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Structural FECM: Cointegration in large-scale structural FAVAR 
models* 

Starting from the dynamic factor model for non-stationary data we derive the 
factor-augmented error correction model (FECM) and, by generalizing the 
Granger representation theorem, its moving-average representation. The 
latter is used for the identification of structural shocks and their propagation 
mechanism. Besides discussing contemporaneous restrictions along the lines 
of Bernanke et al. (2005), we show how to implement classical identification 
schemes based on long-run restrictions in the case of large panels. The 
importance of the error-correction mechanism for impulse response analysis is 
analysed by means of both empirical examples and simulation experiments. 
Our results show that the bias in estimated impulse responses in a FAVAR 
model is positively related to the strength of the error-correction mechanism 
and the cross-section dimension of the panel. We observe empirically in a 
large panel of US data that these features have a substantial effect on the 
responses of several variables to the identified real shock. 
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1 Introduction

Large dimensional factor models have received considerable attention in the recent econo-

metric literature, starting with the seminal papers by Forni et al. (2000) and Stock and

Watson (2002a, 2002b). While the early applications were mostly reduced form analy-

ses, after Bernanke, Boivin and Eliasz (2005) more and more attention has been devoted

to structural analyses based on Factor Augmented VARs (FAVARs), see also Stock and

Watson (2005)

This entire literature basically neglects the possibility of cointegration among the vari-

ables under study, with few notable exceptions, such as Bai (2004) and Bai and Ng

(2004). Banerjee and Marcellino (2009) suggested to include factors extracted from large

non-stationary panels in small scale error correction models (ECMs), to proxy for miss-

ing cointegration relations. They labeled the resulting model Factor Augmented ECM

(FECM). Banerjee, Marcellino and Masten (2013) showed that FECMs often outperform

both FAVARs and standard small scale ECMs in terms of forecasting macroeconomic

variables. This is not surprising since FECMs nest both FAVARs and ECMs.

In this paper we focus on the use of FECMs for structural analysis. We start from a

dynamic factor model for nonstationary data as in Bai (2004), and we show that it can

be reparameterized to yield a FECM. Bai’s asymptotic results can also be applied in our

context, when a mixture of I(1) and I(0) factors is allowed, for both the identification of

the factor spaces and the estimation of the factors.

We then extend the Granger representation theorem (see, e.g., Johansen (1995)) to

derive the moving-average representation of the FECM. The latter can be used to identify

structural shocks and their propagation mechanism, using similar techniques as those

adopted in the structural VAR literature. In particular, our paper provides the first

analysis of the long-run scheme for identification of structural shocks in nonstationary

panels.1

When assessing the properties of the FECM, we focus on the effects that including

the error-correction terms has with respect to the FAVAR. First, we present a simple but

clarifying analytical example to highlight the differences between FAVAR and FECM.

Second, we use two simulation experiments to evaluate the finite N and T properties of

the Bai’s (2004) based estimation procedure when applied in the FECM framework. The

first experiment shows that the principal component-based estimator effi ciently estimates

the spaces spanned by both the I(1) and I(0) factors. The resulting estimated responses

to shocks are also very close to the true responses. In the second experiment, based on

a design similar to the estimated model in the empirical applications, we consider which

1Forni et al. (2009) provide an empirical illustration of the stochastic trends analysis of King et al.
(1991) in the context of large stationary panels. Eickmeier (2009) works with a nonstationary panel and
identification of structural shocks with sign restrictions. The FECM model is also related to the framework
used recently to formulate testing for cointegration in panels (see for example Bai, Kao and Ng (2009) and
Gengenbach, Urbain and Westerlund (2008).
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features increase the bias in the impulse responses of the FAVAR with respect to those

from the FECM. Not surprisingly, the strength of the error-correction mechanism matters.

Moreover, as we show in the paper that the FECM can be to some extent approximated

by the FAVAR with a large lag order, over-parameterization and the associated estimation

uncertainty also play a role.

Finally, we develop two empirical applications where, for comparability, we use the

dataset of Bernanke et al. (2005) for the US economy. We re-examine the identification

of monetary policy shocks, as in Bernanke et al. (2005), showing that the ECM terms

are significant in a large fraction of the FAVAR equations. The resulting responses to

the monetary policy shock are overall rather similar to those obtained by Bernanke et al.

(2005), but there are a few relevant differences. In the second application we instead use

long run restrictions to identify structural stochastic trends. These shocks account for

the largest share of overall panel variability, thus making the effects of omitting the error-

correction terms in the FAVAR much more pronounced. Moreover, the FECM impulse

responses are broadly in line with economic theory and comparable to the responses of key

US macroeconomic variables to the productivity shock as reported in the DSGE model of

Smets and Wouters (2007).

The rest of the paper is structured as follows. In Section 2 we introduce the FECM

and discuss its properties. In Section 3 we present a simple analytical example and show

how impulse response analysis differs between the FECM and the FAVAR. In Section 4 we

derive the moving-average representation of the FECM and discuss identification schemes.

In Section 5 we present the results of the Monte Carlo experiments. In Section 6 we discuss

the two empirical applications. Finally, in Section 7 we summarize the main results and

conclude.

2 Factor-augmented error-correction model

The factor-augmented error-correction model (FECM) is nested within the dynamic factor

model for I(1) data developed by Bai (2004) as it allows for both I(1) and I(0) factors,

which is also the starting point of our analysis. This allows to distinguish between

common stochastic trends and stationary drivers of all variables. In order to be able to

estimate all the parameters of the FECM, we need to strengthen one aspect of Bai’s (2004)

model to require a strict dynamic factor model. This restriction, being stronger than Bai’s

assumptions, leaves all of his results directly applicable to our model, as also verified by

the simulation experiments reported below in Section 5.
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2.1 Representation of the FECM

Consider the following dynamic factor model (DFM) for I(1) data:

Xit =

p∑
j=0

λijFt−j +
m∑
l=0

φilct−l + εit

= λi(L)Ft + φi(L)ct + εit, (1)

where i = 1, ..., N , t = 1, ..., T , Ft is an r1-dimensional vector of random walks, ct is an r2-

dimensional vector of I(0) factors, Ft = ct = 0 for t < 0, and εit is a zero-mean idiosyncratic

component. λi (L)and ϕi (L) are lag polynomials of orders p and m respectively. To derive

the limiting distribution of estimators of Ft and ct, p and m are assumed to be finite.

The loadings λij and φij are either deterministic or stochastic and satisfy the following

restrictions. For λi = λi(1) and φi = φi(1) we have E ‖λi‖4 ≤M <∞, E ‖φi‖4 ≤M <∞,
and 1/N

∑N
i=0 λiλ

′
i 1/N

∑N
i=0 φiφ

′
i converge in probability to positive definite matrices.

Furthermore, we assume that E (λijεis) = E (φijεis) = 0 for all i, j and s.

In our treatment of the idiosyncratic component εit we are more restrictive than

Bai (2004). Specifically, since the FECM is a parametric model, to avoid the curse

of dimensionality in estimating the FECM, we assume (1) to be a strict factor model:

E (εit, εjs) = 0 for all i, j, t and s, i 6= j.2 However, εit is allowed to be serially correlated

εit = γi(L)εit−1 + vit with the roots of γi(L) lying inside the unit disc. Because this

assumption holds for all i, Xit and Ft cointegrate.

To derive the FECM and discuss further assumptions upon the model that ensure

consistent estimation of the model’s components, it is convenient to write first the DFM

in static form. To this end we follow Bai (2004) and define

λ̃ik = λik + λik+1 + ...+ λip, k = 0, ..., p.

Let us in addition define

Φ̃i = [φi0, ..., φim] .

Then we can get a static representation of the DFM which has the I(1) factors isolated

from the I(0) factors:

Xit = ΛiFt + ΦiGt + εit (2)

where

Λi = λ̃i0,

Φi =
[
Φ̃i,−λ̃i1, . . . ,−λ̃ip

]
,

Gt =
[
c′t, c

′
t−1, ..., c

′
t−m,∆F

′
t , ...,∆F

′
t−p+1

]′
.

2On a dataset similar to ours, Stock and Watson (2005) show that the strict factor model assumption
is generally rejected but is of limited quantitative importance.
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Introducing for convenience the notation Ψi = [Λ′i,Φ
′
i]
′, the following assumptions are

needed for consistent estimation of both the I(1) and I(0) factors: E ‖Ψi‖4 ≤ M < ∞
and 1/N

∑N
i=0 ΨiΨ

′
i converges to a (r1(p + 1) + r2(m + 1)) × (r1(p + 1) + r2(m + 1))

positive-definite matrix.

Grouping across the N variables we have

Xt = ΛFt + ΦGt + εt (3)

where Xt = [X1t, ..., XNt]
′,Λ = [Λ

′
1, ...,Λ

′
N ]′,Φ = [Φ

′
1, ...,Φ

′
N ]′ and εt = [ε1t, ..., εNt]

′.

As noted above, the idiosyncratic component in (3) is serially correlated. This serial

correlation can be eliminated from the error process by premultiplying (2) by

I − Γ (L)L

where

Γ (L) =


γ1 (L) · · · 0
...

. . .
...

0 · · · γN (L)

 .
Following this transformation, we obtain

Xt = (I − Γ (L)L) ΛFt + (I − Γ (L)L) ΦGt + Γ (L)Xt−1 + vt.

Note that Γ (L) can be conveniently factorized as

Γ(L) = Γ(1)− Γ1(L)(1− L),

which allows us to rewrite the previous expression as

Xt = ΛFt + ΦGt − (Γ(1)− Γ1(L)(1− L))(ΛFt−1 + ΦGt−1)

+ (Γ(1)− Γ1(L)(1− L))Xt−1 + vt. (4)

This can be further expanded as

Xt = ΛFt + ΦGt − Γ(1)ΛFt−1 + Γ1(L)Λ∆Ft−1 − Γ(1)ΦGt−1

+ Γ1(L)ΛΦ∆Gt−1 + Γ(1)Xt−1 − Γ1(L)∆Xt−1 + vt (5)

or

∆Xt = ΛFt + ΦGt − Γ(1)ΛFt−1 + Γ1(L)Λ∆Ft−1 − Γ(1)ΦGt−1

+ Γ1(L)Φ∆Gt−1 − (I − Γ(1))Xt−1 − Γ1(L)∆Xt−1 + vt (6)

The ECM form of the DFM or the factor-augmented error-correction model - the FECM
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- then follows directly as

∆Xt = −(I − Γ(1))(Xt−1 − ΛFt−1)︸ ︷︷ ︸
Omitted in the FAVAR

+ Λ∆Ft + Γ1(L)Λ∆Ft−1

+ ΦGt − Γ(1)ΦGt−1 + Γ1(L)Φ∆Gt−1 − Γ1(L)∆Xt−1 + vt. (7)

Equation (7) is a representation of the DFM in (1) in terms of stationary variables.

It contains the error-correction term, −(I − Γ(1))(Xt−1 −ΛFt−1), which is omitted in the

standard FAVAR model that therefore suffers from an omitted variable problem.

Note that it follows from (3) that

Xt−1 − ΛFt−1 = ΦGt−1 + εt−1,

such that it would appear at first sight that the omitted error-correction term in the

FAVAR could be approximated by including additional lags of the I(0) factors. However,

by substituting the previous expression into (7) and simplifying we get

∆Xt = Λ∆Ft + Φ∆Gt + ∆εt, (8)

which contains a non-invertible MA component. Hence, whenever we deal with I(1) data,

and many macroeconomic series exhibit this feature, the standard FAVAR model produces

biased results unless we use an infinite number of factors as regressors, or account explicitly

for the non-invertible MA structure of the error-process.3 The analytical example in the

next section elaborates this point further.

Our empirical and simulation analyses below confirm that the omission of the ECM

term in the FAVAR may potentially have an important impact on the results obtained in

typical macroeconomic applications.

To complete the model, we assume that the nonstationary factors follow a vector

random walk process

Ft = Ft−1 + εFt , (9)

while the stationary factors are represented by

ct = ρct−1 + εct , (10)

where ρ is a diagonal matrix with values on the diagonal in absolute term strictly less

than one. εFt and ε
c
t are independent of λij , φij and εit for any i, j, t. As in Bai (2004),

it should be noted that the error processes εFt and ε
c
t need not necessarily be i.i.d.. They

3For example, our empirical application below is based on the dataset used by Bernanke et al., 2005).
They treat 77 out of 120 series as I(1) but just use a FAVAR with these variables in differences.
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are allowed to be serially and cross correlated and jointly follow a stable vector process:[
εFt

εct

]
= A(L)

[
εFt−1

εct−1

]
+

[
ut

wt

]
, (11)

where ut and wt are zero-mean white-noise innovations to dynamic nonstationary and

stationary factors, respectively. Under the stability assumption, we can express the model

as [
εFt

εct

]
= [I −A(L)L]−1

[
ut

wt

]
. (12)

Note that, under these assumptions, we have E
∥∥εFt ∥∥4 ≤ M < ∞, which implies that∑T

t=1 FtF
′
t converges at rate T

2, while
∑T

t=1GtG
′
t converges at the standard rate T. The

cross-product matrices
∑T

t=1 FtG
′
t and

∑T
t=1G

′
tFt converge at rate T

3/2. At these rates,

the elements of the matrix composed of these four elements jointly converge to form a

positive definite matrix, allowing us to apply Bai’s (2004) consistency results on factor

estimation based on principal components.

Using (9), (10) and (12) we can write the VAR for the factors as[
Ft

ct

]
=

[[
I 0

0 ρ

]
+A(L)

][
Ft−1

ct−1

]
−A(L)

[
I 0

0 ρ

][
Ft−2

ct−2

]
+

[
ut

wt

]
(13)

= C(L)

[
Ft−1

ct−1

]
+

[
ut

wt

]
,

where the parameter restrictions imply that C(1) is a block-diagonal matrix with block

sizes corresponding to the partition between Ft and ct.

The FECM is specified in terms of static factors F and G, which calls for a corre-

sponding VAR specification. Using the definition of Gt and (13) it is straightforward to
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get the following representation

I 0 . . . . . . 0

0 I . . . . . . 0
...

...
...

...

0 . . . I 0 . . . 0

−I . . . 0 I 0 . . . 0

0 . . . 0 0 I . . . 0
...

...

0 . . . . . . . . . I





Ft

ct

ct−1
...

ct−m

∆Ft

∆Ft−1
...

∆Ft−p+1



=



C11(L) C12(L) 0 . . . . . . 0

C21(L) C22(L) 0 . . . . . . 0

0 I 0 . . . . . . 0
... . . . . . .

...

0 . . . . . . I 0 . . . 0

−I . . . . . . . . . 0

0 . . . I . . . 0
...

...

0 . . . . . . I 0





Ft−1

ct−1

ct−2
...

ct−m−1

∆Ft−1

∆Ft−2
...

∆Ft−p



+



I 0

0 I

0 0

...
...

...
...

0 0



[
ut

wt

]
(14)

Using the definition of Gt, the VAR for the static factors, and premultplying the

whole expression by the inverse of the initial matrix in (14), the factor VAR can be more

compactly written as[
Ft

Gt

]
=

[
M11(L) M12(L)

M21(L) M22(L)

][
Ft−1

Gt−1

]
+Q

[
ut

wt

]
, (15)

where the (r1(p + 1) + r2(m + 1))× (r1 + r2) matrix Q accounts for dynamic singularity

of Gt. This is due to the fact that the dimension of the vector process wt is r2, which is

smaller than or equal to r1p+r2(m+1), the dimension of Gt.Let us assume that the order

of the VAR in (15) is n.

2.2 Estimation of the FECM

As discussed in the previous section, the model is consistent with the specification analyzed

by Bai (2004) that accommodates the presence of I(0) factors along with I(1) factors in

the factor model. We have used his same assumptions (strengthened by the strict factor

structure) and can therefore rely on Bai’s (2004) results on the asymptotic properties of

the principal component based factor (and loadings) estimators.

The number of I(1) factors r1 can be consistently estimated using the criteria developed
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by Bai (2004) applied to data in levels. The overall number of static factors r1(p + 1) +

r2(m+ 1) can be estimated using the criteria of Bai and Ng (2002) applied to the data in

differences.

The space spanned by the factors can be consistently estimated using principal compo-

nents. The estimator of Ft are the eigenvectors corresponding to the largest r1 eigenvalues

of XX ′ normalized such that F̃ ′F̃ /T 2 = I. The stationary factors Gt can be estimated

as the eigenvectors corresponding to the next q largest eigenvalues normalized such that

G̃′G̃/T = I (Bai, 2004). Corresponding estimators of the loadings to I(1) factors are then

Λ̃ = X ′F̃ /T 2, and those to the I(0) factors Φ̃ = X ′G̃/T.4

Using the estimated factors and loadings, the estimates of the common components are

Λ̃F̃t, Φ̃G̃t, Λ̃∆F̃t and Φ̃∆G̃t, while for the cointegration relations it isXt−1−Λ̃F̃t−1.Finally,

the estimated common components and cointegrating relations can be used in (7) to es-

timate the remaining parameters of the FECM by OLS, equation by equation due to the

strict-factor-model assumption.

Replacing the true factors and their loadings with their estimated counterparts is

permitted under the assumptions discussed above and in Bai (2004) (see Bai,2004, Lemmas

2 and 3) so that we do not have a generated regressor problem.5

The theoretical results on estimation are in line with those emerging from the simula-

tion experiments reported below.

3 Impulse response analysis in the FECM and FAVAR - an

analytical illustration

We illustrate analytically the computation of structural responses using the FECM rather

than the FAVAR with a simple but comprehensive example. The example may easily be

seen to be a special case of the general specification introduced in the previous section,

obtained by restricting the dimension of the factor space and of the variables of interest

studied.

We suppose that the large information set available can be summarized by one I(1)

common factor, f , and that the econometrician is particularly interested in the response of

one of the many variables, x1, and that she can choose any of the three following models.

First, a FECM, where the explanatory variables of the FAVAR are augmented with a term

representing the (lagged) deviation from the long run equilibrium of x1 and f . Second, a

FAVAR model where the change in x1 (∆x1) is explained by an infinite number of its own

4 In a similar model to ours, Choi (2011) analyzes the generalized principal components estimator that
offers some effi ciency gains over the classic principal components estimator. Simulation evidence presented
below, however, shows that Bai’s estimator performs very well already with small sample sizes. For this
reason we stick to the standard principal components estimator in this paper.

5These assumptions are essentially on (1) the common factor structure of the data, (2) heterogeneous
loadings with finite fourth moments, (3) mutual orthogonality between ut, wt, εit, λit and φit,, (4) weak
dependence of idiosyncratic errors, and (5) N large compared with T for the I(0) factors (

√
T/N → 0).
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lags and by lags of the change in f . And, third, the same model but with a finite number

of lags. We want to compare the differences in IRFs resulting from the three models.

To start with, let us consider a system consisting of the two variables x1 and x2 and

of one factor f . The factor follows a random walk process,

ft = ft−1 + εt, (16)

where εt is a structural shock and we are interested in the dynamic response to this shock.

The factor loads directly on x2,

x2t = ft + ut, (17)

while the process for x1 is given in ECM form as

∆x1t = α (x1t−1 − βft−1) + γ∆ft−1 + vt, α < 0. (18)

or

∆x1t = α (x1t−1 − βft−1) + γεt−1 + vt. α < 0 (19)

Here the processes εt and vt are assumed i.i.d.(0, IN ), while ut is allowed to have a moving

average structure, i.e. ut = u∗t / (1− ηL) , |η| < 1 and u∗t is i.i.d.(0, σ
2
u∗) Hence, the DGP

is a FECM.

Note that the moving-average representation of x1t can be written as

x1t = (1 + α)hx1t−h

+ (1 + α)h−1(−αβ(εt−h + εt−h−1 + ...+ ε−h) + +γεt−h + vt−h+1)

+ (1 + α)h−2(−αβ(εt−h+1 + εt−h + ...+ ε−h+1) + γεt−h+1 + vt−h+2)

...

− (αβ(εt−1 + εt−2 + ...+ ε1) + γεt−1 + vt.

Based on this, the impulse response function takes the following form:

∂∆x1t+h
∂εt

=
∂x1t+h
∂εt

− ∂x1t+h−1
∂εt

= −(1 + α)h−1αβ + α(1 + α)h−2γ.

The FECM representation of x1 can also be written as a FAVAR. In fact, since the

error-correction term x1t − βft evolves as

x1t − βft = (α+ 1) (x1t−1 − βft−1) + γ∆ft−1 + vt − βεt

=
γ∆ft−1

1− (α+ 1)L
+

vt − βεt
1− (α+ 1)L

,

9



we can re-write equation (18) as

∆x1t = γ∆ft−1 +
αγ∆ft−2

1− (α+ 1)L
+ vt +

α (vt−1 − βεt−1)
1− (α+ 1)L

, (20)

which is a FAVAR of infinite order. The corresponding moving-average representation

then follows directly as

∆x1t = γεt−1 +
αγεt−2

1− (α+ 1)L
+ vt +

α (vt−1 − βεt−1)
1− (α+ 1)L

. (21)

This implies that the impulse responses of the infinite-order FAVAR model would be

∂∆x1t+h
∂εt

= −(1 + α)h−1αβ + α(1 + α)h−2γ.

We therefore see that only using a FAVAR with an infinite number of lags allows us to

recover the same IRFs as in the FECM. However, in practice, a short lag length is used in

the FAVAR, so that the resulting responses will be different from those from the FECM,

the more so the poorer the finite lag approximation is to the infinite order FAVAR.

A simulation experiment presented later on, whose design is based on a frequently-used

panel of US macroeconomic data, reveals that the differences in the impulse responses

obtained by the FECM and the (finite order) FAVAR can be substantial.

4 Moving-average representation of the FECM and the Struc-

tural FECM

The identification of structural shocks in VARmodels usually rests on imposing restrictions

upon the parameters of the moving-average representation of the VAR. For vector-error

correction models, the derivation of the moving-average representation uses the Granger

representation theorem (see, e.g., Johansen, 1995). The FECM is a generalization of error-

correction models to large dynamic panels. For this reason, we first provide a generalization

of the Granger representation theorem for nonstationary panels that exhibit cointegration.

Then we discuss shock identification.

4.1 The MA representation of the FECM

To start with, we have:

Assumption 1 ω = [(Ir1 −M∗11(1))]−1 is an invertible matrix.

This assumption implies that Xit can be at most I(1) and rules out the possibility of

Xit being an I(2) process, which would result in a singular ω matrix.

Theorem 1 (Granger representation for the FECM) Under Assumption 1 and given

the error-correction representation of the dynamic factor model (7), the moving-average

10



representation of the factor-augmented error-correction model is
Xt

Ft

Gt

 =


Λ

Ir1

0r2×r1

ω t∑
i=1

ui + C1(L)


vt + [Λ,Φ]Q[u′t, w

′
t]
′

Q

[
ut

wt

]  . (22)

Proof. The factor VAR given by (15) contains exactly r1 unit roots pertaining to Ft.6

(15) can then be rewritten in differenced form as[
∆Ft

∆Gt

]
=

[
0

αM

] [
0 Ir2

] [ Ft−1

Gt−1

]
+

[
M∗11(L) M∗12(L)

M∗21(L) M∗22(L)

][
∆Ft−1

∆Gt−1

]
+Q

[
ut

wt

]
,

(23)

where the coeffi cient matrices of the matrix polynomials M∗ij(L) are defined from the

coeffi cient matrices in (15) as:

M∗ijl = −(Mijl+1 + ...+Mijn), l = 1, . . . , n− 1. (24)

Furthermore, (7) can be rewritten as

∆Xt = α̃ (Xt−1 − ΛFt−1 − ΦGt−1) + Λ∆Ft + Φ∆Gt

+ Γ1 (L) (Λ∆Ft−1 + Φ∆Gt−1)− Γ1 (L) ∆Xt−1 + vt, (25)

where α̃ = −(I − Γ(1)). Then we can stack the equations for ∆Xt and the factors into a

single system of equations as
∆Xt

∆Ft

∆Gt

 = αβ′


Xt−1

Ft−1

Gt−1

+


−Γ1(L) B1(L) B2(L)

0 M∗11(L) M∗12(L)

0 M∗21(L) M∗22(L)




∆Xt−1

∆Ft−1

∆Gt−1



+


vt + [Λ,Φ]Q[u′t, w

′
t]
′

Q

[
ut

wt

]  (26)

where B1(L) = ΛM∗11(l)+ΦM∗21(L)+Γ1(L)Λ and B2(L) = ΦM∗22(L)+ΛM∗12(L)+Γ1(L)Φ

and

α
N+r1+r2×N+r2

=


α̃ ΦαM

0 0

0 αM

 and β′
N+r2×N+r1+r2

=

[
I −Λ −Φ

0 0 I

]
.

We can observe that (26) has a structure similar to a standard ECM model with some

restrictions imposed. There are N + r1 + r2 variables driven by r1 common stochastic

trends and therefore there are N + r2 cointegration relationships. The model conforms

6Cointegration among Ft is ruled out as we can always include the stationary linear combinations of Ft
in Gt. See also Bai (2004)
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with the assumptions of the Johansen’s version of the Granger representation theorem. In

particular

β⊥ =
[
Λ′, Ir1 , 0r1×r2

]′
, α⊥ =


0N×r1

Ir1

0r2×r1

 , Ξ = IN+r1+r2−


−Γ1(1) B1(1) B2(1)

0 M∗11(1) M∗12(1)

0 M∗21(1) M∗22(1)


and

ω
r1×r1

=
(
α′⊥Ξβ⊥

)−1
= [(Ir1 −M∗11(1))]−1

is a full rank matrix by the assumption that the data are at most I(1). Then the generic

moving-average representation by the Granger representation theorem can be written as
Xt

Ft

Gt

 = C

t∑
i=1

ui + C1(L)


vt + [Λ,Φ]Q[u′t, w

′
t]
′

Q

[
ut

wt

]  ,
with

C = β⊥
(
α′⊥Ξβ⊥

)−1
,

which simplifies to (22).

4.2 Structural FECM

Our model contains I(1) and I(0) factors with corresponding dynamic factors innovations.

From the moving-average representation (22) we can observe that the innovations in the

first group have permanent effects on Xt, while the innovations in the second group have

only transitory effects. The identification of structural dynamic factor innovations can be

performed separately for each group of structural innovations or on both simultaneously.

As is standard in SVAR analysis, we assume that structural dynamic factor innovations

are linearly related to the reduced-form innovations

ϕt =

[
ηt

µt

]
= H

[
ut

wt

]
, (27)

where H is a full-rank (r1+r2)× (r1+r2) matrix. ηt are r1 permanent structural dynamic

factor innovations and µt are r2 transitory structural dynamic factor innovations. It is

assumed that Eϕtϕ′t = I such that HΣu,wH
′ = I.

The moving average representation of the FECM in structural form can be obtained

by inserting the two linear transformations above of reduced-form innovations to dynamic

factors into the moving-average representation of the FECM given by (22).

The three most common classes of restrictions in the SVAR literature are contempo-

raneous restrictions, long-run restrictions and sign restrictions. The structural FECM is

first illustrated with the identification of monetary policy shocks using contemporaneous

12



restrictions as in the original proposal of the FAVAR model by Bernanke, Boivin and Elias

(2005). In this way we obtain a direct comparison of the two methods and an illustra-

tion of the importance of incorporating cointegrating information into the FAVAR. We

continue with the analysis of long-run restrictions and extend the analysis of structural

common stochastic trends of King et al. (1991) to the case of large nonstationary panels.

Such an identification procedure has not been discussed yet in the literature. This paper

thus provides the first analysis of both a FECM with contemporaneous restrictions and

the long-run scheme for the identification of structural shocks in nonstationary panels.7

4.3 Contemporaneous restrictions - BBE identification scheme

BBE consider the issue of identifying monetary policy shocks in large panels. The essence

of their approach is in the division of variables into two blocks: slow-moving variables that

do not respond contemporaneously to monetary policy shocks and fast-moving variables

that do. In addition, BBE treat the policy instrument variable, the federal funds rate,

as one of the observed factors. They consider two estimation methods, namely Bayesian

estimation and principal components analysis. In the latter approach, most frequently

used in the literature and in practice, they estimate K factors from the whole panel and

from the subset of slow-moving variables only (slow factors). They then rotate the factors

estimated from the whole panel around the federal funds rate by means of a regression of

these factors on the slow-factors and the federal funds rate. As a result of this rotation

of the factors, the analysis proceeds with K + 1 factors, namely the K rotated estimated

factors and the federal funds rate imposed as an observable factor.

Identification of monetary policy shocks is obtained in the VAR model of rotated

factors assuming a recursive ordering with the federal funds rate ordered last.

E(ϕtϕ
′
t) = HΣu,wH

′ = I, (28)

whereH−1 is lower triangular. The impulse responses of the observed variables of the panel

are then estimated by multiplying the impulse responses of the factors by the loadings

obtained from OLS regressions of the variables on the rotated factors. Note that this

scheme identifies the structural innovations from the factors VAR only and does not impose

restrictions on the loadings of the factors on the observable variables.

In addition to the inclusion of the error-correction term, an important difference be-

tween the BBE model and our model is that BBE do not account for serial correlation

in the idiosyncratic components of the panel, i.e. their FAVAR model contains no lags

of left-hand-side variables. In our model the presence of lagged dependent variables is

a consequence of the temporal dependence in the idiosyncratic components of the factor

model, and it is explicitly accounted for in the empirical applications below.

7Extending to identification using sign restrictions is straightforward, but beyond the scope of this
paper and is thus left for future research.
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4.4 Long-run restrictions

The identification of structural innovations with long-run restrictions can be obtained by

imposing restrictions on the matrices Λ and ω in the moving-average representation of

the FECM (22). With this we replace the long-run effects of reduced-form innovations to

factors ut

Λω
t∑
i=1

ui

with the long-run effects of structural innovations denoted ηt

Λ∗ω∗
t∑
i=1

ηi,

where the matrices Λ∗ and ω∗ contain restrictions motivated by economic theory.

A common economically motivated identification scheme of permanent shocks, origi-

nally proposed by Blanchard and Quah (1990), uses the concept of long-run money neu-

trality. In this respect, their identification scheme distinguishes real from nominal shocks

by imposing zero long-run effects of the nominal shock on real variables. In a cointegra-

tion framework such identification approach was formalized by King et al. (1991) (see

also Warne, 1993). King et al. (1991) analyzed a six-dimensional system of cointegrated

real and nominal variables. By imposing a certain cointegration rank they determined

the subset of innovations with permanent effects. Within this subset they restricted the

number of real stochastic trends to one, and identified it by imposing zero restrictions

on real variables of all other permanent shocks in the subset. The remaining permanent

shocks are allowed to have non-zero effects only on the subset of nominal variables in

the cointegrated VAR. We extend the identification approach of King et al. (1991) to

large-dimensional panels of non-stationary data.

The FECM contains r1 stochastic trends. Consider the case where r1 = 2. We have

two I(1) factors and want to identify one as a real stochastic and the second as a nominal

stochastic trend. Accordingly, partition the variables in Xt such that N1 real variables

are ordered first and the remaining N2 = N − N1 nominal variables are ordered last.

The group of real variables contains various measures of economic activity measured in

levels, e.g. indexes of industrial production, which are treated as I(1). The identifying

restrictions would thus be that the nominal stochastic trend has a zero long-run effect

on these variables. Among nominal variables, for example, the panel contains the levels

of different price indexes, levels of nominal wages and interest rates. Such variables are

grouped at the bottom of the panel. In this case the restricted loading matrix Λ∗ would

have the following structure:

Λ∗ =

[
Λ∗11 0

Λ∗21 Λ∗22

]
where Λ∗11 is N1 × 1 and Λ∗21 and Λ∗22 are N2 × 1. More generally, if the objective were
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to identify only the real stochastic trends with r1 > 2, the dimension of Λ∗22 would be

N2× (r1− 1). Λ∗ can be identified in the following way. First, the real stochastic trend is

allowed to load on all observable variables. This implies that Λ∗11 and Λ∗21 can be identified

as loadings to the first factor - F rt - extracted from the whole dataset. Second, we can

estimate the residuals from a projection of Xt on F rt . Denote these as ε
r
t . Then Λ∗22

is identified as loadings to the (r1 − 1) factors - denoted Fnt - extracted from the lower

N2-dimensional block of εrt .

Note that block diagonality of Λ∗ alone does not ensure that nominal shocks do not

load to real variables, but we also need (block) diagonality of ω∗. Note that it is the

product Λ∗ω∗ that determines the overall long-run effects, implying that zero long-run

effect restrictions require Λ∗ω∗ to be lower block diagonal, which is achieved by imposing

lower (block) diagonality of ω∗ in addition to lower (block) diagonality of Λ∗.

The matrix ω∗ can be obtained from the estimates of the VAR model (23). We have

seen above that the matrix ω can be estimated using

ω̂ =
[(
Ir1 − M̂∗11(1)

)]−1
.

Subsequently, we can identify ω∗ from the long-run covariance matrix

ωE(uFt u
F ′
t )ω′ = ω∗E(ηtη

′
t)ω
∗′ = ω∗ω∗′ (29)

where ηt = [ηr′t , η
n′
t ]′ are the structural innovations and ω∗ is lower block diagonal.

5 Simulation experiments

In this section we consider two simulation experiments. With the first experiment we

address two questions related to the finite sample properties of the FECM estimators.

We investigate whether the principal component based estimator effi ciently estimates the

space spanned by both the I(1) and I(0) factors. The second issue is concerned with

retrieving the impulse responses to innovations to dynamic factors conditional on sample

size.

With the second simulation experiment we analyze the effects of omitting the error-

correction term on impulse response analysis. The data generating process for the second

experiment is empirically motivated by the analysis of real stochastic trends in Section

6.2 below. The estimated responses to a permanent real shock reveal some significant

differences between the FECM and the FAVAR. Given that the two models are set up

such that the only difference between the two is the presence of the error-correction term,

the simulation evidence presented in this section also facilitates the discussion of the

empirically observed differences.
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5.1 Finite sample properties of the estimated FECM

The exact theoretical structure of (14) is rather specific. Given that the factors estimated

by principal components are only a rotation of the true factors, fitting a VAR to them will

not retrieve the theoretical structure given by (14) directly. This is however unnecessary,

and with the simulation experiment we address two questions which enable us to attack

the issue of consistency indirectly but completely. The first is how precisely PCA retrieves

the space spanned by the factors in finite samples. Bai (2004) provides simulation evidence

for the case with I(1) factors only and shows that the method works well also for relatively

small panels. Our setting explicitly allows for both I(1) and I(0) factors and verifies the

Bai simulation results in this more general scenario. Second, we test whether the impulse

responses obtained from the VAR based on the estimated factors correspond to the true

impulse responses obtained with the true model (14) and (7).

The design of the Monte Carlo experiment is the following. The factors are generated

by a VAR such as (13) with one I(1) and one I(0) factor and two lags of each factor.

The sum of the autoregressive coeffi cients for the I(0) factors is set to 0.7. The two

factors are independent, i.e. the VAR coeffi cients matrices are diagonal and ut and wt

are independent N(0, 1) processes. Ft and ct enter (1) contemporaneously and with one

lag, i.e. p = m = 1. The loadings λij , φij , j = 0, 1, are drawn from a standard normal

distribution. Finally, the idiosyncratic component is serially correlated. This is modelled

by setting the order of γi(L) to two and drawing the values of γi1 and γi2 from N(0.4, 1)

and N(0.2, 1) respectively.8

The factors are estimated from the generated Xs by principal components applied to

the levels of variables, imposing the true number of factors. It follows from the represen-

tation of the FECM that there is one I(1) factor - Ft, and three I(0) factors - ∆Ft, ct and

ct−1.

To check whether the principal components retrieve the space spanned by the factors

we follow Bai (2004) and estimate the following projection[
F 0t

c0t

]
= δ

[
F̂t

ĉt

]
+ vt

where F 0t , c
0
t denote true factors and F̂t, ĉt the estimated factors. We then rotate the

estimated factors towards the true factors by[
F̃t

c̃t

]
= δ̂

[
F̂t

ĉt

]
.

The correlation between F̃t and F 0t , and c̃t and c
0
t indicates how precisely PCA estimates

the space spanned by the factors.

8We conducted also robustness checks by varying the persistence in the idiosyncratic components.
Results, available from the authors upon request, exhibit high degree of robustness.
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Using F̃t and c̃t we then fit a VAR of order two and estimate the parameters of the

FECM given by (7). The estimated VAR is then used to obtain the impulse responses of

rotated factors to unit shocks to F̃t. The resulting responses, combined with the estimated

parameters of the FECM, yield the impulse responses of the Xs.

Table 1: Correlation between true and estimated factors
(1) (2) (3) (4) (5) (6)

Correlation between
F̃t and F̂t c̃t and ĉt F̃t and F̂t c̃t and ĉt

T N I(1) variables I(1) and I(0) variables
30 50 0.989 0.964 0.995 0.986
50 50 0.995 0.975 0.993 0.989
50 100 0.998 0.989 0.995 0.990
50 250 0.999 0.997 0.997 0.997
50 500 0.999 0.998 0.999 0.998
100 250 0.999 0.998 0.999 0.997
100 500 1.000 0.998 1.000 0.999
100 1000 1.000 0.999 1.000 0.999
250 500 1.000 0.999 1.000 0.999
250 1000 1.000 0.999 1.000 0.999
500 100 1.000 0.993 0.999 0.994
500 250 1.000 0.997 1.000 0.998
500 500 1.000 0.999 1.000 0.999

Notes: Panel with only I(1) data in columns 3 and 4. Panel
with I(1) and I(0) data in columns 5 and 6.

The impulse responses are computed for 100 periods. The VAR for the factors is

estimated with the unit root imposed in the equation for F̃t.9 In order to mimic the

practice in the empirical example, we do not impose the mutual independence of the

(dynamic) factors.

The experiment consists of 1000 replications. Within each iteration we generate a new

set of parameters and iterate 100 times on random draws of the error processes ut, wt and

vit to get the distribution of impulse responses. The confidence intervals of the impulse

responses are averaged over the 1000 replications and compared to true impulse responses.

The results of the simulation experiment are presented in Tables 1 - 3 for different

combinations of T and N . Table 1 reports the correlation coeffi cients between the true

and the estimated and rotated factors. As we can see, principal components capture

the space spanned by the factors quite successfully, even at moderate sample sizes. The

correlations increase with both T and N .

Table 2 reports measures of coherence between true and estimated impulse responses

for the two factors. In particular, columns (3) and (4) contain the share of periods the true

impulse responses of both factors, either to a shock to the I(1) factors (upper panel) or a

shock to the I(0) factors (lower panel), are outside the simulated 95% confidence intervals.

The results show that virtually no true impulse response is outside the confidence interval

of the responses to the shock to I(1) factors. The shares of responses outside the confidence

interval to a shock to the I(0) factor do not exceed the theoretical 5% level. Columns (5)

- (8) contain the differences between true impulse responses and the responses averaged
9The key results are unaltered if the unit root is not imposed in estimation. The only difference is to

be found in lower effi ciency (as reflected in the width of the confidence intervals). Results available from
the authors upon request.
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across the Monte Carlo replications, which gives a measure of the bias in finite samples.10

Similar observations apply both to responses to a shock to the I(1) factor (upper panel),

and to a shock to the I(0) factor (lower panel). We can observe that the impulse responses

converge to the true responses quite fast with both T and N . As expected, also the width

of the confidence intervals generally decreases with both N and T (while holding the other

constant).

Table 2: Impulse responses of factors
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

% of true IRs True IR - mean IR Conf. int. width
outside 95% CI at horizon at horizon

T N Ft ct 3 12 24 100 3 12 24 100
Responses of Ft to shock to Ft

30 50 0.0 0.0 -0.13 -0.13 -0.13 -0.13 1.46 1.54 1.56 1.54
50 50 0.0 0.0 -0.06 -0.06 -0.06 -0.06 1.13 1.14 1.14 1.14
50 100 0.0 0.0 -0.04 -0.03 -0.03 -0.03 1.02 1.03 1.03 1.03
50 250 0.0 0.0 -0.03 -0.03 -0.03 -0.03 1.05 1.05 1.05 1.05
50 500 0.0 0.0 -0.03 -0.02 -0.02 -0.02 1.01 1.02 1.02 1.02
100 250 0.0 0.0 -0.01 -0.01 -0.01 -0.01 0.93 0.93 0.93 0.93
100 500 0.0 0.0 -0.01 -0.01 -0.01 -0.01 0.92 0.93 0.93 0.93
100 1000 0.0 0.0 -0.02 -0.01 -0.01 -0.01 0.93 0.94 0.94 0.94
250 500 0.0 0.0 -0.01 0.00 0.00 0.00 0.86 0.85 0.85 0.85
250 1000 0.0 0.0 -0.01 0.00 0.00 0.00 0.85 0.85 0.85 0.85
500 100 0.0 0.0 -0.01 -0.01 -0.01 -0.01 0.84 0.83 0.83 0.83
500 250 0.0 0.0 0.00 0.00 0.00 0.00 0.83 0.83 0.83 0.83
500 500 0.0 0.0 0.00 0.00 0.00 0.00 0.83 0.82 0.82 0.82

Responses of ct to shock to ct
30 50 0.0 1.0 -0.06 -0.01 0.00 0.00 0.77 0.17 0.03 0.00
50 50 0.0 1.0 -0.08 -0.01 0.00 0.00 0.68 0.14 0.02 0.00
50 100 0.0 1.0 -0.09 -0.01 0.00 0.00 0.68 0.14 0.02 0.00
50 250 0.0 1.0 -0.07 -0.01 0.00 0.00 0.65 0.12 0.01 0.00
50 500 0.0 1.0 -0.08 -0.01 0.00 0.00 0.65 0.12 0.01 0.00
100 250 0.0 1.0 -0.10 -0.01 0.00 0.00 0.62 0.10 0.01 0.00
100 500 0.0 1.0 -0.09 -0.01 0.00 0.00 0.61 0.10 0.01 0.00
100 1000 0.0 1.0 -0.10 -0.01 0.00 0.00 0.62 0.11 0.01 0.00
250 500 0.0 3.0 -0.11 -0.01 0.00 0.00 0.58 0.07 0.00 0.00
250 1000 0.0 3.0 -0.11 -0.01 0.00 0.00 0.58 0.07 0.00 0.00
500 100 0.0 5.0 -0.12 -0.01 0.00 0.00 0.57 0.06 0.00 0.00
500 250 0.0 5.0 -0.11 -0.01 0.00 0.00 0.57 0.06 0.00 0.00
500 500 0.0 5.0 -0.12 -0.01 0.00 0.00 0.57 0.06 0.00 0.00

Notes: 1000 Monte Carlo replications

As Table 2 for factors, Table 3 reports equivalent results for impulse responses of

Xs. To facilitate presentation all statistics are averaged over N variables. Also for the

impulse responses of Xs we observe that practically a negligible share of impulse responses

deviates from the 95% confidence intervals. The largest shares reported in column 3 are

below 0.5%. These results suggest that the estimation method successfully retrieves the

impulse responses to shocks. Similar observations to those of factors about the convergence

of the impulse responses and their distribution apply also to the impulse responses of Xs

(see columns 4 - 11 in Table 3).

Motivated by the empirical applications below, we then consider one modification to

the data generating process. The dataset contains both I(1) and I(0) variables and we

10Note that the generated factors are independent, but independence is not imposed when working
with estimated factors. Because of this, the cross-equation responses of factors are not zero, but still
quantitatively limited. For this reason and in order to save space, Table 2 reports only the responses of
factors to own shocks. Detailed results are available upon request.
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Table 3: Estimation of impulse responses of observable variables - average across Xs
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

% of true True IR - mean IR Conf. int. width
IRs outside at horizon at horizon

T N 95% CI 3 12 24 100 3 12 24 100
Shock to Ft

30 50 0.00 0.15 0.23 0.24 0.25 8.35 5.96 6.06 6.06
50 50 0.00 0.06 0.09 0.09 0.09 2.48 1.89 1.87 1.87
50 100 0.00 0.07 0.05 0.06 0.06 2.68 1.89 1.90 1.90
50 250 0.00 0.07 0.04 0.05 0.05 2.68 1.71 1.71 1.71
50 500 0.00 0.09 0.02 0.03 0.03 2.49 1.66 1.65 1.63
100 250 0.00 0.10 0.01 0.02 0.02 1.28 0.70 0.70 0.70
100 500 0.00 0.09 0.01 0.02 0.02 1.30 0.69 0.69 0.69
100 1000 0.00 0.10 0.01 0.02 0.02 1.26 0.70 0.70 0.70
250 500 0.05 0.11 0.01 0.01 0.01 0.66 0.26 0.26 0.26
250 1000 0.04 0.12 0.01 0.01 0.01 0.71 0.28 0.28 0.28
500 100 0.36 0.09 0.01 0.01 0.01 0.39 0.15 0.15 0.15
500 250 0.42 0.12 0.01 0.01 0.01 0.50 0.17 0.17 0.17
500 500 0.47 0.12 0.01 0.00 0.00 0.48 0.16 0.16 0.16

Shock to ct
30 50 0.00 0.36 0.04 0.04 0.13 7.14 2.40 2.51 2.55
50 50 0.00 0.35 0.02 0.01 0.01 5.02 1.75 1.78 1.79
50 100 0.03 0.35 0.01 0.01 0.00 3.98 1.45 1.50 1.50
50 250 0.03 0.37 0.01 0.01 0.01 4.23 1.55 1.61 1.61
50 500 0.03 0.35 0.02 0.01 0.01 4.13 1.45 1.49 1.51
100 250 0.07 0.32 0.02 0.01 0.00 1.81 0.89 0.90 0.91
100 500 0.09 0.34 0.01 0.00 0.00 1.97 0.97 0.98 0.98
100 1000 0.13 0.34 0.02 0.01 0.01 1.74 0.89 0.90 0.90
250 500 0.52 0.35 0.01 0.00 0.00 0.87 0.56 0.56 0.57
250 1000 0.52 0.33 0.01 0.01 0.01 0.85 0.52 0.53 0.53
500 100 1.13 0.36 0.01 0.00 0.00 0.56 0.45 0.45 0.45
500 250 0.98 0.34 0.01 0.00 0.00 0.55 0.42 0.42 0.42
500 500 0.99 0.31 0.01 0.00 0.00 0.50 0.38 0.38 0.38

Notes: 1000 Monte Carlo replications. Results in the table refer to mean impulse
responses across N variables. Absolute deviations between true and estimated
impulse responses.

want to investigate how the presence of I(0) variables affects the finite sample properties

of the estimated factors. The setting of the experiment can be easily adapted by restricting

some of the loadings of Ft to zero.

The dataset used in the empirical application contains 120 variables, 43 of which are

treated as I(0). To replicate this feature we restrict roughly 36% of the loadings of Ft

to zero in each sample setup. The factors are extracted from generated data using PCA

without imposing the zero restrictions on the loadings.

Simulation results, presented in columns 5 and 6 of Table 1, reveal that also in the

presence of I(0) variables in the panel already at moderate sample sizes PCA successfully

retrieves the space spanned by dynamic factors.

Overall, our simulation experiments indicate that principal component based estima-

tors (with a mixture of I(1) and I(0) factors) can recover very well the factor space. More-

over, using the estimated factors in the factor VAR replicates accurately the true factor

responses. Finally, inserting the estimated factor responses in the FECM, in combination

with the estimated FECM parameters, delivers estimated structural impulse responses

very close to the true ones.
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5.2 Effects of the error-correction term

We now explore the determinants of the effects of omitting the error-correction term by

means of a second simulation experiment, focusing on the role of the strength of error

correction and of the sample size, along both the time series and cross section dimensions.

In the design of the data-generating process we draw from the empirical analysis of

real stochastic trends that is presented in detail in the next section. The experiment is

designed as follows. We estimate model (25) for the subset of I(1) variables in the panel

and use the estimated parameters as DGP. The only exception are the loading coeffi cients

of the cointegration relations, α. These are drawn from a uniform distribution around

mean values as specified below, in order to assess the effects of a different error correction

strength. The idiosyncratic components of the data are treated as serially independent

and bootstrapped from empirical residuals. The data are driven by factors simulated with

the parameters from the estimated factors VAR, combined with bootstrapped factor VAR

residuals.

Identification of the real trend requires a division between real and nominal variables

in the panel. Our panel contains 55% of real variables and 45% of nominal variables. This

relative share is also preserved in the artificially generated data, i.e. out of N generated

variables, 55% have parameters that are randomly drawn from the parameters pertaining

to real variables. The rest are randomly drawn from the parameters of the subset of

nominal variables.

The results of the Monte Carlo experiment are presented in Table 4. We consider

five different parameter configurations. The basic sample setup is with T = 500 and

N = 100, which corresponds to the dataset from which the parameters used in the DGP

are estimated. The results of the previous simulation experiment suggest, however, that

we could expect reliable estimates also for other, smaller, sample sizes. The basic mean

value of the error-correction coeffi cient α is set to -0.50. We consider four deviations from

this basic parameter setup. The first two are variations in the strength of error correction,

with mean α set to -0.25 and -0.75 respectively. The remaining two modifications alter

the sample size. First, we halve the time series dimension to 250, and second we halve

the cross-section dimension to 50. For each parameter set we take 100 random draws of

the parameter set and factor process. Within each of these random draws the confidence

intervals of the impulse responses are estimated through 100 bootstrap replications. The

confidence intervals are used to measure the differences between the estimated impulse

responses computed with the FAVAR model and those with the FECM.

The simulation results confirm our priors about the effect of the strength of error-

correction. Relative to the benchmark parameter specification (columns 1 and 2), weaker

error correction (columns 3 and 4) corresponds to a smaller occurrence of significant differ-

ences in the estimated impulse responses. Stronger error correction, with mean α equal to

-0.75 (columns 5 and 6), conversely, leads to consistently higher occurrence of significant
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Table 4: Importance of the error-correction term - results of the second Monte Carlo
experiment

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
α -0.50 -0.25 -0.75 -0.50 -0.50
T 500 500 500 250 500
N 100 100 100 100 50

Percentage of FAVAR responses outside the FECM confidence intervals
Confidence interval coverage (%)

Horizon 67 90 67 90 67 90 67 90 67 90
3 28.5 13.2 19.21 9.0 39.2 22.0 22.6 10.0 14.6 7.0
6 44.6 24.3 30.68 16.6 48.7 29.2 34.4 17.9 21.8 12.8
12 47.0 26.4 38.06 21.7 47.3 29.0 42.8 24.7 23.5 14.3
18 48.8 29.3 43.42 25.1 49.8 32.3 43.7 25.1 24.9 14.8
24 51.3 31.3 45.99 26.9 49.5 30.2 43.0 24.4 25.4 14.9
36 47.6 28.2 45.93 25.7 46.7 26.4 40.5 22.2 21.7 11.1
48 43.5 23.9 40.8 21.0 41.5 21.7 39.0 21.0 18.5 8.6
60 44.6 22.7 38.13 19.1 40.6 21.4 41.6 21.3 18.2 8.2
any 85.9 61.6 76.13 51.9 86.2 66.1 79.7 57.2 41.2 28.7

Average % of periods IRs outside confidence interval
50.4 36.4 47.9 35.6 49.1 33.8 44.9 31.3 47.9 35.0

Average partial R2 of error-correction term (%)
Ouside CI 3.6 3.5 2.2 2.2 4.3 4.4 8.1 8.5 3.3 3.0
Inside CI 2.2 2.9 1.7 1.7 4.5 3.7 6.2 6.6 2.2 2.8

differences at any horizon. With the strength of the error-correction increases also the

average number of periods that FAVAR impulse responses remain outside the confidence

interval of the FECM impulse responses.

The effect of a smaller time series dimension of the panel is not uniform across the time

elapsed after the shocks. Within the first 12 periods, the differences are less frequent. At

longer horizons, however, the frequency increases. The persistence in significant differences

decreases slightly relative to the benchmark.

The effect of the cross-section dimension is straightforward. With fewer series in the

panel, obtaining statistically different impulse responses between the FAVAR and the

FECM becomes less probable. However, the persistence of those that are significantly

different increases.11

Overall, this second experiment confirms the relevance of the inclusion of error correc-

tion terms in FAVAR models, suggesting that their omission can have sizeable effects, also

in rather small panels.

6 Empirical applications

In this section we consider two empirical applications. In both we focus on the empirical

importance of the error-correction mechanism for the analysis of structural shocks. The

first application is about identifying monetary policy shocks using contemporaneous re-

strictions, where we compare the FECM to the FAVAR model of Bernanke et al. (2005).

The second application uses the long-run restriction scheme to identify a real common

11The FECM in the simulation experiment contains 6 endogenous lags (uniform across equations), while
the factors enter only contemporaneously. We repeated the same experiment also with one and three of
both endogenous lags and lags of factors. The results, available upon request, are robust and fully in line
with those presented in Table 4.
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stochastic trend or a stochastic productivity trend.

We use the dataset of Bernanke et al. (2005). It contains 120 variables for the US,

spanning over the period 1959 - 2003. 77 variables are by the authors treated as I(1). The

dataset therefore contains both I(1) and I(0) variables, which we model in the following

way. Denote by X1
it the I(1) variables and by X

2
it the I(0) variables. Naturally, the issue of

cointegration applies only to X1
it. As a consequence, the I(1) factors load only to X

1
it and

not to X2
it. In other words, the fact that X

2
it are assumed to be I(0) implies Λ2i = 0, which

is a restriction that we take into account in model estimation. Our empirical FECM is

then

∆X1
it = αi(X

1
it−1 − ΛiFt−1) + Λ1i∆Ft + Φ1iGt + v1it (30)

X2
it = Φ2iGt + v2it (31)

The model for the I(1) variables in (30) is the FECM, while the model for the I(0)

variables in (31) is a standard FAVAR. As shown in Section 2.2, the space spanned by

factors Ft and Gt can be consistently estimated using PCA on a dataset in levels containing

both the I(1) and I(0) variables.

Note that (30) does not contain all the parameter restrictions of (7). It also does not

include lags of factors and lags of ∆X1
it and X

2
it. The main reason for such a specification

is the comparability with the FAVAR of BBE. In our empirical application we want to

keep the specification of the FECM the same as the FAVAR of Bernanke et al. (2005)

with only one exception: the error-correction term. This will allow us to evaluate the pure

partial effect of the error-correction mechanism on impulse response analysis. However,

we also present below the results with lags of dependent variables.

The FAVAR model is in this respect as follows:

∆X1
it = Λ1i∆Ft + Φ1iGt + v1it (32)

X2
it = Λ2i∆Ft + Φ2iGt + v2it (33)

This is essentially the FAVAR specification of Bernanke et al. (2005). (32) differs from

(30) in that it does not include the error-correction term. (33) differs from (31) by not

taking into account the restriction Λ2i = 0.

To provide prima facie evidence of the importance of the error-correction terms in

(30) we tested their significance with a standard t-test equation by equation. At the 5%

significance level, 63 out 77 equations have statistically significant αi. The average partial

R2 of these terms is 2.8%, while the maximum reaches 23.4%. These figures confirm the

importance of including the error-correction term in modelling variables that are originally

I(1), but are modelled in differences in FAVAR applications. The average size of the partial

R2 implies a limited partial contribution of the error-correction term to the goodness of

22



fit of the estimated equations. However, even in such circumstances omitting the error-

correction terms could lead to significant distortions in estimated impulse responses.

The space spanned by Ft and Gt is estimated by the principal components on the data

in levels (Bai, 2004). Our simulations reported in Section 5 give us confidence that this

space is estimated consistently. Our assumption of cointegration between Xit and Ft is

valid if the εit series is stationary. The panel unit root test (Bai and Ng, 2004) applied

to our dataset rejects the null of no panel cointegration between Xit and Ft. In addition,

the augmented Dickey-Fuller tests on individual εit largely reject the null, which leads to

conclude that the method of Bai (2004) is appropriate in our setting.12 As a robustness

check we provide below also results with factors extracted from I(0) data as in Bai and

Ng (2004).

A final note is appropriate concerning the estimation of the FAVAR. In the present ap-

plication, which serves to illustrate the method, we do not consider the potential dynamic

singularity in the variance-covariance matrix of stationary factors Gt. A more general

treatment is at present beyond the scope of this paper.

6.1 Monetary policy shocks

As described in section 4.3, the identification of monetary policy shocks is undertaken

using the approach of Bernanke et al. (2005) with only one modification that makes

the results obtained with the FECM directly comparable to those of the FAVAR. The

difference is at the stage of factor estimation. Namely, in order to capture cointegration

as in Bai (2004) we estimate the factors from the data in levels, while Bernanke et al.

(2005) estimate the factors from data transformed (if necessary) to I(0).13 This gives us

the estimates of the space spanned by r1 I(1) factors and r − r1 stationary factors. As in
Bernanke et al. (2005), the federal funds rate is treated as one observable factor and the

estimated factors are rotated accordingly. Because their method entails identifying the

monetary policy shocks from a stationary factor VAR, the first r1 nonstationary factors

are differenced. Identification of monetary policy shocks is then obtained from a VAR of

stationary factors.

Bai(2004) information criteria indicate r1 = 2. In the choice of the total number of

estimated factors r we follow Bernanke et al. (2005) and set it to 3. However, as in their

case, the main findings are robust to working with more factors. Including the federal

funds rate, the total number of factors is 4.

The basic results are presented in Figure 1. It contains the impulse responses for

the same set of variables as in Bernanke et al. (2005) obtained from the conventional

FAVAR model and the FECM model. They differ in the presence of the error-correction

term for the variables that are treated as I(1) in levels. Some variables are assumed to

12Results available from the authors upon request.
13Both approaches deliver similar estimates of monetary policy shocks. However, because the factors are

estimated on datasets of different order of integration, they are not numerically identical.
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be I(0). These are the interest rates, the capacity utilization rate, unemployment rate,

employment, housing starts, new orders and consumer expectations. For these variables

the FAVAR and the FECM also differ. Consistent with (31) the FECM for I(0) variables

excludes the I(1) factors. In the figure we additionally plot impulse responses obtained

with a more general FECM specification in which 6 lags of ∆Xit are added to the model

equations.

Figure 1: Impulse responses to monetary policy shock - FAVAR Vs FECM with factors
extracted from levels

What we observe is coherence in terms of the basic shape of the impulse responses

between the models. Quantitatively, however, the responses may differ significantly due

to the error-correction terms. The responses of the industrial production, the CPI and

wages are very similar. Quite significant differences are observed for money and the yen-

dollar exchange rate. The same is true for measures of consumption. It is worth stressing

that these differences are observed conditional upon a shock that accounts for only a

limited share of variance. Omission of the error-correction terms in the FAVAR model

can thus have an important impact on the empirical results. As we shall see below, in

the analysis of real stochastic trends the differences become even more pronounced in the

case of a shock that is a considerably more important source of stochastic variation in the

panel.

The impulse responses of I(0) variables are very similar across models. This means that

imposing the restriction that the differences of I(1) factors do not load to I(0) variables has

only a limited quantitative impact, which is consistent with the FECM specification of the

model. In the FECM the restriction is evident. The FAVAR that makes no distinction in

the structure of the loadings of factors to I(1) and I(0) variables such a restriction cannot

be directly determined.

Including endogenous lags to the FECM (green lines in Figure 1) confirms our basic
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findings that the omission of the error-correction term is the main source of differences in

the impulse responses between the FAVAR and the FECM model.

Figure 2: Impulse responses to monetary policy shock - FAVAR Vs FECM with factors
extracted from differences

As mentioned above, we also provide a robustness check of these results by estimating

the factors from stationary data. In this case the identified monetary policy shocks are

numerically identical to those in Bernanke et al. (2005). The results are presented in

Figure 2 where the I(1) factors are estimated by cumulating the first r1 factors estimated

from I(0) panel.

The results concerning the effect of omitting the error-correction term show that the

findings are relatively robust to the method of factor extraction. The main differences

are that the impulse responses for monetary aggregates and the exchange rate now show

a larger degree of similarity. The responses of industrial production, however, are now

significantly different. These results confirm the quantitative importance of the error-

correction term even if the conditioning shock is of limited importance for the overall

variability in the panel.

6.2 Stochastic productivity trend

In this section we provide the results of the stochastic trends analysis as described in

Section 4.4. The impulse responses to an identified permanent real shock are presented in

Figure 3. The top left panel contains the responses of the real permanent trend (factor),

the remaining variables are as above. Both the FAVAR model and the FECM contain six

endogenous lags,14 the only difference between the two models is the omission of the error-

14Robustness has been checked with respect to alternative specifications of the lag structure, namely
combination of one and three endogenous lags and lags of factors. Specifications with more than three
lags of factors were not considered in order to avoid overfitting. Becasue the model contains four factors,
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correction term in the FAVAR. As above, for the I(0) variables the distinction between

the models is the restriction that only stationary factors load to them.

The impulse responses are broadly in line with economic theory and comparable to the

responses of key US macroeconomic variables to the productivity shock as reported in the

DSGE model of Smets and Wouters (2007). Along the adjustment path the real factors

exhibits a hump-shaped response and after three years levels off to the new higher steady

state. Similar in shape are the positive responses of industrial production and measures

of real private consumption. As expected, prices decrease. This effect is considerably

larger in the FECM. The feature is exhibited also for other prices in the panel, but the

corresponding impulse responses are not presented in Figure 3. The responses of interest

rates have the opposite sign than those reported by Smets and Wouters (2007). In our

case, the interest rates gradually increase. While the short rate returns to equilibrium, the

effect on the 5-year return is positive, which implies a steeper yield curve. The responses

of money are negative and again considerably more so for the FECM. Consistently with

higher interest rates the dollar appreciates and more strongly so in the FECM. Consistently

with the negative responses of hours worked in Smets and Wouters (2007) also in our case

employment decreases slightly along the adjustment path and returns to equilibrium. Slack

in the labor market correspondingly implies also a negative deviation in the average wage

rate along the adjustment path. Also in this case the FECM yields a considerably stronger

effect than the FAVAR.

Table 5: Percentage of FAVAR responses outside the FECM confidence intervals
Variables Horizon

CI coverage 3 6 12 24 36 48 60 72 84 96
All 67 1.3 10.4 32.5 55.8 63.6 57.1 48.1 41.6 39.0 36.4

90 0.0 2.6 14.3 35.1 40.3 35.1 33.8 26.0 20.8 19.5
Output 67 0.0 0.0 5.6 22.2 33.3 27.8 22.2 16.7 11.1 11.1

90 0.0 0.0 0.0 5.6 5.6 5.6 5.6 5.6 5.6 5.6
Employment 67 0.0 0.0 29.4 58.8 70.6 58.8 35.3 23.5 23.5 17.6

90 0.0 0.0 0.0 29.4 41.2 17.6 17.6 11.8 5.9 5.9
Consumption 67 0.0 0.0 0.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0

90 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Orders 67 0.0 0.0 0.0 100.0 100.0 100.0 50.0 0.0 0.0 0.0

90 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Exchange rates 67 0.0 0.0 50.0 75.0 75.0 50.0 25.0 25.0 25.0 25.0

90 0.0 0.0 25.0 50.0 50.0 25.0 25.0 25.0 25.0 25.0
Stock prices 67 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 20.0

90 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Money 67 0.0 33.3 55.6 77.8 77.8 88.9 88.9 88.9 77.8 77.8

90 0.0 0.0 33.3 66.7 66.7 77.8 77.8 77.8 77.8 66.7
Prices 67 50.0 50.0 50.0 100.0 100.0 100.0 100.0 100.0 50.0 50.0

90 0.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0
Wages 67 0.0 20.0 60.0 100.0 100.0 93.3 93.3 93.3 80.0 66.7

90 0.0 6.7 26.7 80.0 93.3 93.3 86.7 53.3 33.3 26.7

More detailed statistics across different categories of variables and overall are given in

Table 5. It reports the percentage of variables (out of 77 I(1) variables in the panel) for

which the impulse response obtained with the FAVAR model lie outside the confidence

including up to three lags in addition to contemporaneous terms implies sixteen terms with factors in each
equation. Results obtained with alternative lag structures of the FECM and teh FAVAR show a great
degree of similarity to the results presented in Table 5 and Figure 3. Results are available upon request.
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Figure 3: Impulse responses to real stochastic trend - FAVAR Vs FECM

interval of the FECM impulse responses at different horizons. Taking into account all

77 I(1) variables, we observe that within the first 6 months after the shock only a lim-

ited number of impulse responses differ significantly. At the 12-month horizon roughly a

third of impulse responses differ at 67% confidence and 14% at 90%. For the three-year

horizon, these shares increase to 64% and 40% respectively. With further increases of the

time horizon, the shares of statistically significant responses decrease, which is a logical

consequence of increasing width of the confidence intervals.

Across categories of variables, we observe the largest shares of statistically significant

differences in the impulse responses for prices, monetary aggregates, exchange rates, em-

ployment and wages. It is only for measures of output and private consumption that we

see that neglecting cointegration between variables and factors has only a limited effect

on the impulse responses analysis. For the remaining variables significant differences are

frequent and quantitatively important.

7 Conclusions

In this paper we analyse the implications of cointegration for structural FAVAR mod-

els. Starting from a dynamic factor model for non-stationary data, we derive the factor-

augmented error-correction model (FECM), its moving-average representation, and discuss

estimation of the model parameters and of the impulse response functions, relying on the

asymptotic theory developed in Bai (2004).

Our simulation experiments indicate that principal component based estimators (with

a mixture of I(1) and I(0) factors) can recover very well the factor space. Moreover, using

the estimated factors in the factor VAR replicates accurately the true factor responses.
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Finally, inserting the estimated factor responses in the FECM, in combination with the

estimated FECM parameters, delivers estimated structural impulse responses very close

to the true ones.

Structural analysis in the FECM can be conducted as in structural VARs. The most

common approach is to use contemporaneous restrictions to identify the structural shocks.

To illustrate this method and compare the outcome with the FAVAR specification, we

adapt the Bernanke et al. (2005) identification of monetary policy shocks to the FECM

framework. While overall qualitatively similar in comparison to Bernanke et al. (2005),

the responses to monetary policy shocks of some variables can be quantitatively quite

different.

The differences are even more pronounced under a second identification scheme, based

on the use of long run restrictions and implemented to identity a permanent productivity

shock. We provide the first analysis of this class of restrictions in the context of cointe-

grated panels. Accounting for cointegration has important effects on the impulse responses

to this shock, and the FECM generates responses broadly in line with the theoretical DSGE

analysis of, e.g., Smets and Wouters (2007).

The relevance of the error correction terms to avoid biases in FAVAR responses to

shocks are also confirmed by means of simulations experiments. Simulation results show

that the differences between the impulse response functions obtained by the FECM and

the FAVAR are more pronounced the higher is the strength of the error-correction and the

higher is the cross-section dimension of the panel. The effect of the time series dimension

is less pronounced.

Overall, these results suggest that the FECM that exploits the information in the levels

of nonstationary variables to explicitly model cointegration provides an empirically impor-

tant extension of classical FAVAR models for structural modelling. Other identification

schemes such as sign restrictions could be also adopted in a FECM context. A detailed

analysis of these is beyond the scope of this paper but provides an interesting topic for

further research.
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