V̂ (πke , µ
k
e∗)

is still positive, regardless of whether the deviation is upwards or downwards. The

agent will no longer find it optimal to choose ê (the effort the principal seeks to in-

duce); however, since the agent’s effort choice is from a continuum, his continuation

value function V (π, µ) will be smooth as a function of π. In consequence, W (e, e∗)

will be differentiable at e = e∗, and the first order conditions for implementing e∗ can

be satisfied by the appropriate choice of first period contract. Some complications

remain, since V (π, µ) is convex in π, implying that W (e, e∗) is convex in e. Neverthe-

less, if the cost of effort, c (e) , is sufficiently convex, one can, by a suitable choice of

first period contract, ensure that the overall first period payoff function of the agent,

v(e, e∗), is concave, so that e∗ is implementable.

Let u denote the lower bound of utilities given by limited liability. Given belief

µ, the principal chooses ê and u =
(
uk
)K
k=1

, uk ≥ u, to maximize

pêµ((y − w(u))),
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subject to the constraints6

pêµ.u− c(ê) ≥ 0,

(p1µ − p0µ) .u = ce(ê).

We shall assume that at any µ, at the optimal contract u, limited liability con-

straints bind, so that the participation constraint does not. Thus the agent gets a

payoff

V̂ (µ, µ) = pêµ.u− c(ê) > 0.

We now turn to expected continuation value function of the agent, W (e, e∗) :

W (e, e∗) =
∑

pkeλV̂ (πke , µ
k
e∗).

Since V (πke , µ
k
e∗) = V̂ (πke , µ

k
e∗) if the agent always gets rents and since the latter

is differentiable, W (e, e∗) is also differentiable at e = e∗. The derivative, evaluated at

e = e∗ , equals

∂W (e, e∗)

∂e

∣∣∣∣
e=e∗

=
∑
yk∈Y

∂pkeλ
∂e

V̂ (πke∗ , µ
k
e∗) +

∑
yk∈Y

pke∗λ
∂V̂ (πke , µ

k
e∗)

∂πke

∣∣∣∣∣
πke=µk

e∗

∂πke
∂e

∣∣∣∣
e=e∗

. (5)

Thus the first order condition for implementing e∗ can be satisfied by a suitable

choice of u:

(p1µ − p0µ) .u+
∂W (e, e∗)

∂e

∣∣∣∣
e=e∗

= ce(e
∗).

We now turn to second order conditions. Let us assume that the V̂ (π, µ) is non-

negative at every π that arises, so that participation constraints are satisfied. So, the

second derivative of W is given by

6Since the first order approach is valid in this case, we may replace the incentive constraint by
the first order condition.
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∂2W (e, e∗)

∂e2
=

∑
yk∈Y

∂2pkeλ
∂e2

V̂ (πke∗ , µ
k
e∗) + 2

∑
yk∈Y

∂pkeλ
∂e

∂V̂ (πke , µ
k
e∗)

∂π

∂πke
∂e

+
∑
yk∈Y

pkeλ
∂2V̂ (πke , µ

k
e∗)

∂π2

(
∂πke
∂e

)2

+
∑
yk∈Y

pkeλ
∂V̂ (πke , µ

k
e∗)

∂πke

∂2πke
∂e2

.

Note that
∂2pkeλ
∂e2

= 0 and

∂πke
∂e

=
λ(1− λ)

[
pk0Gp

k
1B − pk0Bpk1G

](
pkeλ
)2 ,

2
∂pkeλ
∂e

∂πke
∂e

+ pkeλ
∂2πke
∂e2

= 0.

Thus the second derivative simplifies to

∂2W (e, e∗)

∂e2
= [λ(1− λ)]2

∑
yk∈Y

∂2V̂ (πke , µ
k
e∗)

∂π2

[
pk0Gp

k
1B − pk0Bpk1G

]2(
pkeλ
)3 . (6)

This is positive (and generally strictly positive) since V̂ is convex in π. We now

examine the second derivative of V̂ with respect to π. Re-write V̂ as:

V̂ (π, µ) = V̂ (µ, µ) + (π − µ) (pêG − pêB) .u+ (ẽ− ê) (p1π − p0π) .u− c(ẽ(π)) + c(ê).

Using the envelope theorem, the derivative with respect to π equals

∂V̂ (π, µ)

∂π
= (pêG − pêB) .u+ (ẽ− ê) ρ.u(µ), (7)

where the vector ρ is defined as

ρ := p1G + p0B − p0G − p1B, (8)

and u(µ) denotes the optimal contract in the second period given public belief µ. The

second derivative of V̂ equals
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∂2V̂ (π, µ)

∂π2
=
dẽ

dπ
ρ.u(µ) =

[ρ.u(µ)]2

cee(ẽ(π))
, (9)

since dẽ
dπ

= ρ.u
cee(ẽ)

. Now generically, ρ will not equal the null vector. Furthermore,

u(µ) is not a constant vector since we have assumed that the profit maximizing effort

level ê(µ) > 0. Since generically, ρ.u 6= 0, ∂
2V̂ (π,µ)
∂π2 > 0, and so ∂2W (e,e∗)

∂e2
> 0.

The following observations are immediate. If ρ = 0, then W is linear and v(e, e∗)

is strictly concave, as long as c(.) is strictly convex. So for a given convex c, then if

ρ is sufficiently close to zero, then v is strictly concave. Conversely, if c is close to

linear, then we can find ρ so that the second order conditions are not satisfied, and

e∗ will not be implementable.

In order to examine more closely the degree of convexity of V̂ , we examine u(µ),

i.e. the optimal contract in the second period. This will depend upon ê(µ), the profit

maximizing effort choice at µ. Lemma 14 in the appendix shows that when the agent

is risk-neutral, then for any value of ê, the optimal cost minimizing contract requires

the principal to make payments depend only on a binary partition of the signal space

Y, paying uK >u after the signal (or signals) with the highest likelihood ratio, and

u after all other signals. In the light of this lemma, we simplify the exposition by

assuming there is a single signal with the highest likelihood ratio for all values of µ,

and label this yH .7 This reduces to the case of binary signals as in table 1, and from

the table, ρ = (γ − θ, θ − γ).The second period incentive constraint is

(pH1µ − pH0µ)(uH − uL) = ce(ê(µ)),

|ρ.u| = |(θ − γ)| (uH − uL) =
|(θ − γ)| ce(ê(µ))

(pH1µ − pH0µ)
. (10)

The second derivative of the overall payoff in the first period at e, when the

principal seeks to implement e∗ equals ∂2W (e,e∗)
∂e2

− cee(e). The first term depends upon
∂2V̂ (π,µ)
∂π2 , and this can be made as small as desired by making the cost function c(.)

sufficiently convex. Take the case of quadratic costs, c(e, φ) = φ
2
e2. In the appendix,

we show that ce(ê(µ)) is decreasing in φ, so the numerator of 10 is decreasing in

φ. Since the denominator equals φ, ∂2V̂ (π,µ)
∂π2 can be made as small as required by a

7Without this assumption, the partition of the signal space may depend upon µ, but this does
not cause any essential difficulties, since there can be only finitely many such partitions.

25



suitably large choice of φ. Thus for φ large enough, the first period payoff function

v(e, e∗) is concave in e, and every e∗ ∈ [0, 1] is implementable. We summarize our

results in the following theorem.

Theorem 10 Suppose that the agent’s limited liability constraint binds in the second

period, so that the agent always participates at all second period beliefs that arise.

Assume that either signals are binary or the agent is risk neutral, and that effort

costs c(e) are quadratic. If the second derivative of c(.) is sufficiently large, every

effort level in [0, 1] is implementable at t = 1, and the principal’s optimal contract at

t = 1 solves the first order conditions for maximizing her payoff.

Proof. See appendix.

The above theorem provides a sufficient condition for the first-order approach to

work in a dynamic context. To our knowledge, this is the first time that the first-

order approach has been extended to a dynamic setting without commitment. The

sufficient condition is, of course, not necessary. For example, take a quadratic cost

function c(e) where the second derivative is sufficiently large such that the second

order condition holds as a strict inequality for every value of e. One can perturb

this cost function slightly, so that the third-derivative is no longer exactly zero, and

if the perturbation is small enough, the second order conditions will continue to be

satisfied. In our numerical examples, the degree of convexity of W is very small, so

that concavity of the agent’s first period payoff appears to be a non-issue. Similarly,

the assumption that the agent is risk neutral (when there are many signals) can also

be relaxed.

Having established the validity of the first order approach, we now turn to the

economics of the ratchet effect under limited liability. Re-write the derivative of the

agent’s expected continuation value is given by

∂W (e, e∗)

∂e

∣∣∣∣
e=e∗

=
∑
yk∈Y

∂pkeλ
∂e

V̂ (πke∗ , µ
k
e∗) +

∑
yk∈Y D

pke∗λ
∂V̂ (πke , µ

k
e∗)

∂πke

∣∣∣∣∣
πke=µk

e∗

∂πke
∂e

∣∣∣∣
e=e∗

+
∑
yk∈Y U

pke∗λ
∂V̂ (πke , µ

k
e∗)

∂πke

∣∣∣∣∣
πke=µk

e∗

∂πke
∂e

∣∣∣∣
e=e∗

. (11)

The importance of the ratchet effect depends on the magnitude (and sign) of the

above derivative. The most important difference, as compared to the case where the

26



agent’s reservation utility constraint binds, arises due to the fact that now the agent

earns some rents, and these rents vary with µ, the public belief. This is seen by

comparing the above expression 11 with the expression for the left-hand derivative,

4 that we had earlier. While the second term is common in both and is negative

– higher effort reduces V after signals in Y D, there are two additional terms in the

present case, that are zero in 4. The third term in 11 is positive, if Y U is non-empty –

shirking makes the agent more pessimistic after signals in Y D, and he stays on the job

with positive probability, and this reduces the benefit of shirking. Most importantly,

the first term is not zero since V (µ, µ) is not constant. In general, it may be increasing

or decreasing in µ, due to the interaction of two factors. First, a higher value of µ

makes it more likely that the agent will succeed, and thus incentive pay is more costly

for the principal. This reduces ê as a function of µ, and therefore reduces incentive

pay and rents (even though the direct effect of an increase in µ is to increase the

probability of success and rents). Second, from a revenue standpoint, the principal

may have differential incentives to induce effort in different states of the world, and

this also affects rents, since a higher value of ê increases rents.

These considerations may be easier to comprehend in the context of some nu-

merical examples. We take the binary signal setting of table 1, and consider three

examples, showing qualitatively different parameter configurations.8 In the figure

labelled Example 1, γ = θ, so that effort has the same effect on output in both states.
9 In this case, ê(µ) is decreasing in µ – the output benefit from incentivizing higher

effort is invariant, but the principal pays a higher rent for the same incentive, as µ

increases. This is depicted in the first panel of the figure. The agent’s equilibrium

(on-path) continuation value, V (µ, µ), is declining in µ, since the effect on ê out-

weighs the direct effect of µ – this is shown in the second panel. Furthermore, in this

case, the agent if more optimistic than the principal when he shirks after either signal

realization, and thus the third term in equation 11 is absent (Y U is empty). Thus

the ratchet effect here is stronger than in 4. Accordingly, we find that ∂W (e,e∗)
∂e

∣∣∣
e=e∗

is negative for all values of e∗, as is shown in the third panel. Thus the ratchet ef-

fect works to make it costlier to incentivize effort in the first period, much as in the

8These parameterizations are meant to illustrate qualitative features, but do depend upon the
specific parameter values. One important consideration in choosing these values is to ensure that
the optimal second period effort is interior. We also assume that the agent is risk neutral and that
the lower bound on wages is zero.

9The parameters for example 1 are: p = 0.9, q = 0.2, γ = θ = 0.3, yH = 12, yL = 0, φ = 2.
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traditional analysis.
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Example 1: γ = θ.

The second parameterization, where θ > γ, is depicted in Example 2.10 This has

the property that effort has a higher effect on output in the bad state. This reinforces

the principal’s incentive to depress effort as µ increases, so that ê(µ) falls more rapidly

than in the first case, as shown in panel 1 of the figure. The agent’s continuation value

is decreasing in µ, as shown in the second panel. The ratchet effect is accentuated,

i.e. ∂W (e,e∗)
∂e

∣∣∣
e=e∗

is negative, and larger in absolute value as compared to the first

parameterization.
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Example 2: γ < θ.

In Example 3, γ > θ, so that effort has a larger effect on output in the state

G rather than state B. 11 Now ê(µ) is increasing (even though a higher µ means

that he pays more rents, and this depresses uH). This is depicted in the first panel.

3. Consequently, V (µ, µ) increases quite rapidly with µ, as shown in panel 2. In

consequence, ∂W (e,e∗)
∂e

∣∣∣
e=e∗

is positive for all values of e∗, and increases with e∗,as is

10Parameters for example 2 are: p = 0.8, q = 0.2, γ = 0.2, θ = 0.3, yH = 12, yL = 0, φ = 2.
11Parameters for example 3 are: p = 0.9, q = 0.2, γ = 0.4, θ = 0.2, yH = 10, yL = 0, φ = 2.
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shown in the third panel. This contradicts the traditional analysis of the ratchet effect,

since dynamic considerations make it cheaper to incentivize effort in the first period,

as compared to the static model. Qualitatively, the results here are closer to those in

a career concerns model, where the agent has an incentive to work rather than shirk.

This example is particularly interesting, since a qualitatively similar parameterization

has been popular in the literature (e.g. Bergemann and Hege (1998, 2005), Horner and

Samuelson (2009) and Kwon (2012)). These papers find that dynamic considerations

aggravate the incentive problem, whereas we find the opposite. One key difference

is that in Bergemann-Hege and Horner-Samuelson, the project ends with the first

success, which may be a reason why the incentive to over-work does not arise.
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Example 3: γ > θ.

Table 2 summarizes our numerical results. The first row shows the sign of the

ratchet effect, which takes its usual form in the first two parameterizations, with

We < 0. However in the third parameterization, We > 0, so that the agent increases

his continuation value by over-working. The second column shows the optimal first

period effort induced by the principal, assuming that the principal has a zero discount

factor (we do this so as to abstract from the principal’s experimentation motive for

inducing different efforts), while the third column shows optimal first best effort in

the absence of the ratchet effect – this corresponds to the case where the agent is

myopic and has δ = 0. The ratchet effect reduces first period effort in the first two

parameterizations, but raises it in the third. The last row shows the maximum value

of the second derivative of the agent’s continuation value function W (e, e∗), over all

(e, e∗). This is always very small relative to cee, which equals 2 in all cases, and so

the agent’s first period payoffs are globally concave in effort.
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Table 2: First Period Effort Choice by Principal

γ = θ γ < θ γ > θ

ratchet effect, We −ve −ve +ve

e∗, patient agent 0.69 0.48 0.81

e∗, myopic agent 0.76 0.55 0.63

maxWee(.) 0 0.001 0.02

3.2 Private Information

Suppose that the agent has unlimited liability, but assume that the agent’s reser-

vation value in the second period is random, and is revealed to the agent privately

at the beginning of period 2. At t = 1, the agent views his future participation as

random, and therefore continuous, as a function of his private belief π. Thus V (π, µ)

is differentiable in π, ensuring differentiability of W (e, e∗). We now set out the details

of this approach.

Assume that the agent’s reservation utility in the final period, v, is a random

variable that has distribution function F and density f. The agent observes the real-

ization of v at the beginning of the second period, but the principal does not. Suppose

that the principal has belief µ that the project is good. Then his problem is to choose

a utility level for the agent from the contract, v̄, and ê and u =
(
uk
)K
k=1

to maximize

F (v̄)Eê,µ((y − w(u))),

subject to the constraints12

pêµ.u− c(ê) ≥ v̄,

(p1µ − p0µ) .u = ce(ê).

We may break down this problem in two steps. First, for a utility, ṽ, that the

principal provides, he can compute the optimal contract – this is the standard solution

to moral hazard agency problem. Let Π(ṽ, µ) denote the principal’s profit when he

12Since the first order approach is valid in this case, we may replace the incentive constraint by
the first order condition.
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provides ṽ, conditional on the agent accepting the contract (i.e. conditional on v ≤ ṽ).

Π(ṽ) is decreasing, since the Lagrange multiplier on the IR constraint is strictly

positive in the standard problem. Now the principal can choose ṽ to maximize

Π(ṽ, µ)F (ṽ).

Let v̄(µ) denote the solution to this problem. We assume that F is sufficiently

dispersed so that v̄(µ) lies in the interior of the support of F. For future reference, note

that if Π(ṽ, µ) is increasing in µ, then the principal will induce greater participation,

so that v̄(µ) will be increasing in µ.

Suppose now that the agent has belief π different from µ. His payoff from accepting

the contract equals V̂ (π, µ), (recall that V̂ is the payoff conditional on accepting the

job). He will accept the contract if V̂ (π, µ) ≥ v. His exante expected payoff, given

optimal acceptance, is given by

V (π, µ) = F
(
V̂ (π, µ)

)
V̂ (π, µ) +

∫
V̂ (π,µ)

vf(v)dv. (12)

Lemma 4 established that V̂ (π, µ) is differentiable. If F is continuous at V̂ (π, µ),

then the left and right hand derivatives of V (π, µ) are equal and so

∂V (π, µ)

∂π
= F

(
V̂ (π, µ)

) ∂V̂ (π, µ)

∂π
.

We conclude that V is differentiable at π as long as F (.) is continuous at V̂ (π, µ),

and so W (e, e∗) is differentiable at e = e∗, with derivative

∂W (e, e∗)

∂e

∣∣∣∣
e=e∗

=
∑
yk∈Y

∂pkeλ
∂e

V (πke∗ , µ
k
e∗)+

∑
yk∈Y

pke∗λF
(
v̄(µke∗)

) ∂V̂ (πke , µ
k
e∗)

∂πke

∣∣∣∣∣
πke=µk

e∗

∂πke
∂e

∣∣∣∣
e=e∗

.

(13)

Thus the first order conditions for implementing u can be satisfied by a suitable

choice of contract, u.

It remains to show that the second order conditions can also be satisfied. The
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second derivative is

∂2W (e, e∗)

∂e2
= [λ(1− λ)]2

∑
yk∈Y

∂2V (πke , µ
k
e∗)

∂π2

[
pk0Gp

k
1B − pk0Bpk1G

]2(
pkeλ
)3 . (14)

Where

∂2V (πke , µ
k
e∗)

∂π2
= F (V̂ (π, µ))

∂2V̂ (π, µ)

∂π2
+ f

(
V̂ (π, µ)

) ∂V̂ (π, µ)

∂π
.

Both the terms in the above expression are positive. As compared to limited

liability, now one has the additional second term, and to ensure that this is not too

large, the distribution of reservation values must be sufficiently dispersed – otherwise,

if f(.) is large, W will be too convex. Conversely, if f(.) is small, and if the cost

function c(e) is sufficiently convex, then the overall first period payoff function will be

concave in effort, and one can employ the first order approach. We do not examine

this problem in detail, noting only that the uncertainty regarding future reservation

values must be large enough, i.e. a small perturbation of the underlying model will

not suffice to ensure implementability.

How does the ratchet effect, operate in this setting, as compared to the limited

liability model? To answer this, re-write the derivative of W as

∂W (e, e∗)

∂e

∣∣∣∣
e=e∗

=
∑
yk∈Y

∂pkeλ
∂e

V (πke∗ , µ
k
e∗) +

∑
yk∈Y D

pke∗λF
(
v̄(µke∗)

) ∂V (πke , µ
k
e∗)

∂πke

∣∣∣∣
πke=µk

e∗

∂πke
∂e

∣∣∣∣
e=e∗

+
∑
yk∈Y U

pke∗λF
(
v̄(µke∗)

) ∂V (πke , µ
k
e∗)

∂πke

∣∣∣∣
πke=µk

e∗

∂πke
∂e

∣∣∣∣
e=e∗

.

Notice that the second and third terms in the expression above are similar to

those in 11, the expression under limited liability. However, the agent’s rents vary

systematically with µ, in a way that is very different. In particular, V (µ, µ) is

increasing in µ, since the principal optimally induces a higher degree of participation

when the project is more profitable, so that v̄(µ) will be increasing. (In contrast,

under limited liability, V (µ, µ) could well be decreasing in µ). Since µke is larger for

higher signals (those with a smaller likelihood ratio
pk0λ
pk1λ

), and since shirking reduces the

probability of these signals, this term is also positive. In consequence, the incentives

to shirk are also muted, due to the two countervailing effects that are not present
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when the agent’s reservation utility is fixed.

3.3 Commitment

Our analysis highlights the importance of long term commitment – in its absence, the

ratchet effect has very serious consequences. Milgrom and Roberts (1990) emphasize

the role of commitment and discuss the Harvard Business School case study of Lincoln

Electric. Lincoln Electric used piece rates in order to provide incentives, and had a

policy of not revising the piece rate in the light of worker performance. This would

provide the worker with rents when the job turned out to be a good one, and so the

firm effectively committed not to hold workers to their reservation value in that event.

However, if the job turns out to be a bad one, then the piece rate would not meet

the worker’s reservation utility, unless it was set very generously in the first instance.

Thus, a policy of not revising piece rates requires either long term commitments on

the worker’s part as well, or else the firm to pay the workers rents ex ante.

We now examine more formally the possibility of long-term commitment on both

sides, and show that the stark impossibility result does not arise. Suppose that

principal and agent commit to a two-period contract at the beginning of period one.

The principal offers a contract u := (u1, u2) where u1 ∈ RK and u2 : Y → RK .

u1 specifies the first period utility payments as a function of the first period signal

realization y1, and u2 specifies second period payments as a function of (y1, y2), the

pair of signal realizations across both periods. Let u2j denote the j-th element of u2,

i.e. the vector of utilities that are promised after yj is realized at t = 1.

Let e ∈ [0, 1]K+1 denote a profile of efforts. The first component, e∗, denotes effort

in period one, and the remaining K components, with generic element ej, denote the

effort in period 2 after signal yj is realized at t = 1. For the contract u to induce e,

the agent’s incentive constraints must be satisfied. In addition, an overall individual

rationality constraint must be satisfied, so that his expected discounted payoff under

the contract exceeds the discounted value of his outside option over the two periods.

Fix e∗, and a first period signal realization yj. ej is implementable if and only if

(
p1µj

e∗
− p0µj

e∗

)
.u2j = ce(e

j).
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As in previous arguments, for any µje∗ and any ej, we can find a utility vector that

satisfies the above equation. Let V (π, µ) denote the agent’s continuation value when

he has private belief π and the principal has public belief µ. Now at µ = µje∗ , and

given u2j,

V (µje∗ , µ
j
e∗) = pejµj

e∗
.u2j − c(ej).

Suppose that the agent has different beliefs πje, since his first period effort choice

was e 6= e∗. His continuation payoff is

V (πje, µ
j
e∗) = max

ẽ

[
pẽπje .u2j − c(ẽ)

]
.

Since the agent is committed to the contract, there is no non-negativity constraint on

his value function, and he gets V (πje, µ
j
e∗), for any πje that he may have. His expected

continuation value, as a function of his first period effort is

W (e, e∗) =
∑
Y

pkeλV (πke , µ
k
e∗).

As we have already established, this is differentiable in e, and the derivative,

evaluated at e = e∗ , takes the same form as under private information, as set out

in equation (13). The first order condition for implementing e∗, given any profile of

second period efforts, (ej)Kj=1 and second period utilities, u2, is satisfied if

(p1λ − p0λ) .u1 +
∂W (e, e∗)

∂e

∣∣∣∣
e=e∗

= ce(e
∗).

Again, there exists u1 such that the first order conditions are satisfied.

The principal’s overall problem is to choose e and u to maximize his profits,

subject to the K + 1 first order conditions for the agent’s incentive constraints,

and the agent’s overall individual rationality constraint. That is, one can apply the

first-order approach to solve the principal’s maximization problem. At the solution,

we need to verify that the agent’s second order condition is satisfied, i.e. he cannot

benefit by making a large deviation from his e∗, his first period effort. As we have

already seen, a sufficient condition is that W (e, e∗) is not too convex relative to the

convexity of the c(e). We conjecture that if the agent’s cost function is sufficiently

convex, the agent’s payoff will be globally concave in his first period effort, and thus

the first order approach will be valid.
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To summarize, if both principal and agent can commit to a long term contract, the

implementability problem does not arise, at least in the severe form that we had when

the agent’s participation constraint was binding in the second period. The properties

of the optimal long term contract are of interest. A complete analysis would take us

away from the focus on the present paper, but some points are worth mentioning.

In general, the optimal contract will not be repetition of the static contract, but will

condition non-trivially upon the first period signal, for two reasons. First, as public

beliefs µje∗ vary with the signal, the agent’s incentive constraint will vary, and the

contract must necessarily adjust. Second, optimal consumption smoothing between

principal and agent implies the Lambert (1983) and Rogerson (1985) conditions on

the inverses of the marginal utilities, and so continuation utilities must be history

dependent.

We now examine more limited forms of commitment. Suppose now that contracts

are only for one period, but the firm consistently pays more than the worker’s outside

option. Bewley (1999) presents survey evidence showing that firms often feel that

they have to treat their workers fairly, and this involves a degree of rent sharing.

Rent sharing may also arise from the worker having some bargaining power, whereby

he gets a utility strictly higher than his outside option. Leaving the worker some rent

often improves incentive problems – the efficiency wage model is an example, and this

is true in our context as well since it makes the non-implementability problem less

severe.

Suppose that the firm has a policy of offering a contract where it offers the worker

an expected overall payoff of ∆ > 0, rather than her reservation utility 0. Thus the

second period contract ensures an expected payoff ∆ after every belief µ, on the

equilibrium path. Now suppose that the worker deviates in the first period to e < e∗.

If he becomes more pessimistic after signal yk, and his payoff is between 0 and ∆,

he will stay on the job. When π is slightly below µ, V (π, µ) will lie in the interval

(0,∆), and it remains optimal to stay on the job. Since the agent will no longer

quit if his private belief π is just a little below the public belief µ, W (e, e∗) decreases

as e is increased beyond e∗, and is smooth at e∗. Since W (e, e∗) is decreasing and

differentiable at e = e∗, the first order conditions for implementing e∗ can be satisfied.

Now the non differentiability is now at some ẽ >> e∗. One has to therefore verify

that choosing e∗ is globally optimal, and this will only be true if ∆ is large enough.

Large upward deviations may be unprofitable if the cost of effort function c(e) is
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sufficiently convex.

An alternative way to mitigate the ratchet effect is by replacing or rotating the

worker. This may be costly, e.g. due to learning on the job. So a degree of commit-

ment is also required to implement such a policy. There are many real-life examples

of multi-plant firms that implement job rotation policies, with managers being given

a maximum tenure at any single plant – for example, the Tata group of companies

has a policy of rotating managers of its tea-plantations every three years. While such

policies may be costly since a manager has to acquire location-specific knowledge

with each transfer, they may provide benefits in terms of mitigating the ratchet ef-

fect. Ickes and Samuelson (1987) examine the role of job transfers in mitigating the

ratchet effect arising from ex ante private information, assuming that the firm can

commit to a transfer policy.

To summarize, one interpretation of our impossibility result in theorem 8 is that

it illustrates the importance of commitment. Full commitment contracts may be un-

realistic, but even limited forms of commitment, such as rent-sharing or job-rotation

may alleviate the problem. They maybe costly, but if the costs are small, the firm

may plausibly commit to such policies.

4 Combining Discrete & Continuous Choices

We now modify the limited liability model, where participation is a non-issue, so that

the agent has discrete choices in the second period, and continuous choices in the

first period. We find that the non-implementability problem recurs. We believe that

this is general feature of models that combine continuous and discrete choices that

are subject to incentive constraints, but in the interests of economy, we consider the

minimal model in this class. At t = 1, the agent chooses effort from [0, 1], incurring

a cost c(e) that is strictly convex. At t = 2, the agent chooses from {0, 1}, with

costs c1 > c0.13 Other than the restriction to binary choices at t = 2, we assume

that the information structure is as in the rest of the paper (i.e. the distribution

13We conjecture that similar results would hold in a multi-tasking model where the agent chooses
from [0, 1]×{0, 1} in each period. However, a pre-requisite for analyzing such a model is the analysis
of the static multi-tasking model that combines discrete and continuous choices, and that would take
us far from the focus of the present paper.
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(peω), eω ∈ {0, 1}×{G,B} is fixed across the two periods, and that the chosen state

ω is also fixed across periods).

Our focus is on the conditions under which an interior effort level is implementable

at t = 1. We begin the analysis in period 2, where there is some common belief µ.

Assume that principal optimally induces e = 1 at t = 2, at this belief, and offers

a utility vector u. Since the incentive constraint at t = 2 must bind,14 we have

p1µ.u = c1 − c0, or

[µ(p1G − p0G) + (1− µ)(p1B − p0B)] .u = c1 − c0.

If the agent has private belief π, he will find it optimal to choose e = 1 if

[π(p1G − p0G) + (1− π)(p1B − p0B)] .u ≥ c1 − c0.

The difference between the left-hand sides of the above two expressions equals

(π − µ)(p1G + p0B − p1B − p0G).u = (π − µ) (ρ.u) ,

where ρ := (p1G + p0B − p1B − p0G), as before.

Our analysis depends upon the sign of ρ.u. Suppose ρ.u > 0. Then if π > µ, it

is optimal to choose e = 1, and if π < µ, it is optimal to pick e = 0. The agent’s

expected utility may be written as a function of beliefs (π, µ) and is given by

V (π, µ) =

{
[πp1G + (1− π)p1B] .u− c1 if π ≥ µ

[πp0G + (1− π)p0B] .u− c0 if π < µ.

This can be re-written as

V (π, µ) = V (µ, µ) +

{
(π − µ) [p1G − p1B] .u if π ≥ µ

(π − µ) [p0G − p0B] .u if π < µ.

V is therefore a piecewise linear function of π, with slope V −π at π < µ and V +
π (u)

at π > µ. The difference between these slopes is V +
π −V −π = ρ.u > 0, since we assumed

ρ.u > 0.On the other hand, if ρ.u < 0, the agent’s optimal action is to choose e = 0 if

π > µ, and e = 1 if π < µ. In this case it can be verified that V +
π − V −π = −ρ.u > 0.

14The incentive constraint must bind since otherwise the principal offers the constant payment u,
which violates the incentive constraint.
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Finally, if ∆ (u) = 0, both actions are optimal at every belief and V (π, µ) is linear in

π. We conclude therefore that, in general,

V +
π − V −π = |ρ.u| .

We now turn to the left-hand and right hand derivatives of the expected continu-

ation value function, W (e, e∗) at e = e∗. Our focus is on the difference between these

two derivatives.

Let us write V +
π and V −π as functions of u(µke∗), since they depend upon the optimal

second period contract u, which is a function of the principal’s belief µ.The left hand

derivative of W (e, e∗) with respect to e, at e = e∗, is

∂W−(e, e∗)

∂e

∣∣∣∣
e=e∗

=
∑
yk∈Y

∂pkeλ
∂e

∣∣∣∣
e=e∗

V (πke∗ , µ
k
e∗) +

∑
yk∈Y D

pke∗λV
+
π (u(µke∗))

∂πke
∂e

∣∣∣∣
e=e∗

+
∑
yk∈Y U

pke∗λV
−
π (u(µke∗))

∂πke
∂e

∣∣∣∣
e=e∗

.

The right hand derivative is

∂W+(e, e∗)

∂e

∣∣∣∣
e=e∗

=
∑
yk∈Y

∂pkeλ
∂e

∣∣∣∣
e=e∗

V (πke∗ , µ
k
e∗) +

∑
yk∈Y D

V −π (u(µke∗))p
k
e∗λ

∂πke
∂e

∣∣∣∣
e=e∗

+
∑
yk∈Y U

pke∗λV
+
π (u(µke∗))

∂πke
∂e

∣∣∣∣
e=e∗

.

Thus the difference between the right-hand and left-hand derivatives is

∂W+(e, e∗)

∂e

∣∣∣∣
e=e∗
− ∂W−(e, e∗)

∂e

∣∣∣∣
e=e∗

=
∑
yk∈Y D

−
∣∣ρ.u(µke∗))

∣∣ pke∗λ ∂πke∂e
∣∣∣∣
e=e∗

+
∑
yk∈Y U

∣∣ρ.u(µke∗)
∣∣ pke∗λ ∂πke∂e

∣∣∣∣
e=e∗

.

Since ∂πke
∂e

< 0 if yk ∈ Y D and ∂πke
∂e

> 0 if yk ∈ Y U , we conclude that each term in

each of the above summations is positive. Thus ∂W+(e,e∗)
∂e

∣∣∣
e=e∗

> ∂W−(e,e∗)
∂e

∣∣∣
e=e∗

, with
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the inequality being strict unless ρ.u(µke∗) = 0 for all µke∗ .

Notice that this argument does not depend upon the principal inducing e = 1 at

t = 2 after every signal realization. It suffices that there exists at least one signal

yk ∈ Y U ∪ Y D such that at the belief µke∗ , inducing e = 1 is optimal. This is sufficient

to ensure the inequality ∂W+(e,e∗)
∂e

∣∣∣
e=e∗

> ∂W−(e,e∗)
∂e

∣∣∣
e=e∗

as long as ρ.u(µke∗) 6= 0.

We now show that for generic information structures, ρ.u(µ) 6= 0. We defer the

proof of the general case to the appendix, setting out here the argument for the case

where either signals are binary, or if the agent is risk neutral. Consider first binary

signals, with the information structure set out in Table 1. Under limited liability, if

the IR constraint is irrelevant and the limited liability constraint binds, uL = u, and

the incentive constraint given belief µ implies

[µθ + (1− µ)γ]uH = c1 − c0,

so that u = (u+ c1−c0
µθ+(1−µ)γ

, u). Since ρ = (θ − γ, γ − θ), the inner product is

ρ.u(µ) =
(γ − θ) (c1 − c0)

µθ + (1− µ)γ
.

We conclude that unless θ = γ, ρ.u(µ) 6= 0 for every µ.

Consider next the case where the agent is risk neutral and there are many signals.

By lemma 14, utility payments exceed u only after the signal or signals that have the

lowest likelihood ratio,
pk0µ
pk1µ
. Thus the principal makes a binary partition of the set of

signals, and pays zero after all except the highest signal. This reduces to the case of

binary signals, and therefore generically, ρ.u(µ) 6= 0 for every µ. The argument for

the case of many signals and risk-aversion is deferred to the appendix.

Theorem 11 Consider a limited liability model where the agent has a binary effort

choice in the second period, and must choose from [0, 1] in the first period. Suppose

that the principal finds it optimal to induce high effort in the second period after at

least one signal realization in Y U ∪Y D. Then no interior effort level is implementable

in the first period for generic information structures.

Proof. See appendix.

The impossibility result generalizes to the case of a finite set of efforts at t = 2,

with c(e) increasing. Assume that the principal induces some effort ê > 0 (the smallest

effort) after some first period signal yk. The incentive constraint must bind; under
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the optimal contract, at the belief µke∗ , the agent must be indifferent between ê and

his next best choice. If the agent’s beliefs πke differ, then his optimal action when he

is more optimistic will differ from his optimal choice when pessimistic. This ensures

that the continuation value function will be kinked as a function of his first period

effort, and prevents the first order conditions from being satisfied. On the other hand,

if the agent only has continuous choices at t = 2, then the standard envelope theorem

applies, and his continuation value function is smooth.

In the light of our findings, we may now discuss the recent literature on agency

models with experimentation. Bergemann and Hege (1998, 2005), Horner and Samuel-

son (2009), Manso (2011) and Kwon (2011) analyze models where agent has a discrete

set of actions (usually binary). De Marzo and Sannikov (2011), Cisternas (2012) and

Jovanovic and Prat (2013) analyze continuous time models, where the agent has con-

tinuation action choices, and where participation constraints are irrelevant. Either

of these formulations do not encounter the problems that arise here, since it is the

combination of continuous and discrete actions that give rise to the difficulty.

We now show that the impossibility result can be overcome if the principal com-

mits to the two-period contract in the first period. As in section 3.3, suppose that

the principal offers a contract u := (u1, u2) where u1 ∈ RK and u2 : Y → RK . Let

e ∈ [0, 1]×{0, 1}K denote a profile of efforts, where e∗ ∈ [0, 1] is the first period effort

level, with ej ∈ {0, 1} denoting an effort level after signal yj at t = 2.

Theorem 12 If the principal can commit to a two period contract at t = 1, then any

e ∈ [0, 1]× {0, 1}K is implementable.

Proof. Our proof will show that the principal can design the second period pay-

ments so that the agent’s second period continuation value after signal realization

yj, V (π, µje∗) is differentiable (and linear) in π for all relevant values of π. To reduce

notation, let µ to denote µje∗ , the principal’s belief after yj. If ej = 0, the principal can

set u2j to be constant and in this case the agent’s continuation value, V (π, µ) does

not vary with π after signal yj. Suppose that ej = 1. Let ũ be second period payments

such that ũ.(p1µ−p0µ) = c1−c0. Suppose that ρ.ũ > 0, so that the incentive constraint

would be violated at π < µ if the principal offered ũ. Let πjmin = mine∈[0,1]{πje} denote

the most pessimistic belief that the agent could have after yj. Now if the principal

offers second period payments û such that û.(p1πjmin
−p0πjmin

) = c1−c0, then the agent’s
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incentive constraint is always satisfied after signal yj, no matter what his first period

effort (when his beliefs are more optimistic than µ, it always optimal to choose e = 1),

and he will always choose e = 1. Thus V (π, µ) is smooth and linear in π. This can

be done for every signal yk after which the principal seeks to induce ek = 1, thereby

ensuring that the agent’s continuation value function W (e, e∗) is smooth, and the first

order conditions for implementing e∗ can be satisfied. Furthermore, since V (π, µ) is

linear, the overall payoff of the agent is strictly concave as function of his first pe-

riod effort, and the first order conditions suffice. The argument for the case where

ρ.ũ < 0 is similar – the principal now ensures that the incentive constraint is satisfied

at πjmax = maxe∈[0,1]{πje}.
Two remarks are in order here. First, the principal cannot implement e∗ in the

interior unless there is some slack in the incentive constraint for implementing ej = 1

at the equilibrium belief µje∗ – if the constraint binds, the agent’s first order condition

for e∗ will be violated, as in the no-commitment case. However, the principal does

not necessarily have to ensure that the agent’s incentive constraint is satisfied at

all possible beliefs, including πjmin (or πjmax). It may be sufficient to ensure that the

incentive constraint holds for some intermediate range of beliefs between πjmin and

µje∗ . In this case, the agent will not be able to profit from a local deviation in his first

period effort, and will have to make a large deviation, which may be unprofitable

given the convexity of the cost function.

Second, the commitment contract is not renegotiation-proof if the agent is risk-

averse. After the agent has chosen his first period effort, it is inefficient to make him

bear extra risk, to satisfy an incentive that is now redundant, given that he has not

deviated at t = 1. Thus the impossibility result would recur if we insisted that the

two period contract had to be renegotiation-proof.

5 Conclusions

Dynamic agency problems with learning where the agent has continuous as well as

discrete choices give rise to serious difficulties for the principal. Sequential rationality

implies that the principal implements his desired discrete choice in the final period at

least cost. This ensures that the agent is indifferent between the principal’s desired

action and his next best alternative. Any perturbation in the agent’s beliefs will affect

the payoffs from these two actions differently, and generically, the agent will choose
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one action when he is more optimistic, and a different one when he is more pessimistic.

The consequent convex kink in his continuation value function makes implementing

interior efforts in the initial period impossible, since one cannot guard against both

upward and downward deviations. While the present paper has restricted attention

to situation where these constraints are imposed by a profit-maximizing principal,

these could also arise in competitive markets. Also, we have focused the analysis

on the case where the uncertainty pertains to the nature on the principal’s project,

rather than the talent of the agent. However, we believe that the conceptual problem

identified here can also arise in versions of the careers concerns model, where learning

affects the outside option of the agent, but this is to be explored in future work.

One response to the non-implementability result is to make choices continuous

from the point of view of the initial period. For example, making the costs of different

actions stochastic could solve the problem provided that the uncertainty is sufficiently

large. In some contexts, large uncertainty may well be reasonable, but this may not

appeal in all situations. A second response is to argue that these arguments illustrate

the importance of the employer’s ability to commit, reinforcing the arguments in

Milgrom and Roberts (1990). As we have seen, the costs of not being able to commit

can be large.

6 Appendix

To prove theorem 10, we prove the following lemma.

Lemma 13 Consider a static contracting problem, where Y is binary as in table

1, and where limited liability constraints bind so that uL =u. Let the cost of effort

c(e, φ) = 1
2
φe2, and let ê(µ, φ) denote the profit maximizing effort induced by the

principal. ê(µ, φ) and ce(ê(µ, φ)) are decreasing in φ.

Proof. The principal’s maximization problem is:

max
e,uH

pHeµ
[(
yH − yL

)
−
[
w(uH)− w(u))

]]
+ yL − w(u),

subject to the incentive constraint

(
pH1µ − pH0µ

)
(uH − u) = ce(e, φ).
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Define y := yH − yL + w(u)). Substituting the incentive constraint, the principal’s

problem is:

max
e
pHeµ

(
y − w

(
ce(e, φ)(
pH1µ − pH0µ

) + u

))
.

The first order condition for optimal effort is

(
pH1µ − pH0µ

)(
y − w

(
ce(e, φ)(
pH1µ − pH0µ

) + u

))
−w′

(
ce(e, φ)(
pH1µ − pH0µ

) + u

)
cee(e, φ)(
pH1µ − pH0µ

) (pH0µ + e
(
pH1µ − pH0µ

))
= 0.

This can be re-written as

(
pH1µ − pH0µ

)
w

(
ce(e, φ)(
pH1µ − pH0µ

) + u

)
+w′

(
ce(e, φ)(
pH1µ − pH0µ

) + u

)
cee(e, φ)

(
pH0µ(

pH1µ − pH0µ
) + e

)
= K,

where K is a constant. Totally differentiating with respect to φ, the following expres-

sion equals zero:

w′(.)

(
ceφ + cee

de

dφ

)
+ w′(.)

(
ceeφ + ceee

de

dφ

)(
pH0µ(

pH1µ − pH0µ
) + e

)
+ w′(.)cee

de

dφ

+w′′(.)

(
ceφ + cee

de

dφ

)
1(

pH1µ − pH0µ
)cee(e, φ)

(
pH0µ(

pH1µ − pH0µ
) + e

)
.

Rearranging the above, and letting rA(uH) = w′′(uH)
w′(uH)

(rA is the Arrow-Pratt coefficient

of absolute risk aversion), we get

dê

dφ
= −

ceφ + ceeφ

[
pH0µ

pH1µ−pH0µ
+ ê
]

+ rA(uH)
ceφcee

(pH1µ−p0µ)

(
pH0µ

(pH1µ−pH0µ)
+ e

)
2cee + ceee

[
pH0µ

pH1µ−pH0µ
+ ê
]

+ rA(uH) (cee)
2

(pH1µ−pH0µ)

(
pH0µ

(pH1µ−pH0µ)
+ e

)
Note that

dce(ê(µ, φ))

dφ
= ceφ + cee

dê

dφ
. (15)

Since ceφ > 0 and cee > 0, it suffices to show that dce(ê(µ,φ))
dφ

≥ 0 since this implies
dê
dφ

< 0. Expanding 15, dce(ê(µ,φ))
dφ

can be written as the ratio of two terms, with

numerator

NUM = ceeceφ +
(
ceeeceφ−ceeceeφ

) [ pH0µ
pH1µ − pH0µ

+ ê

]
.
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The denominator is

DEN = 2cee + ceee

[
pH0µ

pH1µ − pH0µ
+ ê

]
+ rA(uH)

(cee)
2(

pH1µ − pH0µ
) ( pH0µ(

pH1µ − pH0µ
) + e

)
. (16)

When c(e, φ) = 1
2
φe2, cee = φ, ceφ = e, ceee = 0, ceeφ = 1, so that

dce(ê)

dφ
= −

pH0µ

2(pH1µ − pH0µ) + rA(.)φ
[

pH0µ
pH1µ−pH0µ

+ ê
] < 0.

Proof. of theorem 10: The overall payoff in the first period is v(e, e∗, u) = peµ.u−

c(e, φ) + W (e, e∗;φ). We show that this is strictly concave in e when c(e, φ) = 1
2
φe2

and φ is sufficiently large. The second derivative is

∂2v

∂e2
= −φ+

∂2W

∂e2
.

Note that ∂2W
∂e2

is a weighted average of the terms
∂2V̂ (πke ,µ

k
e∗ )

∂(πke)
2 , as established in equation

6 in the text. In the light of Lemma 14 we may restrict attention to binary signals,

and in this case,
∂2V̂ (π, µ)

∂π2
=

(
(θ − γ)ce(ê(µ))

(pH1µ − pH0µ)

)2
1

φ
. (17)

This is decreasing in φ, since lemma 13 establishes that the first term is decreasing.

Thus v is strictly concave in e if φ is large enough.

We now prove the following lemma, that is standard (see e.g. Jewitt, Kadan and

Swinkels, 2008), but set out here for completeness.

Lemma 14 Consider the static contracting problem under a binding limited liability

constraint, and the cost-minimizing contract that implements ê > 0, where the set

of possible efforts is either [0, 1] or {0, 1}. If the agent is risk-neutral, the principal

makes a binary partition of the signal space; he pays uK >u after the signal (or

signals) with the highest likelihood ratio, and u after all other signals. If the agent is

risk averse, the principal pays u for all signals yk with likelihood ratio
pk1µ−pk0µ
pkêµ

below

a critical threshold, and pays uk >u for signals with a likelihood ratio above this

threshold, where uk is increasing in
pk1µ−pk0µ
pkêµ

.
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Proof: Since limited liability constraints bind, the participation constraints do

not, and the Lagrangian for the principal’s cost minimization problem when e is

chosen from [0, 1] is

L =−
∑
k

pkêµw(uk) + β

(∑
k

(
pk1µ − pk0µ

)
uk − ce(ê)

)
,

where β the multiplier on the incentive constraint. The principal maximizes with

respect to
(
uk
)K
k=1

and β, subject to the limited-liability constraints uk ≥ u∀k. In

the case of discrete effort, the expression is identical, except that ce(ê) is replaced by

c1 − c0.In either case, the derivative of the Lagrangian with respect to uk is

∂L(µ)

∂uk
= −pkêµw′(uk) + β

(
pk1µ − pk0µ

)
. (18)

β > 0 since the incentive constraint binds. So the derivative is negative if
(
pk1µ − pk0µ

)
≤

0 (i.e. if yk /∈ Y H), which implies uk =u. If the agent is risk neutral, w′(.) is constant,

and the derivative can equal zero only for one value of the likelihood ratio,
pk1µ−pk0µ
pkêµ

,

the largest one among all Y. So if the agent is risk neutral, the principal makes a

binary partition of the state space, and pays the agent u after all signals except those

with the highest likelihood ratio.

When the agent is risk averse, it is still the case that uk =u if yk /∈ Y H . For signals

in Y H , the first order condition (18) implies

w′(uk) = max

{
w′(u), β

(
pk1µ − pk0µ

pkêµ

)}
.

That is the agent is paid an amount exceeding u after signals that have a suffi-

ciently high likelihood ratio,
(
pk1µ−pk0µ
pkêµ

)
.

Proof of theorem 11. Assume that the agent is risk averse, so that the inverse

utility function w(u) is strictly convex. Let ξ : R+→ R be the map from w′(u) to u.15

ξ is strictly increasing (it is linear for the special case where the agent has CRRA

preferences, with coefficient of relative risk aversion one-half). Arranging signals in

15The map ξ is standard in contract theory with risk aversion – see e.g. Jewitt (1988).
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the order of the likelihood ratio, the cost minimizing utility vector u takes the form

u =

(
u, ..u, ξ

(
β
pk1µ − pk0µ

pkêµ

)
, .., ξ

(
β
pK1µ − pK0µ

pkêµ

))
.

Let p denote the information structure, i.e. the vector (pkeω) where k ∈ {1, 2., , .K}, e ∈
{0, 1}, ω ∈ {G,B}. This lies in the subset of the

(
∆K−1

)4
that satisfies assumption 1

(∆K−1 is the K− 1 dimensional simplex). The equation ρ.u = 0 can only be satisfied

on a set of points p that are of Lebesgue measure zero, and thus, ρ.u 6= 0 for almost

all information structures p.
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