
 
 
 
 

DISCUSSION PAPER SERIES 

 
 
 

     ABCD 
 

www.cepr.org 
 
 

Available online at: www.cepr.org/pubs/dps/DP9846.php
 www.ssrn.com/xxx/xxx/xxx

  

 
 

 
 
 
 

No. 9846 
 

OPTIMAL MONETARY POLICY WITH 
STATE-DEPENDENT PRICING 

 
 

Anton Nakov and Carlos Thomas 
 
 

  INTERNATIONAL MACROECONOMICS 
 
 

 



ISSN 0265-8003 

OPTIMAL MONETARY POLICY WITH STATE-
DEPENDENT PRICING 

Anton Nakov, European Central Bank and CEPR 
Carlos Thomas, Banco de España 

 

Discussion Paper No. 9846 
February 2014 

Centre for Economic Policy Research 
77 Bastwick Street, London EC1V 3PZ, UK 

Tel: (44 20) 7183 8801, Fax: (44 20) 7183 8820 
Email: cepr@cepr.org, Website: www.cepr.org 

This Discussion Paper is issued under the auspices of the Centre’s research 
programme in  INTERNATIONAL MACROECONOMICS.  Any opinions 
expressed here are those of the author(s) and not those of the Centre for 
Economic Policy Research. Research disseminated by CEPR may include 
views on policy, but the Centre itself takes no institutional policy positions. 

The Centre for Economic Policy Research was established in 1983 as an 
educational charity, to promote independent analysis and public discussion 
of open economies and the relations among them. It is pluralist and non-
partisan, bringing economic research to bear on the analysis of medium- and 
long-run policy questions.  

These Discussion Papers often represent preliminary or incomplete work, 
circulated to encourage discussion and comment. Citation and use of such a 
paper should take account of its provisional character. 

Copyright: Anton Nakov and Carlos Thomas 



CEPR Discussion Paper No. 9846 

February 2014 

ABSTRACT 

Optimal Monetary Policy with State-Dependent Pricing 

This paper studies optimal monetary policy from the timeless perspective in a 
general model of state-dependent pricing. Firms are modeled as monopolistic 
competitors subject to idiosyncratic menu cost shocks. We find that, under 
certain conditions, a policy of zero inflation is optimal both in the long run and 
in response to aggregate shocks. Key to this finding is an "envelope" property: 
at zero inflation, a marginal increase in the rate of inflation has no effect on 
firms' profits and hence on their probability of repricing. We offer an analytic 
solution that does not require local approximation or efficiency of the steady 
state. Under more general conditions, we show numerically that the optimal 
commitment policy remains very close to strict inflation targeting. 

JEL Classification: E31 
Keywords: monetary policy, monopolistic competition and state-dependent 
pricing 

Anton Nakov 
European Central Bank  
DG-Research  
Frankfurt  
GERMANY  
  
Email: anton.nakov@gmail.com  
 
For further Discussion Papers by this author see: 
www.cepr.org/pubs/new-dps/dplist.asp?authorid=160916 

Carlos Thomas 
Banco de España  
C/ Alcalá, 48  
28014 Madrid  
SPAIN   
  
Email: carlos.thomas@bde.es  
 
For further Discussion Papers by this author see: 
www.cepr.org/pubs/new-dps/dplist.asp?authorid=166726 

Submitted 21 January 2014 



Optimal Monetary Policy with State-Dependent Pricing∗

Anton Nakov

ECB and CEPR

Carlos Thomas

Banco de España

21st January 2014

Abstract

This paper studies optimal monetary policy from the timeless perspective in a general

model of state-dependent pricing. Firms are modeled as monopolistic competitors subject

to idiosyncratic menu cost shocks. We find that, under certain conditions, a policy of zero

inflation is optimal both in the long run and in response to aggregate shocks. Key to this

finding is an “envelope”property: at zero inflation, a marginal increase in the rate of inflation

has no effect on firms’profits and hence on their probability of repricing. We offer an analytic

solution that does not require local approximation or effi ciency of the steady state. Under

more general conditions, we show numerically that the optimal commitment policy remains

very close to strict inflation targeting.

Keywords: monetary policy, state-dependent pricing, monopolistic competition

JEL Codes: E31

1 Introduction

A key normative question in monetary economics is the design of optimal monetary policy. An

extensive amount of literature studies this question under the assumption that the timing of price

changes is given exogenously, typically using the Calvo (1983) model with a constant adjustment

rate.1 Useful as it is as a first approximation, this literature nevertheless is subject to the Lucas

(1976) critique: In principle, the frequency of price changes should not be treated as a parameter

∗We are grateful for comments and suggestions to John Roberts, Jordi Gali, Luca Dedola, Oreste Tristani, Gianni
Lombardo, seminar participants at ECB and the Federal Reserve Board and conference participants at SCE 2011.
Anton Nakov thanks the Federal Reserve Board for its hospitality during the first drafts of this paper. The views
expressed here are those of the authors only and should not be interpreted as representing the views of the Bank of
Spain or the Eurosystem. Corresponding author: Anton Nakov, ECB, Kaiserstrasse 29, 60311 Frankfurt am Main,
Germany. E-mail: anton.nakov@gmail.com.

1For example, Clarida, Galï¿œ, and Gertler (1999); Woodford (2003); Yun (2005); Benigno and Woodford (2005).
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which is independent of policy. Many economists, therefore, have argued against the use of the

Calvo model, claiming that it provides a poor approximation to more elaborate models of price

adjustment. For example, Golosov and Lucas (2007) show that the behavior of the price level in

the Calvo model is very different from that in a “menu cost”model, when firms are subject to

idiosyncratic productivity shocks as well as aggregate money growth shocks.

This paper studies optimal monetary policy in a model of state-dependent pricing (SDP) by

monopolistically competitive firms. In models of this sort the frequency of adjustment is a statistic

determined in equilibrium, not an exogenous parameter. In particular, we will work with a model

in which individual prices are sticky because firms are subject to random idiosyncratic lump-sum

costs of adjustment as in Dotsey, King, and Wolman (1999). Each firm would change its price

only if the increase in the firm’s value due to adjustment exceeds the “menu cost.”As a result,

the probability with which firms reprice depends on the gains from adjustment. This framework

is very flexible because it nests a variety of pricing specifications, including the fixed menu cost

model and the Calvo model as extreme limiting cases (Costain and Nakov, 2011).

Aside from pricing being state-dependent, our setup follows closely the standard New Keynesian

model. In particular, the monetary authority is assumed to set the nominal interest rate, with

money’s role being only that of a unit of account. An important distinction with Clarida, Galï¿œ,

and Gertler (1999) and Yun (2005) is that we assume no production subsidy to offset the markup

distortion due to monopolistic competition. This implies that the steady state level of output is

ineffi ciently low. Hence, the central bank has a constant temptation to inflate the economy so as

to bring output closer to its effi cient level.

We derive the optimal plan from the timeless perspective, as in Woodford (2003).2 We demon-

strate analytically that, if preferences are isoelastic, households consume all output, and there are

no cost-push disturbances, then it is optimal to commit to zero inflation both in the long run

and in reaction to shocks. Importantly, this result holds for a general specification of the menu

cost distribution. In the optimal allocation, price markups are positive but constant, output is

at its natural (flexible-price) level, and price dispersion is minimized. In earlier work, Benigno

and Woodford (2005) found that, under the above conditions, zero inflation is optimal in the New

Keynesian model with Calvo pricing.3 Therefore, our analysis shows that the optimality of zero

inflation carries over to the case of state-dependent pricing.

The reason why zero inflation is optimal in the SDP model is the following. Relative to models

with exogenous timing of price changes, SDP implies two additional welfare effects of inflation.

2That is, the plan ignores policymakers’incentives to behave differently in the initial few periods, exploiting the
private sector’s expectations that had formed prior to the plan’s starting date.

3Benigno and Woodford (2005) obtain their result in the context of a linear-quadratic approximation to the actual
policy problem, whereas our finding is based on the exact non-linear welfare function and equilibrium conditions.
However, Benigno and Woodford (2005) discuss conditions under which the solution to the linear-quadratic problem
is identical to the first order approximation of the solution to the exact non-linear Ramsey problem.
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First, firms must spend real resources (menu costs) on adjusting nominal prices. This distortion

is minimized at zero inflation because under such a policy all firms end up at their optimal price,

and hence they do not need to reprice. The second effect is somewhat more subtle. The main

difference between exogenous-timing and SDP models is that price adjustment probabilities are

endogenous in the latter. A priori, the monetary authority could have an incentive to use inflation

so as to accelerate price adjustment and thus make prices more “flexible”. However, the fact that

adjusting firms set their prices in an optimal way implies that, in the timeless perspective regime

with zero inflation, a marginal increase in the rate of inflation has no effect on firms’profits and

hence on adjustment probabilities. This envelope property implies that the monetary authority

has no incentive to deviate from zero inflation in order to affect the speed of price adjustment.

We also show that the same reasons for which zero inflation is optimal under Calvo pricing

continue to hold under SDP. First, ineffi cient price dispersion is minimized at zero inflation. Second,

in the timeless perspective regime with zero inflation, the marginal welfare gain from raising output

toward its socially effi cient level (i.e. a movement along the Phillips curve) exactly cancels out with

the marginal welfare loss from generating expectations of future inflation (i.e., an upward shift of

the Phillips curve). This finding echoes Kydland and Prescott’s “rules rather than discretion”but

it is independent of whether pricing is time- or state-dependent.4

We then study numerically the optimal monetary policy in the presence of government con-

sumption and cost-push shocks, using a calibrated version of the model. We find that the zero

inflation policy remains very close to the optimal commitment, both in terms of impulse-response

dynamics and the associated welfare losses.5 We also find that impulse-responses and welfare losses

are very similar to those under Calvo pricing. This reflects the fact that the envelope property of

the SDP framework continues to hold as long as one approximates equilibrium dynamics around

the zero inflation steady-state, which is the one implied by the optimal policy. With trend infla-

tion, however, the welfare cost of aggregate fluctuations under suboptimal policies is higher in the

Calvo model; the welfare gap relative to SDP furthermore increases with trend inflation. Thus,

the envelope property becomes less and less important in the dynamics of the SDP framework

as trend inflation increases, with the resulting consequences for the welfare comparison with the

Calvo framework.6

Relatedly, we show that the welfare cost of trend inflation itself is higher too under Calvo

4Independently, Lie (2009) studies numerically the optimal monetary policy in a New Keynesian model with
stochastic menu costs and a monetary friction.

5Benigno and Woodford (2005) and Woodford (2003, ch. 6) show analytically that, even in the absence of
cost-push shocks, a short-run trade-off exists between inflation and output stabilization when government spending
is positive. However, they do not quantify the importance of this trade-off. Our numerical simulations suggest that
the latter is negligible, both under SDP and Calvo pricing.

6For an analysis of log-linearized equilibrium dynamics under SDP in the presence of trend inflation, see Bakhshi,
Khan and Rudolf (2007).
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pricing, with the difference rising as trend inflation moves away from zero. Intuitively, trend

inflation speeds up price adjustment in the SDP model, especially for those firms that are further

away from their optimal price. This reduces the size of relative price distortions relative to the

Calvo model. Finally, we provide some numerical analysis for the case with firm-level productivity

shocks. We find again that welfare losses from trend inflation are larger under Calvo pricing vis-a-

vis SDP, only now the latter is true even with zero trend inflation. This reflects the fact that price

adjustment probabilities do react to firm-level shocks under SDP but not in the Calvo model.

The next section lays out the model and derives the conditions for equilibrium. Section 3 sets

up the optimal monetary policy problem and obtains the main result regarding the optimality of

zero inflation. It also formalizes the main intuition with a simplified version of the model (with

the full proof included in the Appendix). Section 4 analyzes numerically the case with government

expenditure and cost-push shocks, and also provides some analysis for the model extension to

firm-level shocks. Section 5 concludes.

2 Model

There are three types of agents: households, firms, and a monetary authority. We begin by

describing the behavior of households and firms.

2.1 Households

A representative household maximizes the expected flow of period utility u (Ct) − x (Nt;χt) , dis-

counted by β, subject to

Ct =

(∫ 1

0

C
(ε−1)/ε
it di

)ε/(ε−1)

,

where ε > 1, and ∫ 1

0

PitCitdi+R−1
t Bt = (1− τ t)WtNt +Bt−1 + Πt,

where Ct is a basket of differentiated goods i ∈ [0, 1], of quantity Cit and price Pit, Nt denotes

hours worked, Wt is the nominal wage rate, τ t is an exogenously-varying tax rate on wage income,

χt is an exogenous shock to the disutility of labor,
7 Bt are nominally riskless bonds with price R−1

t ,

and Πt are the profits of firms owned by the household, net of lump-sum taxes.

The first order conditions are

u′ (Ct)wt = x′ (Nt;χt)ut, (1)

7Our results hold also in the case when the utility of consumption is affected by a preference shock; here we
ommit such a shock for simplicity.
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R−1
t = βEt

u′ (Ct+1)

πt+1u′ (Ct)
, (2)

where ut ≡ (1− τ t)−1, wt ≡ Wt/Pt is the real wage, πt ≡ Pt/Pt−1 is the gross inflation rate, and

the aggregate price index is given by

Pt ≡
(∫ 1

0

P 1−ε
it di

)1/(1−ε)

.

2.2 Firms

There is a continuum of firms on the unit interval. Firm i’s production function is

yit = ztnit,

where zt is an exogenous aggregate productivity process.8 The firm’s labor demand thus equals

nit = yit/zt and its real cost function is wtyit/zt. The real marginal cost common to all firms is

therefore wt/zt. Optimal allocation of expenditure across product varieties by households and the

government implies that each individual firm faces a downward-sloping demand schedule for its

good, given by yit = (Pit/Pt)
−ε Yt, where Yt is aggregate demand.

Following Dotsey et al. (1999), we assume that firms face random lump sum costs of adjusting

prices (“menu costs”), distributed i.i.d. across firms and over time. Let Γ(κ) and g(κ) denote the

cumulative distribution function and the probability density function, respectively, of the stochastic

menu cost κ ≥ 0. We assume that a positive random fraction of firms draw a zero menu cost, so

that Γ (0) > 0.9 Assuming that κ is measured in units of labor time, the total cost paid by a firm

changing its price is wtκ.10

Let v0t denote the value of a firm that adjusts its price in period t before subtracting the menu

cost. Let vjt (P ) denote the value of a firm that has kept its nominal price unchanged at the level

P in the last j periods. This firm will change its nominal price only if the value of adjustment,

v0t − wtκ, exceeds the value of continuing with the current price, vjt (P ). Therefore, from the set

of firms that last reoptimized j periods ago (which we henceforth refer to as “vintage-j firms”),

only those with a menu cost draw κ ≤ (v0t − vjt (P )) /wt will choose to change their price. The

8Our assumption of linear technology is only for ease of exposition. Our main analytical result, the optimality of
strict inflation targeting from a timeless perspective, carries over to the more general case of a production function
with decreasing marginal returns to labor. The proof is available upon request.

9We make this technical assumption to ensure a unique stationary distribution of firms over price vintages in
the case of zero inflation. See Appendix B for details.
10Alternatively, we can assume that κ is measured in terms of the basket of final goods, in which case the total

cost paid by a firm changing its price is simply κ. The results are not dependent on this assumption.
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real value of an adjusting firm is given by

v0t = max
P

{
Πt (P ) + βEt

u′ (Ct+1)

u′ (Ct)

[
Γ

(
v0,t+1 − v1,t+1 (P )

wt+1

)
v0,t+1 − Ξ1,t+1 (P )

]
+βEt

u′ (Ct+1)

u′ (Ct)

[
1− Γ

(
v0,t+1 − v1,t+1 (P )

wt+1

)]
v1,t+1 (P )

}
,

where βu′ (Ct+s) /u′ (Ct) is the stochastic discount factor between periods t and t+ s ≥ t,

Πt (P ) ≡
(
P

Pt
− wt
zt

)(
P

Pt

)−ε
Yt

is the firm’s real profit as a function of its nominal price P , and

Ξj+1,t+1 (P ) ≡ wt+1

∫ (v0,t+1−vj+1,t+1(P ))/wt+1

0

κg (κ) dk

is next period’s expected adjustment cost for a firm currently in vintage j. The real value of a

firm in vintage j, as a function of its current nominal price P , is given by

vjt (P ) = Πt (P ) + βEt
u′ (Ct+1)

u′ (Ct)

[
Γ

(
v0,t+1 − vj+1,t+1 (P )

wt+1

)
v0,t+1 − Ξj+1,t+1 (P )

]
+βEt

u′ (Ct+1)

u′ (Ct)

[
1− Γ

(
v0,t+1 − vj+1,t+1 (P )

wt+1

)]
vj+1,t+1 (P ) . (3)

We assume that J periods after the last price adjustment, firms draw a zero menu cost.11 This

means that firms in vintage J−1 know that in the following period they will adjust their price with

probability one at no cost. Therefore, expression (3) holds for vintages j = 1, ..., J − 2, whereas

for vintage-(J − 1) firms the corresponding value function is

vJ−1,t (P ) = Πt (P ) + βEt
u′ (Ct+1)

u′ (Ct)
v0,t+1. (4)

The optimal price setting decision is given by

0 = Π′t (P ∗t ) + βEt
u′ (Ct+1)

u′ (Ct)

[
1− Γ

(
v0,t+1 − v1,t+1(P ∗t )

wt+1

)]
v′1,t+1 (P ∗t ) , (5)

where

Π′t (P ) =

[
ε
wt
zt
− (ε− 1)

P

Pt

]
(P )−ε−1 P ε

t Yt.

11This is a tractability assumption which ensures a finite state space under zero inflation or when the support of
the menu cost distribution is unbounded from above.
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Iterating (5) forward, and using the implications of (3) and (4) for the terms v′j,t+j (P ∗t ), j =

1, ..., J − 1, we can express the pricing decision as

P ∗t =
ε

ε− 1

∑J−1
j=0 β

jEt
∏j

k=1 (1− λk,t+k)u′ (Ct+j)P ε
t+jYt+j (wt+j/zt+j)∑J−1

j=0 β
jEt
∏j

k=1 (1− λk,t+k)u′ (Ct+j)P ε−1
t+j Yt+j

,

where

λjt ≡ Γ

(
v0t − vjt
wt

)
(6)

denotes the period-t adjustment probability of firms in vintage j = 1, ..., J−1, and we define vjt ≡
vjt(P

∗
t−j) for short. As emphasized by Dotsey et al. (1999), this pricing decision is analogous to the

one in the Calvo model. In particular, the term
∏j

k=1 (1− λk,t+k) is the endogenous probability
that the price chosen at t survives for the next j periods, thus replacing the exogenous probability(
1− λC

)j
where λC is the constant adjustment probability in the Calvo model. We can rewrite

the price decision in terms of stationary variables as

p∗t =
ε

ε− 1

∑J−1
j=0 β

jEt
∏j

k=1 (1− λk,t+k)
(∏j

k=1 πt+k

)ε
u′ (Ct+j)Yt+j (wt+j/zt+j)∑J−1

j=0 β
jEt
∏j

k=1 (1− λk,t+k)
(∏j

k=1 πt+k

)ε−1

u′ (Ct+j)Yt+j

, (7)

where p∗t ≡ P ∗t /Pt is the optimal relative price and
∏j

k=1 πt+k = Pt+j/Pt is accumulated inflation

between periods t and t+ j.

2.3 Market clearing

Labor input is required both for the production of goods and for changing prices. Labor demand

for production by firm i is nit = yit/zt = (Pit/Pt)
−ε Yt/zt. Thus, total labor demand for pro-

duction purposes equals ∆tYt/zt, where ∆t ≡
∫ 1

0
(Pit/Pt)

−ε di denotes relative price dispersion.

At the same time, the total amount of labor used by vintage-j firms for pricing purposes equals

ψjt
∫ (v0t−vjt)/wt

0
κg (κ) dk, where ψjt is the mass of firms in vintage j. Equilibrium in the labor

market therefore implies

Nt =
Yt∆t

zt
+

J−1∑
j=1

ψjt

∫ (v0t−vjt)/wt

0

κg (κ) dk. (8)

Also, equilibrium in the goods market requires that

Yt = Ct +Gt, (9)

where Gt denotes government expenditure, which follows an exogenous process.
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2.4 Inflation, price dispersion, and price distribution dynamics

All firms adjusting at time t choose the same nominal price, P ∗t . Given that no nominal price

survives for longer than J periods by assumption, the finite set of beginning-of-period prices at

any time t is
{
P ∗t−1, P

∗
t−2, ..., P

∗
t−J
}
. Let ψjt denote the time-t fraction of firms with beginning-of-

period nominal price P ∗t−j, for j = 1, 2, ..., J , with
∑J

j=1 ψjt = 1. The price level evolves according

to

P 1−ε
t = (P ∗t )1−ε J∑

j=1

λjtψjt +
J−1∑
j=1

(
P ∗t−j

)1−ε
(1− λjt)ψjt,

where adjustment probabilities {λjt}J−1
j=1 are given by (6), and where λJ,t = 1. Rescaling both sides

of the above equation by Pt, we obtain

1 = (p∗t )
1−ε J∑

j=1

λjtψjt +
J−1∑
j=1

(
p∗t−j∏j−1
k=0 πt−k

)1−ε

(1− λjt)ψjt. (10)

This equation determines the inflation rate πt, given
{
p∗t−j

}J−1

j=0
and {πt−j}J−2

j=1 . Similarly, price

dispersion follows

∆t = (p∗t )
−ε J∑

j=1

λjtψjt +
J−1∑
j=1

(
p∗t−j∏j−1
k=0 πt−k

)−ε
(1− λjt)ψjt, (11)

where again λJ,t = 1. The distribution of beginning-of-period prices evolves according to

ψj,t = (1− λj−1,t−1)ψj−1,t−1 (12)

for j = 2, ..., J , and

ψ1t = 1−
∑J

j=2 ψj,t = λ1,t−1ψ1,t−1 + λ2,t−1ψ2,t−1 + ...+ ψJ,t−1. (13)

2.5 Equilibrium

There are 8 + 2J + (J − 1) = 7 + 3J stationary endogenous variables: Ct, Nt, Yt, Rt, πt, p∗t , wt,

∆t,
{
ψjt
}J
j=1
, {vjt}J−1

j=0 , and {λjt}
J−1
j=1 . The equilibrium conditions are (1), (2), the J − 1 equations

(6), equations (7) to (11), the J laws of motion (12) and (13), the value functions

vjt =

(
p∗t−j∏j−1
k=0 πt−k

− wt
zt

)(
p∗t−j∏j−1
k=0 πt−k

)−ε
Yt

+βEt
u′ (Ct+1)

u′ (Ct)

[
λj+1,t+1v0,t+1 + (1− λj+1,t+1) vj+1,t+1 − wt+1

∫ (v0,t+1−vj+1,t+1)/wt+1

0

κdΓ (κ)

]

8



for j = 0, 1, ..., J − 2, and

vJ−1,t =

(
p∗t−(J−1)∏(J−1)−1
k=0 πt−k

− wt
zt

)(
p∗t−(J−1)∏(J−1)−1
k=0 πt−k

)−ε
Yt + βEt

u′ (Ct+1)

u′ (Ct)
v0,t+1;

plus a specification of monetary policy. If we were to close the model with a Taylor rule, this would

give us a total of 2+(J − 1)+5+J+J+1 = 7+3J equations. Instead, we will study the optimal

state-contingent monetary policy plan, which will essentially double the number of equations and

variables.

2.5.1 Equilibrium with flexible prices and no cost-push shocks

We now derive the equilibrium with flexible prices and no shocks to distortionary taxes (ut = 1).

The latter are an example of cost-push shocks. This equilibrium will be used later as a benchmark

for measuring the welfare consequences of alternative monetary policy rules. In such an equilibrium,

menu costs are zero and all firms choose the same nominal price P ∗t = ε
ε−1

wt
zt
Pt in each period t.

All relative prices are one: p∗t = P ∗t /Pt = 1. The equilibrium conditions simplify to

u′(Cp
t )zt

ε− 1

ε
= x′(Np

t ;χt),

ztN
p
t = Y p

t ,

Y p
t = Cp

t +Gt,

and so we obtain the classical decoupling of real and nominal variables. We refer to Y p
t as the

potential level of output, and use it to define the output gap as the ratio between actual output

and its potential counterpart, Yt/Y
p
t .
12

3 Optimal monetary policy

3.1 The general problem

For the purpose of deriving the optimality conditions of the Ramsey plan, it is useful to define

πaccjt ≡
∏j−1

k=0 πt−k =
Pt
Pt−j

, j = 1, ..., J − 1,

12In the literature ’potential output’sometimes refers to the output level under perfect competition. Our definition
of potential output thus differs from the latter in that it incorporates static monopolistic distortions. Our choice is
motivated by our focus on the welfare losses due to trend inflation and aggregate fluctuations, as opposed to those
caused by monopolistic distorsions in the steady state.
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that is, the accumulated inflation between periods t − j and t. This implies
∏j

k=1 πt+k = πaccj,t+j.

We also define

θjt ≡
∏j−1

k=0 (1− λj−k,t−k) , j = 1, ..., J − 1,

that is, the probability that a price chosen at t − j survives until t, which in turn implies∏j
k=1 (1− λk,t+k) = θj,t+j. These definitions allow us to express the optimal pricing decision

in equation (7) in a more compact form,

p∗t =
ε

ε− 1

∑J−1
j=0 β

jEtθj,t+j
(
πaccj,t+j

)ε
u′ (Ct+j)Yt+j (wt+j/zt+j)∑J−1

j=0 β
jEtθj,t+j

(
πaccj,t+j

)ε−1
u′ (Ct+j)Yt+j

.

Similarly, we replace
∏j−1

k=0 πt−k by π
acc
jt in the laws of motion of inflation and price dispersion, and

in the firms’value functions. It is useful to express the variables πaccjt and θjt recursively,

πaccjt = πtπ
acc
j−1,t−1, j = 1, ..., J − 1,

θaccjt = (1− λjt) θaccj−1,t−1, j = 1, ..., J − 1,

where the recursions start with πacc0,t−1 = 1 and θacc0,t−1 = 1, respectively. We use equation (1)

to substitute for the real wage in the equilibrium conditions. In addition, we use (9) to substi-

tute for Ct. Finally, we define ṽjt ≡ vjtu
′ (Ct), j = 0, 1, ..., J − 1, such that (v0t − vjt) /wt =

(ṽ0t − ṽjt) / [x′ (Nt;χt)ut]. At time 0, the central bank chooses the state-contingent path of the
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endogenous variables that maximizes the following Lagrangian:

L0 = E0

∑∞
t=0 β

t{u (Yt −Gt)− x (Nt;χt)

+φp
∗

t

[
p∗t

J−1∑
j=0

βjθj,t+j(π
acc
j,t+j)

ε−1Yt+ju
′ (Yt+j −Gt+j)−

ε

ε− 1

J−1∑
j=0

βjθj,t+j(π
acc
j,t+j)

εYt+j
x′
(
Nt+j;χt+j

)
zt+j/ut+j

]
+φNt

[
Nt − Yt∆t/zt −

∑J−1
j=1 ψjt

∫ (ṽ0t−ṽjt)/x′(Nt;χt)ut
0

κg (κ) dκ
]

+φπt

[
(p∗t )

1−ε∑J
j=1 λjtψjt +

∑J−1
j=1

(
p∗t−j/π

acc
jt

)1−ε
(1− λjt)ψjt

]
+φ∆

t

[
(p∗t )

−ε∑J
j=1 λjtψjt +

∑J−1
j=1

(
p∗t−j/π

acc
jt

)−ε
(1− λjt)ψjt −∆t

]
+

J−1∑
j=1

φ
λj
t

[
λjt − Γ

(
ṽ0t − ṽjt

x′ (Nt;χt)ut

)]
+

J∑
j=2

φ
ψj
t

[
ψj,t − (1− λj−1,t−1)ψj−1,t−1

]
+ φ

ψ1
t

[
ψ1t +

J∑
j=2

ψj,t

]

+
J−2∑
j=0

φ
vj
t

[(
p∗t−j
πaccjt

u′ (Yt −Gt)−
x′ (Nt;χt)

zt/ut

)(
p∗t−j
πaccjt

)−ε
Yt − ṽjt

]

+
J−2∑
j=0

φ
vj
t β

[
λj+1,t+1ṽ0,t+1 + (1-λj+1,t+1) ṽj+1,t+1 −

x′
(
Nt+1;χt+1

)
1/ut+1

∫ (ṽ0t+1−ṽj+1,t+1)/x′(Nt+1;χt+1)ut+1
0 κdΓ (κ)

]

+φ
vJ−1
t

[(
p∗t−(J−1)

πaccJ−1,t

u′ (Yt −Gt)−
x′ (Nt;χt)

zt/ut

)(
p∗t−(J−1)

πaccJ−1,t

)−ε
Yt − ṽJ−1,t + βṽ0,t+1

]
+φ

πacc1
t [πacc1t − πt] +

∑J−1
j=2 φ

πaccj

t

[
πaccjt − πtπaccj−1,t−1

]
+φθ1t [θ1t − (1− λ1t)] +

∑J−1
j=2 φ

θj
t [θjt − (1− λjt) θj−1,t−1] }. (14)

Since the nominal interest rate only appears in the consumption Euler equation, the latter is

excluded from the set of constraints on the Ramsey problem and is used instead to back out the

nominal interest rate path consistent with the optimal allocation. The first-order conditions of the

above problem are derived in Appendix A.

Our object of interest is optimal monetary policy from a “timeless perspective.”As explained

by Woodford (2003), this type of policy does not exploit the private sector’s expectations that

formed prior to the particular date on which the plan was implemented. Instead, the central bank

commits itself to behave, from date 0, in a way consistent with the way it would have chosen to

behave had it committed to the optimal policy in the infinite past.

Appendix B proves the following result:

Proposition 1 Let functional forms for preferences be of the constant elasticity type. Assume
furthermore that households consume all output (Gt = 0) and that there are no cost-push shocks

(ut = 1). Then the zero inflation policy (πt = 1) is optimal from the timeless perspective.

There are two important aspects of the above proposition. The first is that optimal trend

11



inflation is zero. Therefore, the presence of monopolistic distortions does not justify a positive rate

of trend inflation, and the optimal policy involves a commitment to eventually eliminating any

ineffi cient price dispersion due to staggered price setting. Interestingly, this normative prescription

coincides with the one implied by the standard New Keynesian model with Calvo pricing, as

shown by Benigno and Woodford (2005).13 The main insight of the Calvo framework, about the

desirability of zero long-run inflation, thus continues to hold in a general model of state-dependent

pricing. The key difference between exogenous-timing models of price adjustment such as Calvo’s

and SDP models is the endogeneity of the timing of price adjustment in the latter. A priori, the

central bank could have an incentive to use trend inflation to influence the speed at which firms

change prices, if such a policy were to have beneficial effects on society. The above result implies

that the endogeneity of price adjustment frequencies does not affect the optimality of zero trend

inflation.

To understand the intuition for this result, let us consider the different channels through which

trend inflation affects welfare. Two of these channels are common to exogenous-timing models such

as Calvo or Taylor. One is that, in the presence of staggered prices, inflation increases the extent

of price dispersion, distorting the economy’s pricing system. This leads to ineffi cient allocation

of resources across product lines, and increases the total amount of (labor) resources needed to

produce a given amount of the consumption basket; hence, it lowers welfare. Notice that ineffi cient

price dispersion attains a global minimum at zero inflation because, under such a policy, all relative

prices end up being equal.

The other common channel, through which trend inflation affects welfare, works through its

two opposing effects on the inflation-output tradeoff: On the one hand, holding constant inflation

expectations, a rise in current inflation allows the central bank to raise output toward its socially

effi cient level, thus reducing the monopolistic distortion and improving welfare; intuitively, the

economy moves along the New Keynesian Phillips curve (NKPC).14 On the other hand, choosing

higher inflation raises the inflation expectations of price-setters; the latter produces an upward

shift of the NKPC, thus worsening the short-run tradeoff between inflation and output. As it

turns out, at zero inflation, the marginal welfare cost of raising inflation expectations exactly

offsets the marginal welfare benefit of exploiting the short-run inflation-output tradeoff.

13The same result holds for another prominent exogenous-timing model of price adjustment, namely the Taylor
model, where adjustment probabilities are zero for a number of periods after a price change and one afterwards. A
proof of the latter result is available upon request from the authors.
14The “New Keynesian Phillips curve” is the structural relationship between inflation (current and expected)

and output that arises in the standard New Keynesian model. Here, the optimal price decision (equation 7) and
the relationship between inflation and the optimal relative price (equation 10) can be combined into a dynamic
relationship between inflation and real marginal costs, where the latter can also be expressed in terms of aggregate
output by using equations (1), (8), and (9). The resulting dynamic relationship between inflation and output may
be interpreted as a “New Keynesian Phillips curve.”Notice that the endogenous price adjustment frequencies, λjt,
affect both the intercept and the slope of that curve.

12



While the former two effects of trend inflation are shared with exogenous-timing models, our

framework with idiosyncratic menu cost shocks includes two additional channels through which

trend inflation affects welfare. One is that inflation forces firms to spend real resources (menu

costs) on adjusting their nominal prices; this distortion is minimized at zero inflation, because

eventually all firms end up being at their optimal price.

The second additional channel is more subtle. In the stochastic menu costs model, adjustment

frequencies are endogenous. In particular, trend inflation affects the relative prices of different

cohorts of firms (pt−j/
∏j−1

k=0 πt−k, j = 0, ..., J − 1), which has an effect on their profits, on their

value functions, and ultimately on the gains from adjustment. A priori, the central bank may be

tempted to use trend inflation to influence the speed of price adjustment, so as to shift the NKPC

in a way that improves the inflation-output tradeoff. However, the fact that adjusting firms choose

their prices in an optimal way implies that, in the steady state with zero inflation, all firms are

maximizing profits. As a result, a marginal increase in the inflation rate has no effect on firms’

profits, and therefore it has no effect on adjustment probabilities. This envelope property implies

that the monetary authority has no incentive to create trend inflation so as to influence the speed

with which firms change their prices.

The second important aspect of Proposition 1 is that the optimal deviations from zero inflation

in response to technology or preference shocks are exactly zero as well. Therefore, the occurrence of

these exogenous disturbances to preferences or technology does not justify temporary departures

from strict inflation targeting. The intuition for this result, which coincides with that found

by Benigno and Woodford (2005) for the Calvo model, is as follows. There are four potential

ineffi ciencies in the present model, related to: (1) the level and volatility of price dispersion; (2)

the volatility of the average markup; (3) the waste of resources due to menu costs; and (4) the level

of the average markup due to monopolistic competition. Distortions (1) through (3) are directly

related to the friction in price setting, and —absent idiosyncratic shocks to desired prices—a policy

of zero inflation eliminates all three. It does so by replicating the flexible-price equilibrium and

eliminating the incentives for price adjustment. Ineffi ciency (4) is a static markup distortion due to

monopolistic competition. As we have just seen, the optimal plan does not involve a correction of

this ineffi ciency because it is outweighed by the gains of committing to zero inflation and achieving

the minimum possible price dispersion in the long run, independently of the price-setting policies

followed by firms. The aforementioned envelope property, by which a marginal increase in inflation

leaves price adjustment frequencies unaffected, continues to hold as the economy is hit by shocks

to preferences or technology.
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3.2 An illustration with two cohorts

While the appendix provides the proof of the optimality of zero inflation in the full-blown model, it

is illustrative to formalize the above intuitions with a simplified version of the model. In particular,

we consider the case of J = 2 cohorts, such that firms that adjust their nominal price today may

or may not adjust in the following period, but adjust with certainty two periods after the last price

change. To further simplify, we assume functional forms u (Ct) = log (Ct) and x (Nt;χt) = χtNt.

As in Proposition 1, we assume away government spending, Gt = 0, such that Ct = Yt, and no

cost push shocks (ut = 1). The real wage is thus wt = x′ (Nt;χt) /u
′ (Yt) = χtYt. To simplify the

notation, let ψt ≡ ψ1t and λt ≡ λ1t denote the measure and adjustment probability of firms in

vintage 1. The measure of firms in vintage 2 is then ψ2t = 1− ψt, and the law of motion of ψt is
simply ψt = 1− (1− λt−1)ψt−1. Let also vt ≡ v1t denote the value of firms in vintage 1. Finally,

we define ṽ0t ≡ v0t/Yt and ṽt ≡ vt/Yt, such that (v0t − vt) /wt = (ṽ0t − ṽt) /χ. Taking all these
elements, the central bank maximizes the following Lagrangian:

L0 = E0

∑∞
t=0 β

t

{
log (Yt)− χt

Yt∆t

zt
− χtψt

∫ (ṽ0t−ṽt)/χ

0

κg (κ) dκ

+φp
∗

t

[
p∗t
(
1 + β (1− λt+1) πε−1

t+1

)
− ε

ε− 1

(
χtYt
zt

+ β (1− λt+1)πεt+1

χtYt+1

zt+1

)]
+φπt

[
(p∗t )

1−ε (λtψt + 1− ψt) +

(
p∗t−1

πt

)1−ε

(1− λt)ψt − 1

]

+φ∆
t

[
(p∗t )

−ε (λtψt + 1− ψt) +

(
p∗t−1

πt

)−ε
(1− λt)ψt −∆t

]

+φλt

[
λt − Γ

(
ṽ0t − ṽt
χt

)]
+ φψt

[
ψt + (1− λt−1)ψt−1

]
+φv0t

[(
p∗t −

χtYt
zt

)
(p∗t )

−ε − ṽ0t + β

(
λt+1ṽ0,t+1 + (1− λt+1) ṽt+1 − χt

∫ (ṽ0,t+1−ṽt+1) /χ

0

κg (κ) dκ

)]

+φvt

[(
p∗t−1

πt
− χtYt

zt

)(
p∗t−1

πt

)−ε
− ṽt + βṽ0,t+1

]}
.

For the present analysis, it suffi ces to differentiate the Lagrangian with respect to inflation and

the optimal relative price for a particular state at time t. While the derivative of the Lagrangian

with respect to πt captures the direct marginal effect of inflation on welfare, the derivative with

respect to p∗t captures its indirect effect through its structural relationship with the optimal relative

price. That relationship is given by the equation multiplied by φπt in the Lagrangian. Indeed, if

we use the latter equation to solve for the optimal relative price as a function of current and past

inflation, and then use the resulting expression to substitute for p∗t in the optimal price decision

14



(the equation multiplied by φp
∗

t ), we obtain a dynamic relationship between inflation and aggregate

activity. The latter may be interpreted as a “New Keynesian Phillips curve.”The derivatives with

respect to πt and p∗t are given by

∂L0

∂πt
= φp

∗

t−1

[
p∗t−1

πt
(ε− 1)− ε

ε− 1

χtYt
zt

ε

]
πε−1
t (1− λt)

+

[
φπt (ε− 1)

p∗t−1

πt
+ φ∆

t ε

] (
p∗t−1

)−ε
πε−1
t (1− λt)ψt (15)

+φvt

[
(ε− 1)

p∗t−1

πt
− εχtYt

zt

] (
p∗t−1

)−ε
πε−1
t ,

∂L0

∂p∗t
= φp

∗

t

[
1 + β (1− λt+1) πε−1

t+1

]
−
[
φπt (ε− 1) p∗t + φ∆

t ε
]

(p∗t )
−ε−1 (λtψt + 1− ψt)

−βEt
[
φπt+1 (ε− 1)

p∗t
πt+1

+ φ∆
t+1ε

]
(p∗t )

−ε−1 πεt+1 (1− λt+1)ψt+1 (16)

+φv0t

[
ε
χtYt
zt
− (ε− 1) p∗t

]
(p∗t )

−ε−1 + βEtφ
v
t+1

[
ε
χtYt+1

zt+1

− (ε− 1)
p∗t
πt+1

]
(p∗t )

−ε−1 πεt+1,

respectively.15 We now conjecture that the central bank commits to follow a policy of zero net

inflation, or πt = 1. It is straightforward to show that under such a policy the economy converges to

an equilibrium in which p∗t = ∆t = 1. That is, both firm vintages have the same relative price, and

price dispersion is eliminated. Thus, both vintages end up having the same value, v0t = vt, which

in turn implies λt = Γ(0) ≡ λ̄ > 0. The vintage distribution converges to ψt = 1/
(
2− λ̄

)
≡ ψ̄.

Finally, the real marginal cost equals the inverse of the monopolistic mark-up, χtYt/zt = (ε− 1) /ε,

implying that output equals its flexible-price level of section 2.5.1 at all times.

Imposing the latter conjecture in expressions (15) and (16), we obtain

∂L0

∂πt
= −φp

∗

t−1

(
1− λ̄

)
+
[
φπt (ε− 1) + φ∆

t ε
] (

1− λ̄
)
ψ̄, (17)

∂L0

∂p∗t
= φp

∗

t

[
1 + β

(
1− λ̄

)]
−
[
φπt (ε− 1) + φ∆

t ε
]
ψ̄ − β

(
1− λ̄

)
Et
[
φπt+1 (ε− 1) + φ∆

t+1ε
]
ψ̄, (18)

where we have also used the fact that λ̄ψ̄+ 1− ψ̄ = ψ̄. The first effect to notice is that, under our

conjecture, all terms involving the Lagrange multipliers φv0t and φvt in expressions (15) and (16)

have disappeared. Such terms capture the marginal welfare effect of both variables through their

effect on the value of both firm cohorts (v0t, vt). Therefore, once the economy has converged to

the timeless perspective regime with zero inflation, a marginal deviation of inflation from zero has

15Both derivatives have been rescaled by βt times the probability of reaching the particular state at time t
conditional on the state at time 0.
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no effect on the gains from adjustment, and hence it has no effect on the adjustment frequency

either. This is the “envelope property”that we referred to before.

In equation (17), the term involving φp
∗

t−1 captures the marginal welfare effect from an increase

in time (t − 1) expectations of inflation at time t, whereas the term involving φp
∗

t in equation

(18) reflects the marginal welfare effect from an increase in the optimal relative price (and thus

in inflation) at time t. We show in the Appendix that, in the full-blown model, the multiplier

φp
∗

t converges to a constant value φ̄p
∗
in the timeless perspective regime, which is also true in this

simplified version. Using this in (18), setting the resulting expression equal to zero (as required by

the first-order optimality condition), and solving for φπt , we obtain

φπt =
(
φ̄
p∗
/ψ̄ − φ∆

t ε
)
/ (ε− 1) .

Using this to substitute for φπt in (17), the latter becomes

∂L0

∂πt
=

[
φ̄
p∗
/ψ̄ − φ∆

t ε+ φ∆
t ε
] (

1− λ̄
)
ψ̄ − φ̄p

∗ (
1− λ̄

)
= φ∆

t (ε− ε)
(
1− λ̄

)
ψ̄ + φ̄

p∗
(1− 1)

(
1− λ̄

)
(19)

= 0 + 0 = 0.

Therefore, once the economy has converged to the timeless perspective regime with zero inflation,

the central bank has no incentive to create positive or negative inflation at the margin, because the

potential welfare costs cancel out the potential gains. The term involving φ∆
t in (19) captures the

marginal welfare effect of inflation through its effect on price dispersion, which disappears under

the timeless perspective regime with zero inflation. Finally, the term involving φ̄p
∗
is the difference

between the positive marginal effect stemming from a movement along the NKPC, φ̄p
∗ (

1− λ̄
)
,

and the negative marginal effect due to the shift in the NKPC, −φ̄p
∗ (

1− λ̄
)
. Under the zero

inflation policy, both effects exactly cancel each other out.

The specific example above is intended to formalize the main intuition; more generally, the

optimality of zero inflation from the timeless perspective holds for any number of cohorts and for

standard (isoelastic) preferences, as shown in the Appendix.

4 Numerical analysis

The previous section derived the optimal policy under the assumption that the representative

household consumes all output and there are no cost-push shocks. For the general case with both

government consumption and cost-push shocks, we are no longer able to obtain analytical results,

so we illustrate the nature of optimal monetary policy by numerical simulation. With this aim, we
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first calibrate our model economy.

4.1 Calibration

We assume standard functional forms for preferences: u (Ct) = log(Ct), x (Nt) = χN1+ϕ
t /(1+ϕ).16

Following Golosov and Lucas (2007), we set χ = 6 and ϕ = 1. The discount factor is β = 1.04−1/4.

and the elasticity of substitution among product varieties is ε = 7.

We assume that the cumulative distribution function of menu costs takes the form

Γ (κ) =
λ̄

λ̄+
(
1− λ̄

)
e−κ

,

which is a special case of the hazard function proposed by Woodford (2008). Unlike that considered

by Costain and Nakov (2011), the function is bounded below not by 0 but by λ̄ > 0.We make this

technical assumption to ensure a unique stationary distribution of firms over the (finite number

of) price vintages in the case of zero inflation. We set λ̄ so that, under a policy targeting 2%

annual inflation (broadly consistent with the average observed rate in the United States since the

mid-1980s), the model produces an average frequency of price changes in the steady state of once

every 10 months, or 10/3 quarters, which is broadly consistent with the micro evidence found e.g.

by Nakamura and Steinsson (2008). Figure 1 shows the adjustment hazard function λj and the

distribution of firms by price vintage ψj in the steady state with 2% trend inflation. As shown in

the right panel, our calibration implies that very few prices survive more than ten quarters.

Finally, our exogenous processes have law of motion xt/x = (xt−1/x)ρx exp (εxt ), ε
x
t ∼ iid(0, σx),

for x = {z,G, u}. We set the autocorrelation coeffi cients of productivity, government spending and
cost-push shocks to ρz = 0.95, ρg = 0.9 and ρu = 0.9, respectively. For the purpose of illustration,

we set the standard deviation of all three iid shocks to 1%. Steady-state government expenditure

g is set to 0.1, so that it accounts for roughly 20% of GDP in the steady state, consistently with

U.S. postwar experience.

4.2 Welfare losses from trend inflation

Proposition 1 implies that, in the absence of government consumption, the optimal rate of inflation

in the steady state is zero. In fact, it is possible to show that zero steady-state inflation is optimal

also in the presence of government consumption (Nakov and Thomas, 2010). Thus, we may first

ask how much welfare is lost in the steady state from pursuing policy rules that imply nonzero

trend inflation rates.
16For brevity, we omit the numerical analysis of preference shocks, and thus set χt = χ. Results are available

upon request.
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Figure 2 displays the welfare loss, relative to the flexible-price equilibrium, in the steady-state

of the SDP model as a function of trend inflation. Welfare losses are expressed as a percent of

steady-state consumption. For comparison, the figure also shows the welfare losses in the steady-

state of the Calvo model. The equilibrium conditions in the latter model are given by equations

(1), (2), (8, without menu costs), (9); as well as (7), (10) and (11), with J = ∞, a constant λC

replacing λk,t+k and λjt, and λ
C(1− λC)j−1 replacing ψjt.

17 We calibrate λC to the same average

adjustment frequency as the SDP model (10/3 quarters).

As the figure shows, welfare losses are minimized at zero inflation in both models, and increase

in a convex manner as trend inflation departs from zero. With nonzero inflation, welfare losses

are higher under Calvo pricing, with the gap widening as inflation moves away from zero. For

instance, at 5% annual inflation, the SDP model generates welfare losses of almost 0.7% of steady-

state consumption, whereas welfare losses are almost 1% of steady-state consumption in the Calvo

model.

The difference in welfare loss between the SDP and Calvo model is due almost entirely to

relative price dispersion. For instance, at 5% inflation, the excess price dispersion under Calvo

pricing relative to SDP is equivalent to 0.9% of steady-state consumption. The intuition is simple.

As inflation increases, firms adjust prices faster and faster under SDP, especially for those firms

that are further away from the optimal price, but not under Calvo pricing, where price adjust-

ment frequencies are constant. This increases the size of relative price distortions in the Calvo

model vis—ï¿œ-vis the SDP model. Ceteris paribus, greater price dispersion reduces the amount of

consumption that can be produced for given labor input, thus reducing welfare.18

4.3 Impulse-response analysis

We now study how the economy responds to aggregate shocks under different policy regimes.

We consider three types of aggregate disturbances: (i) productivity shocks, (ii) government con-

sumption shocks, and (iii) cost-push shocks. We also consider three policy rules: (i) the optimal

monetary policy (i.e. the one that solves the Ramsey problem laid out in section 3), (ii) strict

inflation targeting (πt = 1), and (iii) a simple Taylor rule for the nominal interest rate,

Rt

π̄/β
=

(
Rt−1

π̄/β

)φR
π

(1−φR)φπ
t .

We set φπ = 1.5 and φR = 0.8, which conforms well with estimated Taylor rules for the US economy

for the Great Moderation period.

Both the optimal policy and strict inflation targeting imply zero inflation in the steady state.

17In fact, the counterparts of equations (7), (10) and (11) in the Calvo model can all be expressed recursively.
18Our calculations show that steady-state labor hours, Nss, are in fact very similar under SDP and Calvo pricing.
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Thus, in order to calculate impulse-responses we use a first-order Taylor expansion around the

zero inflation steady state.19 For comparability, we also approximate dynamics under the Taylor

rule around the zero inflation steady state, which requires setting π̄ = 1 in the latter rule. We also

set J = 24 in all our dynamic simulations, a number that is much greater than any observed price

duration in recent U.S. evidence.

Figure 3 plots the responses of inflation, output and the output gap to a 1% positive pro-

ductivity shock.20 Each column displays the responses under each of the three policy rules. The

upper-left and lower-left subplots reveal that the responses of output gap and inflation under the

optimal policy are basically indistinguishable from zero. Thus, while strict inflation targeting is

no longer exactly optimal in the presence of steady-state government consumption, it continues

to provide a very good approximation of optimal policy in response to productivity shocks. By

contrast, under the Taylor rule (third column) both output gap and inflation experience a sizable

reduction, due to the failure of actual output to increase as much as its potential level.

Figure 4 shows the responses to a 1% increase in government consumption. Once again, we

find that zero inflation provides a very good characterization of optimal policy. Under the Taylor

rule, the actual response of output is now somewhat larger than that of potential output, which

results in a slight increase in the output gap and hence in inflation.

While productivity and government spending shocks involve virtually no trade-off between

stabilizing prices and stabilizing the output gap, cost-push shocks are more likely to generate a

relevant trade-off. Figure 5 shows the impulse-responses to a 1% increase in the cost-push shifter

ut. As expected, this shocks does generate a sizable response in both inflation (about 16 basis

points in annual terms) and the output gap under the optimal policy. Moreover, a policy of strict

price stability now comes at the cost of a severe contraction in output. The Taylor rule produces

a much larger inflation response than the optimal policy, and yet it does not stabilize the output

gap much more than the latter.

In figures (3) to (5), we also display the impulse-responses in the Calvo framework. As the

figures make clear, impulse-responses to all three shocks are virtually identical in both frameworks.

The reason for this is again the ’envelope property’discussed in section 3. In particular, notice

that both models are approximated around the zero inflation steady state. In the latter, all firms

are at their optimal prices and are thus maximizing their value. As a result, in the SDP model the

first-order approximate dynamics around the steady state feature very small (in fact, second-order)

changes in adjustment gains and hence in adjustment frequencies.

19A second-order Taylor expansion yields virtually identical impulse responses, both under state-dependent and
Calvo pricing.
20Output and output-gap responses are in percent, inflation responses are in percentage points and in annualized

terms.
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4.4 Welfare losses from aggregate fluctuations

We now analyze the welfare consequences of the alternative policy rules considered thus far. In this

section, calculations are based on a second-order approximation of equilibrium dynamics. Table 1

displays mean welfare loses, relative to the equilibrium with flexible prices and no cost-push shocks,

for each policy rule. Welfare losses are expressed again as a percent of steady-state consumption.

Notice that, for the three policy rules, the implied steady state for the welfare-relevant variables is

exactly the same as in the flexible-price equilibrium. Therefore, welfare losses are due exclusively

to aggregate fluctuations around the zero-inflation steady state.

Table 1. Mean welfare losses for alternative policy rules

Policy rule \ Shock: productivity government cost-push unconditional

SDP model

Optimal policy 0.0000 0.0000 0.0121 0.0121

Zero inflation 0.0000 0.0000 0.0129 0.0129

Taylor rule (π̄ = 1) 0.0266 0.0005 0.0181 0.0452

Calvo model

Optimal policy 0.0000 0.0000 0.0122 0.0122

Zero inflation 0.0000 0.0000 0.0129 0.0129

Taylor rule (π̄ = 1) 0.0282 0.0005 0.0187 0.0473

Note: the table reports mean welfare losses relative to the flexible-price equilibrium without cost-push

shocks, expressed as a percent of steady-state consumption

The table reveals that the zero inflation policy achieves the same welfare loss as the optimal

monetary policy conditional on productivity or government spending shocks. In fact, such welfare

losses are basically zero, as both policies manage to essentially replicate the flexible price allocation.

Under this metric, strict inflation stabilization provides again a very good approximation of the

optimal monetary policy. By contrast, the Taylor rule achieves somewhat higher welfare losses

than either the optimal or the zero inflation policies, although the difference is of second order, as

one would expect.

Welfare losses conditional on cost-push shocks are higher than for productivity or government

shocks when the monetary authority follows the optimal or the zero inflation policy, reflecting the

existence of a relevant output-inflation trade-off. The Taylor rule generates higher welfare losses

than the other two policy rules, which reflects its poorer stabilizing performance.

The table also displays welfare losses in the Calvo model. Welfare losses are identical (i.e. zero)

in both frameworks under the optimal or zero inflation policies conditional on productivity and
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government shocks, and just slightly higher in the Calvo model conditional on cost-push shocks

or under the Taylor rule. This similarity between both frameworks in terms of welfare losses

stems again from the ’envelope property’of the SDP model. Since the latter is solved around a

steady-state with zero trend inflation in which all firms are at their optimal prices, the approximate

dynamics around that steady state involve very small fluctuations in adjustment gains and hence

in endogenous adjustment frequencies. The resulting similarity in equilibrium dynamics carries

over to the comparison of the associated welfare losses.

The preceding analysis shows that, as long as one approximates equilibrium dynamics around

the zero inflation steady state, the envelope property holds. Things are different however if one

approximates around a steady state with nonzero inflation. To see this, we now consider a scenario

in which the monetary authority follows a Taylor rule with a nonzero trend inflation target, π̄ > 1.

Notice that, in a steady state with trend inflation, firms are no longer at their optimal prices. In

fact all firm vintages are below their optimal relative prices at the start of each period; they are thus

situated on the upward-sloping part of their value functions, rather than at the maximum where

the slope is zero. As a result, aggregate shocks may cause non-negligible changes in adjustment

gains, and hence in adjustment probabilities.

Table 2 reports the difference in mean welfare losses between the Calvo and SDP models in

such a scenario, for different levels of trend inflation. As discussed in section 4.2, steady-state

welfare losses are higher in the Calvo model in the presence of trend inflation. Therefore, in order

to isolate the welfare losses due only to aggregate fluctuations, we subtract the gap in steady-state

welfare loss between both models from the overall difference in mean welfare losses.

Table 2. Mean welfare losses under Taylor rule with trend inflation: difference between Calvo

and SDP model

Trend inflation productivity government cost-push unconditional

0 0.0016 0.0000 0.0005 0.0021

2% 0.0070 0.0030 0.0040 0.0082

5% 0.0376 0.0138 0.0184 0.0429

Note: the table reports the difference in mean welfare losses (expressed as a percent of steady-state

consumption) between the Calvo model and the SDP model, adjusted for the difference in steady-state

welfare loss

As the table shows, welfare differences between both models increase with trend inflation. Key

to this result are the dynamics of relative price distorsions in each model. As an illustration, figure

6 displays the impulse-responses of relative price dispersion to a cost-push shock for different levels

of trend inflation. With zero trend inflation, price dispersion barely responds in both models.
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With 2% trend inflation, the response is non-negligible and it is somewhat larger in the Calvo

model. With 5% trend inflation, responses are larger and so is the difference between both models.

Therefore, the higher the trend inflation rate, the larger the relative price distortions in the Calvo

model relative to the SDP model.

The difference in price dispersion dynamics between both models is in turn strongly related

to the endogenous response of price adjustment probabilities in the SDP model. Figure 7 shows

the responses of the adjustment probabilities of several cohorts for different trend inflation rates.21

With zero trend inflation, the response of the adjustment probabilities is indistinguishable from

zero, i.e. the envelope property holds almost exactly. With 2% trend inflation, their response

is already non-negligible, and at 5% trend inflation the responses are even larger. Faster price

adjustment under SDP implies smaller increases in price dispersion relative to the Calvo model.

The preceding analysis shows that the envelope property becomes less and less important in

the dynamics of the SDP model as trend inflation increases. The endogeneity of price adjustment

frequencies thus becomes more and more relevant, with the resulting consequences for the welfare

comparison between the SDP and Calvo frameworks.

4.5 Firm-level shocks

For reasons of tractability the above analysis abstracted from firm-level shocks to desired prices

despite the strong evidence in favor of their existence (e.g. Klenow and Kryvtsov, 2008, Golosov

and Lucas, 2007). In this section we extend the model to include idiosyncratic productivity shocks,

and analyze steady-state welfare as well as impulse-responses.22 In particular, we assume that firm-

level productivity follows an AR(1) process in logs,

logAit = ρ logAit−1 + εait, (20)

where 0 ≤ ρ < 1 and εait ∼ i.i.d.N(0, σ2
a).

In order to make the model consistent with the observed size distribution of price changes, we

assume a more general hazard function, based on Woodford (2008). Specifically, we postulate

Γ (κ) =
λ̄

λ̄+
(
1− λ̄

)
e−ξ(α−κ)

.

21In figure 7, all adjustment probabilities increase on impact, as one would expect. After that, the adjustment
probability of the j-th cohort experiences a sudden decline exactly j periods after the shock, because it is only then
that cohort-j firms start the period with a price chosen after the arrival of the shock.
22We solve the model with idiosyncratic shocks using Reiter’s (2009) method of projection and perturbation. The

solution is non-linear in the idiosyncratic states (price and productivity) and linear with respect to the aggregate
shocks. The linearity in the aggregate dynamics implies that we are not able to compute average welfare losses with
a degree of accuracy of second order as we did in the baseline model without idiosyncratic shocks.
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We take the estimates of (λ̄, α, ξ) and (ρ, σa) from Costain and Nakov (2011), who estimate the

model to match the average frequency and the size distribution of price changes in the AC Nielsen

data reported by Midrigan (2011). The estimated values are (λ̄, α, ξ) = (0.0945, 0.0611, 1.3335)

and (ρ, σa) = (0.8575, 0.0924).23

Figure 8 shows the steady-state welfare losses induced by trend inflation in the Calvo and SDP

models with idiosyncratic shocks. In both cases, welfare losses are a convex function of steady-

state inflation, reaching a minimum at zero inflation, equivalent to around 0.9% of steady-state

consumption. In the case of zero inflation the losses are exclusively due to the idiosyncratic shocks

and the failure of firms to adjust continuously in response to these shocks. Notice that, contrary

to the baseline case without firm-level shocks, welfare losses are higher in the Calvo model even

at zero inflation, reflecting the fact that adjustment probabilities do not respond to idiosyncratic

shocks in that model. Once again, the welfare gap between both models increases as trend inflation

moves away from zero. For instance, for an annual inflation of 5%, welfare losses amount to about

1.5% of steady-state consumption under SDP and as much as 2.2% under Calvo pricing.

In turn, figure 9 shows the responses under Calvo pricing and SDP to a 1% positive shock to

productivity. In both cases, the increase in actual output falls short of the increase in potential

output, resulting in a falling output gap. As a result inflation declines. The fall in inflation is

more pronounced in the SDP model due to the selection effect emphasized by Golosov and Lucas

(2007): firms that adjust tend to be those for whom adjustment is most valuable and these are the

firms whose prices are furthest out of line with the optimal price. As a result of the productivity

shock there is a shift of adjustment opportunities from firms that were contemplating a relatively

large price increase to firms that are contemplating a relatively large price decrease, resulting in

more flexibility of the aggregate price level under SDP compared to Calvo.

5 Conclusion

We have analyzed optimal monetary policy in a general equilibrium model with state-dependent

pricing by firms. In this model, firms choose the timing of price changes and therefore the overall

frequency of adjustment is determined endogenously. Hence, unlike the Calvo model in which the

frequency is an exogenous parameter, our model is not subject to the Lucas (1976) critique.

As it turns out, however, under certain conditions often assumed in the literature, and provided

that monetary policy is set optimally, the probability of adjustment remains constant even if pricing

is state-dependent. Hence, the optimal long-run rate of inflation is zero, and the optimal dynamic

policy is strict price stability. Just like in the simpler Calvo model, the central bank should not

23We calibrate and simulate the model on a monthly frequency to match the monthly data on price changes used
by Costain and Nakov (2011).
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use inflation to offset the static distortion arising from monopolistic competition. These results

lend support to more informal statements about the suitability of the Calvo model for studying

optimal monetary policy despite its apparent conflict with the Lucas (1976) critique.
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Appendix

A. First-order conditions of Ramsey problem

The central bank maximizes the Lagrangian given by expression (14) in the main text. The

first-order conditions are as follows (all expressions are equal to zero):
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where we have defined the adjustment gain Ljt ≡ (v0t − vjt) /wt = (ṽ0t − ṽjt) / [x′ (Nt;χt)ut] for

compactness.

B. Optimality of strict inflation targeting

Assume that there are no cost-push shocks, such that ut = 1 at all times. We now conjecture that

the timeless perspective optimal policy involves zero net inflation at all times, πt = 1. Under such a

policy, in the timeless perspective regime (that is, after all transitional dynamics have disappeared)

the economy converges to the following equilibrium:
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for all t. Thus, all firms end up having the same relative prices. Price dispersion is eliminated;

the average price markup is constant at the level ε/ (ε− 1), such that output, employment and

consumption equal their flexible-price levels of section 2.5.1 at all times; adjustment gains are zero

and the vintage distribution converges to a stationary distribution. Imposing our conjecture in the

first-order conditions above, we obtain
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We now use equations (21) to (34) to solve for the Lagrange multipliers. From (26) and (25), it

follows immediately that

φ
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t = 0, j = 1, ..., J − 1. (36)

Equations (28) to (30) allow us to solve for the φ
ψj
t multipliers, obtaining

φ
ψ1
t = −

(
φπt + φ∆

t

)
,

φ
ψj
t = 0, j = 2, ..., J. (37)

Using (36) and (37) in equations (27), we obtain

φ
λj
t = 0, j = 1, ..., J − 1. (38)
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Using the latter, equations (31) and (32) can be expressed compactly as φvt = Aφvt−1, where

φvt = [φv0t , φ
v1
t , ..., φ

vJ−1
t ]′ and

A
J×J

=



λ̄ λ̄ λ̄ ... λ̄ λ̄ 1

1− λ̄ 0 0 ... 0 0 0

0 1− λ̄ 0 ... 0 0 0

... ... ... ... ... ... ...

0 0 0 ... 1− λ̄ 0 0

0 0 0 .. 0 1− λ̄ 0


.

The matrix A has J − 1 eigenvalues with modulus equal to 1 − λ̄ < 1 and one unit eigenvalue.24

The system is thus stable, and the elements in φvt converge to finite values that depend on initial

conditions. Therefore, in the timeless perspective regime, in which all transitional dynamics have

disappeared, the multipliers φvjt converge to constant values φ̄
vj , j = 0, ..., J − 1. We then use (33)

to solve for φNt , obtaining

φNt = x′ (Nt;χt)

[
1 +

ε

ε− 1

Ntx
′′ (Nt;χt)

x′ (Nt;χt)

J−1∑
j=0

(
1− λ̄

)j
φp
∗

t−j +
x′′ (Nt;χt)Nt

x′ (Nt;χt)

J−1∑
j=0

φ̄
vj

]
.

Using the latter in (21), we obtain[
Ytu

′′ (Ct)

(−)u′ (Ct)
+
Ntx

′′ (Nt;χt)

x′ (Nt;χt)

]
J−1∑
j=0

(
1− λ̄

)j
φp
∗

t−j =
1

ε
+

[
1

ε
− u′′ (Ct)Yt

(−)u′ (Ct)
− ε− 1

ε

x′′ (Nt;χt)Nt

x′ (Nt;χt)

]
J−1∑
j=0

φ̄
vj ,

where we have used the fact that, under our conjecture, x′ (Nt;χt) / [ztu
′ (Ct)] = (ε− 1) /ε. At this

point, we assume away government spending, Gt = 0, such that Yt = Ct. We also assume that

functional forms for preferences are of the constant elasticity type. Let σ ≡ (−)Ctu
′′ (Ct) /u

′ (Ct) >

0 and ϕ ≡ Ntx
′′ (Nt;χt) /x

′ (Nt;χt) > 0 denote the constant elasticities of marginal consumption

utility and marginal labor disutility, respectively. Then we have

J−1∑
j=0

(
1− λ̄

)j
φp
∗

t−j =
1/ε

σ + ϕ
+

1/ε− σ − ϕ (ε− 1) /ε

σ + ϕ

J−1∑
j=0

φ̄
vj ≡ Ξ.

It can be shown that all J − 1 roots of the characteristic polynomial
∑J−1

j=0

(
1− λ̄

)j
xJ−1−j have

modulus equal to 1 − λ̄ < 1, hence they all lie inside the unit circle. Therefore, in the timeless

perspective regime, the multiplier φp
∗

t converges to the constant value φ̄p
∗
≡ Ξ/

∑J−1
j=0

(
1− λ̄

)j
.

24Every column of A sums to unity, which implies that unity is an eigenvalue of A (Hamilton, 1994, p. 681), but
A is also a Leslie matrix, hence it has only one positive and dominant eigenvalue (Poole, 2006, p. 328). Hence, all
other eigenvalues must lie inside the unit circle.
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Using this in equation (22), together with λ̄
∑J−1

j=1 ψ̄j + ψ̄J = ψ̄1 and ψ̄j =
(
1− λ̄

)j−1
ψ̄1, the latter

equation can be expressed as

0 = Et
J−1∑
j=0

βj
(
1− λ̄

)j {
φ̄
p∗
Yt+ju

′ (Ct+j)−
[
φπt+j (ε− 1) + φ∆

t+jε
]
ψ̄1

}
= Et

J−1∑
j=0

βj
(
1− λ̄

)j
Σt+j, (39)

where we have defined Σt ≡ φ̄
p∗
Ytu

′ (Ct)−
[
φπt (ε− 1) + φ∆

t ε
]
ψ̄1. All J − 1 roots of the polynomial∑J−1

j=0 β
j
(
1− λ̄

)j
xJ−1−j have modulus equal to β

(
1− λ̄

)
< 1 and are thus inside the unit circle.

Therefore, equation (39) has a unique solution given by Σt = 0, or equivalently

φ̄
p∗
Ytu

′ (Ct)−
[
φπt (ε− 1) + φ∆

t ε
]
ψ̄1 = 0, (40)

which pins down the multiplier φπt as a function of the variables Ytu
′ (Ct) and φ

∆
t . The latter

multiplier is in turn determined by equation (34).

Equation (24) can be solved for φ
πaccJ−1
t , obtaining

φ
πaccJ−1
t =

(
1− λ̄

)J−1
{
φ̄
p∗
Ytu

′ (Ct)−
[
φπt (ε− 1) + φ∆

t ε
]
ψ̄1

}
= 0,

where we have used ψ̄J−1 =
(
1− λ̄

)J−2
ψ̄1 and where the second equality follows from (40). Using

Etφ
πaccJ−1
t+1 = 0 and ψ̄J−2 =

(
1− λ̄

)J−3
ψ̄1 in equation (23) for j = J−2, the latter implies φ

πaccJ−2
t = 0.

Operating in the same fashion, equations (23) for j = 1, ..., J − 3 imply that φ
πaccj

t = 0 for j =

1, ..., J − 3.

It only remains to verify that equation (35) holds given the solution of the Lagrange multipliers.

This is obvious, as we have already shown that φ
πaccj

t = 0 for j = 1, ..., J − 1.
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Figure 1: Price adjustment hazard and cohort density at 2% inflation
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Figure 2: Welfare losses from trend inflation in Calvo and SDP models
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Figure 3: Responses to productivity shock under three monetary policy regimes
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Figure 4: Responses to government spending shock under three monetary policy regimes
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Figure 5: Responses to cost-push shock under three monetary policy regimes
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Figure 8: Welfare losses from trend inflation in models with idiosyncratic technology shocks
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Figure 9: Responses to an aggregate TFP shock in Calvo and SDP models with idiosyncratic
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