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ABSTRACT 

Learning from Experience in the Stock Market* 

New evidence suggests that individuals "learn from experience," meaning they 
learn from events occurring during their own lifetimes as opposed to the entire 
history of events. Moreover, they weigh more heavily the more recent events 
compared to events occurring in the more distant past. This paper analyzes 
the implications of such learning for stock pricing in a model with finitely-lived 
agents. Individuals learn about the rate of change of the stock price and of 
dividends using a weighted decreasing-gain algorithm. Information is 
dispersed across age cohorts with older agents having larger information sets 
than younger ones. In the model, the stock price exhibits stochastic 
fluctuations around the rational expectations equilibrium due to successive 
waves of optimism and pessimism. We demonstrate how this heterogeneous-
beliefs model can be approximated by an economy with a representative 
agent who updates his beliefs following a constant-gain learning scheme. The 
aggregate gain parameter of the approximation is a nonlinear function of the 
survival rate and of the individual gain parameters. 
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1 Introduction

The key role of expectations about the future is well understood in economics. The rational

expectations hypothesis (REH) has been a major step forward allowing rigorous formalization of

the process of expectations formation. Yet it has often been criticized for endowing people with “too

much”knowledge about their environment.1 Empirical studies of individuals forming expectations

about aggregate economic variables does not, in general, corroborate the REH. In particular,

Malmendier and Nagel (2011, 2013) find evidence that, contrary to the REH, people “learn from

experience,”meaning that they are more influenced by observations from their own lifetimes than

by earlier historical events. More specifically, Malmendier and Nagel (2011) find that individuals

who experienced low stock market returns during their lives are more pessimistic about future

stock returns and invest a lower fraction of their liquid assets in stocks. In addition, Malmendier

and Nagel (2013) find that young individuals place more weight on recently experienced inflation

than older individuals do. The by-product of this is that learning may take forever if history “gets

lost”as new generations replace older ones.

In this paper, we explore how replacing the REH with “learning from experience”affects the

dynamics of a simple general equilibrium model of the stock market. We are interested in the

dynamics of heterogeneous beliefs and in the feedback loop that arises when individuals learn

about variables which are the result of their collective actions given their beliefs.2 To this end,

we extend the basic Lucas-tree asset pricing model to a stochastic Blanchard-Yaari overlapping

generations (OLG) setup in which individuals learn the parameters of the endogenous evolution

of the stock price as well as the exogenous process for dividends. The equilibrium we study is

“internally rational” in the sense of Adam and Marcet (2011), that is, agents in it maximize

expected utility given their subjective probability distributions.

Specifically, we assume that a small random fraction 1 − φ (with φ . 1) of individuals exit

the stock market every period, and an equal measure of new individuals enter the market. As in

Brown and Rogers (2009), each new entrant inherits the assets but does not inherit the accumulated

knowledge of his parent about the economy. Instead, children learn from their own experience,

updating their beliefs with information about stock prices and dividends which they observe during

their own lifetimes.3 As in Malmendier and Nagel (2013), agents use a decreasing-gain learning

scheme with gain parameter θ. A value of θ = 1 implies that individuals assign the same weight

to all observations they witness. In contrast, if θ > 1, as the evidence of Malmendier and Nagel

suggests, then individuals weigh more heavily recent events compared to older events.

1See, for example, Blume et. al. (1982), Arrow (1986), and Adam and Marcet (2011).
2See Eusepi and Preston (2011) who emphasize this type of self-referentiality.
3Thus, information in the model is dispersed across age cohorts, with older generations observing longer time

series than younger ones. See Angeletos and La’O (2009, 2013) for the role of geographically dispersed information
for macroeconomic dynamics.
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To analyze the model quantitatively, we propose a method that allows us to solve for the equi-

librium with heterogeneous agents. In the model, the equilibrium stock price equals the reservation

price of the marginal stock holder. Individuals who are more optimistic than the marginal agent

choose to hold the maximum possible amount of the stock, while those who are more pessimistic

choose not to hold the stock. Since the asset holding decision of each individual depends on the

current stock price (which is used to forecast future prices), the solution method involves finding

a fixed-point for the market-clearing price given the non-linear pricing function.

The introduction of “learning from experience”has several novel implications. First, we find

that, even if the retirement rate 1−φ is quite low, so that in any given period only a small fraction
of individuals are novice, the asset price fails to converge to the rational expectations equilibrium

(REE). Two forces create the oscillating dynamics. On the one hand, there is “momentum”rooted

in the information loss due to the retirement of individuals from the market and to the stronger

discounting of older information relative to the more recent one. As a result, beliefs about dividends

and the stock price are biased towards extrapolation of the more recent past, and trading on these

beliefs pushes the asset price further away from the fundamental.

On the other hand, there is a force of reversal toward the REE trend. Namely, when the stock

price rises too far above the fundamental value, individual asset exposure constraints begin to

bind. Because any given individual (including the optimistic types) can afford to buy less of the

stock, the asset price must decline to the valuation of less optimistic individuals for the market

to clear. The same reflecting force works also “from below”, when the stock price falls far below

the fundamental value. The combination of these two factors —momentum and trend reversal —

results in boom-and-bust cycles, which are only loosely related to dividends and are mainly due to

speculation about the future course of the stock price, in the spirit of Harrison and Kreps (1978).

A second finding is that, although individual expectations in our framework are not model-

consistent, the agents’forecasting performance is quite close to that under rational expectations.

In particular, the mean forecasting error (averaged across cohorts) is similar to that in the rational

expectations model. Likewise, the root mean square errors (again averaged across cohorts) are not

too far from the ones obtained under rational expectations.

A third finding of our paper is that the heterogeneous-beliefs economy can be approximated

reasonably well by an economy with a representative agent who updates his beliefs with a constant-

gain learning (CGL) scheme. The approximation involves two steps. In a first step, we show that

the dynamics of average beliefs can be approximated by a CGL scheme in which the social gain

parameter is a nonlinear function of the survival rate φ and of the individual gain parameter θ.

This implies that memories of the distant past are lost with the passage of time as a result of

population turnover combined with “learning from experience.” In a second step, we show that

the evolution of the stock price can be approximated using the evolution of the average (rather
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than the marginal) beliefs of the population.

Usually CGL is derived from the assumption that a representative agent uses the Kalman

filter as in Ljung and Soderstrom (1983), Sargent (1999, ch. 8) or McCulloch (2007). This type

of learning has received much attention in the literature due to its ability to produce realistic

model features, such as amplification of the persistence of macroeconomic variables in response to

aggregate shocks.4 Yet Malmendier and Nagel (2013) show empirically that even though individual

learning follows a decreasing-gain scheme, the average learning-from-experience forecast can be

approximated quite closely with a CGL algorithm. Complementary to their work, we propose

a theoretical model of stock pricing which reproduces this feature and we provide an expression

for the approximation error. We verify numerically that in our model the approximation error is

relatively small. We further show that the social gain parameter is increasing in the individual

gain parameter θ, and in the rate of generational turnover, 1− φ.
Finally, we compare the behavior of the price-dividend ratio in the heterogeneous-agents model

with its behavior in a representative-agent CGL approximation. We find that the representative

agent model generates more volatility in the price-dividend ratio, but it exhibits a cyclical pattern

which is broadly similar to that of the heterogeneous-agents model.

Our paper is related to several strands of research. First, it relates to the emerging literature on

learning with heterogeneous agents, such as Cogley, Sargent and Tsyrennikov (2012), Giannitsarou

(2003), Branch andMcGough (2004), Branch and Evans (2006), Honkapohja and Mitra (2006), and

Graham (2011). In contrast to these papers, individuals in our economy use the same decreasing-

gain learning scheme, have the same preferences, and observe the same public variables. The only

source of heterogeneity in our model is in the individual information sets used to update beliefs,

with younger cohorts focusing on a subset of the observations used by older generations.

Second, our work is related to the literature on bounded rationality with heterogeneous be-

liefs, following Brock and Hommes (1998). In this literature agents switch between heterogeneous

expectations based on the short-run profitability of the investment strategies. These models have

been estimated on different financial time series as in Boswijk, Hommes and Manzan (2007).5

Third, a related line of research analyzes the dynamics of asset prices under learning by a

representative agent. Timmermann (1994), Weitzman (2007), and Cogley and Sargent (2008),

among others, explain some puzzling asset pricing phenomena based on rational learning by a

representative agent. Unlike our setup, individuals in their models use all available past information

and know ex ante the correct mapping between asset prices and fundamentals. Hence, they only

need to learn about the latter in order to achieve convergence to the REE.

4The value of the gain parameter typically is estimated or calibrated to yield the smallest mean-squared fore-
casting error. See, e.g., Milani (2007), Carceles-Poveda and Giannitsarou (2008), Branch and Evans (2011), Adam,
Marcet, and Nicolini (2008).

5For a survey, see Hommes (2006).
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Finally, a recent line of research focuses on the role of higher-order expectations for asset prices.

For example, Allen, Morris, and Shin (2006) analyze a linear model with asymmetric information.

They find that, in the absence of common knowledge about higher-order beliefs, asset prices

generally depart from the market consensus of the expected fundamental value, typically reacting

more sluggishly to changes in fundamentals.

The rest of our paper is organized as follows. Section 2 presents the model. In section 3,

we calibrate it and analyze the properties of “learning from experience.” In section 4, we show

to what extent the benchmark model can be approximated by a representative agent with CGL.

Conclusions are presented in section 5.

2 The model

The economy is populated by N risk-neutral ex-ante identical dynasties, with N large. Members

of each dynasty have stochastic lifetimes with death (or retirement) occurring with a constant

exogenous probability, 1 − φ. Thus, in each period, the number of dynasts of age s ∈ N0 is

constant and equal to fs = N(1 − φ)φs. Upon retirement, a successor inherits the assets of the

former dynast but not his accumulated knowledge about the processes governing the stock price and

dividends. Instead, successors embark on their own learning experience “from scratch”, starting

with the identical initial belief that their predecessors had at birth, namely the belief consistent

with REE.

The dynasts trade among themselves a single divisible stock which is in fixed supply, normalized

to N . Each individual decides how much to invest in the asset based on inter-temporal arbitrage.

Note, however, that the relevant arbitrage is not the one between selling the stock and holding

it forever for its dividends. Instead, the condition that governs savings decisions is a one-period-

ahead comparison between the value of the stock in the current period and the subjective expected

payoff in the following trading period.

The equilibrium stock price in our model equals the marginal asset holder i’s subjectively

expected payoff from holding the stock for one period —that is, the present value of his expected

dividend Eit(Dt+1) plus his expected price Eit(Pt+1) in the following period. Because expectations

about future prices and dividends differ across individuals, the law of iterated expectations does

not apply, and the pricing conditions of individuals do not aggregate to the familiar asset pricing

formula with a representative agent.
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2.1 Preferences and constraints

The head of dynasty i ∈ {1, ..., N} receives utility from consumption u(Cit) = Cit per period. He

discounts future consumption by factor βφ, where β < 1 is a time preference parameter and φ < 1

is a constant probability of survival. The expected value of lifetime utility for dynast i is thus

Ei0

∞∑
t=0

(βφ)t u(Cit), (1)

where Ei0 is individual i’s expectation formed at time 0.

Individual i faces the period budget constraint

Cit + PtSit ≤ (Pt +Dt)Sit−1 + Yit, (2)

where Sit denotes his stock holdings, Pt is the asset price, Dt is the dividend, and Yit is a per

period income endowment. We assume for simplicity that Yit = Y .

In addition, the individual faces constraints on the minimum and the maximum asset exposure,

defined as the maximum value in terms of consumption that he stands to lose (or gain if short-

selling) if the stock price falls to zero.

L
¯ t
≤ PtSit ≤ L̄t. (3)

Constraints (3) imply that an individual investor cannot go arbitrarily short or long in the stock.

In a more detailed model, these limitations can be derived from underlying credit constraints that

prevent agents from borrowing unlimited amounts of resources. Instead, we will simply assume

that L
¯ t

= 0 and L̄t = λDt > 0, where parameter λ > 0 (which we loosely refer to as the

permissible “leverage”) is the maximum multiple of the current dividend that an individual can

maintain invested in the risky stock. Our specification of the stock holding constraints puts

effective bounds on the price-to-dividend ratio, without the need for a “projection facility” that

mechanically constrains beliefs to a pre-specified neighborhood.

Dividends follow the exogenous stochastic process

log (Dt/Dt−1) = µ+ εt, εt ∼ N(0, σ2), (4)

where µ > 0 and σ2 > 0 are, respectively, the mean and the variance of the growth rate of dividends

and where D−1 is known.

Given the information set available to individual i, his problem is to choose consumption and

equity holdings so as to maximize lifetime utility (1), subject to the budget constraint (2). The
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first-order optimality conditions (FOC) of the individual’s problem are:

if Pt < Pit, then Sit = L̄t/Pt (5a)

if Pt = Pit, then Sit ∈ [L
¯ t
/Pt, L̄t/Pt], (5b)

if Pt > Pit, then Sit = L
¯ t
/Pt, (5c)

∀t, where
Pit = βφEit (Pt+1 +Dt+1) , (6)

is individual i’s “reservation price”. Because the objective function is linear and the feasible set is

closed, a maximum exists (and generally is a corner solution). We assume that Y is large enough

so that the condition Cit ≥ 0 is never binding.

The FOC can also be written as

Pt = βφEit (Pt+1 +Dt+1) + µit, (7)

where µit ∈ R is the sum of the Lagrange multipliers associated with the exposure constraints (3).
The market clearing condition is

N∑
i=1

Sit =
∞∑
s=0

fsSst = N. (8)

If all individuals share the same model consistent expectations, Eit(·) = Et(·) and the transver-
sality condition limT→∞ (βφ)T Et(PT ) = 0 is satisfied, the REE solution is

PREE
t =

βφeµ+σ2/2

1− βφeµ+σ2/2
Dt. (9)

Further imposing the parameter restrictions

βφeµ+σ2/2 < 1 and σ2/2 ≈ 0

would imply that the stock price is finite, and that it does not depend on the variance of dividends:

PREE
t = βφeµ

1−βφeµDt.

2.2 Learning from experience

We depart from model-consistent expectations by assuming that individuals have only limited

information about the world they live in. In particular, they do not know anything about other
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market participants’preferences or constraints. However, they do know their own objectives and

constraints and have a prior belief about parameters µ and σ2 governing the dividend process

(4). In the absence of common knowledge, from an individual’s perspective, the price of the asset

itself is a stochastic process affecting optimal savings decisions much like dividends do. Hence

individuals try to forecast both the dividend and the stock price, conditioning their forecasts on

the history of past dividends and stock price realizations.

Individuals update their beliefs about the mean growth rate of the stock price and of dividends,

µ. Given Pt−1 and Dt−1, the perceived law of motion (PLM) is

xt = m+ εt, (10)

where

xt =

[
log (Pt/Pt−1)

log (Dt/Dt−1)

]
, m =

[
mP

mD

]
, εt ∼ N(0,Σ), Σ =

[
σ2
P σ2

PD

σ2
DP σ2

D

]
. (11)

This specification allows for beliefs about the growth rates in the share price and dividends to take

on different values and their innovations to be imperfectly correlated.

Individuals are assumed to “learn from experience,”that is, the information set xts of an agent

of age s consists of the realizations of stock prices and dividends observed during his lifetime:

xts = {log(Pτ/Pτ−1), log(Dτ/Dτ−1)}tτ=t−s .

Individuals are assumed to be born with identical beliefs, centered on the REE outcome in

which the asset price grows in lockstep with dividends,
(
mP

0 ,m
D
0

)
= (µ, µ).

As in Malmenadier and Nagel (2011, 2013), individuals estimate m recursively using past

information xts. Let ms,t be the estimator of m using information xts, ms,t = E[m|xts]:

ms,t = ms−1,t−1 + γs,t (xt −ms−1,t−1) , where m0,t = [µ, µ]′. (12)

This is a particular case of the formulation employed in Malmenadier and Nagel (2013). The

sequence of gains γs,t determines the rate of updating of cohort s. With γs,t = 1/t it corresponds

to the special case of recursive least squares, which uses all available data up to time t with
equal weights. Instead, with γs,t set to a constant, it is a constant-gain learning algorithm, which

weighs past data with exponentially decaying weights. In the case of “learning from experience”

the gain depends on the age s of each cohort. As a result, individuals of distinct ages differ in

their forecasts and adjust forecasts differently in response to changes in prices and dividends. The

8



particular decreasing-gain specification which we adopt from Malmenadier and Nagel is

γs,t = γs ≡
{

θ
s
, if s ≥ θ,

1, if s < θ,
, (13)

where θ ≥ 1 is a constant parameter that determines the shape of the implied function of weights

on past prices and dividends.

2.3 Equilibrium

Investor i’s subjective expectation Ei0(·) is defined on a probability space (Ω,Ψ,Πi), where Ω is

the space of realizations, Ψ the corresponding σ-algebra, and Πi is a subjective probability measure

over (Ω,Ψ). The space of realizations is

Ω ≡ ΩP × ΩD, (14)

where ΩP contains all possible sequences of stock prices and ΩD contains all possible dividend

sequences. Individuals can thus condition their investment decision on all possible combinations

of dividend and stock price realizations. Denote by Ωt the set of histories up to period t, and

let xt ∈ Ωt. When investor i chooses his stock holding in period t, he takes as given Πi and his

choice is contingent on xt. Investors have “a consistent set of beliefs”, meaning that (Ω,Ψ,Πi) is

a proper probability space and that Πi satisfies all standard probability axioms and gives proper

joint probabilities for all possible dividend and stock price realizations on any set of dates.

The definition of equilibrium in this model is that of an internally rational expectations equi-

librium as defined by Adam and Marcet (2011):

Definition 1 (Equilibrium) An internally rational expectations equilibrium (IREE) consists of

a sequence of equilibrium price functions {Pt}∞t=0 where Pt : Ωt
D → R+ for each t, contingent

choices {Cit, Sit}∞t=0 where (Cit, Sit) : Ωt → R2, and probability beliefs Πi for each agent i, such that

1. All agents i = 1, ..., N choose a function (Cit, Sit) to maximize their expected utility (1)

subject to the budget constraint (2), taking as given the probability measure Πi.

2. Markets clear (8).

3 Simulation results

In this section, we explore the implications of heterogeneity due to agents being born on different

dates and focusing on data realizations from their own lifetimes, rather than on all historical data.
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3.1 Calibration

The model’s parameters are calibrated to match the U.S. stock market evidence as documented

by Shiller (2005). We assume that each period in the model is a quarter.

Dynasts discount future consumption by the factor βφ, where β is a time preference parameter

and φ is the probability of survival. The survival rate is set equal to φ = 0.9958, implying an

“average life on the market” of about 60 years. We use Shiller’s (2005) stock market dataset

covering the S&P index from January 1871 to June 2013 to calibrate our model.6 In particular,

consistent with Shiller’s data, we set the mean growth rate of dividends to µ = 0.0034 per quarter,

and its standard deviation to σ = 0.0334. We set the time preference parameter to β = 0.9007,

consistent with a price-to-(quarterly)-dividend ratio in the REE case of 9, as in the data. The

leverage ceiling parameter is set to λ = 27. Note that, by imposing a limit on each individual’s

investment in the stock, λ affects the measure of households who hold the asset. Setting λ = 27

is consistent with an average stock market participation rate of around 33 percent, which is the

estimate reported by Poterba et. al. (1995) for the average U.S. households in 1992.7 The value of

θ = 3.044, which controls the rate of learning of each agent, comes from the empirical analysis of

Malmendier and Nagel (2013). For our numerical simulations, we truncate the maximum number

of cohorts to S = 480 quarters (120 years), which includes most of the mass of the distribution.

The number of Monte Carlo simulations is set to 100.

3.2 Numerical algorithm

The source of heterogeneity in this model is that generations are born one at a time and individuals

learn from life experience, which means that different age groups form different beliefs. The key

diffi culty in solving the model lies in finding the stock price in each period given the current divi-

dend realization and the entire distribution of beliefs about price and dividend growth. Updating

dividend beliefs mD
s,t following (12) poses no major problem since dividends Dt are exogenous and

known at time t. The problem lies in the computation of Pt, since it determines the beliefs mP
s,t,

which in turn are used to compute the reservation price of each agent

Ps,t = βφ
[
em

P
s,t(Pt)Pt + em

D
s,t(Dt)Dt

]
, s ∈ N+, (15)

and the quantities of stock Ss,t(Pt) demanded by agents given FOCs (5a) —(5c). The equilibrium

stock price should clear the market as per equation (8).

We find the equilibrium stock price Pt by solving a fixed point problem. Appendix B provides

6Shiller’s data are monthly. In order to convert to quarterly, we sum up the three dividend payments every
quarter and consider the quarterly price as the one in the last month. Results are robust to alternative definitions.

7Including mutual fund and 401(k) plan participation.
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a sketch of the algorithm. In order to satisfy the FOCs, the price that clears the market must be

that of the marginal stock holder. The cohorts in which agents are more optimistic (Pt < Pit) face

condition (5a), Sit = L̄t/Pt = λDt/Pt, whereas the cohorts in which agents are more pessimistic

(Pt > Pit) face condition (5c), Sit =L
¯ t
/Pt = 0. Given an initial price guess P guess

t , we have a series

of reservation prices Ps,t(P
guess
t ) as per (15). We sort these reservation prices in decreasing order

and index them by j ∈ 0, ..., s− 1, where j = 0 corresponds to the highest reservation price, j = 1

to the second highest, and so on. Proceeding down the list from the highest reservation price, we

find the reservation price P ∗t of the marginal cohort n, P
∗
t = Pn,t. The marginal cohort is the one

for which
1

N

n−1∑
j=0

fjS̄t < 1, and
1

N

n∑
j=0

fjS̄t ≥ 1, (16)

where S̄t = λ Dt
P guesst

. This means that cohorts which are more optimistic than the marginal one

(j < n) choose to hold the stock to the upper limit S̄t, while cohorts which are more pessimistic

(j > n) choose not to hold the stock at all, satisfying the FOCs. The error in the guess is

P guess
t − P ∗t (P guess

t ). We use a standard numerical algorithm to find the fixed point Pt = P ∗t (Pt)

starting from an initial guess P guess
t = Pt−1.

Figure 1 illustrates the equilibrium computation under the baseline calibration. The dark

(blue) line in the upper panel represents the reservation prices of the different cohorts arranged in

declining order for some arbitrarily chosen period t, Pj,t (the stock prices have been normalized by

the price under rational expectations, PREE
t ). The most optimistic cohort has a reservation price

of 1.013 times PREE
t , whereas the most pessimistic one has 0.965PREE

t . The marginal cohort is

in position n = 252 and its reservation price is 0.970PREE
t , equal to the equilibrium stock market

price, depicted by the light (blue) line. The lower panel displays the cumulative normalized asset

demand S(n) = 1
N

∑n
j=0 fjS̄t. The equilibrium is achieved for S(252) = 1, where demand for the

stock equals its supply of unity.

3.3 Heterogeneous beliefs and speculative bubbles

Figure 2 illustrates the behavior of the asset price in our model. The black line in the upper panel

shows one particular simulated path of the ratio of the stock price in the baseline economy to the

price under rational expectations. Measured on the left scale this ratio oscillates between 0.95

and 1.15, meaning that stock price fluctuations in the heterogeneous agents model are amplified

relative to the REE case.

The stochastic oscillations of the stock price around the REE are related to the dynamics of

learning. To see this, the black line in the lower panel plots the evolution of the mean expected

price across generations relative to the REE price, Ēt [Pt+1] /PREE
t , where Ēt(·) ≡ 1

N

∑∞
s=0 fsEst(·)
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and Est(·) is the expected value using the information set of cohort s at time t. We also plot the
expectations of the youngest (s = 1, green line) and the oldest (s = 480, thick cyan line) cohorts.8

Notice that individuals’beliefs regarding the rate of change of the stock price do not converge to

the REE value. Instead, they go through successive waves of optimism and pessimism.

The upper panel also shows the price-dividend ratio. In the case of REE this ratio is constant

and equal to 9, whereas under learning from experience it displays boom-and-bust cycles around the

REE value. It is important to notice how the price-dividend ratio tracks mean price expectations.

This is a feature emphasized recently by Adam, Beutel, and Marcet (2013) and that rational

expectations models typically fail to reproduce.

Two elements of our model are responsible for the oscillating dynamics. On the one hand, there

is a force of momentum, which is rooted in the infrequent resetting of the learning of successive

cohorts of individuals as well as in the fact that agents discount older data more heavily than

more recent information. Thus, at any given date, a fraction of young individuals enters the

market whose learning path initially is more strongly influenced by the more recent stock price

and dividend realizations. Their forecasts inform their trading activities, and, through trade,

affect the realized stock price, pulling the beliefs of older generations toward the more recent price

change realizations. On the other hand, there is a force of trend-reversion, emanating from the

constraints on individual risky asset exposure. Namely, as the stock price rises far above the REE,

the upper bound in (3) implies that optimistic investors can buy less shares for any given dividend

realization. Because, in equilibrium, all shares must be held by someone, the stock price has to fall

to the valuation of less optimistic investors. The same reflecting force operates “from below”, when

the stock price falls too far beneath the REE.9 The combination of the two factors —momentum

and trend reversion —results in boom-and-bust cycles that are only loosely related to dividends.

Indeed, similar to Harrison and Kreps (1978), asset price cycles in our model are partially the

result of speculation about the future course of the asset price. Naturally, shocks to dividends do

have an influence on the stock price, although the link is not nearly as direct as in the case of

REE. Recall that in the REE model, the percentage change in the stock price tracks one-for-one

the change in dividends, inheriting the persistence of dividend growth. In contrast, in the OLG

model with “learning from experience,”a sequence of positive dividend surprises has an escalating

effect on asset price changes. This amplification occurs because, through trade, the overreaction to

more recent information affects the stock price and, progressively, the beliefs of other individuals,

creating a non-linear feedback, which reinforces the effects of dividend shocks on the stock price.

In Table 1 we show the first two moments of the growth rate of stock prices and of dividends,

and the price-dividend ratio, in the data and in alternative model simulations. The first column

8Recall that the belief of newborns (cohort s = 0) is set to the REE solution.
9Note that trend reversal kicks in before the aggregate leverage constraint Pt/Dt = λ becomes binding. Thus,

the turning points of the stock price cycles are endogenous in the model.
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reports the actual data, the second column shows the REE model, while columns three to six

show different parameterizations of our heterogeneous-agents overlapping-generations (HA-OLG)

model. One advantage of the HA-OLG model is that it generates dynamics of the price-dividend

ratio, unlike the REE model. This is due to the extra volatility of the growth rate of stock prices

in the HA-OLG model compared to the REE model.

In the fourth column Table 1 shows the effect of increasing the leverage ceiling parameter λ to

36. The main change is an increase in the volatility of the growth rate of stock prices and of the

price-dividend ratio. The reason is that now the marginal agent on average is more optimistic,

which explains the increase in the average price-dividend ratio. Next, we look at the effect of

reducing the individual gain parameter θ. In the baseline model, it is set to 3.044 as in Malmendier

and Nagel (2013). A value of θ above unity implies that agents tend to “forget” the distant

past, putting more weight on the more recent observations. Another reason why distant past

observations are “lost” is of course the fact that some agents exit the market and are replaced

by new generations who start learning anew. To disentangle these two effects, we simulate the

model with θ = 1, implying that individuals place the same weight on all observations during their

lifetime. The results are displayed in the fifth column of Table 1. In this case the volatility of both

the price-dividend ratio and the growth in prices is reduced with respect to the baseline model

with θ = 3.044. This is intuitive since in this case the effect of “individual forgetting” is absent
and all the dynamics come from the “social forgetting”as young generations replace older ones.

Figure 3 is the equivalent of figure 2 for the case of θ = 1. As can be seen in the top panel, the

deviation of the stock price from the REE is smaller (between 0.97 and 1.05) which is related to

the fact that beliefs are less volatile, as shown in the bottom panel.

Another possibility we look at is that people live longer, reducing the rate of population turnover

and allowing individuals to base their decisions on longer time series of data. This experiment is

performed in the last column of Table 1 by setting parameter φ to 0.9967, consistent with an

average life expectancy of 75 years (instead of 60 years as in the baseline). The effect is again a

small reduction in the volatility of prices and the price-dividend ratio. The reason is that now the

amount of “social forgetting”is reduced.

3.4 Forecasting errors

Learning from experience implies that individuals’ forecasts in our model are not fully rational

because agents do not take into account all the available information. The important question

however is to what extent the suboptimality of agents’ forecasts is detectable from the data.

Figure 4 plots the mean and the standard deviation of the 1-period ahead forecasting error in the
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HA-OLG model as a function of the cohort age,

es,t =

[
ePs,t

eDs,t

]
=

[
log(Pt/Pt−1)−mP

s,t−1

log(Dt/Dt−1)−mD
s,t−1

]
,

alongside the forecasting error of the REE model. The two top panels show that in both models

forecasts are unbiased in the sense that mean forecasting errors for both prices and dividends

are very close to zero. The two bottom panels show the root mean square error, which, given

unbiasedness, equals the standard deviation of the error. The standard deviations of the forecasting

errors in the HA-OLG model for both dividends and stock prices are larger than in the REE model.

In the REE case the two root mean square errors are the same for prices and dividends, equal to

σ. In contrast, in the HA-OLG model, the volatility of prices is considerably higher than that of

dividends and hence the volatility of the forecasting errors for prices is higher. This occurs because

the stock price depends on market expectations, creating self-referential dynamics as emphasized

by Eusepi and Preston (2011). Conversely, in the REE model, uncertainty about prices and

dividends is the same because agents coordinate ex-ante onto “the right model”for asset pricing.

Younger cohorts display more significant forecasting error variances in both prices and dividends

than older cohorts. This is because older cohorts observe longer histories of data. Of course, the

decreasing gain scheme reduces the effect of experience since all agents tend to forget older data.

This is confirmed in Figure 5 for the case of θ = 1. In this case the standard deviations of the

forecasting errors are significantly smaller than in the baseline case.

4 Approximate aggregate dynamics: constant-gain learn-

ing

This section explores the possibility of analyzing the approximate aggregate dynamics of our econ-

omy without having to deal with the entire distribution of beliefs across agents. We show how the

average belief can be approximated by a representative-agent constant-gain learning (RA-CGL)

scheme.

4.1 Theoretical result

Let us define the average belief across age cohorts,

m̄t =
[
m̄P
t , m̄

D
t

]′
=

1

N

[ ∞∑
s=0

fsm
P
s,t(Pt),

∞∑
s=0

fsm
D
s,t(Dt)

]′
. (17)
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The evolution of the average belief is given by the following proposition:

Proposition 2 (Average market beliefs) The average market belief is given by

m̄t = m̄t−1 + γ̄ (xt − m̄t−1) + ξt, (18)

where

γ̄(φ, θ) ≡ 1

N

∞∑
s=1

fsγs = (1− φ)

 bθc∑
s=1

φs
(

1− θ

s

)
− θ log(1− φ)

 , (19)

is the average gain factor across age cohorts and

ξt ≡ (1− φ) (m0 − m̄t−1) + (1− φ)
∞∑
s=1

φsγs(m̄t−1 −ms−1,t−1),

is a residual term.

Proof. See Appendix A.
Therefore, average beliefs about price and dividend growth are updated approximately accord-

ing to a constant gain learning (CGL) scheme plus a residual term ξt. The approximation will be

good provided that ξt is small compared to the rest of the terms in (18), an issue discussed below.

CGL can thus be viewed as an approximate aggregation of the learning of individuals who learn

from experience, using data realized in their lifetimes. Notice that the CGL algorithm differs from

the actual learning scheme of any of the individual agents because individual learning happens with

a decreasing gain, as shown in (13). The population as a whole, however, learns approximately

with a constant gain.

The social gain parameter γ̄ is a non-linear function of the survival probability φ and the

individual gain θ. Figure 6 plots γ̄(φ, θ). In the case θ = 1, this is just γ̄(φ, 1) = −(1−φ) log(1−φ).

The value of γ̄ is increasing and concave in θ and 1− φ. Under our baseline calibration, the social
gain is equal to 0.0588, whereas in the case with θ = 1 it is 0.0228. These numbers are larger,

but of the same order of magnitude than existing estimates of the constant-gain parameter both

from macro time series data and from surveys. Milani (2007) estimates the gain-parameter in a

representative agent model to be 0.0183 in U.S. data, which is very close to the 0.0180 estimated

by Malmendier and Nagel (2013).

4.2 Open-loop results

Proposition 2 claims that the average beliefs follow a CGL updating scheme provided that ξt is

small relative to m̄t−1 and γ̄ (xt − m̄t−1) . In this section we analyze whether this condition holds
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for the baseline calibration considered here. To do so, we simulate the baseline model (HA-OLG)

and construct the vector xt using the simulated prices and dividends. Then we run the CGL

algorithm (18) and compute m̄t and ξt. We call this ‘open-loop’as there is no feedback from the

CGL beliefs to the model, that is, these are the results taken the series of prices and dividends as

exogenous for the representative-agent CGL (RA-CGL) algorithm.

Figure 7 compares the HA-OLG model with the RA-CGL approximation. Both expectations

about price and dividend growth are well approximated by the CGL algorithm. This is confirmed

by results in the first column of Table 2 —in particular the correlation between the two series is

very high. The mean of ξt is close to zero, meaning that the approximation is relatively unbiased.

We explore how sensitive these results are to changes in θ. The second column of Table 2 shows

how a reduction in θ, which implies a lower value of γ̄, slightly improves the approximation by

reducing the volatility of ξt more than that of m̄t. Given these results, we are confident that in this

model the CGL algorithm provides a good approximation to a HA-OLG economy with learning

from experience.

4.3 Closed-loop results

We next analyze the ‘closed-loop’solution which involves also a feedback from beliefs to prices.

This amounts to analyzing an independent representative-agent economy with CGL. Taking into

account the market clearing condition (8), we can compute the asset price as a function of the

average belief

Pt = βφ
1

N

∞∑
s=0

fsEst (Pt+1 +Dt+1) +
1

N

∞∑
s=0

fsµit (20)

= βφĒt (Pt+1 +Dt+1) + µt,

where µt = 1
N

∑∞
s=0 fsµst is the average Lagrange multiplier. Equation (20) states that the market

price is equal to the discounted average belief of next period payoff plus a term reflecting the

deviation of the average from the marginal asset holder’s belief. Numerical simulations show that

in our problem the term µt follows a zero-mean iid process and thus we ignore it. This implies

that the dynamics of the marginal asset holder’s beliefs are similar to those of the average stock

holder.

Provided that the growth rate of beliefs is small enough, the asset price can be approximated
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by the average beliefs across cohorts

Pt ≈ βφĒt (Pt+1 +Dt+1) = βφ

{
Pt

∞∑
s=0

fse
mPs,t(Pt) +Dt

∞∑
s=0

fse
mDs,t(Dt)

}
(21)

≈ βφ

{
Pt exp

[ ∞∑
s=0

fsm
P
s,t(Pt)

]
+Dt exp

[ ∞∑
s=0

fsm
D
s,t(Dt)

]}
≈ βφ

[
Pte

m̄Pt (Pt) +Dte
m̄Dt (Dt)

]
,

where
[
m̄P
t , m̄

D
t

]
are a function of the current level of prices and dividends, respectively, and are

updated according to the CGL rule (18). The system of equations (4, 18, 21) and the variables

(Dt, Pt, m̄t) define an independent representative-agent economy with CGL beliefs (RA-CGL). In

order to solve it, we use numerical methods to find a price vector Pt such that

Pt =
βφem̄

D
t (Dt)

1− βφem̄Pt (Pt)
Dt.

Notice that Pt is an argument of m̄P
t (Pt).

Figure 7 also displays the difference between the beliefs in the HA-OLG case and the RA-CGL.

In the case of dividends the approximation is as good as it was in the open-loop case, dividends

being an exogenous variable. In the case of prices, the RA-CGL beliefs match the general pattern

of the HA-OLG economy, but they are more volatile. This is confirmed by the numerical results in

the third column of Table 2. The volatility of the approximation error ξPt is larger (0.0043) than

in the open-loop case (0.0025). The correlation between the RA-CGL and HA-OLG price series is

still very high (0.9560).

The upper panel of Figure 8 displays the price-dividend ratio of the RA-CGL (closed-loop)

and the HA-OLG models. The feedback from beliefs to prices increases the volatility of the

price-dividend ratio in the RA-CGL case compared to the HA-OLG. This is the reason why price

beliefs are also more volatile in this case. Notice that in the RA-CGL case there is no leverage or

short-selling constraint operating.

Similar to the open-loop case, a reduction in the value of θ improves the fit of the approximation,

as shown in the last column of Table 2. It also reduces the volatility of the price-dividend ratio,

as shown in the lower panel of Figure 8.

The main conclusion of this exercise is that CGL provides a reasonably accurate approxima-

tion, albeit more volatile, to an OLG economy with learning from experience, with a social gain

parameter that depends on both the survival probability and the individual gain parameters of

the agents.
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5 Conclusions

In order to coordinate a priori to a REE, individuals must be endowed with incredible amounts

of information not only about the structure of the economy and the exogenous shocks but also

about the higher-order beliefs of all other market participants. If individuals lack this information,

the law of iterated expectations is no longer valid and “beauty contest”dynamics may emerge as

individuals embark on speculative trading as in Harrison and Kreps (1978). In particular, empirical

research by Malmendier and Nagel (2009, 2011) suggests that expectations are not “externally

rational” in the sense of Adam and Marcet (2011); rather, they find evidence that people “learn

from experience,”giving more weight to recent events realized during their lives than to older ones.

We consider a Lucas-tree stochastic OLG setup and analyze the effects of “learning from ex-

perience.”The fact that different generations of individuals hold different beliefs leads to boom-

and-bust cycles of the stock price around the REE. The aggregate market dynamics can be ap-

proximated by a representative-agent model with CGL. Despite the fact that individuals learn

with decreasing gain, learning by the population as a whole can be approximated by a constant

gain. The social gain parameter is a nonlinear function of the survival rate and the individual

gain parameters, reflecting both the fact that historical data is lost when older generations are

replaced by young ones and the higher weight that each individual gives to more recent events.

This result provides an alternative justification for the use of CGL algorithms in macroeconomic

models instead of the more widely used rational expectations. Besides achieving more realism in

modeling the expectations formation process, our approach provides discipline by tying the gain

parameter to the survival rate and to survey-based information on individual learning gains.
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Appendix A: Proof of Proposition 2

Proof. Let

m̄t =
1

N

∞∑
s=0

fsms,t =
f0m0,t

N
+

1

N

∞∑
s=1

fs [ms−1,t−1 + γs (xt −ms−1,t−1)] ,

given the fact that
1

N

∞∑
s=1

fsms−1,t−1 = φm̄t−1,

and that

γ̄ =
1

N

∞∑
s=1

fsγs =
1

N

bθc∑
s=1

fs +
1

N

∞∑
s=bθc+1

fs
θ

s
= (1− φ)

 bθc∑
s=1

φs + θ
∞∑

s=bθc+1

φs

s


= (1− φ)

 bθc∑
s=1

φs + θ
∞∑

s=bθc+1

∫
φs−1dφ

 = (1− φ)

 bθc∑
s=1

φs + θ

∫  ∞∑
s=bθc+1

φs−1

 dφ


= (1− φ)

 bθc∑
s=1

φs + θ

∫
φbθc

1− φdφ

 = (1− φ)

 bθc∑
s=1

φs − θ
bθc∑
s=1

φs

s
− θ log(1− φ)


= (1− φ)

 bθc∑
s=1

φs
(

1− θ

s

)
− θ log(1− φ)

 ,
we have

m̄t =
1

N

∞∑
s=0

fsms,t = (1− φ)m0 + φm̄t−1 + γ̄xt −
1

N

∞∑
s=1

fsγsms−1,t−1,

and defining

ξt ≡ (1− φ) (m0 − m̄t−1) + (1− φ)
∞∑
s=1

φsγs(m̄t−1 −ms−1,t−1),

we obtain (19).
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Appendix B: Simulation algorithm

We briefly sketch the algorithm used to find the equilibrium price of our heterogeneous-beliefs

economy. The idea is to simulate the evolution of dividends while keeping track of each agent’s

stock holdings and beliefs. To compute the equilibrium price given equations (7) and (8), we

employ a numerical routine to find a fixed-point for the price which is consistent with agents’

beliefs and constraints and which guarantees that the market clears.

Here we describe a single Monte Carlo simulation of the model:

1. Generate an exogenous series for dividends Dt following (4) and assuming that D0 = 1. Set

P0 = PREE
0 , where PREE

t is given by (9).

2. Initialize the prior beliefs,
(
mP
s,0,m

D
s,0

)
= (µ, µ), for all cohorts, s = 0, ..., S.

3. Main loop. At each point in time t = 1, ..., T :

(a) Compute the dividend beliefs across cohorts

mD
s,t = mD

s−1,t−1 + γs
[
log(Dt/Dt−1)−mD

s−1,t−1

]
, s = 1, ..., S.

(b) Compute the price Pt as a fixed-point given equations (7) and (8). The initial guess

P guess
t = Pt−1. Employ the following subroutine:

i. Given the guess, compute the price beliefs across cohorts

mP
s,t = mP

s−1,t−1 + γs
[
log(P guess

t /Pt−1)−mP
s−1,t−1

]
, s = 1, ..., S.

ii. Compute the reservation price across cohorts

Ps,t = βφ
[
em

P
s,tP guess

t + em
D
s,tDt

]
.

iii. Sort the reservation prices Ps,t in decreasing order. Index the prices by j, where

j = 0 corresponds to the highest Ps,t.

iv. Proceeding from the highest reservation price, find the reservation price of the

marginal cohort P ∗t = Pn,t. The marginal cohort n is such that

n−1∑
j=0

fjS̄t < N, and
n∑
j=0

fjS̄t ≥ N

where S̄t = λ Dt
P guesst

is the amount allocated to each agent given the leverage con-

straint (3) and fj is the size of the cohort corresponding to index j.
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v. The error in the guess is ζt = P guess
t − P ∗t .

vi. Repeat (i) to (v) until |ζt| is less than the error tolerance level.

(c) Given the price, compute the price beliefs across cohorts

mP
s,t = mP

s−1,t−1 + γs
[
log(Pt/Pt−1)−mP

s−1,t−1

]
, s = 1, ..., S.

4. Repeat the main loop (3) for periods t = 1, ..., T .
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6 Appendix C: Tables and Figures

Table 1. Moments of prices and dividends

Data REE HA-OLG

Baseline λ = 36 θ = 1 φ = 0.9967

log(Pt/Pt−1)

mean 0.0052 0.0034 0.0034 0.0034 0.0034 0.0034

st. dev. 0.0886 0.0334 0.0463 0.0525 0.0371 0.0447

log(Dt/Dt−1)

mean 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034

st. dev. 0.0334 0.0334 0.0334 0.0334 0.0334 0.0334

Pt/Dt

mean 9.00 9.00 9.14 9.25 9.10 9.16

st. dev. 4.66 - 0.38 0.51 0.20 0.37

Note: REE stands for “rational expectations equilibrium.”

HA-OLG stands for “heterogeneous-agents overlapping generations.”

Table 2. Evaluation of the CGL approximation

Open-loop Closed-loop

θ = 3.044 θ = 1 θ = 3.044 θ = 1

Prices

mean m̄P,CGL
t 0.0034 0.0034 0.0034 0.0034

st. dev. m̄P,CGL
t 0.0072 0.0037 0.0080 0.0040

mean ξPt 0.0000 0.0000 0.0000 0.0000

st. dev. ξPt 0.0025 0.0013 0.0043 0.0016

corr
(
m̄P
t , m̄

P,CGL
t

)
0.9628 0.9789 0.9560 0.9737

Dividends

mean m̄D,CGL
t 0.0034 0.0034 0.0034 0.0034

st. dev. m̄D,CGL
t 0.0058 0.0034 0.0058 0.0034

mean ξDt 0.0000 0.0000 0.0000 0.0000

st. dev. ξDt 0.0020 0.0012 0.0020 0.0012

corr
(
m̄D
t , m̄

D,CGL
t

)
0.9648 0.9787 0.9648 0.9787
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Figure 1: Distribution of reservation prices and asset demand across cohorts
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Figure 2: Evolution of prices, the price-dividend ratio, and price expectations (θ = 3.044)
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Figure 3: Evolution of prices, the price-dividend ratio, and price expectations (θ = 1)
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Figure 4: One-period-ahead mean and root mean squared forecasting errors for prices and dividends
in the learning from experience model (HA-OLG, θ = 3.044) and the REE
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Figure 5: One-period-ahead mean and root mean squared forecasting errors for prices and dividends
in the learning from experience model (HA-OLG, θ = 1) and the REE

1
1.5

2
2.5

3

0.9860.9880.990.9920.9940.9960.998

0.02

0.04

0.06

0.08

0.1

0.12

0.14

θφ

γ

Figure 6: Social gain γ as a function of θ and φ
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Figure 7: Price and dividend growth beliefs in the heterogeneous agents model (HA-OLG) and in
the representative-agent CGL approximation (RA-CGL). Open and closed loop results (θ = 3.044).
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Figure 8: Dynamics of the price-dividend ratio under HA-OLG and RA-CGL (closed loop)
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