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ABSTRACT 

Market Outcomes and Dynamic Patent Buyouts * 

Patents are a useful but imperfect reward for innovation. In sectors like 
pharmaceuticals, where monopoly distortions seem particularly severe, there 
is growing international political pressure to identify alternatives to patents that 
could lower prices. Innovation prizes and other non-patent rewards are 
becoming more prevalent in government's innovation policy, and are also 
widely implemented by private philanthropists. In this paper we describe 
situations in which a patent buyout is effective, using information from market 
outcomes as a guide to the payment amount. We allow for the fact that sales 
may be manipulable by the innovator in search of the buyout payment, and 
show that in a wide variety of cases the optimal policy still involves some form 
of patent buyout. The buyout uses two key pieces of information: market 
outcomes observed during the patent's life, and the competitive outcome after 
the patent is bought out. We show that such dynamic market information can 
be effective at determining both marginal and total willingness to pay of 
consumers in many important cases, and therefore can generate the right 
innovation incentives. 
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1 Introduction

Innovation is the main engine of economic growth, and the consensus among economists, begin-

ning with Arrow (1962), is that the positive externalities from R&D imply under-investment

relative to the socially optimal level. For example, a recent study by Bloom et al. (2013)

estimates that the gross social rate of return to R&D substantially exceeds the private return,

with the socially optimal R&D level being over twice as high as the currently observed R&D

expenditure. A central policy question, therefore, is how one can best devise a mechanism that

encourages innovation. This paper contributes to the recent literature focusing on designing

prizes that infer demand from various market signals, and use that information to design a re-

ward at least partially based on a cash prize. We show that, in a wide variety of environments,

social welfare is best served with a hybrid system that incorporates market power but then

offers prizes in the form of a buyout of patent rights over time.

Mitigating patent rights as a way to improve welfare fits with current concern over

the patent system. Concerns about the potentially deleterious effects of patents have been

voiced in both academic and policy debates. In a prominent book, Jaffe and Lerner (2004)

conclude that in the U.S. patents have become “sand rather than lubricants in the wheels of

American progress.” Some have even gone so far as to recommend more draconian reductions

in permissible patenting (Boldrin and Levine, 2008; Bessen and Maskin, 2009).

The buyout system replaces some of the rents that are obtained through monopoly rights

with a prize. If the planner cannot discern the quality innovations, pure prizes are difficult

to implement because the value of the prize cannot be tied to the surplus generated by the

innovation as the demand is unknown by the policy maker. Even if the planner could get

good information about the number of units sold at a given price, for instance by observing

units sold under perfect competition, this is insufficient to construct the inframarginal values

of consumers, which is essential to estimating the full value of an innovation. The hybrid

mechanisms we consider can generate greater innovation incentives and increase social welfare

if the policy maker has less than perfect information about market demand.

Our approach addresses the issue of needing to estimate inframarginal values. In order
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to accomplish this we stress the dynamic approach to innovation rewards, since one point on

the demand curve will generally be insufficient for reconstructing demand. In contrast with the

previous literature, we assume that the policy maker can learn over time about market condi-

tions by observing price and quantity realizations that arise from the choice of the innovator

and the underlying demand function. As information about the market demand is revealed,

the reward mechanism that maximizes social welfare may change according to the revealed

information. Eventually the policy-maker can resort to allowing perfect competition, which

generates additional information about the demand for the innovation.

We consider the possibility that innovations may generate a variety of different demand

curves, and that the market signals coming from the sales of those products may be manipulable

by the innovator. In all but the least-manipulable environments we study, the optimal policy

begins with market power for the innovator, and gradually moves toward competitive pricing

as information is generated by the experience of the innovation. We show that even in the most

manipulable environments, where the true price that gave rise to the observed sales can be

completely obscured by the innovator, the optimal mechanism involves some reward through a

contingent prize near the end of the period in which the innovator is rewarded. The optimal

policy is a sort of hybrid between a patent and a prize in the sense that it rewards innovators

through prices above marginal cost initially, but then moves toward a reward that is focused

on a cash prize and prices closer to, or reaching, marginal cost.

The results are of interest both to the design of intellectual property policy and private

philanthropic organizations who use resources to reward innovators through prizes. From the

policy maker’s perspective, the difficulty introduced by limited information about cost and

demand conditions provides a foundation for why policy makers may wish to grant temporal

monopoly rights (i.e. patents) to innovators. It has long been argued that rewards through

monopoly profits (as guaranteed by patents) are tightly connected to the surplus generated by

the product, and therefore provide the appropriate incentives for an innovator who knows the

demand much better than the policy maker. This idea was originally formulated by Mill (1848)

who wrote that patents are an effective reward “because the reward conferred by it depends upon

the invention’s being found useful, and the greater the usefulness, the greater the reward,” and is

at the heart of mechanism design approaches to patent policy like the one in Scotchmer (1999).
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In the sense that the optimal policies we study are a hybrid between a patent and a prize, this

logic remains in effect; the planner simply tries to mitigate the social cost of market power

through buyouts in some cases. The buyout is facilitated by information from data in much

the same way that the impact of a merger on consumer surplus is assessed through estimation

of an econometric model.

Our results are also of particular interest for philanthropists who have entered the busi-

ness of rewarding innovators. Qualcomm and Nokia currently offer multi-million dollar prizes

for the development of affordable devices that can recognize and measure personal health infor-

mation. Similarly, the Gates Foundation has offered an innovation award to immunize children

in the poorest parts of the world. In recent academic and policy debates, it has been recom-

mended to link prize rewards to specific market outcomes. For example, the Center for Global

Development advised that philanthropists willing to sponsor the development of a malaria vac-

cine pay the innovator 14 dollar for each of the first 200 million treatments sold at 1 dollar to the

recipients (Glennerster, et al. 2006).1 Our results suggest one approach to this philanthropy:

use resources to buyout patents that have a track record of success.

We show the sense in which the details of this buyout approach are related to the phil-

anthropists’ and policy makers’ concerns about the veracity of the market signals that are

observed. In some cases, such as pharmaceuticals, quantity may be relatively well measured,

but prices may be more opaque and companies have an incentive to manipulate their prices in

order to obtain higher reimbursements through public funding.2

One can alternatively view our model as describing some policy choices for a regulator,

antitrust or otherwise, who faces firms with monopoly granted through IP. The FDA already

is involved in the administration of ex post rights for pharmaceuticals through the orange

book program and the rights granted therein. Similarly, the Australian government offers

1Similar ideas have appeared in AgResult, an initiative launched by the governments of Australia, Canada,

Italy, the United Kingdom, the United States, the Bill and Melinda Gates Foundation and the World Bank to

mitigate R&D underinvestment in tropical agriculture. A key feature of the initiative is to focus on incentive

schemes that link payments to demonstrated results.

2For example, in March 2001 the State of Wisconsin reached a $4.2 million settlement agreement with Merck,

Schering and Warrick Pharmaceuticals in litigation charging the companies with defrauding the Wisconsin

Medicaid Program. Wisconsin alleged that the pharmaceutical manufacturers manipulated wholesale prices

information, knowing that Medicaid would rely on these prices to determine Medicaid reimbursement.
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co-payments to selected drugs to mitigate monopoly distortions. More generally, Hovenkamp

(2004) describes the sense in which antitrust policy might respond to growing IP protection.

We develop a model with discrete time and infinite horizon where the planner commits

to a reward structure that depends on the history of prices and quantities realizations observed

over time. The planner’s problem in designing an appropriate prize is observing total benefit

of the innovation. As in Kremer (1998), this requires information about the quality of the

innovation; Weyl and Tirole (2012) point out that this problem is magnified by the need to

discern the willingness to pay of non-marginal consumers. Our mechanism attacks both issues.

Our first result is that, in the absence of demand manipulation, the first best can be approached

arbitrarily closely in a large set of demand functions that includes those typically used in the

industrial organization literature. We also show that the result generalizes to introducing noise

in the demand and to allowing the demand to shift following a stochastic Markov process as in

Battaglini (2005). An implication of this result is that, in the absence of demand manipulation,

innovation can be efficiently rewarded without patents. This is because information can be

extracted from a competitive market in which the product is sold at marginal cost. The

policy maker can generate price variation taxing the firms and shifting their marginal costs of

production. This market outcome information can then be exploited by the policy maker to

implement the first best. Because the value of an innovation comes from both marginal and

inframarginal consumers, monopoly power without price discrimination may deliver far less

reward than the value of the innovation. In Kremer (1998), this is addressed by paying a fixed

proportion above the monopoly value of the innovation. Here the planner directly addresses

this issue by learning about inframarginal customers, and then can pay a reward that acts as

if the monopolist had the opportunity to price discriminate.

Our findings also indicate that policy-makers may design an innovation reward systems

exploiting structural demand estimation techniques. Typically, structural demand studies iden-

tify the primitives of a model from local price variation and exploit the estimated parameters to

conduct out-of-sample welfare analysis (Figure 1 case A). In our contest, the policy-maker can

request the innovator to generate price variation that will be used to identify the underlying

demand curve of the technology and to compute a patent buy-out transfer that compensates

the innovator for the surplus generated. By keeping the price variation concentrated around
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the marginal cost of production, the policy maker can limit the loss of surplus associated with

learning to a minimum (Figure 1 case B).

A B

Figure 1: Market Outcomes and Demand Identification

We then investigate the case in which the innovator can manipulate demand. In keeping

with the pharmaceutical price manipulation example, we assume that quantity is observable,

while price may not be. We show that it is crucial to distinguish between the case in which

demand manipulation is possible after the buyout takes place and the case in which post-buyout

demand is non-manipulable. We show that pre-buyout manipulation, even if costless, may be

ignored as long as manipulation after buyout it is not possible. This is because the planner

can generate price variation after the buyout to learn the demand and to punish the innovator

in the case of manipulation. This implies that market outcomes are relevant even after the

buyout, because they are useful to detect and avoid manipulations.

The case in which the planner cannot generate price variation after the buyout is more

complicated. We consider the case in which after the buyout the patent is sold in a competitive

market and neither the planner nor the innovator can manipulate this outcome. We show

that in this case, as long as pre-buyout manipulation is costly, the planner can construct a

buyout scheme that generates the same R&D incentives as a patent and increases total welfare.

Intuitively, the planner can induce the innovator to reveal the true monopoly profits by requiring

a stream of pre-buyout outcomes that are too costly to manipulate.

Finally, we characterize the optimal mechanism when price manipulation is costless for
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the innovator. We show that even in this case the optimal mechanism differs substantially from

a patent. It is optimal for the planner to induce the innovator to produce quantities that are

above the monopoly level and the output is larger for innovations generating lower surplus.

The paper is organized as follows. Section 2 reviews the related literature. Section 3

presents the baseline model. Section 4 examines the optimal policy in the absence of demand

manipulation. Section 5 introduces costly demand manipulation. Section 6 studies the opti-

mal mechanism in the presence of costless demand manipulation. Section 7 summarizes and

concludes. All the proofs are in Appendix 1.

2 Related Literature

This paper is connected to various strands of the literature on the economics of innovation.

In an influential paper, Kremer (1998) suggests a buy-out mechanism linked to an auction to

incentivize research and maximize welfare. The role of the auction is to reveal information

to the planner about the private value generated by the innovation. Innovation incentives are

maximized because the planner would pay for the patent the private value times a fixed markup

that compensates for the difference between social and private surplus. Consumer welfare is

also maximized because the innovation would be placed in the public domain once acquired by

the planner. An important assumption underlying the buyout scheme suggested by Kremer is

that the competitors of the innovator know the value (and the cost) of the innovation and are

willing to take part to the auction. In our model, we depart from this assumption and assume

that only the innovator knows how valuable an innovation is.

Wright (1983) and Shavell and Van Ypersele (2001) provide a comparison of prizes and

patents as mechanisms to incentivize innovation in a static framework. Chari, Golosov and

Tsyvinski (2012) compare prizes and patents when the planner can observe market signals

over time. Most of their analysis is under the assumption that both the innovator and his

competitors know the value of the innovation as in Kremer (1998). Their main finding is that

patents are necessary if the innovator can manipulate market signals. In our model we do

not restrict the planner to use either patents or prizes and we consider a large set of reward

structures that depend on the quantity and prices practiced by the innovator. Weyl and Tirole

(2012) study the optimal reward structure in the presence of multidimensional heterogeneity
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and observable market outcomes. In a static framework, they show that the optimal policy

requires some market power but not full monopoly profits. Such a policy is similar to Mitchell

and Moro (2006), who study a planner who trades off deadweight loss against over-transferring

to a group that "loses" from elimination of the distortion generating deadweight loss. Our

setup differs from these models because we introduce dynamics and allow the innovator to

manipulate market outcomes.

Scotchmer (1999) studies the optimal mechanism to reward innovation when the planner

offers a menu of patents that differ in length and application fee. She shows that if market

outcomes are not observed, then in the presence of asymmetric information on the cost and

benefit of research, patent renewal mechanisms are optimal in the sense that every incentive

compatible and individually rational direct revelation mechanism can be implemented with

a renewal mechanism. Cornelli and Schankerman (1999) characterize the optimal innovation

mechanism in a model with moral hazard and adverse selection when innovators have unob-

servable productivity parameters. As in Scotchmer (1999), the planner offers the innovator a

menu of patents that differ in length and application fee. They show that the optimal patent

scheme is typically differentiated and can be implemented through menu of patent renewals.

Hopenhayn and Mitchell (2001) and Hopenhayn, Llobett and Mitchell (2006) study the

optimal patent design when innovation is cumulative and each discovery is a building block to

future innovations. Hopenhayn and Mitchell (2001) consider the case in which idea quality is

private information and there are two technology generations. They show that to maximize

innovation incentives, patents must vary in breadth, i.e. the policy maker needs to vary the

set of products that at any given time may be prevented by the patent holder. Hopenhayn,

Llobett and Mitchell (2006) study a dynamic framework with multiple cumulative innovations

and private information about the quality of ideas and R&D investments. They show that

in such environment the optimal mechanism is a patent buyout scheme where the innovator

commits to a price ceiling at which he sell his rights to a future inventor.

3 The Model

Time is discrete and the horizon is infinite. Each innovation is characterized by an ex-ante cost

of creating the innovation,  ∈  ⊂ R+, and a demand function  =  ( ) that is twice
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continuously differentiable in the price variable. Let   0 be the minimum price at which

 ( ) = 0. We assume that  ∈ Θ a compact subset of R , and that  is continuous

in . To ensure the concavity of the static profit function, we assume that  ( )  0 and

 ( )+ ( )  0 for each  ≥ 0 The known marginal cost of production is normalized
to zero. Demand and cost parameters,  and  are private information for the innovator and

are distributed according to a smooth probability density function ( ) that is known by the

planner.

We assume that the planner observes perfectly the quantities in each period but the

innovator can manipulate the price observed by the planner. Specifically, he can make the

planner observe b by sustaining a cost  (b ) with  ( ) = 0. Most of our analysis will

focus on two polar cases: (i) no manipulation where

 (b ) =∞ if b 6= 

and (ii) costless manipulation where

 (b ) = 0 for all b.
Let us indicate with  ∈  the public history at time , that can be defined recursively as

 = {−1 } where  = ( b) is the information revealed in period  and 0 = . Thus

 ∈ R2+  the set of public histories at time  is the Cartesian product ( times) of the set of
observable price quantity pairs.

The planner designs a reward schedule that in each period transfers to the innovator a

sum, () that depends on the history  ∈  The planner has also the option to set up

a non-manipulable irreversible competitive market in period  + 1 The switching time may

depend on the history, and can be infinite (i.e. switching to competition may never occur).

A strategy of the innovator is a sequence of pair of prices (b ) for each period  that

satisfies the constraint that prices are set to zero after switching has occurred. Formally, a

strategy for the innovator is an infinite sequence of price pairs ((b ))=123. Let  ∈ 

denote any such generic strategy and  denote the set of all possible strategies.3 The function

3Note, that the innovator’s strategy is formed upon observing the planner’s switching policy, and that the

planner’s switching policy affects the set of strategies for the innovator.
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 () captures the time period in which the planner’s policy calls for a switch to the competitive

and non-manipulable regime. This time is deterministic from the perspective of the innovator

since it depends only on his strategy. In Appendix 2 we provide a recursive definition of  ()

given the planner’s policy function.

Then the innovator’s maximization problem is

max
∈

 ()X
=1

−1 ( ( ) + ()−  (b )) + ∞X
= ()+1

−1() (1)

To simplify the notation, we leave the relationship between the switching time and the strategy

of the innovator implicit and indicate  () as  in the remainder of the paper.

Let us indicate the optimal revealed and actual price for period  with b∗ () and ∗ ()

and with ∗ () the public history revealed by this optimal equilibrium play. Investment in

innovation takes place if the net present value of the profits of the innovator (1) exceeds . Let

us indicate with Θ∗() the set of types for which this condition is satisfied.

The social surplus (net of manipulation costs) in the product market if the planner

chooses functions {}=123 and  is equal to:

 () =

X
=1

−1 [(∗ () )−  (b∗ () ∗ ())] + ∞X
=+1

−1(0 )

with

( ) =  ( ) +

Z ∞



 ( ) 

The social planner chooses functions  and  (taking the optimal strategy of the innovator

as given) to maximize the expected total social welfare created by the innovation:

max


Z


Z
∈Θ∗()

[ ()− ]( )

The first best can now be defined formally: in the first best it holds that  = 0 for all  ≥ 1,
the innovator does not distort the observed price (b = ), and the innovation is developed if

and only if

 ≤
∞X
=1

−1(0 )

The first best can be easily implemented by the planner if  is known. To do so, the planner

transfers the entire surplus to the innovator if he observes the competitive quantity and punishes
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the innovator if a different quantity is observed (i.e.  = (0 ) if  =  (0 ) and  = −∞
if  6=  (0 )).

The functions  and  allow the planner to implement a number of different reward

mechanisms. We provide some examples below.

Patents

When () = 0 and  =  the planner offers a -period patents that generates innova-

tion incentives through product market profits. The setting also accommodates the payment of

renewal fees. For example we can introduce a fee,  , to be paid at time 1  , with expiration

of the patent in the absence of payment:

() =

½ − if  = 1 and b1  0
0 else

 =

½
 if b1  0

1 else


Buyouts

The following specification

() =

½
0 if   

 if  = 

 = 

captures a simple buy-out scheme in which the planner commits to buy the patent after 

periods at a pre-specified amount . The setting also allows to implement more general

buyout mechanisms where transfer price  and acquisition time  may depend on observed

market outcomes.

4 Optimal Mechanism in the Absence of DemandManipulation

In this section we characterize the optimal mechanism when the government can dictate prices

and the innovator cannot manipulate demand, i.e.  (b ) =∞ if b 6= .

To develop the intuition, let us consider a simple setting where the demand is linear

 = 1−2. In this simple environment the planner can identify the intercept of the demand
by inducing a price equal to zero in the first period so that 1 = 1. In the second period he
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can induce 2 =   0 and identify 2 by inverting 2 = 1 − 2. This means that it takes

only two periods for the planner to learn the demand function and the surplus generated by

the innovation. Notice that the planner can set  arbitrarily close to zero and minimize the

deadweight loss generated by above marginal cost pricing. If the entire surplus generated by

the innovation is transferred to the innovator, innovation incentives are set at the first best

level.4

The above example suggests that transfers that depend on market outcomes can be

powerful mechanisms to incentivize innovation. The planner finds it optimal to use market

information in a truly dynamic way that allows him to approximate the complete information

(first best) solution. In particular, by conditioning rewards on quantities and prices, the planner

can obtain the information required to trace-out the demand curve. Once the demand is known,

the surplus generated by the innovation is transferred to the inventor to maximize his innovation

incentives. In the linear case, the demand can be learned by observing only two data points: the

quantity sold at marginal cost and the quantity sold at any strictly positive price. Exploiting

this feature of the demand, the planner will learn the demand by inducing the innovator to sell

at an arbitrarily small price. This makes the deadweight loss negligible and allows the planner

to approximate the first best solution.

The result obtained in the simple linear setting suggests that in a dynamic environment

the planner can substantially improve welfare and innovation incentives relative to patent

systems or other static multidimensional screening mechanisms as the one characterized by

Weyl and Tirole (2012). We now turn to the question of how general the result is. We start

with the definition of an analytic demand function.

Definition 1 (Judd, 1998) A demand function ( ) is analytic on  if and only if for every

 ∈  there is an  and a sequence  such that whenever | − |   :

( ) =

∞X
=0

( − )

4A transfer that approximates the first best is 1(1) = 0 for all 1; 2(2) = ()+(0) if 2 = {1 0 2 }
and 2(2) = −∞ otherwise; () = (0) for   2 if  = {1 0 2  3 0   0} and () = −∞
otherwise.
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We generalize the result obtained for linear demands to analytic functions.

Proposition 1 If ( ) is analytic on [0 ] ⊂ R, then the first best can be approached arbi-
trarily closely.

Our proof builds on Aghion et al (1991) who show in the context of an uniformed decision

maker that when a payoff function is analytic the approximate derivative at a single point can

be used to estimate the global behavior of the function. We show that the demand function

can be approximated by collecting price and quantity observations over a small neighborhood

around a single price. These observations are used to approximate the derivatives of ( )

around that price and to learn about the global behavior of ( ).

By choosing a smaller and smaller neighborhood around  = 0, the planner minimizes

the welfare losses associated with learning and increases the accuracy of the estimates of the

derivatives of ( ). In the proof we show that exploiting a step-wise analytic continuation

technique the planner can approach arbitrarily closely the first best even if ( ) can be

expanded in a power series locally but not globally.

Proposition 1 substantially generalizes the result for linear demands. Polynomials, expo-

nentials, logarithms, power functions and a number of other demand functions that are typically

used in applied theory are analytic functions. Fox and Ghandi (2011) show how analyticity

of the market demand is a property of various well know demand models used for structural

estimation as the linear random coefficients model, the almost ideal demand system of Deaton

and Muellbauer (1980) and the mixed logit of Berry, Levinsohn and Pakes (1995).

4.1 Implementation

The above result suggests that variation in prices and quantities may provide useful information

for a planner who aims to maximize welfare by providing innovation incentives and minimizing

distortions in the product market. For a large class of demand functions, we have shown that a

policy maker can learn the surplus generated by the innovation and minimize market distortions

by generating a price variation that is close to the marginal cost of production. This allows

the planner to implement an outcome arbitrarily close to the first best.
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The most intuitive way to generate this price variation is by awarding the innovator a

patent that confers him the exclusive right to sell the product and to commit to a patent buyout

scheme whose reward depends on the observed market outcomes. In other words, the planner

can dictate to the patentee a price path and commit to buy-out the patent if the innovator

follows the path with a reward that depends on the quantities sold. The computation of the

reward resembles structural estimation studies which typically estimate the primitives of a

model from local price variation and exploit these estimates for out-of-sample welfare analysis.

An implication of our result is that policy-makers may affect innovation incentives by designing

reward systems that exploit these techniques.

In the context of the malaria vaccine, the Center for Global Development proposes to

reward the innovator with a prize if 200 million treatments are sold at 1 dollar to the recipients.

The suggested prize is 2.8 billion (14 dollars per treatment). A possible concern with such

scheme is that vaccine development may inefficiently not take place if such reward is too small

compared to the social welfare generated by the vaccine. An implication of Proposition 1 is

that this prize scheme can be improved by requesting the successful innovator to sell the 200

million treatments at different prices, even if the overall price level remains close to the 1

dollar benchmark. This is because the market outcomes generated by such price variation will

allow the sponsor to obtain an estimate of the product market-surplus generated by the new

vaccine. Such estimate will provide useful guidance in determining the reward and avoiding

under-payment (or overpayment) for the innovation.

But buyouts are not the only way to implement the first best. An alternative approach

is to start from a perfectly competitive market in which the product is sold at marginal cost.

The price variation can then be generated by the planner taxing the firms and shifting their

marginal costs of production. The information generated in this way will be the same as the

one generated by the buyout scheme and can be exploited by the planner to implement the

first best. An implication of this alternative implementation method is that market power is

not essential to solve the asymmetric information problem between the policy maker and the

innovator. In other words, for a large class of demand functions the socially optimal innovation

level can be reached through minor perturbations of a competitive market.
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4.2 Extensions and discussion

In Appendix 2 we describe a number of extensions of our baseline model.

First, we study the impact of shifts in the demand. Following Battaglini (2005) we

assume that the demand has two states high () and low () with  ( ) ≥  ( ) for

each  and that transition between states follows a Markov process. We show that also in this

setting, if demand functions are analytic the planner can maximize innovation incentives by

approximating the first best outcome. To understand the intuition for the proof consider the

case of linear demand. The planner can identify the intercepts of the two demand functions by

dictating a price equal to zero and maintaining it until two different quantities are observed.

Then he will set  =  until two different quantities are observed. With two observations along

each demand line the planner learns the demand and welfare functions. By setting  arbitrarily

close to zero, the dead weight loss generated by above marginal cost pricing is minimized and

the first best is approached arbitrarily closely. An interesting feature of this result is that the

optimal incentive scheme is non-stationary and has unbounded memory even if the demand

shifts follow a Markov process and the relevant economic environment has a memory of only

one period.

Second, we consider the case in which the demand is observed with error and assume that

 = ( )+ where  is a mean zero i.i.d. noise over the support [− ]. Even in this case,
analyticity of the demand function is sufficient to approach the first best arbitrarily closely. In

the linear demand case, the planner can use the following two step scheme. In the first stage

the planner induces the firm to charge  = 0 and obtains a sample of  quantities for this

price. Then he sets a price equal to  and obtains another sample of  quantities. The weak

law of large numbers guarantees that, for  large enough, the sample averages are unbiased

estimates of (0 ) and ( ) and therefore the demand parameters can be learned by the

planner. While the law of large numbers guarantees that the estimate is unbiased, the variance

of the estimate depends on the price variation and is smaller when the variation is larger. This

is not an issue in our setting because we assumed that the planner and the innovator are risk

neutral. Even in the case of risk aversion, the variance can be made arbitrarily small by letting
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the sample size,  , be very large.5

We then describe an environment in which Proposition 1 may not generalize that is the

case in which demand grows over time. In such setting, when the demand does not grow too

quickly, the planner will be able to approximate each level of demand and approach the first

best. Nevertheless, the planner may not have enough time to learn the various demand levels

when growth is fast and the first best may not be approached.

It is important to notice that, in general, Proposition 1 does not hold in settings where

structural demand identification is not feasible. When the demand is not analytic, local price

variation cannot be exploited to identify to estimate the global behavior of the demand function.

In the same way, when demand grows very fast it may be unfeasible to collect the price quantity

observations necessary to identify demand. These issues are typical in structural modeling,

where it is assumed that the structural parameters identified through local data variation can

be used to perform counterfactuals or policy simulations (Reiss and Wolak, 2007). From this

perspective, Proposition 1 does not require extra assumptions to those typically imposed in

structural industrial organization studies.

5 Demand Manipulation

The analysis in Section 4 focused on the case of no demand manipulation. In this Section we

consider the case in which the innovator can manipulate the market outcomes.

5.1 Buyouts and Price Variation

In the general model described in Section 3, the innovator can affect the market outcomes and

manipulate market signals received by the planner up to period  but not after  . Our model

also assumes a constant competitive market outcome from  + 1. A natural interpretation of

this assumption is that the patent is acquired by the planner at  , so in the following we will

refer to  as the buyout time.6

5 In practice, the policy maker may not be able to collect a very large dataset. This introduces a trade-off

between price distortion and precision of out-of-sample estimates. For a discussion of additional challenges faced

in structural demand estimation see Chintagunta and Nair (2011).

6Noticed that in the previous Section we ignored  ( ) and focused on (). This is because, in the absence

of price manipulation the planner can generate a competitive outcome using only () by punish the innovator

if  6= 0.
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For a moment, let us depart from that model and assume that the planner (but not the

innovator) can affect market outcomes after  . In this setting the first best can be approximated

as in the case in which manipulation is not possible. This is the case both if manipulation is

costly and if it is costless. To see this, consider the case in which the demand is linear.

Then the planner can acquire the patent in the first period, sell the innovation at 1 = 

and 2 = 0 and reward the innovator in the second period. In other words, the planner can

appropriate the patent, generate the market outcomes required to learn the surplus generated

by the innovation and then compensate the innovator. Alternatively, the planner can induce

the innovator to generate the market outcomes necessary to learn the surplus and use additional

post-buyout market outcomes to detect demand manipulations. For example, the patentee can

be required to sell at 1 =  and 2 = 0 in the first two periods. The planner can then acquire

the patent and practice 3 =  and 4 = 0 in the third and fourth periods. If the outcomes

generated by the innovator coincide with those generated by the planner, the innovator will

be rewarded with a transfer that approximates the surplus generated. If there are differences

between market outcomes generated by the innovator and those generated by the planner, the

innovator receives no transfer.

The basic insight is that pre-buyout manipulation, even if costless, can be avoided as long

as manipulation after buyout is not possible and the planner can generate price variation after

buyout to identify the demand and detect manipulation. Therefore, for manipulation to distort

away from the first best, it has to be the case that either (i) manipulation by the innovator

is feasible both before and after the buyout or (ii) the ability of the planner to generate price

variation after the buyout is limited. In the next Section we study case (ii) from above.

5.2 Post-Buyout Competitive Outcome

We now consider the case in which after the buyout time  the innovation is sold in a com-

petitive market and that neither the innovator nor the planner can affect (manipulate) this

outcome. The quantity of product sold can be perfectly observed by the planner but the price

and hence the revenue can be distorted by the innovator, as described in Section 3. This may

arise, for example, when the innovator awards secret discounts to his consumers.

To provide a micro-foundation of the manipulation cost  (b ) we assume that the
16



innovator can convince the planner that he is selling at b   by sustaining a cost equal

to b((b− )( )) with b being twice differentiable, and b  0, b00 ≥ 0. Intuitively, the

planner observes sales equal to b( ) whereas the true revenue is equal to ( ) and

(b− )( ) are fake revenues undermined by secret price discounts. A simple justification

of a positive manipulation cost is that the secret discounts offered are wasteful, that is they cost

more to the innovator to offer than they are worth for the consumers. Alternatively, there may

be a difference between the cost of external and internal financing. As argued by Aghion and

Tirole (1994), for innovative firms this difference arises naturally because of the informational

asymmetries involving new products and technologies. In this case, to convince the planner that

sale revenue is equal to b( ) the innovator will have to borrow (b− )( ) sustaining

a cost of b ((b− )( )).7 A simple functional specification for the manipulation cost is

 (b− )( ), if   0 there is a positive cost of manipulating sales.

Proposition 2 A patent of length  is Pareto dominated by a patent buyout scheme that

depends on market outcomes.

The proposition shows that for any patent of length  the policy maker can design a

buyout scheme that generates greater welfare than the patent. The planner commits to buy

out the patent at a price that depends on the market outcomes observed during the first b  

periods. The buyout time b is chosen to allow the planner to learn about the value of the

innovation and to remove the incentives of the innovator to manipulate sales. At this optimal

time the marginal cost of manipulating sales for b periods is equal to the marginal benefit of
obtaining extra buyout reward.

In the linear case the optimal buyout time b is pinned down by the formula

 − 

1− 
 =  (2)

that indicates how patent buyout takes place sooner as  gets larger. This result is reminiscent

of Chari et al (2012) who consider patents and prizes, and show that shorter patents are more

likely to be optimal when manipulation costs are higher, but longer patents need to be used

7Another microfundation of the cost  is that with some probability the planner will detect the manipulation
and the innovator will pay a fine that depends on the fake proceeds.
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when manipulation costs are lower. In the next Section, we show that even with costless

manipulation of the price signals (when an infinitely lived patent is implied by (2)), one can

do better by considering mechanisms that are different from both prizes and patents.8

With additional assumptions on the relationship between surplus and monopoly profits,

innovation incentives can be increased even more. Take for example the setting of Weyl and

Tirole (2012) with ( ) = ( 

) where  = (),  is the monopoly price,  is the

quantity sold at marginal cost price and () is a function known to the planner. In their

setting there is proportionality between monopoly profits (1) and surplus at zero price

(0). By inducing truthful revelation of monopoly profits, the buyout allows the planner

to back out the surplus and to transfer the entire surplus to the innovator from period b + 1.
The innovator will obtain the monopoly profits before the buyout and the entire consumer

surplus for the post-buyout period. In this way consumers enjoy greater surplus than the case

of a  -period patent and the innovator has greater innovation incentives. In particular, the

outcome resembles the first best after the buyout, because there is marginal cost pricing and

all the surplus is transferred to the innovator.9

One may speculate that when b (b ) = 0 patents cannot be improved upon. This is not
the case, as the next proposition shows.10

Proposition 3 When b (b ) = 0 there is a per unit subsidy level  that Pareto dominates

patents that last forever.

8 It is important to note that there are two important differences between the setup of Chari et al (2012) and

ours. First, we allow heterogeneous innovation costs. Second, Chari et al (2012) rule out positive transfers by

allowing the innovator to produce a fake (and useless) "innovation".

9 In the linear specification, if we interpret   0 as the difference between the cost of external and internal

financing the planner can reduce manipulation incentives even more by combining the buyout of the patent with

the requirement to purchase a bond. Specifically, the planner can request the innovator to purchase a bond that

costs ( ), pays no interest and expires after  periods. If ( ) is the only revenue available to the

innovator, he will have to borrow ( )− ( ) for  periods at a cost of

 (( )− ( ))
1− 



1− 


This extra manipulation cost generated by the bond allows to accelerate the buyout time and therefore increases

consumer welfare.

10 It is also possible to show that patents of finite lengths can also be improved upon by a simple per unit

subsidy mechanism but this result is somewhat more tangential to what we discuss below.
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Proposition 3 shows that even when price manipulation is costless, the planner can

improve upon patents by exploiting the observed quantities. In the proof we show that a small

quantity subsidy increases product market surplus by reducing the market price and increasing

firm’s profits. We also show that for  small enough, such positive welfare effect dominates any

loss generated by entry of inefficient innovators induced by the subsidy.

Overall, Propositions 2 and 3 show that for a broad class of demand functions patents

are not the optimal mechanism to incentivize innovation when the planner can observe market

outcomes, even when the innovator may substantially manipulate sales. In the next Section,

in a simplified environment, we characterize the optimal mechanism.

6 Optimal Mechanism with Costless Manipulation

In this Section we study the optimal incentive system in which the quantity produced is ob-

servable by the planner, but the innovator can manipulate the price costlessly, so the price

will not be contracted on. This assumption captures a situation where the innovator can offer

secret price discounts to buyers at no cost (other than lowering revenues). As in the previous

Section, we assume that after the buyout the innovation is sold in a competitive market and

that neither the innovator nor the planner can affect (manipulate) this outcome.

We will study the problem with a mechanism design approach in which the innovator

reports to the planner a type, b and the planner requires that in period  the innovator produces
a specific quantity, (b), and receives a payment  (b). To simplify the analysis we focus on
the linear demand case () = 1 − 2.

First, we show that there is no loss of generality in assuming that the planner knows the

intercept 1.
11 More precisely, we can approximate the welfare of an auxiliary problem where

the planner knows 1 from the outset arbitrarily closely. This is an upper bound because the

planner cannot do better than in the hypothetical case where he observed 1 at the beginning.

11We do not need the innovator to report his cost, , because in our setting, as in Scotchmer (1999), the

innovator’s compensation cannot depend on the true  since he cannot be punished for lying about .
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Lemma 1 The planner can approximate the welfare that can be induced under full information

about 1 arbitrarily close.

This result is quite intuitive: the planner can perfectly learn the demand intercept when

the market becomes perfectly competitive and punish the innovator if 1 was not reported

truthfully. Exploiting this Lemma, we focus on the linear demand case with known intercept

(normalized to 1) and unknown slope that for simplicity we rewrite as 2 = 12. The demand

is therefore

 = 1− 

2

and larger  are associated with steeper demand curves and larger consumer surplus. Notice

that the monopoly quantity is independent of  and it is equal to  = 12

6.1 Static Mechanisms

We first study a static setting where the profits are realized only for one period after the

innovator reports his type. Let (b ) = 2(1− (b)) be the price at which the innovator can
sell quantity (b) if the actual demand is characterized by . The profits from reporting b when
the type is  (gross of innovation costs) are:

(b ) = (b) + (b )(b)
= (b) + 2(1− (b))(b)

Letting  () = ( ) −  denote the rent under truth-telling, the envelope theorem implies

that

 0() =



(b ) |==

= ()



(b ) |== 2()(1− ()) (3)

The above condition (3) is a first order condition. The following result states a necessary and

sufficient condition for implementability:

Lemma 2 A schedule () can be implemented if and only if  is weakly decreasing in .

Lemma 2 shows that the optimal mechanism requires the quantity sold to be decreasing

in . Therefore, as the surplus created by the innovation increases, the quantity produced is
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reduced. The intuition for this result is the following. The planner exploits market power to

induce truthful revelation and screen consumers’ willingness to pay. When  is large consumers

are willing to pay high prices for the product and the innovator is likely to prefer market power

to lump-sum transfers. Conversely, when  is low consumers are price sensitive and market

power would not be attractive to the innovator.

We are ready to formulate the planner’s problem. First, note that the total surplus when

 is implemented for an innovator with type  is  ( ) =
R 
0
2(1 − ) = (2 − 2). Let

b() be the highest cost innovator who enters (endogenously determined by the mechanism by

 () = 0). Then the objective function can be written as

Π =

Z 



Z ()
0

( )( (() )− )

The planner’s problem is

max
()
Π

s.t. b0() =  0() = 2()(1− ()) and 0() ≤ 0 ∀ ∈ [ ]

The main challenges are twofold: first, the monotonicity constraint on ; second, the

fact that the state variable b() has free initial and end conditions, a combination that is
uncommon for standard dynamic optimization problems. To obtain a solution to this problem,

let us assume uniform independent distributions for  and  on [0 1] and [ 1] for some   0

Then the problem simplifies to (ignoring a few constants):

max
()

Z 1



[(2()− 2())b()− b2()
2
]

s.t. b0() = 2()(1− ()) and 0() ≤ 0 ∀ ∈ [ 1]

Optimal static mechanism

In the next proposition we characterize the optimal quantity schedule in the presence of costless

price manipulation.

Proposition 4 In the optimal static mechanism, there exists  ∈ ( 1) such that it holds that
 is strictly decreasing on interval [ ] and then constant on [ 1]. Moreover, () ≥ 23 
12 =  for all  and () = 1 =  .
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To gain intuition for this result, our starting point is Lemma 2, which implies that the

quantity schedule needs to be weakly decreasing to be incentive compatible. In the proof of

the Proposition, we show that in the relaxed problem where the monotonicity constraint on 

is ignored, the optimal solution is such that () = (1) = 1.12 Given this, it is not surprising

that when one reintroduces the monotonicity constraint on  it is still true that () = 1. It is

also not surprising that now (1)  1, because (1) = 1 and the monotonicity constraint would

imply that () = 1 for all , that is all possibility for screening would be given up.

Proposition 4 shows that the optimal mechanism differs substantially from a patent

system even if the innovator can manipulate price signals costlessly. The optimal quantity

schedule has three important characteristics. First, the quantity produced varies across types.

This is a fundamental difference with the patent system that implements only the monopoly

quantity that in our setting is constant across types. Second, the quantity produced by each

type is above the monopoly quantity. Thus, despite costless price manipulation, information on

the quantity produced allows the planner to reward the innovation generating less distortions

than a traditional patent system. Finally, the optimal quantity is strictly decreasing in  for

low values of  and constant for high surplus innovations as depicted in Figure 2.

0 1

)(q

1

1/2



Figure 2: Optimal quantity schedule with costless price manipulation

12The reason is that otherwise function  could be increased uniformly by the same amount , and the value

of () adjusted so that an increase in welfare is induced without violating any incentive constraints.
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The intuition behind this result is that the planner’s welfare maximization involves a

trade-off between a ‘consumer welfare’ effect and a ‘screening’ effect. When quantities decrease

with , the planner can use market power to screen consumers’ willingness to pay. Nevertheless,

maximization of consumer surplus implies that larger quantities should be offered for innovation

with larger  since the impact on welfare of an increase in  is greater the greater is . For low

values of , the ‘screening effect’ dominates and the planner exploits market power to screen

willingness to pay. This is intuitive since for low  it is crucial for the planner to avoid excess

entry of low value innovators. As  increases, the innovations have larger impact on consumer

surplus and the planner has lower incentives to distort the market for screening purposes.

For  large enough, the ‘consumer welfare’ effect dominates and the planner implements a

quantity schedule that is constant in . The idea that market power can be exploited to screen

willingness to pay is similar to the logic in Weyl and Tirole (2012).13

6.2 Optimal Dynamic Mechanism and Discussion

Having characterized the optimal quantity schedule in the static setting, we now consider the

dynamic problem where the planner can choose a path (()  ()) for every  ≥ 0.14 Our

main result shows that repeating the same quantity over time for all types  is optimal.

Proposition 5 It is optimal for the planner to set a policy where () is constant in time for

any , that is to adopt the optimal static mechanism.

A constant mechanism (over time) is optimal because of the desirable features of quantity

(and price) smoothing over time. This is due to the fact that the total surplus is concave in the

quantity (and price), so inducing a temporal variation in quantities (as patents do) introduces

extra distortion in the product market without improving innovation incentives. This finding

resembles the result of Gilbert and Shapiro (1990).15

13They restrict their attention to Cobb-Douglas reward policies (in our setting this restriction would generate

a constant level of  across types). They show that  decreases with the variance of the type distribution. In

our setting, we show that even with a fixed type distribution, the planner may use different quantities to screen

for different types.

14Since no new information is revealed to the agent (the innovator), it is without loss of generality to concen-

trate on mechanisms where the agent reports his type only at the outset.

15They conclude that the optimal patent policy calls for infinitely lived patents when patent breadth is

increasingly costly in terms of deadweight loss. In our setting, lowering the quantity produced can be thought
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Proposition 5 confirms that the optimal mechanism differs from a patent system even if

manipulation (of prices) is costless. Welfare is maximized with the innovator selling a quantity

that is above the monopolistic quantity until the buyout occurs, unlike the (optimal) patent

system described by Scotchmer (1995). This result is related to our earlier finding (Proposition

3), which shows that a small quantity subsidy always improves welfare.

Notice the apparent tension between Proposition 5 and Lemma 1. Proposition 5 requires

the planner to implement a constant quantity over time whereas Lemma 1 requires the planner

to move to the competitive outcome for at least one period in order to learn the intercept

of the demand function. This tension identifies a key trade-off. On one hand, the planner

would like to smooth market outcomes over time to increase welfare. On the other hand, the

planner would like to generate variation of market outcomes to learn the underlying demand

parameters. In the linear context, this tension leads to a mechanism that resembles a buyout

where the patent is bought out after a long time (as long as possible) has elapsed.16

Proposition 5 also highlights the fact that learning from market signals over time may

be substituted by an initial screening process where the innovator self reports his type. The

literature on dynamic mechanism design cautions us that this result (no learning is optimal

until the buyout) is only true because our agent (the innovator) has strictly superior information

over the planner, and this advantage is maintained over time. However, in a large number of

applications this may be a realistic assumption. In such applications, the optimal mechanism

does not utilize learning on the part of planner, rather it relies on a single report of the innovator

at the outset. Such a policy can be implemented by offering a menu of R&D subsidies and per

unit quantity subsidies.

It is beyond the scope of our work to characterize the optimal mechanism in a general

framework of dynamic market signals, but a few characteristics of our proposed mechanism

appear to be robust. First, prices need not be set at the extremes of monopoly pricing (i.e. full

patent protection) or fully competitive pricing. Second, buyout itself can be viewed in terms

of as an increase in patent breadth because a lower quantity reduces consumer surplus and increases the profits

of the innovator.

16 In reality, there may be legal or political reasons why the buyout cannot be delayed indefinitely. For example,

it may happen that the product becomes obsolete, and in this case the planner may not be able to commit to a

buyout that may not seem to promote consumer welfare ex-post.
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of its ability to generate information, an important aspect that has been overlooked by the

previous literature. Relatedly, observed demand information after the patent buyout can be

used to incentivize innovation.

7 Conclusions

In this paper we have examined the problem of a social planner aiming to maximize consumer

welfare and innovation incentives while observing prices and quantities practiced by the innova-

tor over time. We have shown that information about market outcomes may allow the planner

to generate more welfare than a traditional patent system through patent buyouts.

There are a number of historical experiences in which governments bought patents out.

The most famous example of patent buyout took place in July 1839 when the French govern-

ment purchased the patent for the Daguerreotype photography process. The inventor, Luis

Jacques Daguerre, was not able to find buyers for the process, but obtained the support of

a politician that convinced the government to acquire the patent and put the rights in the

public domain. Within a short period of time the process spread around the country to be-

come the technology standard in photography (Kremer, 2001). In recent academic and policy

debates pharmaceutical patent buyouts have been suggested as a strategy to improve health

in low income countries. For example, Banerjee et al. (2010) propose that a Health Impact

Fund compensate drug manufacturers that sell in low income countries at marginal cost. They

suggest that the compensation to a given manufacturer would depend on use of the drug and

evidence of realized health benefits.17

Our paper provides two main insights into the design and application of such buyout

schemes. First, the planner may find it beneficial to collect market data before the buyout

and use them to estimate the surplus generated by the innovation. In practice, surplus may

be estimated through structural econometric models that allow policy makers to estimate the

primitives of consumer preferences and to generate out of sample predictions (Cho and Rust,

2008). Such estimates can provide useful guidance in the determination the buyout compen-

sation for the innovator. Second, the planner should consider the welfare cost associated with

17A similar policy proposal is described in Guell and Fischbaum (1995).
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collecting price-quantity observations. As long as local variation in market outcomes can be

exploited to learn about the global properties of the demand, prices close to marginal costs

minimize the loss in consumer surplus.
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Appendix 1: Proofs

Proof of Proposition 1

First, note that if  ≥  then ( ) can be expanded globally on [0 ] and we can construct

a global estimate of the demand function given approximate knowledge of the function ( )

around the point (0(0 ))  The global estimate is obtained with the following polynomial:

X
=0




where  is an appropriate estimate of the 
0th derivate of  with respect to  at  = 0 divided

by ! to use Taylor’s formula. Notice that the coefficients of the polynomial can be estimated

by charging  + 1 distinct prices close to 0.

The basis for this is that as  gets large, the approximation of the derivatives improves

and thus our estimate of  approaches the true value of  arbitrarily close.18 To formalize

this, suppose that we have taken a sample of +1 observations such that the price was always

below some b  0. The error term (in absolute value) for the estimate of the 0th derivative can

be bounded by max
∈Θ∈[0] | (+1)( )+1(+ 1)! |≤ b+1, which can be made arbitrarily

small (in absolute value) if b is small (Mastroianni and Milovanovic, 2008). Here we used the
fact that there exists a   0 such that max

∈[0] | (+1)( )( + 1)! |  for all  = 1 2 

and  ∈ Θ. To establish that this is indeed true, note that by  being analytic there existse() such that max
∈[0] | (+1)( )(+1)! | e() for all  = 1 2 . Moreover, Weierstrass’s

theorem implies that there exists  such e() ≤  for  ∈ Θ, because Θ is compact and e is

a continuous function of  because all the derivatives of  are continuous in  by assumption.19

If    then ( ) can only be expanded locally and approximation by polynomial is

valid only in intervals around ∗ of size less than  To estimate the demand in this case we

apply an analytic continuation technique as in Aghion et al (1991). Let us define  =  and

18 If the derivatives at 0 can be estimated with a known error , then the total error at   0 is less than

( + 2 + ) = 
1− if   1. If the choking price cannot be bounded away from 1 (from above), then this

procedure does not suffice, and local expansion is needed similarly to what is suggested below for the case where

  .

19Note, that directly we only assumed that itself is continuous in . However, if is analytic, then continuity

of  in  implies that all the  coefficients are continuous in , which implies that all derivatives of  are also

continuous in .

29



take  large enough such that   . We can approximate ( ) in the interval [∗ ∗ + ] by

setting  = 2 and calculating
2X
=0

(− ∗)

and approximate the first (2+1)− derivatives of ( ) by the first (2+1)− derivatives

of the polynomial. Next, let h|0 ≤  ≤ 2 − i be the values of these derivatives at ∗ + .

We can now approximate ( ) in the interval [∗ +  ∗ + 2] by

2−X
=0

(− ∗ − )

and approximate the first (2 + 1) − 2 derivatives of ( ) by by the first (2 + 1) − 2
derivatives of the polynomial. Proceeding this way one reaches  after at most  steps and

similarly proceeding leftward one can estimate ( ) up to zero. Also in this case by choosing

∗ arbitrarily small and  arbitrarily large the demand is approximated arbitrarily closely at a

very low welfare cost.

Proof of Proposition 2

Consider the following mechanism. The innovator is awarded a patent for b ≤  periods as

long as the same prices and quantities (b, ( )) are observed by the planner for the entire
patent duration b . After b periods the patent is acquired by the planner that will pay the

innovator b( ) per period for the remaining b −  periods and the innovation is sold at

marginal cost. With b ≥  the payoff of the innovator is

1− 


1− 

h
( )− b ((b− )( ))

i
+


 − 

1− 
b( )

Now consider setting b such that


 −  = (1− 

 )b0 (0)
so that the marginal benefit of manipulation when b =  is exactly equal to the marginal

cost.20 Setting b =  is then optimal for the innovator because the first order condition

20 If  is not an integer set it equal to the smallest integer for which 
 −   (1− 

 )0 (0) 
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holds by construction and the objective function is concave in b. This removes the innovator’s
incentive to manipulate. Maximizing the payoff respect to  (with b = ) gives:

(1− 
 ) h0( ) +0( )− b0 (0) b0 + b0 (0) (0( ) +0( ))

i
+ (

 −  )b0( )

= (1−  )(0( ) +0( ))

so the innovator will truthfully report the monopolistic profits. The profits of the innovator

will be the same as with a patent of infinite length but consumers will be better off.

Proof of Proposition 3

When a per unit subsidy is awarded there are two main changes in total welfare. First, the set

of types who enter becomes larger as the profit of the innovator increases. Second, for a fixed

type who enters even without a subsidy, the total surplus on the market changes as prices go

down due to the subsidy. Both effects increase welfare when  is small as we show below.

The following argument shows that there is a small enough per unit subsidy   0 such

that for any specific value of  social welfare is larger than in the absence of any subsidies

( = 0) . To save notation, we do not explicitly indicate that the optimal price is a function of

, and not only of  .

The profits for the patentee in the presence of a quantity subsidy are equal to ( +

)( ) where  is the per unit subsidy. The first order and second order conditions are:

(+ )0( ) +( ) = 0

20( ) + (+ )00( ) ≤ 0

Let us indicate with () the optimal price charged by the monopolist. Now we exploit the

FOC and the implicit function theorem to obtain

()


= − 0( )

20( ) + (+ )00( )
 0

because 0( )  0 and the second order condition is satisfied. Profits of the firm when

optimally charging price () can be written as () = (  ()) = (() + )(() ). The

envelope theorem implies that

0() =



= (() )  0
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so innovation incentives become larger as  increases. Next, for a given  the product market

surplus  (net of subsidies) is equal to

() = ()(() ) +

∞Z
()

( )

and thus

0() = (() )
()


+ ()0(() )

()


−(() )

()



= ()0(() )
()


 0

Total welfare can be written as  () =

()Z


(()−)( ). Thus for  close to zero

we obtain

 0() =

()Z


0()( )+ 0()(()− ())( ())  0

because

()− () = ()(() ) +

∞Z
()

( ) − (+ )( ) =

∞Z
()

( ) − ( )  0

for  close to zero. Take any   0 such that

∞Z
()

( )− ((  ) )  0 for all .21 By

the above, any such subsidy level  increases total welfare for all . In other words the same

level  is applicable to all .

Proof of Lemma 1

Take the hypothetical problem where the planner observes 1 so the innovator needs to report

only 2. As we show it in the next Section, the optimal mechanism prescribes a quantity

(2) = ∗(2) that is constant in time (). Now, take our original problem where the planner

does not observe 1 at the outset, and suppose that the planner provides a buyout at time 

21When  goes to zero the difference

∞
()

( )−(( ) ) is strictly positive for every . Therefore, as

long as((0 ) ) is bounded below by a positive uniform bound for all , then there is a  that works uniformly

for all . If such a uniform bound is not available, then the proof goes through with a few straightforward

modifications.
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and sets the quantities produced before time  equal to the ∗(2).22 After the buyout, when

the market becomes perfectly competitive the intercept will be observed by the planner. At

that stage the innovator can be punished if the quantity sold at marginal cost, 1, differs from

the report of the innovator b1. By making the punishment large enough the innovator has no
incentive to misreport. Moreover, letting  become arbitrarily large the welfare induced by

this mechanism approximates the welfare under full information about 1.

Proof of Lemma 2

First, let us write up the incentive conditions (b ) ≤ ( ) and (b) ≤ (bb). Adding
these constraints up and substituting (b ) = 2(1− (b)) we obtain

2
h
(1− (b))(b)− (1− ())()

i
≤ 2b h(1− (b))(b)− (1− ())()

i
Because quantities are higher than the monopoly quantities (12) then  has to be decreasing in

. On the other hand, if  is decreasing in , then by choosing an appropriate transfer schedule

 the quantity schedule can be implemented.

Proof of Proposition 4

Part 1: Solution of the relaxed problem

To develop intuition for the optimal static mechanism as characterized in Proposition 4, we

simplify the problem by looking at the optimal control problem ignoring the 0() ≤ 0 constraint
first. To obtain a solution continuos in  we follow Hellwig (2009) and specify the following

Hamiltonian:

 = ()2()(1− ()) + [(2()− 2())b()− b2()
2
]

The state variable b has neither an initial nor an end condition, which makes it different from
other optimal control problems. The first order condition for the control variable is

0 =



= ()2(1− 2()) + 2(1− ())b() ∀ (4)

The other co-state equation is

−0() = 

b = (2()− 2())− b(). (5)

22By standard arguments, there is a payment schedule  that makes this quantity schedule incentive compat-

ible.
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Moreover, Hellwig (2009) shows that in this class of problems:

() = (1) = 0 (6)

The above conditions lead to the following result.

Lemma 3 () = (1) = 1

Proof. From (4) we obtain that

 () =
() + b()
2() + b() (7)

that is equal to 1 when  = 1 and when  = 

This result shows that in the relaxed problem there is efficient production both for the

innovations that create the largest surplus and for those that create the smallest surplus. One

may conjecture that the solution of the relaxed problem is then a prize and all innovations are

produced without market distortions. The next proposition shows that this is not the case,

and that the optimal quantity schedule is non-monotonic.

Lemma 4 There exists a  such that ()  1 and 0() = 0 Moreover 0 ≤ 0 for  ∈ £ ¢
and 0  0 for  ∈ ( 1]

Proof. Differentiating (4) with respect to  and dividing through by 2 yields

0()(1− 2())− 20()() + (1− ())b()− 0()b() + (1− ())b0() = 0.
Substituting in from (5) and also using the formula for b0 yields

¡b()− (2 − 2)
¢
(1− 2()) + (1− ())b() + (1− ())2(1− ) = 0(2+ b),

so the sign of 0 is equal to the sign of

¡b()− (2 − 2)
¢
(1− 2()) + (1− ())b() + (1− ())2(1− )

= b(2− 3) + [2(1− )2 − (2− )(1− 2)]

= b(2− 3) + 2 (8)
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From (7) it follows that for all  ≥  it holds that () ≤ 1, therefore 0() ≤ 0 holds because
() = 1 by the previous Lemma Because () = (1) = 1 it means that there exists a

 ∈ ( 1) such that 0() = 0 and 00()  0. Now assume that there exists some e   for

which 0(e)  0 This means that there exists a 0 ∈ ³e´ such that 0(0) = 0 and 00(0)  0.

Notice that 0(0) = 0 implies that 0
¡
0
¢
= 

¡
62 − 9 + 4¢ that is strictly positive for any

value of   0. This implies that if 0(0) = 0 then 00(0)  0 that contradicts the existence ofe and implies that 0  0 for each   

The intuition for this result is related to the fact that ignoring the monotonicity constraint

on  is essentially equivalent to ignoring the global optimality conditions of the innovator

(agent), just taking the first order conditions of his problem into account. Therefore, the

relaxed problem still includes some aspects of the incentive constraints of the innovator to

report truthfully. The result indicates that a non-constant quantity schedule can be used

to screen the different types of the innovators and make sure that (first-order) innovation

incentives reflect the underlying demand conditions. This feature will play a substantial role

in the solution of the original problem.

Part 2: The optimal static mechanism

We now reintroduce the monotonicity constraint 0() ≤ 0. We first show that there is efficient
production for the lowest innovation type (() = 1), since for such a type there is no incentive

to misreport in general. Suppose that () = ∗  1. Then take a small deviation where for all

 ∈ [  + ] the quantity is set at e() = 1, and for other values of  we maintain the original
candidate optimum. We show that this increases welfare, and still satisfies all the constraints.

First, it is obvious that the monotonicity constraint is still satisfied. Second, we keep b()
unchanged for all  outside the interval. This means that for all  ∈ [ + ] it holds that the

modified entry function e() = b( + ) because e0() = 0 for all  ∈ [  + ] as e() = 1 for
such values of . The original value of the entry cost is such that for all  ∈ [  + ] it holds

that the b() = b(+)−R +


2()(1−()) But then e()−b() = R +


2()(1−())
which goes to zero when  goes to zero. Therefore, the component of the change in welfare that

results from changing the entry unction for types in [ + ] is second order in . The gain in

welfare that comes from the fact that quantities are increased is first order in . Therefore, for
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a small enough  this change is welfare improving. This concludes the proof that () = 1

We know from above that () = 1 and that the entire solution must be constrained,

since the relaxed problem has an optimal solution that violates the monotonicity constraint.

Therefore, there exist 0  such that 1 ≥ 0     and the solution involves () = ∗ for

all  ∈ [ 0], and () is strictly decreasing on [ ].23 We provide a proof by contradiction.

Suppose that there exist exist 00  1 and 000  00 such that  is strictly decreasing on [00 000],

while () = ∗ for all  ∈ [ 00]. We derive a contradiction for such a point 00 to conclude our
proof. To derive this contradiction we study an auxiliary problem. Take the solution for interval

[ ] as given, and let us maximize the objective function
R 1

[(2()−2())b()−2()

2
] taking

()b() as given, and placing the further condition that
() ≤ () for all  ≥  (9)

We show that the solution of this problem is a constant path on interval [ 1], and thus the

required 00 000 cannot exist. The Hamiltonian is unchanged as the extra constraint (9) is

incorporated as a standard Kuhn-Tucker condition:

 = ()2()(1− ()) + [(2()− 2())b()− b2()
2
]

The binding monotonicity constraint on [ 00] means that 


|=∗≥ 0 ∀ ∈ [ 00], and in
particular




|=∗=≥ 0 (10)

The fact that the monotonicity constraint ceases to bind at 00 means that




|=∗=00= 0 (11)

Using that () = ∗ for all  ∈ [ 00] we obtain that




|=∗= 2()(1− 2∗) + 2b()(1− ∗)

and thus

2


|=∗= 20()(1− 2∗) + 2 (b())0 (1− ∗)

23 In other words,  is the lowest type where the monotonicity constraint binds in the solution of the original

problem.
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We know that

0() = b()− (2∗ − (∗)2)

and

b0() = 2∗(1− ∗)

Therefore,

2


|=∗= 2(1− 2∗)0() + 2(1− ∗)[b0() + b()] =

= 2(1− 2∗)
³b()− (2∗ − (∗)2)

´
+ 2(1− ∗)b()+

+2(1− ∗)2∗(1− ∗) =

= 2(b(2− 3∗) +  (∗)2) (12)

Because the monotonicity constraint starts binding at  =  we can conclude two observations

at that point. First, ignoring the monotonicity constraint there locally is valid, second in

the relaxed problem 0() = 0 holds24. Then the same argument as above (see (8)) implies

that b())(2 − 3∗) +  (∗)2 = 0. Therefore, 2


|=∗== 0 must hold by (12). Also,




³
2


|=∗
´
= 2(b0(2− 3∗) + (∗)2) = 2(2∗(1− ∗)(2− 3∗) + (∗)2) = 2∗(2(1− ∗)(2−

3∗)+∗)  0 for all relevant values of ∗. Therefore, together with 2


|=∗== 0 we obtain
that for all  ∈ ( 00]

2


|=∗ 0. (13)

But comparing (10), (11), and (13) yields a contradiction, which concludes our proof of the

shape of . Finally, b())(2− 3∗) +  (∗)2 = 0 implies that ∗  23, which provides the last

result.

Proof of Proposition 5

Take any (potentially non-constant) path   . The proof establishes that the same entry

function b can be induced by an appropriate policy that is constant over time. Moreover, total
welfare is higher under this policy as the sum of consumer and producer surplus is larger than

under the original non constant policy. First, it is clear that a one-time up-front transfer is

24This is an instance of the smooth pasting condition at point  where the function switches from being strictly

decreasing to being flat.

37



without loss of generality as the innovator only cares about the present value of the transfers.

The utility from reporting b when the type is  is
(b ) = (b) + ∞X

=0

(b )(b)
By construction, (b ) = 2(1− (b)), and thus (b ) = (b) + 2P∞

=0 
(b)(1− (b)).

Letting  () denote the rent (under truth-telling), the envelope theorem implies that

 0() =



(b ) |==

= 2

∞X
=0

(b)(1− (b)) (14)

A similar argument as in Lemma 2 implies that incentive compatibility requires that
P∞

=0 
()

is decreasing in . Take a constant quantity scheme that satisfies
P∞

=0 
∗(b)(1 − ∗(b)) =P∞

=0 
(b)(1 − (b)). This will then guarantee that the payoffs of the innovator, and thus

the entry function is preserved.25 It is then sufficient to prove that for any  the realized total

surplus is larger than the one under the original policy. That is, it is sufficient to show that for

all  it holds that
P∞

=0 
∗()(2− ∗())b() ≥P∞

=0 
()(2− ())b() or

∞X
=0

∗()(2− ∗()) ≥
∞X
=0

()(2− ())

if
P∞

=0 
∗()(1 − ∗()) =

P∞
=0 

()(1 − ()). Using Jensen’s inequality this follows if

we show that (2 − ) is a concave transformation of (1 − ) restricting  to be on [05 1].

Letting  = (2− ) and  = (1− ) it holds that  =  + . So, it is sufficient to show that

 is concave in  for which it is sufficient that  is concave in . But this holds because  is a

concave and decreasing function of .

25The incentive conditions are not affected either, see (14).
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Appendix 2: Additional Results

Formalization of Switching Time

The primitive of the planner’s buyout policy is a function   :  → {0 1} indicating whether
the switch to a competitive market has occurred at or before time  given the history . Let

us define as () the set of histories at time    following a history . To interpret  ()

as an irreversible switch to a competitive market we require that  () = 1⇒  (()) = 1

for each   

We start by defining the set of admissible histories in each period  ≥ 1. The set of

admissible histories in period 1 consists of all positive price-quantity pairs if 0 = 0 but the

price is restricted to be equal to zero if 0 = 1. Formally:

1 = { ∈ R2+ :  = ( b)   ∈ R+ b = 0 if 0 = 1}
An inductive step defines the set of admissible histories  for all  ≥ 2

 = { ∈ R2+ :  = (  b)  ∈ −1  ∈ R+ b = 0 if  −1() = 1}
We are ready to define the switching time  taking the planner’s policy and the innova-

tor’s strategy as given. Given any strategy of the innovator  ∈ , let  denote the truncation

of  up to period . We indicate with () the admissible public history generated by 

Taking the policy of the planner  = (0 1 2 ) as given, the switching time  () is defined

as follows: (()) = 0 for all  ≤  − 1 and  ( ( )) = 1.
26

Markov Shifts

We extend our setting and assume that the demand has two states. Let us indicate with

 ( ) the quantity consumed in the low demand state and with  ( ) the quantity

consumed in the high demand state. For simplicity, we assume that  ( ) ≥  ( ) for

each  and that the inequality is strict if  ( )  0.27 We follow Battaglini (2005) and

denote with Pr( | ) ∈ (0 1) the probability that state  is reached if the demand is in

26Note, that function  is defined only on histories such that switching has not occurred by period  − 1,
but this is satisfied by assumption here.

27Proposition A1 holds as long as ( ) 6= ( ) for  ∈ (0 ) with  arbitrarily close to zero.
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state . At date zero the prior on the demand states are (  ). In this extended setting the

problem for the inventor is to choose

max


 (() −1) +  [ ( |  )]

where  ( |  ) is the value function of an innovator type  after public history  at the

demand state Investment in innovation takes place if  ( |0  )+ ( |0  ) ≥
 and the total social welfare created by the innovation isZ



Z
∈Θ∗()

⎡⎣ ∞X
=0

X
∈{}

((
∗
 )) Pr( = )− 

⎤⎦( )
Also in this setting the planner can maximize innovation incentives by approximating

the first best outcome.

Proposition A1 If  and  are analytic the first best can be approached arbitrarily

closely.

Proof. As in the proof of Proposition 1 we approximate the demand functions by

polynomials that are estimated by charging 2 + 1 distinct prices close to ∗ = 0. For the

estimation we now need two different quantities for each of these prices. The smaller quantity

observed at a price is used for the estimation of  and the larger one to estimate   Once

the two demand functions have been approximated around ∗ = 0, analyticity can be exploited

to learn their global behavior by following the procedure in the proof of Proposition 1. By

choosing and experimentation interval arbitrarily close to ∗ = 0 and  arbitrarily large the

demands are approximated arbitrarily closely at an arbitrarily low welfare cost.

Noise

Our setting assumes that the planner can perfectly observe the demand. We can relax this

assumption and consider the case in which the demand is observed with error. To analyze such

a setting, we assume that:

 = ( ) +  (15)

where  is a mean zero i.i.d. noise over the support [− ]. In the next proposition we show
that even in this case the planner can estimate the surplus generated by the innovation and

transfer it to the innovator.
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Proposition A2 If  is analytic, the first best can be approached arbitrarily closely.

Proof. As in the proof of Proposition 1 we approximate the demand function by a

polynomial estimated by charging 2 + 1 distinct prices close to ∗ = 0. For the estimation

we now need  different quantities for each of these prices. Once  quantities are observed

at a price , −1
X
=1

() is used for the estimation of  Because of the weak law of large

numbers, the sample average converges in probability to ( ). Once the demand function

has been approximated around ∗ = 0, its analyticity can be exploited to learn its global

behavior exploiting the procedure illustrated in the proof of Proposition 1. By choosing and

experimentation interval arbitrarily close to ∗ = 0 and  ,  arbitrarily large, the demand is

approximated arbitrarily closely at an arbitrary low welfare cost.

Demand Growth

A natural assumption with new technologies is that demand grows over time. Suppose, for

example that for  periods the demand is  ( ) and it becomes  ( ) from period  +1

with  ( )   ( ). If the functions are polynomials:

 ( ) =

X
=0

 ()


with  ∈ {} then, under the restriction that only one price-quantity observation can be
obtained in each period, the amount of time required to identify the low state demand is

increasing in the complexity of the demand.

This simple specification suggests that when the demand does not grow too quickly, the

first best can be implemented since the planner can learn the parameters of the demand fast

enough. In particular, when  ≥  + 1 the first best can be approached arbitrarily closely: it

takes +1 distinct price-quantity observations to identify all the coefficients of the polynomial.

By requiring the innovator to charge in each period a distinct  arbitrarily close to zero the

welfare cost of learning is minimized.

Nevertheless, the planner may not have enough time to learn the demand when growth is

fast. Take for example the case in which the demand is linear and the planner can observe only

one price-quantity combination for the low demand regime. In this case the planner cannot

approach the first best and will have to reward the innovator for the surplus generated in the
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low demand state by granting a one period patent or by using the Weyl and Tirole (2012)

mechanism for one period.

It is important to notice that when    + 1 it is not optimal to give a  period patent

and then learn costlessly the demand  ( )  This is because a patent that lasts  periods

generates a loss in consumers’ surplus in each period. The planner can improve the overall

welfare by granting a patent that lasts only for one period and observe the quantities and

prices practiced by the innovator. For periods 2 to  the planner can transfer an amount equal

to the observed first period profits to the innovator under the requirement that the product is

sold at marginal cost. In this case the innovation incentives are the same as with a  periods

patent but the loss in consumer surplus is substantially lower.

Demand identification may be problematic also when the demand starts at a high level

and then suddenly drops or disappears. This may occur when a follow-on superior technology

is developed. Also in this case, the planner may not be able to reach the first best if the high

demand state does not last for a period of time long enough to identify the demand curve.28

This discussion suggests that it is crucial for the planner to collect market outcomes in

a timely manner. Nonetheless, the restriction that only one price-quantity can be observed

in each period can be relaxed if the planner can generate variation geographically. When

sudden demand shifts are expected, the planner may prefer to collect market outcomes through

geographic (cross-markets) price variation rather than intertemporal (within market) price

variation.

28 In this case the planner may actually use intellectual property protection to prevent the new innovator to sell

the innovation until the surplus generated by the previous innovator is estimated. Nonetheless this delay would

affect negatively consumers surplus. A more careful examination of how market outcomes may help designing

patent protection in the presence of cumulative innovation is left to future research.
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