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ABSTRACT 

Optimal Allocations in Round-Robin Tournaments 

We study round-robin tournaments with three players whose values of winning 
are common knowledge. In every stage a pair-wise match is modelled as an 
all-pay auction. The player who wins in two matches wins the tournament. We 
characterize the sub-game perfect equilibrium for symmetric (all players have 
the same value) and asymmetric players (each one is either weak (low value) 
or strong (high value)) and prove that if the asymmetry between the players' 
values are relatively weak, each player maximizes his expected payoff if he 
competes in the first and the last stages of the tournament. Moreover, even 
when the asymmetry between the players' values are relatively strong, the 
strong players maximize their expected payoffs if they compete in the first and 
the last stages. We show that a contest designer who wishes to maximize the 
length of the tournament such that the winner of the tournament will be 
decided in the last stage should allocate the stronger players in the last stage. 
But if he wishes to maximize the players' expected total effort he should not 
allocate them in the last stage of the tournament. 
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1 Introduction

Sportive events are commonly organized as round-robin tournaments, two well known examples being pro-

fessional football and basketball leagues. In the round-robin tournament, every individual player or team

competes against all the others and in every stage a player plays a pair-wise match against a di¤erent oppo-

nent. Sometimes sportive events can also be organized as a combination of a round-robin tournament in the

�rst part of the season and then as an elimination tournament in the second part where in the elimination

tournament, players play pair-wise matches and the winner advances to the next round while the loser is

eliminated from the competition. Examples of such combinations include US-Basketball, NCAA College

Basketball, the FIFA (soccer) World Cup Playo¤s and the UEFA Champions�League.

The elimination tournament structure has been widely analyzed in the literature on contests. For example,

Rosen (1986) studied an elimination tournament with homogeneous players where the probability of winning

a match is a stochastic function of the players�e¤orts. Gradstein and Konrad (1999) and Harbaugh and

Klumpp (2005) studied a rent-seeking contest à la Tullock (with homogenous players). Groh et al. (2012)

studied an elimination tournament with four asymmetric players where players are matched in the all-pay

auction in each of the stages and they found optimal seedings for di¤erent criteria.

In contrast to elimination tournaments, the literature on round-robin tournaments seems to be quite

sparse,1 the reason being the complexity of its analysis. This paper attempts to �ll this gap by studying

three-stage round-robin tournaments with either symmetric or asymmetric players where in each of the three

stages, each of the players competes against a di¤erent opponent in the all-pay auction.2

We �rst characterize the sub-game perfect equilibrium of the three-stage round-robin tournament when

the players are symmetric, namely, they have the same value of winning the tournament. We also characterize

the sub-game perfect equilibrium of the three-stage round-robin tournament when the players are asymmetric,

namely, they have either a high value of winning (henceforth referred to as a strong player) or a low value

1A theoretical paper that deals with this issue is that of Ryvkin and Ortmann (2008) who studied a model of a noisy

tournament by which they compared the predictive power of simultaneous, elimination and round-robin tournaments.
2Three-stage round-robin tournaments can be found in the real life, for example, the badminton tournament in the Olympic

Games, London 2012, was organized in the form of a three-stage round-robin tournament. In addition, three-stage round-robin

tournaments are also used in soccer, rugby and even in debates competitions.
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of winning (henceforth referred to as a weak player). We focus on the case with one weak and two strong

players but it could be shown that the �ndings for the case of one strong and two weak players are very

similar.

We prove that independent of whether the players are symmetric or asymmetric, if the asymmetry

between the players�values is relatively weak, then the expected payo¤ of each player is maximized when he

competes in the �rst and the last stages of the tournament. Moreover, even when the asymmetry between

the players�values is relatively strong, the strong players maximize their expected payo¤when they compete

in the �rst and the last stages. This result is not straightforward since it is not clear why a player prefers to

play in the last stage while there is a positive probability that the winner of the tournament will be decided

before the last (third) stage and then there is not any meaning to the match in that stage. We also show

that in one of the allocations of players, independent on whether the asymmetry is weak or strong, the weak

player has a higher expected payo¤ than one of the strong players. This result demonstrates the critical

e¤ect of the allocation of players on their expected payo¤s in the tournament.

We assume that the contest designer wishes to maximize the players�expected total e¤ort in the round-

robin tournament. In that case, we explicitly calculate the players�expected total e¤ort for each allocation of

players in the asymmetric model, and then by numerical analysis we show that if the asymmetry is relatively

low the expected total e¤ort is maximized when the two strong players are matched in the second stage, but,

if the asymmetry is relatively high, the expected total e¤ort is maximized when the two strong players are

matched in the �rst stage. In particular, independent of the level of asymmetry, the expected total e¤ort

is minimized when the two strong players are matched in the last stage. The intuition behind this result is

that the main part of the expected total e¤ort comes from the match between the two strong players, and if

they are matched in the last stage, there is a positive probability that the winner will be decided before the

last stage and then the total e¤ort in the match of the two strong players will be negligible.

The designer�s goal, however, may not necessarily be to maximize the players�expected total e¤ort, but

rather to extend the length of the tournament such that the winner of the tournament will be decided as late

as possible. In that case, we explicitly calculate the probability that the winner of the tournaments will be

decided in the last (third) stage and then by numerical analysis we show that this probability is maximized
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when the two strong players are matched in the last stage. The intuition behind this result is that when the

strong players are matched in the last stage, the winner of the tournament will be decided before the last

stage i¤ the weak player wins in the �rst two stages, while in any other allocation of players, the winner of

the tournament will be decided before the last stage i¤ one of the strong players wins in the �rst two stages.

Since the probability that a strong player will win in the �rst two stages is higher than the probability that

the weak player will win in the �rst two stages, we obtain the result according to which the strong players

should be matched in the last stage in order to maximize the probability of a real competition in that stage.

It is important to note that the two designer�s goals mentioned above, namely, on the one hand, to

maximize the players�expected total e¤ort, and, on the other, to maximize the length of the tournament

seem not to con�ict. Since if the tournament is longer, the players�expected total e¤ort might be higher.

However, we contradict this conjecture by showing that the players� expected total e¤ort is maximized

when the two strong players are not matched in the last stage while the probability that the winner of the

tournament will be decided in the last stage is obtained when the two strong players are matched in the last

stage. Hence, regardless of any allocation of the players, a contest designer cannot simultaneously maximize

the expected total e¤ort and the probability that the tournament will be decided in the last stage.

Our paper is related to the statistical literature on the design of various forms of tournaments. The

pioneering paper3 is David (1959) who considered the winning probability of the top player in a four player

tournament with a random seeding. This literature assumes that, for each match among players i and j;

there is a �xed, exogenously given probability that i beats j: In particular, this probability does not depend

on the stage of the tournament where the particular match takes place nor on the identity of the expected

opponent at the next stage. In contrast, in our round-robin model, similarly to Groh et al. (2012) who

considered an elimination tournament model, each match among two players is an all-pay auction. As a

result, winning probabilities in each match become endogenous in that they result from mixed equilibrium

strategies, and are positively correlated to win valuations. Moreover, the win probabilities depend on the

stage of the tournament where the match takes place, and on the identity of the future expected opponents.

The analysis of our model is also related to the analysis of the best-of-k tournaments (see, Konrad and

3See also Glenn (1960) and Searles (1963) for early contributions.
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Kovenock (2009), Malueg and Yates (2010), Sela (2011) and Krumer (2013)) in which the winner is the one

who is �rst to win k+1
2 games.4 However, since the best-of-k tournaments are two-player contests, our main

questions about the optimal allocations of players are not pertinent for this class of contests.

The rest of the paper is organized as follows: Section 2 describes the three-stage round-robin model.

Section 3 describes the equilibrium in the one-stage all-pay auction. In Sections 4 and 5 we characterize

the sub-game perfect equilibrium in the round-robin tournament with symmetric and asymmetric players

respectively. In section 6 we analyze the optimal allocation of players that maximizes the probability that

the winner of the tournament will be decided in the last stage. In Section 7 we analyze the optimal allocation

of players that maximizes the players�expected total e¤ort. Section 8 concludes.

2 The model

Consider three players (or teams) i = 1; 2; 3 who compete in a round-robin all-pay tournament. In each stage

t; t = 1; 2; 3 there is a di¤erent pair-wise match such that each player competes in two di¤erent stages. The

player who wins two matches wins the tournament and in the case that each player wins only once, each of

them wins the tournament with the same probability. If one of the players wins in the �rst two stages, the

winner of the tournament is then decided and the match in the third stage is not played. We model each

match among two players as an all-pay auction; both players exert e¤orts, and the one exerting the higher

e¤ort wins. Player i0s value of winning the contest is vi and a player�s cost function is c(xi) = xi, where xi

is his e¤ort.

3 The one-stage all-pay auction

We begin with the analysis of the standard one-stage all-pay auction which plays a key role in our analysis

of the round-robin all-pay auction. Consider a one-stage all-pay auction with two players 1; 2; where the

players�values of winning are v1 � v2 > 0. According to Hillman and Riley (1989) and Baye, Kovenock and
4A classical best-of-three contest is tennis in which the �rst player to win two sets wins the contest. In certain prominent

tennis tournaments for men, including the all four Grand Slam tournaments (the Australian Open, French Open, Wimbledon,

and US Open) the �rst player to win three sets wins the best-of-�ve contest.
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de Vries (1993, 1996), there is always a unique mixed-strategy equilibrium in which the players randomize

on the interval [0; v2] according to their e¤ort cumulative distribution functions which are given by

v1F2(x)� x = v1 � v2

v2F1(x)� x = 0

Thus, player 1�s e¤ort is distributed according to the cumulative distribution function

F1(x) =
x

v2

while player 2�s e¤ort is distributed according to the cumulative distribution function

F2(x) =
v1 � v2 + x

v1

Given these mixed strategies, player 1�s winning probability against player 2 is

p12 = 1�
v2
2v1

The players�expected total e¤ort is given by

TE =
v2
2
(1 +

v2
v1
)

Using the above analysis of the one-stage all-pay auction we can now turn to analyze the players�equilibrium

strategies in the round-robin all-pay auction.

4 The symmetric round-robin tournament

We �rst assume symmetric players, i.e., the players�values of winning are v1 = v2 = v3 = v: In order to

analyze the sub-game perfect equilibrium of the round-robin tournament we begin with the last stage of

the tournament and go backwards to the previous stages. Figure 1 presents the symmetric round-robin

tournament as a tree game. We denote by p�ij the probability that player i wins against player j in vertex �

of the tree game. [Figure 1 here].
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4.1 Stage 3 - player 2 vs. player 3

Players 2 and 3 compete in the last stage only if at least one of them won in the previous stages. Thus, we

have the following three scenarios:

1. Assume �rst that player 2 won the match in the �rst stage and player 3 won the match in the second

stage (vertex A in Figure 1). Then if each of the players wins in stage 3, he also wins the tournament. Thus,

following Hillman and Riley (1989) and Baye, Kovenock and de Vries (1996), since v > 0; there is always a

unique mixed strategy equilibrium in which both players randomize on the interval [0; v] according to their

cumulative distribution functions F (3)i ; i = 2; 3 which are given by

vF
(3)
i (x)� x = 0 i = 2; 3 (1)

Then, player 2�s probability to win in the third stage is

pA23 = 0:5

and their expected total e¤ort in the third stage is

TEA = v

2. Assume now that player 2 won the match in the �rst stage and player 3 lost the match in the second

stage (vertex B in Figure 1). Then, if player 2 wins in this stage, he wins the tournament and his payo¤ is

v; whereas player 3�s payo¤ is zero. But, if player 3 wins in this stage, then each of the players has exactly

one win, and then each of the players has an expected payo¤ of v=3. Thus, we obtain that players 2 and

3 randomize on the interval [0; v=3] according to their e¤ort cumulative distribution functions F (3)i ; i = 2; 3

which are given by

vF
(3)
3 (x) +

v

3
(1� F (3)3 (x))� x =

2v

3
(2)

v

3
F
(3)
2 (x)� x = 0

Then, player 2�s probability to win in the third stage is

pB23 = 1�
v

4v
= 0:75
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and the players�expected total e¤ort in the third stage is

TEB =
v

6
(1 +

v

2v
) =

v

4

3. Finally, assume that player 2 lost the match in the �rst stage and player 3 won the match in the

second stage (vertex C in Figure 1). Then, similarly to the previous case, we obtain that players 2 and 3

randomize on the interval [0; v=3] according to their e¤ort cumulative distribution functions F (3)i ; i = 2; 3

which are now given by

vF
(3)
2 (x) +

v

3
(1� F (3)2 (x))� x =

2v

3
(3)

v

3
F
(3)
3 (x)� x = 0

Then, player 20s probability to win in the third stage is

pC23 =
v

4v
= 0:25

and the players�expected total e¤ort in the third stage is

TEC =
v

6
(1 +

v

2v
) =

v

4

4.2 Stage 2 - player 1 vs. player 3

Based on the results of the match in the �rst stage, we have two possible scenarios:

1. Assume �rst that player 1 lost the match in the �rst stage (vertex D in Figure 1). Then, if player 3

wins in this stage, by (1) his expected payo¤ in the next stage is zero. If player 3 loses in this stage, by (2)

his expected payo¤ is zero as well. Thus, in such a case, player 3 has no incentive to exert a positive e¤ort

and player 1 wins in this stage with a probability of one.5

2. Assume now that player 1 won the match in the �rst stage (vertex E in Figure 1). Then, if he wins

again in this stage he also wins the tournament and therefore his payo¤ is v: The other players�payo¤s are

5 It is important to note that when a player has no incentive to exert a positive e¤ort we actually do not have an equilibrium.

However, in order to solve this problem, similarly to Groh et al. (2012), we can assume that each player obtains a payment

k > 0, independent from his performance, and then we consider the limit behavior as k ! 0. This assumption does not a¤ect

the players�behavior in our model but ensures the equilibrium existence.

8



then zero. However, if player 1 loses in this stage, his payo¤ depends on the result of the match between

players 2 and 3 in the last stage. If player 3 wins in the last stage, which happens with a probability of 0.75,

then by (3) player 3�s expected payo¤ is 2v=3 and player 1�s expected payo¤ is zero. On the other hand, if

player 2 wins in the last stage which happens with a probability of 0.25, each of the players has one win and

therefore an expected payo¤ of v=3. In sum, if player 1 loses in this stage, his expected payo¤ is v=12:

Thus, we obtain that players 1 and 3 randomize on the interval [0; 2v=3] according to their e¤ort cumu-

lative distribution functions F (2)i ; i = 1; 3 which are given by

vF
(2)
3 (x) +

v

12
(1� F (2)3 (x))� x =

v

3
(4)

2v

3
F
(2)
1 (x)� x = 0

Then, player 1�s probability to win in the second stage is

pE13 = 1�
8

22
=
7

11

and the players�expected total e¤ort in the second stage is

TEE =
v

3
(1 +

8

11
) =

19v

33

4.3 Stage 1 - player 1 vs. player 2

If player 1 wins the match in the �rst stage (vertex F in Figure 1), by (4) his expected payo¤ in the next

stage is v=3. But if player 1 loses the match in the �rst stage, he has an expected payo¤ of v=3 only if he

wins in the second stage which happens with a probability of one, and player 2 loses against player 3 in the

last stage which happens with a probability of 0:25. Thus, if player 1 loses in the �rst stage his expected

payo¤ in the next stage is v=12:

Now, if player 2 wins the match in the �rst stage (vertex F in Figure 1), player 1 wins for sure in the

second stage and then by (2) player 2�s expected payo¤ is 2v=3: However, if player 2 loses the match in the

�rst stage, and player 1 wins also in the second stage player 2 has an expected payo¤ of zero. Furthermore,

even if player 1 loses in the second stage, by (3) player 2 has an expected payo¤ of zero. Thus, we obtain that

players 1 and 2 randomize on the interval [0; v=4] according to their e¤ort cumulative distribution functions
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F
(1)
i ; i = 1; 2 which are given by

v

3
F
(1)
2 (x) +

v

12
(1� F (1)2 (x))� x =

v

12
(5)

2v

3
F
(1)
1 (x)� x =

5v

12

Then, player 1�s probability to win in the �rst stage is

pF12 =
3

16

and the players�expected total e¤ort in the �rst stage is

TEF =
v

8
(1 +

3

8
) =

11v

64

By the above analysis we obtain:

Proposition 1 In the sub-game perfect equilibrium of the round-robin all-pay tournament with three sym-

metric players, the players�expected payo¤s are as follows: player 1�s expected payo¤ is v=12; player 2�s is

5v=12; and player 3�s is zero.

By the above analysis we also obtain:

Proposition 2 In the sub-game perfect equilibrium of the round-robin all-pay tournament with three sym-

metric players, the players�probabilities to win the tournament are as follows:

Player 1�s probability to win is

P1 = p
F
12p

E
13 +

pF12p
E
31p

C
23

3
+
pF21p

D
13p

B
32

3
= 0:193

Player 2�s probability to win is

P2 = p
F
21p

D
13p

B
23 + p

F
21p

D
31p

A
23 +

pF12p
E
31p

C
23

3
+
pF21p

D
13p

B
32

3
= 0:682

and player 3�s probability to win is

P3 = p
F
12p

E
31p

C
32 + p

F
21p

D
31p

A
32 +

pF12p
E
31p

C
23

3
+
pF21p

D
13p

B
32

3
= 0:125

By Propositions 1 and 2 we can conclude that

Theorem 1 In the round-robin all-pay tournament with three symmetric players, the player who competes

in the �rst and the last stages has the highest probability to win the tournament as well as the highest expected

payo¤.
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5 The asymmetric round-robin tournament

We consider now asymmetric players and for simplicity we assume that the players�values of winning are

v1 = v2 = v > v3; namely we have one weak player (player 3) and two strong players (players 1 and 2).

Without loss of generality we also assume that v3 = 1: We say that the symmetry is weak if v is su¢ ciently

close to 1 and the symmetry is strong if v is su¢ ciently larger than 1. The results of the asymmetric

round-robin all-pay tournament depends on the stage in which the two strong players are matched. Below

we analyze the results of the tournament for each possible allocation of the players.

5.1 The strong players are matched in the �rst stage (stage 1: 1 vs. 2, stage 2:

1 vs. 3, stage 3: 2 vs. 3)

Figure 2 presents this tournament as a tree game. [Figure 2 here].

Proposition 3 In the sub-game perfect equilibrium of the round-robin all-pay tournament with one weak

and two strong players, if the strong players are matched in the �rst stage then

1) if 1 < v � 2, player 1�s expected payo¤ is 1=12, player 2�s is 9�4v
12 and player 3�s is zero.

2) if v > 2, players 1 and 2�s expected payo¤ is 1=12 and player 3�s is zero.

Thus, independent on whether the asymmetry is weak or strong, the expected payo¤ of the strong player

who plays in the �rst and the last stages (player 2) is higher than or equal to the other players� expected

payo¤s.

Proof. The proof is obtained by the analysis in Appendix A.

5.2 The strong players are matched in the second stage (stage 1: 1 vs. 3, stage

2: 1 vs. 2, stage 3: 2 vs. 3)

Figure 3 presents this tournament as a tree game. [Figure 3 here].
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Proposition 4 In the sub-game perfect equilibrium of the round-robin all-pay tournament with one weak

and two strong players, if the strong players are matched in the second stage then

1) if 1 < v � 1:096, player 1�s expected payo¤ is v2�12v+12
12 , player 2�s expected payo¤ is zero, and player

3�s expected payo¤ is v4�16v3+44v2�96v+72
12v2 .

2) if 1:096 < v � 1:1 player 1�s expected payo¤ is v3�8v2+24v�18
3v2 , player 2�s expected payo¤ is zero, and

player 3�s expected payo¤ is zero.

3) if 1:1 < v � 2, players 1�s expected payo¤ is v3�3v2+24v�2472v�72 , player 2�s expected payo¤ is v
5�15v4+48v3�36v2

576v�576

and player 3�s expected payo¤ is zero.

4) if v > 2, players 1�s expected payo¤ is 3v�1
12v�6 , player 2�s expected payo¤ is

v2�2v+1
12v�6 and player 3�s

expected payo¤ is zero.

Thus, if the asymmetry is weak, 1 < v � 1:095; the weak player (player 3) has a higher expected payo¤

than the both strong players (players 1 and 2).

Proof. The proof is obtained by the analysis in Appendix B.

5.3 The strong players are matched in the third stage (stage 1: 1 vs. 3, stage

2: 2 vs. 3, stage 3: 1 vs. 2)

Figure 4 presents this tournament as a tree game. [Figure 4 here].

Proposition 5 In the sub-game perfect equilibrium of the round-robin all-pay tournament with one weak

and two strong players, if the strong players are matched in the third stage then

1) if 1 < v � 1:375, player 1�s expected payo¤ is 16v�11
12 , player 2�s expected payo¤ is zero, and player 3�s

expected payo¤ is 1
12 .

2) if v > 1:375, players 1�s expected payo¤ is 2v3 , player 2�s expected payo¤ is zero, and player 3�s expected

payo¤ is 1
12 .

Thus, independent on whether the asymmetry is weak or strong, the strong player who plays in the �rst

and the last stages (player 1) has a higher expected payo¤ than the other players and particularly than the
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other strong one (player 2). Moreover, independent on whether the asymmetry is weak or strong, the weak

player has a higher expected payo¤ than one of the strong players.

Proof. The proof is obtained by the analysis in Appendix C.

By a comparing of each player�s expected payo¤s in the above three cases we obtain

Theorem 2 In the round-robin all-pay tournament with one weak and two strong players, the strong player

has the highest expected payo¤ when he is allocated to play in the �rst and the last stages.

6 Length of the tournament

In round-robin tournaments there is always a positive possibility that the winner of the tournament will

be decided before the last stage. If we assume that the contest designer has a revenue from each match of

the tournament, then he might wish to increase the length of tournament, namely, increase the probability

that the winner of the tournament will be decided in the last stage or at least as late as possible. Below we

analyze the probability that the winner of the tournament is decided before the last stage.

Case A: The strong players are matched in the �rst stage (stage 1: 1 vs. 2, stage 2: 1 vs.

3, stage 3: 2 vs. 3)

In this case the winner is decided before the last stage i¤ player 1 wins in the �rst two stages. If 1 < v � 2;

by (21) and (27) the probability that player 1 wins in the �rst two stages is

pF112 p
E1
13 = (

16v � 13
24v � 8 )(1�

2v � 6
v2 � 12v ) =

16v3 � 237v2 + 278v � 78
24v3 � 296v2 + 96v

If v > 2; by (24) and (30) the probability that player 1 wins in the �rst two stages is

pF212 p
E2
13 = (

24v2 + 2v � 5
48v2 + 4v

)(1� 1

4v + 2
) =

48v2 � 8v � 5
96v2 + 8v

Case B: The strong players are matched in the second stage (stage 1: 1 vs. 3, stage 2: 1

vs. 2, stage 3: 2 vs. 3)

In this case the winner is decided before the last stage i¤ player 1 wins in the �rst two stages. If

1 < v � 1:096 by (54) and (57) the probability that player 1 wins in the �rst two stages is

pF113 p
E
12 = (

v4 � 12v3 + 8v2
8v3 � 72v2 + 192v � 144)(1�

6v � 2
12v � 1) =

6v5 � 71v4 + 36v3 + 8v2
96v4 � 872v3 + 2376v2 � 1920v + 144
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If 1:096 < v � 1:1 by (54) and (60) the probability that player 1 wins in the �rst two stages is

pF213 p
E
12 = (1�

2v3 � 18v2 + 48v � 36
v4 � 12v3 + 8v2 )(1� 6v � 2

12v � 1) =
6v5 � 83v4 + 142v3 � 262v2 + 168v + 36

12v5 � 145v4 + 108v3 � 8v2

If 1:1 < v � 2; by (54) and (63) the probability that player 1 wins in the �rst two stages is

pF313 p
E
12 = (1�

v3 � 3v2
48� 48v )(1�

6v � 2
12v � 1) =

6v4 � 17v3 + 285v2 � 240v � 48
576v2 � 624v + 48

and if v > 2; by (54) and (66) the probability that player 1 wins in the �rst two stages is

pF413 p
E
12 = (1�

v � 1
8v � 4)(1�

6v � 2
12v � 1) =

42v2 � 11v � 3
96v2 � 56v + 4

Case C: The strong players are matched in the third stage (stage 1: 1 vs. 3, stage 2: 2 vs.

3, stage 3: 1 vs. 2)

In this case the winner is decided before the last stage i¤ player 3 wins in the �rst two stages. If

1 < v � 1:375 by (80) and (86) the probability that player 3 wins in the �rst two stages is

pF131 p
E1
32 = (

11� 8v
16v

)(1� 4v
11
) =

32v2 � 132v + 121
176v

If v > 1:375; by (83) and (88) the probability that player 3 wins in the �rst two stages is

pF231 p
E2
32 = 0

The above analysis is summarized by Figure 5 which shows the probabilities that the winner of the round-

robin tournaments is decided after two stages as a function of the level of asymmetry (v) between the players.

[Figure 5 here].

We can see by Figure 5 that, independent of the level of asymmetry (v), the probability that the winner

of the tournament is decided before the last stage is minimized when the two strong players (players 1 and

2) are matched in the last stage. The reason is that if the strong players are matched in the last stage, the

winner of the tournament is decided before the last stage i¤ the weak player (player 3) wins in the �rst two

stages and for any other allocation of players in the tournament, the winner is decided before the last stage

i¤ one of the strong players wins in the �rst two stages. Thus a contest designer who wishes that the winner

of the three-stage round-robin tournament will be decided in the last stage should allocate the two strong

players in the last stage of the tournament.
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7 Total e¤ort

We assume now that the contest designer wishes to maximize the players�expected total e¤ort. Below we

analyze the optimal allocation of players for this purpose.

Case A: The strong players are matched in the �rst stage (stage 1: 1 vs. 2, stage 2: 1 vs.

3, stage 3: 2 vs. 3)

In this case, if 1 < v � 2; by (8), (11), (14), (18), (19), (21), (22),(27) and (28), the players�expected

total e¤ort is

TE = TEF1 + pF112 TE
E1 + pF121 TE

D + pF112 p
E1
31 TE

C1 + pF121 p
D
13TE

B + pF121 p
D
31TE

A

= (
448v2 � 636v + 221

288v � 96 ) + (
16v � 13
24v � 8 )(

�v3 + 11v2 � 12v � 36
6v2 � 72v )

+(
16v � 13
24v � 8 )(

2v � 6
v2 � 12v )(

v2 + 2v

12
) + (1� 16v � 13

24v � 8 )(
2v + 1

12v
)

But, if v > 2; by (8), (11), (17), (18), (19), (24), (25), (30) and (31), the players�expected total e¤ort is

TE = TEF2 + pF212 TE
E2 + pF221 TE

D + pF212 p
E2
31 TE

C2 + pF221 p
D
13TE

B + pF221 p
D
31TE

A

= (
576v3 � 192v2 � 80v + 25

576v2 + 48v
) + (

24v2 + 2v � 5
48v2 + 4v

)(
v + 1

6v + 3
)

+(
24v2 + 2v � 5
48v2 + 4v

)(
1

4v + 2
)(
v + 2

3v
) + (1� 24v

2 + 2v � 5
48v2 + 4v

)(
2v + 1

12v
)

Case B: The strong players are matched in the second stage (stage 1: 1 vs. 3, stage 2: 1

vs. 2, stage 3: 2 vs. 3)

In this case, if 1 < v � 1:096; by (34), (37), (43), (45), (46), (54), (55), (57) and (58), the players�
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expected total e¤ort is

TE = TEF1 + pF113 TE
E + pF131 TE

D1 + pF113 p
E
21TE

C + pF131 p
D1
12 TE

B1 + pF131 p
D1
21 TE

A

= (
v6 � 20v5 + 76v4 + 368v3 � 1448v2 + 1632v � 576

�96v3 + 864v2 � 2304v + 1728 )

+(
v4 � 12v3 + 8v2

8v3 � 72v2 + 192v � 144)(
72v2 � 39v + 5

72v � 6 )

+(1� v4 � 12v3 + 8v2
8v3 � 72v2 + 192v � 144)(

v3 + 11v2 � 24v + 12
2v2

)

+(
v4 � 12v3 + 8v2

8v3 � 72v2 + 192v � 144)(
6v � 2
12v � 1)(

2v + 1

12v
)

+(1� v4 � 12v3 + 8v2
8v3 � 72v2 + 192v � 144)(1�

6v � 6
v2

)(
v2 + 2v

12
)

+(1� v4 � 12v3 + 8v2
8v3 � 72v2 + 192v � 144)(

6v � 6
v2

)(
v + 1

2v
)

and if 1:096 < v � 1:1; by (34), (37), (43), (45), (46), (54), (55), (60) and (61), the players�expected

total e¤ort is

TE = TEF2 + pF213 TE
E + pF231 TE

D1 + pF213 p
E
21TE

C + pF231 p
D1
12 TE

B1 + pF231 p
D1
21 TE

A

= (
v7 � 17v6 + 68v5 + 138v4 � 1464v3 + 3456v2 � 3456v + 1296

�6v6 + 72v5 � 48v4 )

+(1� 2v
3 � 18v2 + 48v � 36
v4 � 12v3 + 8v2 )(

72v2 � 39v + 5
72v � 6 )

+(
2v3 � 18v2 + 48v � 36
v4 � 12v3 + 8v2 )(

v3 + 11v2 � 24v + 12
2v2

)

+(1� 2v
3 � 18v2 + 48v � 36
v4 � 12v3 + 8v2 )(

6v � 2
12v � 1)(

2v + 1

12v
)

+(
2v3 � 18v2 + 48v � 36
v4 � 12v3 + 8v2 )(1� 6v � 6

v2
)(
v2 + 2v

12
)

+(
2v3 � 18v2 + 48v � 36
v4 � 12v3 + 8v2 )(

6v � 6
v2

)(
v + 1

2v
)

If 1:1 < v � 2; by (34), (37), (43), (48), (49), (54), (55), (63) and (64), the players�expected total e¤ort

is

TE = TEF3 + pF313 TE
E + pF331 TE

D2 + pF313 p
E
21TE

C + pF331 p
D2
12 TE

B1 + pF331 p
D2
21 TE

A

= (
v6 � 6v5 � 15v4 + 96v3 � 72v2

3456v2 � 6912v + 3456 ) + (1� v3 � 3v2
48� 48v )(

72v2 � 39v + 5
72v � 6 )

+(
v3 � 3v2
48� 48v )(

v4 + 12v3 � 12v2
288v � 288 ) + (1� v3 � 3v2

48� 48v )(
6v � 2
12v � 1)(

2v + 1

12v
)

+(
v3 � 3v2
48� 48v )(

v2

24v � 24)(
v2 + 2v

12
) + (

v3 � 3v2
48� 48v )(1�

v2

24v � 24)(
v + 1

2v
)
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and if v > 2; by (34), (40), (43), (51), (52), (54), (55), (66) and (67), the players�expected total e¤ort is

TE = TEF4 + pF413 TE
E + pF431 TE

D3 + pF413 p
E
21TE

C + pF431 p
D3
12 TE

B2 + pF431 p
D3
21 TE

A

=
5v2 � 8v + 3
96v2 � 96v + 24 + (1�

v � 1
8v � 4)(

72v2 � 39v + 5
72v � 6 )

+(
v � 1
8v � 4)(

3v2 � 5v + 2
12v � 6 ) + (1� v � 1

8v � 4)(
6v � 2
12v � 1)(

2v + 1

12v
)

+(
v � 1
8v � 4)(

v � 1
4v � 2)(

v + 2

3v
) + (

v � 1
8v � 4)(1�

v � 1
4v � 2)(

v + 1

2v
)

Case C: The strong players are matched in the third stage (stage 1: 1 vs. 3, stage 2: 2 vs.

3, stage 3: 1 vs. 2)

In this case, if 1 < v � 1:375; by (70), (73), (76), (77), (78), (80), (81), (86) and (87), the players�

expected total e¤ort is

TE = TEF1 + pF113 TE
D + pF131 TE

E1 + pF113 p
D
23TE

A + pF113 p
D
32TE

B + pF131 p
E1
23 TE

C

= (
�88v + 121
192v

) + (
�8v + 11
16v

)(
8v2 + 11v

33
)

+(1� �8v + 11
16v

)
v

4
+ (

�8v + 11
16v

)(
4v

11
)
v

4

But, if v > 1:375; by (70), (73), (76), (77), (78), (83), (84), (88) and (89), the players�expected total e¤ort

is

TE = TEF2 + pF213 TE
D + pF231 TE

E2 + pF213 p
D
23TE

A + pF213 p
D
32TE

B + pF231 p
E2
23 TE

C

=
v

4

The above analysis is summarized by Figure 6 which shows the expected total e¤ort as a function of the

level of asymmetry (v). [Figure 6 here].

We can see in Figure 6 that if the asymmetry is relatively low, i.e., v < 1:6 the expected total e¤ort

is maximized when the two strong players (players 1 and 2) are matched in the second stage, but if the

asymmetry is relatively high, i.e., v > 1:6 the expected total e¤ort is maximized when the two strong players

are matched in the �rst stage. Moreover, we can see that, independent of the level of asymmetry, the

expected total e¤ort is minimized when the two strong players are matched in the last stage. The reason

is that most of the expected total e¤ort comes from the match between the strong players and when these

players are matched in the last stage there is a positive probability that this match will not be played. Thus,
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if a contest designer wishes to maximize the expected total e¤ort he should not allocate the strong players

in the last stage of the tournament.

8 Concluding remarks

We analyzed the sub-game perfect equilibrium of the round-robin tournaments with three players. We

showed that when the players are symmetric, a player�s expected payo¤ is maximized when he plays in the

�rst and the last stages. We also showed that when the players are asymmetric (one weak and two strong

players), each of the strong players maximizes his expected payo¤ when he plays in the �rst and the last

stages. This result could be also shown for the asymmetric case with one strong and two weak players. We

explicitly calculate, on the one hand, the players�expected total e¤ort, and, on the other, the probability

that the winner of the tournament will be decided in the last stage. Using these calculations, by numerical

analysis we demonstrate that these two possible goals of the contest designer contradict each other since

the expected total e¤ort is minimized when the two strong players are matched in the last stage while the

probability that the winner of the tournament will be decided in the last stage is maximized when the two

strong players are matched in the last stage. It would be interesting although not simple to examine whether

or not the results of this model can be generalized for round-robin tournaments with four or a higher number

of stages.

9 Appendix A: strong vs. strong in the �rst stage

As in the symmetric case, in order to analyze the sub-game perfect equilibrium of the round-robin tournament

we begin with the last stage of the tournament and go backwards to the previous stages. First, we analyze

the case where the strong players (players 1 and 2) are matched in the �rst stage. The tree game is described

by Figure 2.

9.1 Stage 3 - player 2 vs. player 3

We have the following three scenarios:
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1) Assume �rst that player 2 won the match in the �rst stage and player 3 won the match in the second

stage (vertex A in �gure 2). Then there is a unique mixed strategy equilibrium in which players 2 and 3

randomize on the interval [0; 1] according to their cumulative distribution functions F (3)i ; i = 2; 3 which are

given by

vF
(3)
3 (x)� x = v � 1 (6)

F
(3)
2 (x)� x = 0

Then, player 2�s probability to win the match in the third stage is

pA23 = 1�
1

2v
(7)

and the players�expected total e¤ort is

TEA =
v + 1

2v
(8)

2) Assume now that player 2 won the match in the �rst stage and player 3 lost in the second stage (vertex

B in Figure 2). Then there is a unique mixed strategy equilibrium in which players 2 and 3 randomize on

the interval [0; 13 ] according to their cumulative distribution functions F
(3)
i ; i = 2; 3 which are given by

vF
(3)
3 (x) +

v

3
(1� F (3)3 (x))� x = v � 1

3
(9)

1

3
F
(3)
2 (x)� x = 0

Then, player 2�s probability to win the match in the third stage is

pB23 = 1�
1

4v
(10)

and the players�expected total e¤ort is

TEB =
2v + 1

12v
: (11)

3) Finally, assume that player 2 lost the match in the �rst stage, and player 3 won in the second stage

(vertexes C1-C2 in Figure 2). In this case we have to consider two sub-cases: weak asymmetry, i.e., 1 < v � 2

or strong asymmetry, i.e., v > 2. In the case of weak asymmetry (vertex C1 in Figure 2), there is a unique

mixed strategy equilibrium in which players 2 and 3 randomize on the interval [0; v3 ] according to their
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cumulative distribution functions F (3)i ; i = 2; 3 which are given by

v

3
F
(3)
3 (x)� x = 0 (12)

F
(3)
2 (x) +

1

3
(1� F (3)2 (x))� x = 1� v

3

Then, player 3�s probability to win the match in the third stage is

pC132 = 1�
v

4
(13)

and the players�expected total e¤ort is

TEC1 =
v2 + 2v

12
: (14)

In the case of strong asymmetry, v > 2 (vertex C2 in Figure 2), there is a unique mixed strategy

equilibrium in which players 2 and 3 randomize on the interval [0; 23 ] according to their cumulative distribution

functions F (3)i ; i = 2; 3 which are given by

v

3
F
(3)
3 (x)� x =

v � 2
3

(15)

F
(3)
2 (x) +

1

3
(1� F (3)2 (x))� x =

1

3

Then, player 3�s probability to win the match in the third stage is

pC232 =
1

v
(16)

and the players�expected total e¤ort is

TEC2 =
v + 2

3v
(17)

9.2 Stage 2 - player 1 vs. player 3

We have here two possible scenarios:

1) Assume �rst that player 1 lost the match in the �rst stage (vertex D in Figure 2). Then by (6) and (9)

the expected payo¤ of player 3 in the next stage is zero and therefore he has no incentive to exert a positive

e¤ort such that player 1 wins with a probability of one. Thus we have

pD13 = 1 (18)
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and the players�expected total e¤ort in the second stage is

TED = 0 (19)

2) Assume now that player 1 won the match in the �rst stage. Then if we assume a weak asymmetry,

i.e., 1 < v � 2; (vertex E1 in Figure 2), by (12) and (13) there is a unique mixed strategy equilibrium in

which players 1 and 3 randomize on the interval [0; 1� v
3 ] according to their cumulative distribution functions

F
(2)
i ; i = 1; 3 which are given by

vF
(2)
3 (x) +

v2

12
(1� F (2)3 (x))� x =

4v � 3
3

(20)

(1� v
3
)F

(2)
1 (x)� x = 0

Then, player 1�s probability to win the match in the second stage is

pE113 = 1�
6� 2v
12v � v2 (21)

and the players�expected total e¤ort is

TEE1 =
�v3 + 11v2 � 12v � 36

6v2 � 72v : (22)

If, on the other hand, we assume strong asymmetry, i.e., v > 2; (vertex E2 in Figure 2), by (15) and

(16) there is a unique mixed strategy equilibrium in which players 1 and 3 randomize on the interval [0; 13 ]

according to their cumulative distribution functions F (2)i ; i = 1; 3 which are given by

vF
(2)
3 (x) + (1� 1

v
)
v

3
(1� F (2)3 (x))� x =

3v � 1
3

(23)

1

3
F
(2)
1 (x)� x = 0

Then, player 1�s probability to win the match in the second stage is

pE213 = 1�
1

4v + 2
(24)

and the players�expected total e¤ort is

TEE2 =
v + 1

6v + 3
(25)
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9.3 Stage 1 - player 1 vs. player 2

In the case of weak asymmetry, i.e., 1 < v � 2 (vertex F1 in Figure 2), by (9), (10) and (20) there is a unique

mixed strategy equilibrium in which players 1 and 2 randomize on the interval [0; 16v�1312 ] according to their

cumulative distribution functions F (1)i ; i = 1; 2 which are given by

4v � 3
3

F
(1)
2 (x) +

1

12
(1� F (1)2 (x))� x =

1

12
(26)

(v � 1
3
)F

(1)
1 (x)� x =

9� 4v
12

Then, player 1�s probability to win the match in the �rst stage is

pF112 =
16v � 13
24v � 8 (27)

and the players�expected total e¤ort in the match (tournament) is

TEF1 =
448v2 � 636v + 221

288v � 96 (28)

On the other hand, in the case of strong asymmetry, i.e., v � 2, (vertex F2 in Figure 2), by (10), (15),

(23) and (24) there is a unique mixed strategy equilibrium in which players 1 and 2 randomize on the interval

[0; 12v�512 ] according to their cumulative distribution functions F (1)i ; i = 1; 2 which are given by

3v � 1
3

F
(1)
2 (x) +

1

12
(1� F (1)2 (x))� x =

1

12
(29)

(
3v � 1
3

)F
(1)
1 (x) + (

1

4v + 2
)(
v � 2
3
)(1� F (1)1 (x))� x =

1

12

Then, player 1�s probability to win the match in the �rst stage is

pF212 =
24v2 + 2v � 5
48v2 + 4v

(30)

and the players�expected total e¤ort in the match (tournament) is

TEF2 =
576v3 � 192v2 � 80v + 25

576v2 + 48v
(31)

10 Appendix B: strong vs. strong in the second stage

We analyze here the sub-game perfect equilibrium of the round-robin tournament where the strong players

(players 1 and 2) are matched in the second stage. The tree game is described by Figure 3.
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10.1 Stage 3 - player 2 vs. player 3

We have the following three scenarios:

1) Assume �rst that player 3 won the match in the �rst stage and player 2 won in the second stage (vertex

A in Figure 3). Then there is a unique mixed strategy equilibrium in which players 2 and 3 randomize on

the interval [0; 1] according to their e¤ort cumulative distribution functions F (3)i ; i = 2; 3 which are given by

vF
(3)
3 (x)� x = v � 1 (32)

F
(3)
2 (x)� x = 0

Then, player 2�s probability to win the match in the third stage is

pA23 = 1�
1

2v
(33)

and the players�expected total e¤ort is

TEA =
v + 1

2v
(34)

:

2) Assume now that player 3 won the match in the �rst stage and player 2 lost in the second stage (vertex

B1-B2 in Figure 3). Then if the asymmetry is weak, i.e., 1 < v � 2 (vertex B1 in Figure 3), there is a unique

mixed strategy equilibrium in which players 2 and 3 randomize on the interval [0; v3 ] according to their e¤ort

cumulative distribution functions F (3)i ; i = 2; 3 which are given by

v

3
F
(3)
3 (x)� x = 0 (35)

F
(3)
2 (x) +

1

3
(1� F (3)2 (x))� x =

3� v
3

Then, player 3�s probability to win the match in the third stage is

pB132 = 1�
v

4
(36)

and the players�expected total e¤ort is

TEB1 =
v2 + 2v

12
(37)

On the other hand, if the asymmetry is strong, i.e., v > 2 (vertex B2 in Figure 3), there is a unique

mixed strategy equilibrium in which players 2 and 3 randomize on the interval [0; 23 ] according to their e¤ort
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cumulative distribution functions F (3)i ; i = 2; 3 which are given by

v

3
F
(3)
3 (x)� x =

v � 2
3

(38)

F
(3)
2 (x) +

1

3
(1� F (3)2 (x))� x =

1

3

Then, player 3�s probability to win the match in the third stage is

pB232 =
1

v
(39)

and the players�expected total e¤ort is

TEB2 =
v + 2

3v
(40)

3) Finally, assume that player 3 lost the match in the �rst stage and player 2 won in the second stage

(vertex C in Figure 3). Then, there is a unique mixed strategy equilibrium in which players 2 and 3 randomize

on the interval [0; 13 ] according to their e¤ort cumulative distribution functions F
(3)
i ; i = 2; 3 which are given

by

vF
(3)
3 (x) +

v

3
(1� F (3)3 (x))� x =

3v � 1
3

(41)

1

3
F
(3)
2 (x)� x = 0

Then, player 2�s probability to win the match in the third stage is

pC23 = 1�
1

4v
(42)

and the players�expected total e¤ort is

TEC =
2v + 1

12v
(43)

:

10.2 Stage 2 - player 1 vs. player 2

We have two possible scenarios here:

1) Assume �rst that player 1 lost the match in the �rst stage (vertex D1-D2-D3 in Figure 3). By (32),

(35) and (36), if the asymmetry is weak, i.e., 1 < v < 1:1 (vertex D1 in Figure 3), there is a unique mixed
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strategy equilibrium in which players 1 and 2 randomize on the interval [0; v � 1] according to their e¤ort

cumulative distribution functions F (2)i ; i = 1; 2 which are given by

v2

12
F
(2)
2 � x =

v2 � 12v + 12
12

(44)

(v � 1)F (2)1 (x)� x = 0

Then, player 1�s probability to win the match in the second stage is

pD112 = 1�
6v � 6
v2

(45)

and the players�expected total e¤ort is

TED1 =
v3 + 11v2 � 24v + 12

2v2
(46)

If, however, 1:1 < v � 2 , (vertex D2 in Figure 3), as previously, there is a unique mixed strategy

equilibrium in which players 1 and 2 randomize on the interval [0; v
2

12 ] according to their e¤ort cumulative

distribution functions F (2)i ; i = 1; 2 which are given by

v2

12
F
(2)
2 � x = 0 (47)

(v � 1)F (2)1 (x)� x =
12v � v2 � 12

12

Then, player 1�s probability to win the match in the second stage is

pD212 =
v2

24v � 24 (48)

and the players�expected total e¤ort is

TED2 =
v4 + 12v3 � 12v2
288v � 288 (49)

:

Finally, if v > 2, (vertex D3 in Figure 3), by (32), (38) and (39) there is a unique mixed strategy

equilibrium in which players 1 and 2 randomize on the interval [0; v�13 ] according to their e¤ort cumulative

distribution functions F (2)i ; i = 1; 2 which are given by

v � 1
3
F
(2)
2 � x = 0 (50)

(v � 1)F (2)1 (x) + (
v � 2
3
)(1� F (2)1 (x))� x =

2v � 2
3
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Then, player 1�s probability to win the match in the second stage is

pD312 =
v � 1
4v � 2 (51)

and the players�expected total e¤ort is

TED3 =
3v2 � 5v + 2
12v � 6 (52)

2) Assume now that player 1 won the match in the �rst stage (vertex E in Figure 3). By (41) and (42),

there is a unique mixed strategy equilibrium in which players 1 and 2 randomize on the interval [0; 3v�13 ]

according to their cumulative distribution functions F (2)i ; i = 1; 2 which are given by

vF
(2)
2 (x) +

1

12
(1� F (2)2 (x))� x =

1

3
(53)

(
3v � 1
3

)F
(2)
1 (x)� x = 0

Then, player 1�s probability to win the match in the second stage is

pE12 = 1�
6v � 2
12v � 1 (54)

and the players�expected total e¤ort is

TEE =
72v2 � 39v + 5

72v � 6 (55)

10.3 Stage 1 - player 1 vs. player 3

If 1 < v � 1:096 (vertex F1 in Figure 3), by (35), (44), (45), and (53) there is a unique mixed strategy equi-

librium in which players 1 and 3 randomize on the interval [0; 12v�v
2�8

12 ] according to their e¤ort cumulative

distribution functions F (1)i ; i = 1; 3 which are given by

1

3
F
(1)
3 (x) +

v2 � 12v + 12
12

(1� F (1)3 (x))� x =
v2 � 12v + 12

12
(56)

�v3 + 9v2 � 24v + 18
3v2

F
(1)
1 (x)� x =

v4 � 16v3 + 44v2 � 96v + 72
12v2

Then, player 1�s probability to win the match in the �rst stage is

pF113 =
v4 � 12v3 + 8v2

8v3 � 72v2 + 192v � 144 (57)
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and the players�expected total e¤ort in the match (tournament) is

TEF1 =
v6 � 20v5 + 76v4 + 368v3 � 1448v2 + 1632v � 576

�96v3 + 864v2 � 2304v + 1728 (58)

If 1:096 < v < 1:1 (vertex F2 in Figure 3), by (35), (44), (45), and (53) there is a unique mixed strategy

equilibrium in which players 1 and 3 randomize on the interval [0; 9v
2�v3�24v+18

3v2 ] according to their e¤ort

cumulative distribution functions F (1)i ; i = 1; 3 which are given by

1

3
F
(1)
3 (x) +

v2 � 12v + 12
12

(1� F (1)3 (x))� x =
v3 � 8v2 + 24v � 18

3v2
(59)

�v3 + 9v2 � 24v + 18
3v2

F
(1)
1 (x)� x = 0

Then, player 1�s probability to win the match in the �rst stage is

pF213 = 1�
2v3 � 18v2 + 48v � 36
v4 � 12v3 + 8v2 (60)

and the players�expected total e¤ort in the match (tournament) is

TEF2 =
v7 � 17v6 + 68v5 + 138v4 � 1464v3 + 3456v2 � 3456v + 1296

�6v6 + 72v5 � 48v4 (61)

On the other hand, if 1:1 < v � 2; (vertex F3 in Figure 3), by (32), (35), (47), (48), and (53) there is a

unique mixed strategy equilibrium in which players 1 and 3 randomize on the interval [0; �v
3+3v2

72v�72 ] according

to their e¤ort cumulative distribution functions F (1)i ; i = 1; 3 which are given by

1

3
F
(1)
3 (x)� x =

v3 � 3v2 + 24v � 24
72v � 72 (62)

�v3 + 3v2
72v � 72 F

(1)
1 (x)� x = 0

Then, player 1�s probability to win the match in the �rst stage is

pF313 = 1�
v3 � 3v2
�48v + 48 (63)

and the players�expected total e¤ort in the match (tournament) is

TEF3 =
v6 � 6v5 � 15v4 + 96v3 � 72v2

3456v2 � 6912v + 3456 (64)
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Finally, if v > 2, (vertex F4 in Figure 3), by (32), (38), (50), (51), and (53) there is a unique mixed

strategy equilibrium in which players 1 and 3 randomize on the interval [0; v�1
12v�6 ] according to their e¤ort

cumulative distribution functions F (1)i ; i = 1; 3 which are given by

1

3
F
(1)
3 (x)� x =

3v � 1
12v � 6 (65)

v � 1
12v � 6F

(1)
1 (x)� x = 0

Then, player 1�s probability to win the match in the �rst stage is

pF413 = 1�
v � 1
8v � 4 (66)

and the players�expected total e¤ort in the match (tournament) is

TEF4 =
5v2 � 8v + 3
96v2 � 96v + 24 (67)

11 Appendix C: strong vs. strong in the third stage

We now analyze the case where the strong players (players 1 and 2) are matched in the last stage. The tree

game is described by Figure 4.

11.1 Stage 3 - player 1 vs. player 2

We have the following three scenarios:

1) Assume �rst that player 1 won the match in the �rst stage and player 2 won in the second stage (vertex

A in Figure 4). Then there is a unique mixed strategy equilibrium in which players 1 and 2 randomize on

the interval [0; v] according to their cumulative distribution functions F (3)i ; i = 1; 2 which are given by

vF
(3)
2 (x)� x = 0 (68)

vF
(3)
1 (x)� x = 0

Then, player 1�s probability to win the match in the third stage is

pA12 = 0:5 (69)
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and the players�expected total e¤ort is

TEA = v (70)

2) Assume now that player 1 won the match in the �rst stage and player 2 lost in the second stage (vertex

B in Figure 4). Then there is a unique mixed strategy equilibrium in which players 1 and 2 randomize on

the interval [0; v3 ] according to their e¤ort cumulative distribution functions F
(3)
i ; i = 1; 2 which are given by

vF
(3)
2 (x) +

v

3
(1� F (3)2 (x))� x =

2v

3
(71)

v

3
F
(3)
1 (x)� x = 0

Then, player 1�s probability to win the match in the third stage is

pB12 = 0:75 (72)

and the players�expected total e¤ort is

TEB =
v

4
(73)

3) Finally, assume that player 1 lost the match in the �rst stage and player 2 won in the second stage

(vertex C in Figure 4). Then there is a unique mixed strategy equilibrium in which players 1 and 2 randomize

on the interval [0; v3 ] according to their cumulative distribution functions F
(3)
i ; i = 1; 2 which are given by

v

3
F
(3)
2 (x)� x = 0 (74)

vF
(3)
1 (x) +

v

3
(1� F (3)1 (x))� x =

2v

3

Then, player 2�s probability to win the match in the third stage is

pC21 = 0:75 (75)

and the players�expected total e¤ort is

TEC =
v

4
(76)

11.2 Stage 2 - player 2 vs. player 3

We have here two possible scenarios:

29



1) Assume �rst that player 3 lost the match in the �rst stage (vertex D in Figure 4). Then by (68) and

(71) the expected payo¤ of player 2 in the next stage is zero and therefore he has no incentive to exert a

positive e¤ort. In that case, player 3 wins with a probability of one. Thus, we have

pD23 = 0 (77)

and the players�expected total e¤ort in the second stage is

TED = 0 (78)

2) Assume now that player 3 won the match in the �rst stage (vertex E1-E2 in Figure 4). If 1 < v � 1:375,

(vertex E1 in Figure 4), by (74) and (75) there is a unique mixed strategy equilibrium in which players 2 and

3 randomize on the interval [0; 2v3 ] according to their e¤ort cumulative distribution functions F
(2)
i ; i = 2; 3

which are given by

2v

3
F
(2)
3 (x)� x = 0 (79)

F
(2)
2 (x) +

1

12
(1� F (2)2 (x))� x =

�2v + 3
3

Then, player 2�s probability to win the match in the second stage is

pE123 =
4v

11
(80)

and the players�expected total e¤ort is

TEE1 =
8v2 + 11v

33
(81)

:

If, however, v > 1:375, (vertex E2 in �gure 4), by (74) there is a unique mixed strategy equilibrium in

which players 2 and 3 randomize on the interval [0; 1112 ] according to their cumulative distribution functions

F
(2)
i ; i = 2; 3 which are given by

2v

3
F
(2)
3 (x)� x =

8v � 11
12

(82)

F
(2)
2 (x) +

1

12
(1� F (2)2 (x))� x =

1

12

Then, player 2�s probability to win the match in the second stage is

pE223 = 1�
11

16v
(83)
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and the players�expected total e¤ort is

TEE2 =
88v + 121

192v
(84)

11.3 Stage 1 - player 1 vs. player 3

If 1 < v � 1:375, (vertex F1 in Figure 4), by (71), (72), (77) and (79) there is a unique mixed strategy

equilibrium in which players 1 and 3 randomize on the interval [0; �8v+1112 ] according to their cumulative

distribution functions F (1)i ; i = 1; 3 which are given by

2v

3
F
(1)
3 (x)� x =

16v � 11
12

(85)

(
�2v + 3

3
)F

(1)
1 (x) +

1

12
(1� F (1)1 (x))� x =

1

12

Then, player 1�s probability to win the match in the �rst stage is

pF113 = 1�
�8v + 11
16v

(86)

and the players�expected total e¤ort in the match (tournament) is

TEF1 =
�88v + 121
192v

(87)

On the other hand, if, v � 1:375, (vertex F2 in Figure 4), by (72), (77) and (82), player 3 has the same

expected payo¤ of 1
12 in the next stage regardless of whether he wins or loses in this stage, and therefore

player 1�s probability to win in the �rst stage is

pF213 = 1 (88)

and the players�expected total e¤ort in the match (tournament) is

TEF2 = 0 (89)
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Figure 1: The tree game of the symmetric tournament.
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Figure 2: The tree game of the asymmetric tournament where the two strong players are matched in the

�rst stage.
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Figure 3: The tree game of the asymmetric tournament where the two strong players are matched in the

second stage.
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Figure 4: The tree game of the asymmetric tournament where the two strong players are matched in the

third stage.
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Figure 5: The probability of the tournament to be over after two stages as a function of the level of

asymmetry (v) between the players for each asymmetric tournament (strong players are matched either in

the �rst, second or third stage).
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Figure 6: The expected total e¤ort as a function of the level of asymmetry (v) for each asymmetric tournament

(the strong players are matched either in the �rst, second or third stage).
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