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ABSTRACT 

All-pay auctions with certain and uncertain prizes 

We study all-pay auctions with multiple prizes. The players have the same 
value for all the certain prizes except for one uncertain prize for which each 
player has a private value. We characterize the equilibrium strategy and show 
that if the number of prizes is smaller than the number of players, independent  
of the ranking of the uncertain prize, a player's probability to win as well as his 
expected utility increases in his value for this prize. We demonstrate that a 
stochastic dominance relation between two distribution functions of the 
players' private values may increase but also even decrease the players' ex-
ante expected utility as well the players' expected total effort. Also, increasing 
the number of prizes may decrease the players' ex-ante expected utility. Thus, 
we may conclude that a larger number of prizes does not necessarily benefit 
the players in a contest. 
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1 Introduction

In the 2016 UEFA European Championship, the �nal tournament will be contested by 24 teams

instead of the usual 16 teams. With this expansion to 24 teams, the teams have a much greater

chance for qualifying for the �nal than previously. However, one of the implications of the results

of the model studied in this paper is that this might not necessarily be the case. We show that in a

contest with multiple prizes, if we add some new prizes, independent of their values, the participants�

ex-ante expected utility may not increase. Thus, contestants may prefer a lower number of prizes

in a contest.

We consider the all-pay auction to model a multiple prize contest. Di¤erent types of contests

have been modeled by the all-pay auction including sports competitions, political lobbying, job

promotions, and R&D races. In this kind of contest each player submits a bid (e¤ort) and the

player who submits the highest bid wins the contest, but, independently of success, all players bear

the cost of their bids. All-pay auctions have been studied either under complete information where

each player�s type (valuation for winning the contest) is common knowledge or under incomplete

information where each player�s type is private information and only the distribution from which

the players�types is drawn is common knowledge.1 In this paper, we study all-pay auctions both

under complete and incomplete information where the players�values for all the prizes are certain

except for one prize which is uncertain. We show that the players�behavior in such an environment

might be signi�cantly di¤erent from environments where all the values for all the prizes are either

certain or uncertain.

There are many real-life examples of contests where some values of the prizes are certain and

others are not. For instance, in the 2014 FIFA World Cup quali�cation, the top four teams of the

South American�s group automatically quali�ed, whereas the �fth-placed team proceeded to the

inter-confederational play-o¤ against the �fth-placed team from Asia. In this case, while the prize

1For all-pay auctions under complete information see Hillman and Samet (1987), Hillman and Riley (1989), Baye

et al. (1993, 1996, 2012), Che and Gale (1998), and for all-pay auctions under incomplete information see Hillman

and Riley (1989), Amann and Leininger (1996), Krishna and Morgan (1997) and Moldovanu and Sela (2006).
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for the top four teams is certain, the prize of the �fth-placed team is uncertain since the identity

of the �fth-placed team from Asia is not known before the beginning of the tournament. Another

example is the US voting procedure where the highest polling candidate is elected in a general

election or else nominated in a primary election. In the state primary election, the candidate who

receives the higher number of delegates is selected as the party�s presidential nominee. In fact, in

many cases, depending on the choice of the party�s presidential nominee, one of his opponents in

the state�s primary election becomes the Vice President if the presidential nominee is elected in

the general election. Thus, we can say that the value of the �rst prize in this contest (the party�s

nominee) is certain while the value of the second prize (the party�s vice-nominee) is uncertain.

We analyze all-pay auctions with n players and m;m � n prizes where the players have the

same values for all the certain prizes except for one uncertain for which each player has a private

value. The prizes can be ranked according to their values where the uncertain prize has the k-th

highest value, k = 2; :::;m; namely, all the players�values for this prize are lower than the k� 1�th

highest prize and higher than the k + 1�th highest prize. It is important to note that in a contest

with n participants the marginal e¤ect of each of the m prizes on the participants�total e¤ort is

di¤erent. If we increase the value of the 1-th highest prize, it is well known that the total e¤ort will

increase. On the other hand, if we increase the n-th highest prize (the lowest one when the number

of prizes is equal to the number of players, i.e., m = n) the expected total e¤ort will decrease

since the values of all the other n-1 higher prizes are actually decreasing compared with the lowest

prize. The e¤ect of increasing each of the other prizes on the expected total e¤ort is ambiguous

since it relatively changes the other prizes with both lower and higher values. According to this

argument, the characterization of the equilibrium strategies in our model when the uncertain prize

is the k-th highest prize, k = 2; :::;m; is not clear at all. Nonetheless, our characterization of

the equilibrium strategy shows that if the number of prizes is smaller than the number of players,

m < n; independent of the ranking of the uncertain prize, a player�s probability to win as well as

his expected utility increases in his value for this prize. This result holds also when the number of

prizes is the same as the number of players, i.e., n = m; where the uncertain prize is not the lowest
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one. Otherwise, if this prize is the lowest one, we obtain that a player�s probability of winning

decreases, but his expected utility increases in his value for this prize.

We �rst analyze the e¤ect of the distribution of the players�private values on their ex-ante ex-

pected utility. It turns out that a stochastic dominance relation between two distribution functions

may, on the one hand, increase the players�ex-ante expected utility, but, on the other hand, for

other distribution functions may decrease it. Furthermore, we show that depending on the location

(ranking) of the uncertain prize a stochastic dominance relation may increase but also even decrease

the players�expected total e¤ort. In other words, the players�expected total e¤ort in a contest

might be lower than in another one with expected higher values of prizes.

We then analyze the e¤ect of the number of prizes on the players�expected utilities. Usually for

each player a larger number of prizes improves his (ex-ante) expected utility. However, we show that

this intuitive result does not hold in our model. Namely, if the uncertain prize is not the lowest one,

then the ex-ante expected utility of a player might be either smaller or larger than that in an all-pay

auction with the same number of players and with an additional prize. In particular, we identify

conditions under which increasing the number of prizes decreases the players� ex-ante expected

payo¤. This unique result is not common in standard all-pay auctions under either complete or

incomplete information. The intuition for this result is that in our model by adding new prizes

the location (ranking) of the uncertain prize changes and accordingly the players�e¤orts change as

well. Thus, our results imply that the optimal location of the uncertain prize may vary according

to the distribution of the players�private values.

1.1 Related literature

Moldovanu et al. (2008) studied a model of a uniform price multi-object auction with n buyers and

a single, monopolist seller with variable supply where the seller decides on the supply k, and then

the buyers decide what to bid. These authors showed that if the distribution of the players�abilities

is convex (concave), then the optimal supply in the auction with n buyers is larger (smaller) than

n=2: By the revenue equivalence theorem, this result holds in our model as well, and indicates that
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in order to maximize the players�expected total e¤ort the contest designer has to o¤er an optimal

number of prizes which is smaller than the number of players. However, in contrast to our model,

in the model of Moldovanu et al. (2008) the players�ex-ante expected utility always increases in

the number of prizes.

The papers most related to our work include Moldovanu and Sela (2001) and Moldovanu et al.

(2012) both of which study the optimal allocation of prizes in all-pay auctions under incomplete

information. Moldovanu and Sela (2001) analyzed an all-pay auction framework with incomplete

information in order to �nd out the optimal allocation of several non-negative prizes (rewards) in

contests where the designer has a �xed budget. They showed that when the cost functions are linear

or concave in e¤ort, it is optimal to allocate the entire prize sum to a single prize but when they

are convex, several positive prizes may be optimal. Moldovanu et al. (2012) studied an optimal

contest design in situations where the designer can reward high performance players with positive

prizes and punish low performance players with negative ones. They identi�ed conditions under

which, even if punishment is costly, punishing the player with the lowest e¤ort is more e¤ective than

rewarding the player with the highest e¤ort. They also studied the optimal number of punishments

in the contest when punishment is costless. Similarly to these papers and other recent ones on

contest theory (for example, Hoppe et al. 2009, 2011 and Moldovanu et al. 2007, 2012) our present

paper is based on Barlow and Proschan�s (1966, 1975) elegant theory on stochastic order relations

among di¤erences of order statistics.

Our paper is also related to the extensive literature on tournaments, initiated originally by

Lazear and Rosen (1981). That literature has shown how prizes based on rank orders of performance

can be e¤ectively used to provide incentives in labor tournaments (see Green and Stokey (1983),

and Nalebu¤ and Stiglitz (1983)). Akerlof and Holden (2012) further extended the analysis of

Lazear and Rosen to the case with multiple prizes. They linked the optimal prize structure to the

form of utility functions, and showed that the prize di¤erence between two adjacent top players is

often smaller than the prize di¤erence between two adjacent bottom players.

The rest of the paper is organized as follows: Section 2 presents the model. In Sections 3 we
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analyze the equilibrium strategies when the numbers of prizes is either smaller than or equal to

the number of players. In Section 4 we explicitly calculate the players�expected utility and their

expected total e¤ort. In Section 5 we analyze the e¤ect of the distributions of the players�private

values on their expected utilities as well as their expected total e¤ort. In Section 6 we analyze the

e¤ect of the number of prizes on the players�expected utilities. Section 7 concludes.

2 The Model

We consider an all-pay auction with n risk-neutral players. The contest designer allocatesm;m � n

prizes to the n players, vn�m+1 � vn�m+2 � � � � � vn: The players have the same values for all the

certain prizes except the prize vn�j+1; j = 2; :::;m which is uncertain such that for this prize each

player has a private value that is drawn independently from the interval [vn�j ; vn�j+2] according to

a distribution function Fn�j+1 that is common knowledge. We assume that Fn�j+1 has a continuous

density fn�j+1 = dFn�j+1 > 0:

Each player i makes an e¤ort xi. The player with the highest e¤ort wins the highest prize vn;

the player with the second highest e¤ort wins the second highest prize vn�1; and so on until all

the prizes are allocated where the player with the j-th highest e¤ort wins the uncertain prize. The

utility of player i who submits e¤ort xi is vs�xi if he wins prize s; s = n�m+1; :::; n. Each player

i chooses his e¤ort in order to maximize his expected utility (given the other competitors�e¤orts

and the values of the di¤erent prizes).

Throughout this paper, we use the following notation:

1. Ak;n denotes the k-th order statistic out of n independent variables independently distributed

according to F . Note that An;n is the highest order statistic.

2. Fk;n(x) =
Pn
j=k

�
n
j

�
F (x)j [1 � F (x)]n�j denotes the distribution of Ak;n, and fk;n(x) =

n!
(k�1)!(n�k)!F (x)

k�1[1� F (x)]n�kf(x) denotes its density.

3. EF (k; n) denotes the expected value of Ak;n; where we set EF (0; n) = 0. Note that EF (n; n) is

the expectation of the highest order statistic.
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3 The equilibrium analysis

In the following equilibrium analysis we consider two cases.

3.1 Case A: The number of prizes is smaller than the number of players

We consider a symmetric equilibrium where � (a) denotes the strategy for the player with type a;

namely, the value of the prize vn�j+1 (j = 2; :::;m) for this player is equal to a where a is distributed

according to F . We also assume that � (a) is strictly increasing in which case we can formulate the

player�s optimization problem as follows: player i with value a chooses to behave as a player with

value s in order to solve the following problem:

max
s

nX
i=n�m+1
i6=n�j+1

F i;n(s)vi + aF
n�j+1;n(s)� �(s)

where F i;n(s) denotes the probability that a player�s type s ranks exactly i-th lowest among n

random variables distributed according to F . It is easy to verify that

F i;n(s) =
(n� 1)!

(i� 1)!(n� i)! [F (s)]
i�1[1� F (s)]n�i; i = 1; 2; :::; n:

De�ne Fn;n�1(s) � 0 and F0;n�1(s) � 1 for all s 2 [0; 1]. Then, it is immediate that F i;n(s) =

Fi�1;n�1(s)� Fi;n�1(s). Therefore, we can rewrite the player�s maximization problem as

max
s

nX
i=n�m+1
i6=n�j+1

[Fi�1;n�1(s)� Fi;n�1(s)] vi + [Fn�j;n�1(s)� Fn�j+1;n�1(s)] a� �(s)

In equilibrium, the above maximization problem must be solved by s = a. Then, the solution of

the resulting di¤erential equation with boundary condition �(vn�j) = 0 is given by

�(a) =
nX

i=n�m+1
i6=n�j+1

[Fi�1;n�1(a)� Fi;n�1(a)] vi +
Z a

vn�j

x [fn�j;n�1(x)� fn�j+1;n�1(x)] dx (1)

Note that

�0(a) =
nX

i=n�m+1
i6=n�j+1

[fi�1;n�1(a)� fi;n�1(a)] vi + a [fn�j;n�1(a)� fn�j+1;n�1(a)] > 0:
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Given these equilibrium e¤orts, the expected utility of the player with type a is given by

U(a) =
nX

i=n�m+1
i6=n�j+1

F i;n(a)vi + aF
n�j+1;n(a)� �(a) (2)

= [Fn�j;n�1(a)� Fn�j+1;n�1(a)] a�
Z a

vn�j

x [fn�j;n�1(x)� fn�j+1;n�1(x)] dx

=

Z a

vn�j

[Fn�j;n�1(x)� Fn�j+1;n�1(x)] dx

The last equality in (2) follows by integration by parts. Note also that type a = vn�j wins the

prize vn�j+1 with probability zero and his equilibrium e¤ort is x = 0. Therefore his utility is zero.

We also have that

U 0(a) = [Fn�j;n�1(a)� Fn�j+1;n�1(a)] > 0

Thus, we obtain

Proposition 1 In an all-pay auction with n players and m prizes, m < n; where the value of the

uncertain prize vn�j+1; j = 2; :::;m is private information, and the values of all the other prizes are

certain, the equilibrium e¤ort of type a 2 [vn�j ; vn�j+2] is given by

�(a) =
nX

i=n�m+1
i6=n�j+1

[Fi�1;n�1(a)� Fi;n�1(a)] vi +
Z a

Vn�j

x [fn�j;n�1(x)� fn�j+1;n�1(x)] dx

Then, a player�s probability to win as well as his expected utility increase in his value for the

uncertain prize.

The result of Proposition 1 according to which the equilibrium e¤orts are monotonically in-

creasing in the value of the uncertain prize is not completely intuitive given that this prize is not

the highest one and therefore its e¤ect on the players�e¤orts is ambiguous. In other words, it is

not clear whether a player has an advantage or a disadvantage when he has a higher value for the

uncertain prize. Nonetheless, the players�e¤orts increase in their value for this prize.

3.2 Case B: The number of prizes is the same as the number of players

Similarly to the analysis of the equilibrium strategies in the previous section we obtain that

8



Proposition 2 In an all-pay auction with n players and n prizes where the value of the uncertain

prize vn�j+1; j = 2; ::::; n�1 is private information and the values of all the other prizes are certain,

the equilibrium e¤ort of type a 2 [vn�j ; vn�j+2] is given by

�(a) =

nX
i=1

i6=n�j+1

[Fi�1;n�1(a)� Fi;n�1(a)] vi +
Z a

Vn�j

x [fn�j;n�1(x)� fn�j+1;n�1(x)] dx� v1

Then, a player�s probability to win as well as his expected utility increase in his value for the

uncertain prize.

In this case, the expected utility of a player with type a is

U(a) = v1 +

Z a

vn�j

[Fn�j;n�1(x)� Fn�j+1;n�1(x)] dx

Suppose now that the value of the lowest prize v1 is uncertain. Then, we write the player�s maxi-

mization problem as

max
s

nX
i=2

[Fi�1;n�1(s)� Fi;n�1(s)] vi + [1� F1;n�1(s)] a� �(s)

In equilibrium, the above maximization problem must be solved by s = a; and then the solution of

the resulting di¤erential equation with boundary condition �(0) = 0 is given by

�(a) =
nX
i=2

[Fi�1;n�1(a)� Fi;n�1(a)] vi �
Z a

0
xf1;n�1(x)dx

Therefore, we obtain

U(a) = [1� F1;n�1(a)] a+ aF1;n�1(a)�
Z a

0
F1;n�1(x)dx

By integration by parts we have

U(a) = a�
Z a

0
F1;n�1(x)dx < a

This is a contradiction, however, since each player does not have an incentive to participate

in the contest. Hence, the equilibrium strategy �(a) cannot be increasing. Therefore, since the

equilibrium strategy decreases in the player�s type, we write the player�s maximization problem as

max
s

nX
i=2

[Fn�i;n�1(s)� Fn�i+1;n�1(s)] vi + Fn�1;n�1(s)a� �(s)
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In equilibrium, the above maximization problem must be solved by s = a; and then the solution of

the resulting di¤erential equation with boundary condition �(v2) = 0 is given by

�(a) =

nX
i=2

[Fn�i;n�1(a)� Fn�i+1;n�1(a)] vi +
Z a

0
xfn�1;n�1(x)dx�

Z v2

0
xfn�1;n�1(x)dx (3)

=

nX
i=2

[Fn�i;n�1(a)� Fn�i+1;n�1(a)] vi +
Z a

v2

xfn�1;n�1(x)dx

Note that

�0(a) =
nX
i=2

[fn�i;n�1(a)� fn�i+1;n�1(a)] vi + afn�1;n�1(a) < 0

Then, the expected utility of the player with type a is given by

U(a) = Fn�1;n�1(a)a�
Z a

v2

x [fn�1;n�1(x)] dx (4)

= Fn�1;n�1(a)a� Fn�1;n�1(a)a+ v2 +
Z a

v2

Fn�1;n�1(x)dx

= v2 �
Z v2

a
Fn�1;n�1(x)dx > a

Thus, we obtain

Proposition 3 In an all-pay auction with n players and n prizes where the value of lowest prize

v1 is private information and the values of all the other prizes are certain, the equilibrium e¤ort of

type a 2 [0; v2] is given by

�(a) =
nX
i=2

[Fn�i;n�1(a)� Fn�i+1;n�1(a)] vi +
Z a

v2

xfn�1;n�1(x)dx (5)

Then, the player�s probability of winning decreases but his expected utility increases in his value for

the uncertain prize.

In contrast to the results of Propositions 1 and 2, the result of Proposition 3, according to

which the equilibrium e¤orts are monotonically decreasing in the value of the lowest prize, is quite

intuitive. The reason is that if each player gets a prize, then the higher the players�value for the

lowest prize is, the lower is the incentive of this player to participate in the contest.
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4 Expected utility and expected total e¤ort

Using the players� equilibrium strategies given in the previous section, we can now analyze the

players�ex-ante expected utility and their expected total e¤ort. We assume again that the number

of players is larger than the number of prizes, namely, n > m: By (2), if the prize vn�j+1; j = 2; :::;m

is uncertain, the ex-ante expected utility of a player is given by

Un�j+1 =

Z vn�j+2

vn�j

Z a

vn�j

[Fn�j;n�1(x)� Fn�j+1;n�1(x)] dxf(a)da (6)

According to Aboutahoun and Al-otabi (2009), we have

EF (j; n)� EF (j � 1; n� 1) =

0B@ n� 1

j � 1

1CAZ vn�j+2

vn�j

F j�1(x)(1� F (x))n�j+1 (7)

Then, by integration by parts in (6) and (7) we obtain

Proposition 4 In an all-pay auction with n players and m prizes where the value of the the

uncertain prize vn�j+1; j = 2; :::;m is private information and the values of all the other prizes are

certain, the ex-ante expected utility of a player is given by

Un�j+1 = [EF (n� j + 1; n)� EF (n� j; n� 1)] (8)

The players�expected total e¤ort when vn�j+1 is uncertain is given by

Rn�j+1 = n

Z vn�j+2

vn�j

�(a)f(a)da

By (3), we obtain

Rn�j+1 = n

Z vn�j+2

vn�j

[
nX

i=n�m+1
i6=n�j+1

[Fi�1;n�1(a)� Fi;n�1(a)] vi

+

Z a

vn�j

x [fn�j;n�1(x)� fn�j+1;n�1(x)] dxf(a)da

Rearranging yields
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Rn�j+1 =
nX

i=n�m+1
i6=n�j+1

vi + n

Z vn�j+2

vn�j

Z a

Vn�j

x [fn�j;n�1(x)� fn�j+1;n�1(x)] dxf(a)da

Note that

n

Z vn�j+2

vn�j

"Z a

vn�j

xfr;n�1(x)dx

#
f(a)da

= n

"
F (a)

Z a

vn�j

xfr;n�1(x)dx

#vn�j+2
vn�j

� n
Z vn�j+2

vn�j

F (a)afr;n�1(a)da

= n

Z vn�j+2

vn�j

a (1� F (a)) fr;n�1(a)da;

where the �rst equality follows from integration by parts. We further observe that

n (1� F (a)) fr;n�1(a) = (n� r) fr;n(a):

Therefore,

n

Z vn�j+2

vn�j

"Z a

vn�j

xfr;n�1(x)dx

#
f(a)da = (n� r)E (r; n) :

Thus, for all j = 2; :::;m, we obtain

Proposition 5 In an all-pay auction with n players and m prizes where the value of the uncertain

prize vn�j+1; j = 2; ::::;m is private information and the values of all the other prizes are certain,

the players�expected total e¤ort is

Rn�j+1 =
nX

i=n�m+1
i6=n�j+1

vi + jEF (n� j; n)� (j � 1)EF (n� j + 1; n) (9)

=

nX
i=n�m+1
i6=n�j+1

vi + EF (n� j + 1; n)� j(EF (n� j + 1; n)� EF (n� j; n))

5 Utility and revenue comparisons under di¤erent distribution

functions

In this section we analyze the e¤ect of the distributions of the players�private values on their

expected utilities and their expected total e¤ort. For this purpose, we will use the following well-

known de�nitions:
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De�nition 1 Let F be a distribution on [0; k] with density f . The hazard rate of F is given by the

function � (x) � f (x) = [1� F (x)] ; x 2 [0; k): F is said to have an increasing (decreasing) failure-

hazard rate (IFR (DFR)) if � (x) is increasing (decreasing) in x. The reverse hazard rate of F is

given by the function e� (x) � f (x) =F (x) ; x 2 [0; k): F is said to have an increasing (decreasing)

reverse hazard rate (IRFR (DRFR)) if e� (x) is increasing (decreasing) in x.2
De�nition 2 For any distributions F and G and hazard rates �F and �G; respectively, F dominates

G in terms of the hazard rate if �F (x) � �G (x) for all x � 0: Similarly, for any distributions F

and G and reverse hazard rates e�F and e�G; respectively, F dominates G in terms of the reverse

hazard rate if e�F (x) � e�G (x) for all x � 0:We also say that F �rst-order stochastically dominates

G if F (x) � G (x) for all x � 0:

In the following, we denote by UFn�j+1 the players�ex-ante expected utility when the uncertain

prize is vn�j+1 and the values of this prize are distributed according to F: Note that dominance in

terms of the hazard rate implies �rst-order stochastic dominance. The following result shows that

dominance in terms of the hazard rate between two distribution functions may improve the players�

ex-ante expected utility. On the other hand, it may deteriorate it for any other two distribution

functions.

Proposition 6 Consider an all-pay auction with n players and m prizes where the value of the

uncertain prize vn�j+1; j = 2; ::::;m is distributed according to either F or G where F dominates

G in terms of the hazard rate. Then,

1. If F or G has DFR, the ex-ante expected utility of a player under F is larger than under G;

i.e., UFn�j+1 � UGn�j+1:

2. If F or G has IRFR, the ex-ante expected utility of a player under F is smaller than under

G; i.e., UFn�j+1 � UGn�j+1:
2The exponential, uniform, normal, power (for � � 1), Weibull (for � � 1); gamma (for � � 1) distributions are

IFR, while the exponential, Pareto, Weibull (for 0 < � � 1); gamma (for 0 < � � 1) are DFR (see Barlow and

Proschan (1975)).
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Proof. According to Arnold (1977) we have

EF (j � 1; n� 1) =
j � 1
n

EF (j; n) +
n� j + 1

n
EF (j � 1; n)

Then, by (8), we obtain

UFn�j+1 = [EF (n� j + 1; n)� EF (n� j; n� 1)]

=
j

n
[EF (n� j + 1; n)� EF (n� j; n)]

Thus,

UFn�j+1 � UGn�j+1 =
j

n
[EF (n� j + 1; n)� EF (n� j; n)]� [EG(n� j + 1; n)� EG(n� j; n)]

According to Hu and Wei (2001), if F dominates G in terms of the hazard rate and F or G has

DFR, the RHS of the above equation is non-negative. But if F dominates G in terms of the

hazard rate and F or G has IRFR, the RHS of the above equation is non-positive.

In the case when the number of prizes m is the same as the number of players n; and the

uncertain prize is the lowest one, v1; we require only �rst-order dominance in order to ensure that

the players�ex-ante expected utility increases or decreases.

Proposition 7 Consider an all-pay auction with n players and n prizes where the value of the

lowest prize v1 is distributed according to either F or G; and F �rst-order stochastically dominates

G. Then, the players�ex-ante expected utility under F is equal to or larger than that under G, i.e.,

UF1 � UG1 :

Proof. By (4), we get

UF1 � UG1 =

v2Z
0

�
V2 �

Z v2

a
Fn�1;n�1(x)dx

�
f(a)da�

v2Z
0

�
v2 �

Z v2

a
Gn�1;n�1(x)dx

�
g(a)da

=

v2Z
0

�Z v2

a
Gn�1;n�1(x)

�
g(a)da�

v2Z
0

�Z v2

a
Fn�1;n�1(x)dx

�
f(a)da
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and when integrating by parts we get

UF1 � UG1 =

v2Z
0

[Gn�1;n�1(a)]G(a)da�
v2Z
0

[Fn�1;n�1(x)]F (a)da

=

v2Z
0

Gn(a)� Fn(a)da

The assumption that G(x) � F (x) completes the proof.

We now analyze the e¤ect of the distributions of the players�private values on their expected

total e¤ort. We denote by RFn�j+1 the players�expected total e¤ort when the uncertain prize is

vn�j+1 and the values of this prize are distributed according to F: Then, we have

Proposition 8 Consider an all-pay auction with n players and m prizes where the value of the

uncertain prize vn�j+1; j = 2; ::::;m is distributed according to either F or G where F dominates

G in the terms of the hazard rate. Then, if F or G has IRFR, the players� expected total e¤ort

under F is larger than under G; i.e., RFn�j+1 � RGn�j+1:

Proof. By (9), we have

RFn�j+1 �RGn�j+1 = EF (n� j + 1; n)� EG(n� j + 1; n)

�j(((EF (n� j + 1; n)� EF (n� j; n))� ((EG(n� j + 1; n)� EG(n� j; n)))

According to Hu and Wei (2001), if F dominates G in terms of the hazard rate and F or G has

IRFR then

((EF (n� j + 1; n)� EF (n� j; n))� ((EG(n� j + 1; n)� EG(n� j; n)) � 0

Since F dominates G in terms of the hazard rate then

EF (n� j + 1; n)� EG(n� j + 1; n) � 0

Thus, we obtain that RFn�j+1 �RGn�j+1 � 0:

The following example illustrates that even when F dominates G in the terms of the hazard

rate, the players�expected total e¤ort under F might be smaller than under G:
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Example 1 Let F (x) = x0:5�a0:5
b0:5�a0:5 and G(x) =

x
1
3�a

1
3

b
1
3�a

1
3
where b > a > 0: Note that F dominates G

in terms of the hazard rate. Suppose that a = 0:1; b = 0:3: Then, we have

EF (1; 8) =
R 0:3
0:1 x

8!
(1�1)!(8�1)!

h
x0:5�(0:1)0:5

(0:3)0:5�(0:1)0:5
i1�1 h

1� x0:5�(0:1)0:5
(0:3)0:5�(0:1)0:5

i8�1
( �0:5
x0:5((0:1)0:5�(0:3)0:5))

= 0:117 46

EF (2; 8) =
R 0:3
0:1 x

8!
(2�1)!(8�2)!

h
x0:5�(0:1)0:5

(0:3)0:5�(0:1)0:5
i2�1 h

1� x0:5�(0:1)0:5
(0:3)0:5�(0:1)0:5

i8�2
( �0:5
x0:5((0:1)0:5�(0:3)0:5))

= 0:136 11

EG (1; 8) =
R 0:3
0:1 x

8!
(1�1)!(8�1)!

�
x
1
3�(0:1)

1
3

(0:3)
1
3�(0:1)

1
3

�1�1 �
1� x

1
3�(0:1)

1
3

(0:3)
1
3�(0:1)

1
3

�8�1
( �1
3x

2
3 ( 3
p
0:1� 3p0:3)

)

= 0:116 10

EG (2; 8) =
R 0:3
0:1 x

8!
(2�1)!(8�2)!

�
x
1
3�(0:1)

1
3

(0:3)
1
3�(0:1)

1
3

�2�1 �
1� ( x

1
3�(0:1)

1
3

(0:3)
1
3�(0:1)

1
3
)

�8�2
( �1
3x

2
3 ( 3
p
0:1� 3p0:3)

)

= 0:133 6

By (9), if the number of players is n = 8 and the value of the uncertain prize v2 is distributed

on the interval [0:1; 0:3]; then

RF2 �RG2 = 6(EG (2; 8)� EF (2; 8)) + 7((EF (1; 8)� EG (1; 8))

= 6(0:1336� 0:13611) + 7(0:11746� 0:1161) = �0:005 54

Thus, we obtain that RF2 �RG2 < 0 although F dominates G in terms of the hazard rate.

6 Utility comparison under di¤erent numbers of prizes

In all-pay auctions with multiple prizes under incomplete information it is usually the case that if

a contest designer adds new prizes to the current set of prizes, the players�ex-ante expected utility

strictly increases. As we show below, however, this does not hold for our model, the reason being

that by adding new prizes the location of the uncertain prize changes. Since it is not clear what

the optimal location for the uncertain prize is, the additional prizes may either increase or decrease

the players� ex-ante expected utility. In the following, in an all-pay auction with n players and

m;m < n prizes where the uncertain prize is vn�j+1, the ex-ante expected utility of a player is

denoted by Un�j+1;m;n: If we add a prize v > vn�j+2 it is denoted by Un�j;m+1;n and if we add a

prize v < vn�j it is denoted by Un�j+1;m+1;n: Then, we obtain
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Proposition 9 In an all-pay auction with n players and m;m < n prizes, if F has IFR (DFR);

the ex-ante expected utility of a player is smaller (larger) than or equal to that in an all-pay auction

with the same number of players and with an additional prize.

Proof. By (8), if we add a new prize with a lower value than the players� values for the

uncertain prize, i.e., v < vn�j , then the players�ex-ante expected utility is unchanged as follows:

Un�j+1;m = [EF (n� j + 1; n)� EF (n� j; n� 1)] = Un�j+1;m+1

On the other hand, if we add a new prize with a higher value than the players� values for the

uncertain prize, i.e., v > vn�j+2, then the players�ex-ante expected utility is

Un�j;m+1 = [EF (n� j; n)� EF (n� j � 1; n� 1)]

By Arnold (1977), we have

EF (j � 1; n� 1) =
j � 1
n

EF (j; n) +
n� j + 1

n
EF (j � 1; n)

Thus, the players�ex-ante expected utility before and after adding the new prize is given by

Un�j+1;m =
j

n
[EF (n� j + 1; n)� EF (n� j; n)] (10)

Un�j;m+1 =
j + 1

n
[EF (n� j; n)� EF (n� j � 1; n)]

By Barlow and Porschan (1966), if F has IFR (DFR) then (n� i+ 1) (EF (i; n)�EF (i� 1; n)) is

decreasing (increasing) in i � n for a �xed n. Thus, by (10), if F has IFR, Un�j+1;m�Un�j;m+1 � 0

and if F has DFR, Un�j+1;m � Un�j;m+1 � 0.

According to Proposition 9, if F has IFR the players�ex-ante expected utility increases if some

new prizes are added. Now, in order to examine how strong the e¤ect of adding a new prize is, we

also add another player. In contrast to the additional prize, it is clear that the additional player

decreases the players� ex-ante expected utility for any distribution function. Below we examine

which e¤ect is stronger: that of the negative e¤ect of an additional player or that of the positive

e¤ect of an additional prize.
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Proposition 10 In an all-pay auction with n players and m;m < n prizes, if F has IRFR (IFR)

then the ex-ante expected utility of a player is smaller (larger) than or equal to that in an all-pay

auction with m + 1 prizes and n + 1 players when the the value of the additional prize is larger

(smaller) than the players�values for the uncertain prize.

Proof. By (8), if we add a player and a prize with a higher value than the players�values for

the uncertain prize, i.e., v > vn�j+2, then the players�ex-ante expected utility before and after

adding the prize and the player is

Un�j+1;m;n =
j

n

�
EFj (n� j + 1; n)� EFj (n� j; n)

�
Un�j+1;m+1;n+1 =

j + 1

n+ 1
[EF (n� j + 1; n+ 1)� EF (n� j; n+ 1)]

By Hu and Wei (2001), if F has IRFR then EF (j�1; n�1)�EF (i�1; n�1) � EF (j; n)�EF (i; n)

for every j � i: Thus, we obtain that if F has IRFR then

j

n
[EF (n� j + 1; n)� EF (n� j; n)] �

j + 1

n+ 1
[EF (n� j + 1; n+ 1)� EF (n� j; n+ 1)]

Therefore,

Un�j+1;m+1;n+1 � Un�j+1;m;n

Now if we add a player and a prize with a lower value than the players�values for the uncertain

prize, i.e., v < vn�j , then the players�ex-ante expected utility before and after adding the prize

and the player is

Un�j+1;m;n =
j

n
[EF (n� j + 1; n)� EF (n� j; n)]

Un�j+1;m+1;n+1 =
j

n+ 1
[EF (n� j + 2; n+ 1)� EF (n� j + 1; n+ 1)]

By Hu and Wei (2001), if F has IFR then EF (j�1; n�1)�EF (i�1; n�1) � EF (j; n)�EF (i; n).

Thus, we obtain that if F has IFR then Un�j+1;m;n � Un�j+1;m+1;n+1 :

Suppose now that the number of players and prizes are the same and that the smallest prize v1

is uncertain where each player�s value for this prize is distributed on [0; v2]. Then we obtain that,

independent of the form of the distribution function, the e¤ect of an additional prize and a player

is always positive.
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Proposition 11 In an all-pay auction with the same number of players and prizes (n) where the

lowest prize is uncertain, the ex-ante expected utility of a player is smaller than or equal to that

in an all-pay auction with an additional player and a prize with a higher value than the players�

values for the lowest prize.

Proof. By (4), the ex-ante utility of a player is given by

U1;n;n =

Z 1

0
(v2 �

Z v2

a
Fn�1;n�1(x)dx)f(a)da

If we add a player and a prize v > v2, the ex-ante utility of a player is given by

U1;n+1;n+1 =

Z 1

0
(v2 �

Z v2

a
Fn;n(x)dx)f(a)da

Thus,

U1;n;n � U1;n+1;n+1 =

Z 1

0

Z v2

a
(Fn;n(x)� Fn�1;n�1(x))dx)f(a)da

=

Z 1

0

Z v2

a
(F (x)n � F (x)n�1)dx)f(a)da < 0

7 Concluding remarks

This paper studies all-pay auctions under both complete and incomplete information by consid-

ering a model with multiple prizes where the players�values for the prizes are certain except for

one uncertain prize for which the players�values are private information. The uniqueness of our

model is that a stochastic dominance relation between two distribution functions of the players�

private values may increase the players�ex-ante expected utility, but, on the other hand, the same

stochastic dominance relation between other distribution functions may decrease it. Similarly, a

stochastic dominance relation between two distribution functions of the players�private values may

increase the players�expected e¤ort, but, on the other hand, the same stochastic dominance rela-

tion between other distribution functions may decrease it. Furthermore, an additional number of
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prizes, independent of their values for the players, does not necessarily increase the players�ex-ante

expected utility. From this we may conclude that players may prefer a lower number of prizes in

the contest.
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