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ABSTRACT 

Small and large price changes and the propagation of monetary 
shocks* 

We document the presence of both small and large price changes in individual 
price records from the CPI in France and the US. After correcting for 
measurement error and cross-section heterogeneity we find that the size 
distribution of price changes has a positive excess kurtosis, with a shape that 
lies between a Normal and a Laplace distribution. We propose a model, 
featuring random menu-costs and multi product firms, that is capable to 
reproduce the observed empirical patterns. We characterize analytically the 
response of the aggregate economy to a monetary shock. Different 
propagation mechanism, spanning the models of Taylor (1980), Calvo (1983) 
and Golosov and Lucas (2007), are nested under different combination of 4 
fundamental parameters. We dis- cuss the identification of these parameters 
using data on the size-distribution of price changes and the actual cost of 
price adjustments borne by firms. The output effect is proportional to the ratio 
of kurtosis to the frequency of price changes. 
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1 Introduction

This paper uses new micro evidence, and a new menu-cost model, to study the propagation

of monetary shocks in an economy with sticky prices. By combining the assumptions of

multiproduct firms and random menu costs the model is able to account for the coexistence

of small and large price changes we observe in the micro data. Different set-ups with price

rigidity, spanning the models of Taylor (1980), Calvo (1983), Reis (2006), Golosov and Lucas

(2007), as well as the multi-product models of Midrigan (2011), and Alvarez and Lippi (2013),

are nested by our model. This unified framework allows us to unveil which assumptions are

required to obtain each of them as an optimal mechanism. Further, it allows us to compare

the monetary transmission mechanism in the different models analytically. We argue that

the question is relevant: the total cumulative output effect of a monetary shock in a Calvo

setup is about 6 times larger than in the Golosov-Lucas model. Our model suggests that

simple summary statistics, measurable from the distribution of price changes and from the

cost of price adjustments, are key to select among these models.

Our contribution delivers new results on the empirics and the theory of sticky prices, and

may be summarized as follows. The empirical contribution documents the presence of small

and large price changes using a large dataset of price records underlying the French CPI.

The presence of small price changes is pervasive in the size-distribution of price changes and

this finding persists even at a very disaggregate level of product-outlet-type, ruling out an

explanation based on pure cross-section heterogeneity. These patterns are similar to the ones

that Klenow and Kryvtsov (2008) detect for the US. We moreover acknowledge that the CPI

data may contain measurement error that tends to distort the measure of peakedness of the

distribution of price changes, an issue whose importance is emphasized by Eichenbaum et al.

(2012). We propose a correction for this measurement error and conclude that the shape of

the size-distribution of price changes is in between a Normal and a Laplace distribution and

features a positive excess kurtosis.

We develop an analytical model that matches these patterns qualitatively, featuring both

the small and large price changes which lead to excess kurtosis. The model uses the multi-

product setup developed in Alvarez and Lippi (2013), where the fixed menu cost applies to

a bundle of n goods. This assumption generates the small price changes. We extend that

setup by introducing random menu costs, a feature that allows the model to replicate the

positive excess kurtosis of price changes. In particular, we assume that with an exogenous

rate λ a firm receives an opportunity to adjust its price at no cost, as in a Calvo setup.

The model is parsimonious, it has four fundamental parameters: the size of the fixed cost

relative to curvature of the profit function ψ/B, the volatility of idiosyncratic cost shocks
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σ2, the number of products n and the arrival rate of free adjustments λ. These parameters

completely determine the steady state statistics, such as the shape of the distribution of price

changes (and hence its kurtosis), its standard deviation Std(∆pi), and the frequency of price

changes, Na. They are also key to determine the response to a monetary shock.

The model yields several new theoretical results. First we characterize how the inaction

set behaves as function of parameters. For a small menu cost the model behaves as in Barro

(1972); Dixit (1991); Golosov and Lucas (2007): the size of the inaction set displays the usual

high sensitivity (i.e. a “quartic root”) with respect to the cost and the volatility of the shocks

σ2 (the option value effect). Interestingly, the decision rule is unaffected by the presence of

the free adjustments as long as their arrival rate λ is small. The decision rule changes

substantially for large menu costs ψ/B, an assumption that is useful to generate behavior

that approaches that of a Calvo model. In this case the size of the inaction set changes with

the square root of the menu cost and the arrival rate, and somewhat surprisingly it becomes

unresponsive to the volatility of idiosyncratic shock σ2, so that changes in the uncertainty

faced by firms induce no change in behavior (i.e. there is no option value). Another novel

result is an analytical mapping between the costs of price adjustment and the parameters

of the model: we give a complete analytical characterization of the menu cost implied by

observable statistics such as frequency and variance of price changes, as well as others. This

mapping can be used to quantify a value of ψ consistent with the evidence on the costs of

price adjustment, as measured by e.g. Levy et al. (1997), or it can be used to assess the

plausibility of benchmark models such as Calvo pricing.

Second, by aggregating the optimal decision rules across firms we characterize the fre-

quency Na, size Std(∆pi), and shape of the distribution of the price changes. Some (combina-

tions) of the fundamental parameters affect Na and Std(∆pi) without changing the shape of

the distribution of price changes. Alternatively, some (combinations) of the fundamental pa-

rameters affect the shape of the distribution of price changes, while keeping Na and Std(∆pi)

fixed. We show that the shape of the distribution of price changes can be written exclusively

in terms of n and the fraction of free-adjustments ` ≡ λ/Na, a re-parameterization we find

quite intuitive. The shape ranges from bimodal (for the model where ` = 0 and n = 1 as

in the Golosov-Lucas model) to Normal (for n = ∞ and ` = 0, our version of Taylor and

equivalently Reis (2006)’s model), and up to Laplace (in the case ` = 1 for any n, our version

of the Calvo model). In those three models, the kurtosis of price changes is, respectively, 1,

3 and 6. In general for any given ` the level of kurtosis is increasing in n. Likewise, for a

given n the level of kurtosis is increasing in `.1 A large kurtosis is produced by the following

1In our set-up a given kurtosis may be obtained by different combinations of n and `, yet we argue that
for different reasons, models with high n are a better representation of the data.
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mechanisms: small price changes occur due to the multi product nature of adjustment (i.e.

large n, so that a product price may be adjusted even though its price was almost ideal), or

due to the arrival of a free opportunity, i.e. large λ. For large price adjustments to occur it

is necessary to have a large adjustment cost ψ/B, otherwise a large deviation from the ideal

price would not be tolerated.

Third, we use the model to solve analytically for the impulse responses of the aggregate

economy to a once-and-for-all unexpected permanent increase in money. The aggregate effect

of a monetary shock depends on the shock size, the frequency Na, the size (e.g. Std(∆pi))

and the shape (e.g. Kurtosis) of price adjustments. The dependence on the size of the shock

is a hallmark of menu cost models: monetary shocks that are large (relative to the size

of price adjustments) lead to almost all firms adjusting prices and hence imply neutrality.

The dependence on the frequency Na, is very intuitive: model economies with the same

distribution of price changes, but more price changes per year, return to the flexible price

in exact proportion to the frequency of price changes. Lastly, we isolate the dependence

between the features that determine the shape of the distribution of price changes and the

effect of a (small) monetary shock. Surprisingly, fixing the frequency Na and scale Std(∆pi)

of price adjustments, the real effects of monetary policy are an increasing function of only one

parameter, namely the kurtosis of the price changes. In particular, the cumulated response

of real output following a monetary shock is proportional to the kurtosis of the steady state

distribution of price changes. This parameter ranges between 1 to 6 for different combinations

of n and ` spanning different models. Such a result has potential empirical implications

since, after taking into account measurement error, the kurtosis of the price changes can

be readily measured from available data. Furthermore, our theoretical decomposition of the

determinants of the area under the impulse response shows the way to measure and aggregate

across heterogenous sectors, simply by measuring the kurtosis of standardized price changes,

and aggregating the sectors effect as inversely proportional to the frequency of price changes.

Our paper relates to a large literature on the propagation of monetary shocks in sticky

price models, unifying earlier results that compare the propagation in the Calvo model with

the propagation in either the Taylor or the menu cost model of sticky prices.2 Interestingly,

we show that introducing the random adjustment costs serves a similar role as that of fat-

tailed shocks in Midrigan (2011), increasing the real effect of monetary shocks and bringing

the model behavior closer to a Calvo model. Our model is also related to the seminal work

2A selected list is Kiley (2002), Caballero and Engel (2007), Golosov and Lucas (2007). Kiley (2002)
obtains that, controlling for the frequency of price changes, the response of output is stronger and more
persistent under Calvo than under Taylor contracts. Golosov and Lucas (2007) compare a monetary shock
in a menu cost and a Calvo model, with similar frequencies of price change, and find that the half-life of
the response to a monetary policy shock is about five times larger in a Calvo set-up. See Appendix B for a
survey of previous models which explored the random menu costs assumption.
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by Dotsey, King, and Wolman (1999) on the propagation of shocks when firms face a random

menu cost (see Section 3 and Appendix B for a more detailed comparison with previous

models on stochastic menu cost). Our streamlined model allows for a more encompassing

analytical characterization of the firm’s decision rule and the economy’s steady state behavior.

While Dotsey, King, and Wolman (1999, 2009) compute the decision rules and the impulse

responses for more general (stochastic) money supply or interest-rates rules using numerical

methods, we provide a semi-analytical characterization of the impulse response to a once and

for all money supply shock.

The paper is organized as follows: the next section presents the cross section evidence

on price setting behavior using data for France and the USA taken from various sources.

Section 3 presents the theoretical model and its cross section predictions: it is shown that

the model has fundamentally four parameters and we discuss the mapping between those

and observable measures of price setting behavior. Section 4 derives the model predictions

on the effect of an unexpected monetary shock. Section 5 summarizes the contribution of the

paper and discusses some implications for quantifying the real effects of monetary shocks.

2 The distribution of price changes: micro-evidence

A vast amount of research has investigated the patterns of price changes at the microeconomic

level in the past decade. A recurring fact that emerges from those studies is that the size

distribution of price changes exhibits a large amount of small price changes, as noted by

Klenow and Malin (2010); Cavallo (2010); Klenow and Kryvtsov (2008); Chen et al. (2008)

and Midrigan (2011) using selected samples of micro data from the US as well as many

other industrial countries. This section revisits this evidence using a detailed dataset of price

quotes underlying the French Consumer Price Index (about 65% of the CPI weights from

2003 to 2011). We also discuss measurement error by comparing the CPI data with another

source presumably immune from measurement error: the scraped data from Cavallo (2010).

Finally, we compare our evidence with existing comparable evidence for the US.

Two issues that are discussed in details concern heterogeneity and measurement error.

Heterogeneity across type of goods and of outlets is pervasive in price data. A well known

result related to mixtures of distribution is that under heterogeneity, the pooled data will

have a spuriously large kurtosis.3 For this reason, we standardize the data at levels at which

3 Formally, let ∆p be a mixture of the i = 1, ...,M distributions ∆pi with strictly positive weights, where
we assume that E[∆p1] = · · · = E[∆pN ] = 0. Denote by ki the kurtosis ki = E[∆p4

i ]/(Std(∆pi)
4) and by

ri the ratio ri = E[|∆pi|]/Std(∆pi) for each distribution i. Assume that k1 = k2 = · · · = kM ≡ k and
that r1 = r2 = · · · = rM ≡ r. Then the statistics for the pooled data satisfy: E[∆p4

i ]/(Std(∆pi)
4) ≥ k and

E[|∆pi|]/Std(∆pi) ≥ r, with equality iff Std(∆p1) = Std(∆p2) · · · = Std(∆pM ). Thus, standardizing the M
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we suspect that there is heterogeneity. We define the standardized price changes, z, by

demeaning and dividing by the standard deviation of price changes at fine cell levels. A

cell is a category of good and of outlet type. We then compute the statistics for the pooled

standardized data. We discuss the theoretical set-ups (i.e. type of heterogeneity) where

results can be obtained by aggregating across categories or goods differences. The nature

of the correction for measurement error is to compare the CPI statistics with scanner data

for similar goods and outlet types for which both sources are available. Our analysis shows

that, after correcting for measurement error and removing the (time invariant) cross section

heterogeneity, the size distribution of price changes features a large frequency of very large

and very small price changes relative to what the standard menu cost model implies.4

We find it useful to compare the empirical distribution of price changes to three parametric

distributions ordered in terms of increasing frequency of extreme price changes: the binomial,

the Normal, and the Laplace distribution. Overall we conclude that, after taking into account

heterogeneity and measurement error, the shape of the empirical distribution of price changes

lays in “between” a Normal and a Laplace distribution. To quantify the presence of “extreme

price changes” we focus on 3 statistics that are informative about the shape of the size

distribution. These 3 statistics are appropriate for symmetric, zero-mean, distributions and

are scale-free. The first 2 statistics measure the frequency of extreme (i.e. large and small)

observations relative to the standard deviation of the distribution. The first one is kurtosis

(see Balanda and MacGillivray (1988)), E[∆p4
i ]/Std(∆pi)

4, where in the remaining of this

paragraph we assume that price changes ∆pi are centered. As a benchmark, we note that for

the Binomial, Normal and Laplace distribution the Kurtosis is 1, 3 and 6 respectively. The

second statistic measuring extreme price changes is E[|∆pi|]/Std(∆pi). The main difference

with respect to Kurtosis is that this metric is less sensitive to extreme outliers (since the

squares of large (small) numbers are larger (smaller) than absolute values). For the Binomial,

Normal and Laplace distributions the reference values are: 1, 0.80 and 0.70. The third

statistic we consider is P (|∆pi| < (1/4)E[|∆pi|]), a straightforward measure of the share of

small price changes used in several previous studies. For the Binomial, Normal and Laplace

distribution this statistic is 0, 0.16 and 0.22 respectively.

2.1 The French Data

The data are a longitudinal dataset of monthly price quotes collected by the INSEE (Institut

National de la Statistique et des Etudes Economiques) in order to compute the French CPI,

distributions will preserve the values of k and r.
4 We underline that, without correcting for measurement error and heterogeneity, the raw CPI data feature

even more extreme price changes.
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over the period 2003:4 to 2011:4.5 Each record relates to a precisely defined product sold in a

particular outlet in a given year and month. It contains the price level of the product, as well

as limited additional information such as an outlet identifier, an index (when relevant) for

package size (say 1 liter) and flags indicating the presence of sales. The raw dataset contains

around 11 million price quotes and covers about 65% of the CPI weights.6 The dataset

also includes CPI weights, which we use to compute aggregate statistics. Price changes are

computed as 100 times the log-difference in prices per unit. To minimize the presence of

measurement errors we discarded observations with item substitutions (which might give rise

to spurious price changes) and removed “outliers” which, in our baseline analysis, we defined

as price changes larger than 0.1 percent, or lower than ln(10/3) (both in absolute value). See

Appendix C for more information and several robustness checks.

An important issue with the data on price changes is the treatment of sales. The relevance

of dealing with sales in analyzing price stickiness was emphasized by Nakamura and Steinsson

(2008); Kehoe and Midrigan (2007) and Midrigan (2011) inter alia. The INSEE dataset

contains an indicator variable that identifies whether a given observed price corresponds to a

sales promotion discount (either seasonal sale or temporary discounts).7 Price changes that

result from sales (including price changes from a sales price to a regular one) account for

approximately 17% of all the price changes. Overall, the incidence of sales on the frequency

of price change is less important than in the US where according to Nakamura and Steinsson

(2008) the share of price change due to sales is 21.5%. In the following, as a robustness check,

we report results both with and without sales observations.

We now document the patterns on the peakedness and thick tails of the distribution of

price changes. As those patterns vary considerably across sectors and outlet type, a concern

already mentioned is that a large variance and kurtosis of price changes may essentially

reflect that observations of price changes are drawn from a mixture of distributions, and

thus be artefacts. In what follows we address this concern by considering the distribution

of standardized price change.8 We consider a breakdown of the data into J categories (for

instance, one category will be bread in supermarkets). In each category j the standardized

price change for an item i at date t is defined as zijt = (∆pijt − mj)/σj where mj and σj

are the mean and standard deviation of price changes in category j, and price changes equal

5The dataset is documented in details in Berardi, Gautier, and Le Bihan (2013).
6Some categories of goods and services are not available in our sample: fresh foods, rents, and prices

centrally collected by the statistical institute - among which car prices and administered and public utility
prices (e.g. electricity). Note that, while rents are out of our dataset, cost of owner-occupied housing is not
incorporated in the French CPI, so the share of housing is the CPI is lower than in some other countries.

7 The flag is documented directly by the field agent recording prices rather than constructed using a
statistical filter. Baudry et al. (2007) investigate the extent of “undetected” sales and conclude this is a
limited concern.

8This follows Klenow and Kryvtsov (2008), as well as Midrigan (2011).
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Figure 1: Histogram of Standardized Price Adjustments: French CPI 2003-2011

All data
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The figures uses the elementary CPI data from France (2003-2011). Price changes are the log difference
in price per unit, standardized by good category (272) and outlet type (11) and pooled. Price changes
equal to zero are discarded.
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to zero are disregarded. We will here use the finest partition possible in our data (each

category is a COICOP category at the 6-digit level in an outlet type) and have around 1,500

categories.9 Figure 1 is a weighted histogram of the standardized price changes. On the

same graph we superimpose the density of the standard normal distribution as well as the

standardized Laplace distribution (both have unit variance). The Laplace distribution has

a kurtosis of 6 and is thus more peaked than the normal. It is apparent that the empirical

distribution of standardized price changes is closer to the Laplace distribution than to the

Normal.10

Table 1 reports the frequency of price changes as well as selected moments of the distribu-

tion of price changes. The frequency of price change is around 17% per month. The fraction

of price decreases among price changes is around 40%. The average absolute price change

is sizeable (9.19%), as is the standard deviation of price change (16.6%). These patterns

match those documented by Alvarez et al. (2006) for the Euro area. With the qualification

that frequency of price change is typically found to be smaller in the Euro area than in the

US, they also broadly match US evidence provided by e.g. Nakamura and Steinsson (2008).

The kurtosis and peakedness of the distribution of price changes have not been quantitatively

documented so far on European data. The kurtosis of non-standardized price changes is huge:

12.81. This level of kurtosis is of same order of magnitude as that documented by Klenow

and Malin (2010) for the US. Considering standardized price changes delivers a similar pic-

ture: the kurtosis is 8.89. The fraction of small price changes is also large. The fraction of

absolute standardized price changes lower than one fourth of the mean is 22.2 percent. Also

12.9 percent of absolute normalized price changes are larger than 2 times the mean of the

absolute standardized price change. Overall, it appears that these figures are very close to

the ones that would be produced by a (standardized) Laplace distribution. Consistently, the

size of the average absolute standardized price change in the data is equal to 0.70, the same

value that obtains for the statistic E[|∆p|]/Std(∆p) if ∆p follows a Laplace distribution.

Removing sales has a large effect on the variance of absolute price change, as indicated

by the results reported in the second column of Table 1.11 However, removing sales does not

affect our findings on the peakedness of the distribution. Kurtosis actually increases when

sales observations are removed both in the raw data as well as in the standardized data. This

9There are 11 outlet types and 272 CPI categories; but not every category of good is sold in a given outlet
type, resulting in less than 2,992 cells.

10In an online appendix, we provide similar histograms by groups of good at a disaggregated level. Most
of them have the same pattern as Figure 1, that is a distribution that is more peaked than the gaussian, and
often more peaked than the Laplace.

11When removing “sales” price changes we remove any observation flagged as sales, as well as the subsequent
observation of price increase on the way back to a “regular” price. Note also that for computed standardized
non-sales related price change, we first discard sales related price change, then standardize the data
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Table 1: Selected moments from the distribution of price changes

Data Benchmarks
all records exc.sales Normal Laplace

Frequency of price changes 17.09 14.70
Fraction of price changes that are decreases 39.23 35.73

Moments for the size of price changes: ∆p
Average 0.33 1.06
Standard deviation 16.60 8.01
Kurtosis 12.81 20.86

Moments of standardized price changes: z
Kurtosis 8.89 10.40 3 6
Moments for the absolute value of standardized price changes: |z|

Average: E (|z|) 0.70 0.69 0.80 0.70
Fraction of observations < 0.25 · E (|z|) 22.2 20.7 15.8 22.1
Fraction of observations < 0.5 · E (|z|) 39.3 38.6 31.0 39.4
Fraction of observations > 2 · E (|z|) 12.9 12.5 11.1 13.5
Fraction of observations > 4 · E (|z|) 1.8 2.0 0.0 1.8
Number of obs. with ∆p 6= 0 1,544,829 1,080,183
Source is INSEE, monthly price records from French CPI, data from 2003:4 to 2011:4. Coverage is around
65% of CPI weight since rents, and prices of fresh food and centrally collected items (e.g. electricity, train
and airplane tickets) are not included in the dataset. Frequency of price change is the average fraction
of price changes per month, in percent. Size of price change is the first-difference in the logarithm of
price per unit, expressed in percent. Observations with imputed prices or quality change are discarded.
Observations outside the interval 0.1/100 ≤ |∆p| ≤ln(10/3) are removed as outliers. “Exc. sales” exclude
observations flagged as sales by the INSEE data collectors Moments are computed aggregating all prices
changes using CPI weights at the product level. The third and fourth panels report moments for the
standardized price change zijt =

∆pijt−mj

σj
where mj and σj are the mean and standard deviation of price

changes in category j (see the text). The Normal and Laplace distributions used in the last two columns
have a zero mean and, without loss of generality, standard deviation equal to one.

is also visible in the right panel of Figure 1 which plots the distribution of standardized non

sales-related price changes.

2.2 Quantifying measurement error

Eichenbaum et al. (2012) have warned that the small price changes recorded in the data may

reflect measurement error. Appendix C.2 explores the concerns raised by Eichenbaum et al.

(2012) and concludes that they only partially apply to the French data we analyze. However,

we analyze below the consequences of one particular type of measurement error, arising from

unrecorded product substitutions. We show that a small amount of this measurement error,

inconsequential for measuring the aggregate the cost of living, may have sizeable consequences
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for the measurement of the descriptive statistics displayed in Table 1, such as Kurtosis, and

suggest a procedure to correct for it.

A simple model of measurement error is useful in interpreting the data. We let ∆pm

measure the observed price changes which are given by a mixture of two distributions:

∆pm =

∆pu with prob. ζ

ε with prob. 1− ζ

where we interpret that ε is a measurement error and ∆pu is a “true” price change. This

assumption aims to capture that, even at the finest level of disaggregation, some price changes

in the CPI data are the consequence of small product substitution (e.g. different brands for a

given good being recorded) which do not reflect an actual change in the good’s price. Assume

the distribution of ∆pu has standard deviation σu and kurtosis ku, assumed independent of σu.

Likewise the distribution of ε has kurtosis ke and standard deviation σe. Both distributions

are assumed to have zero expected value. One interpretation is that quality changes (not

recorded by the statistical office) generate “artificial” price changes. We assume that these

price changes are small, i.e. that σe is small, and that the process for the unreported changed

in quality is independent of the “true” changes in prices. The kurtosis of the observed price

changes is then equal to:

Kurt[∆pm] = ku
ζσ4

u + (kε/ku)σ
4
e

ζ2σ4
u + (1− ζ)2σ4

e + 2ζ(1− ζ)σ2
eσ

2
u

Letting σe go to zero we obtain that Kurtosis measured over the (observed) price changes is:

lim
σe↓0

Kurt[∆pm] =
ku
ζ

(1)

Thus, if the sample includes a fraction ζ of true price changes and the rest are spuriously

imputed small price changes the kurtosis will increase by a factor 1/ζ, relative to the kurtosis

of the true distribution.12 Thus equation (1) may allow us to quantify ζ by comparing the

observed kurtosis across a sample with measurement error and one without. We now turn to

addressing this issue empirically.

We match a subset of our French CPI data with the prices for several French retailers

12Under this interpretation the number of measured price changes, denoted by Nam will be higher than the
number of true price changes per unit of time, say Nau. Let’s denote Naε the expected number of incorrectly
imputed price changes. We have: Nam = Nau +Naε = ζNam + (1− ζ)Nam. Thus if we have two estimates
of kurt[∆pi] and of Na and we assume that one has no measurement error and the other has a fraction ζ of
small imputed price changes as described above, can estimate ζ using either the ratio of the two estimates of
kurtosis or the ratio of the two estimates of the number of price changes per unit of time.
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Table 2: Comparison of the CPI vs. the BPP data in France

Statistic BPP BPP CPI BPP CPI
retailer 1 retailer 5 Hypermarkets retailer 4 Large ret. electr.

duration 8.58 8.06 4.82 6.44 7.24
Statistics for standardized price changes: z

mean |z| 0.71 0.70 0.65 0.78 0.70
% below 0.5 mean |z| 37.85 40.93 45.48 29.17 41.69
% below 0.25 mean |z| 17.46 25.26 26.19 15.33 23.10
kurtosis of z 5.50 4.30 10.15 2.82 6.33

Note: The BBP data are documented in Cavallo (2010). Results were communicated by the author.
For CPI data source is INSEE, monthly price records from French CPI, data from 2003:4 to 2011:4.
Sub-sample in column (3) is price records in outlet type “hypermarkets”. Sub-sample in column (5) is
goods in the category of appliances and electronic , as identified using the Coicop nomenclature, collected
in the following outlets type: “hypermarkets”,“supermarkets”, and “large area specialists”. Data are
standardized within each subsample using Coicop categories.

taken from the Billion Price Project (BPP) dataset (see Cavallo (2010)). The BPP data are

“scraped” on-line, thus they are arguably less contaminated by measurement errors.13 We

compare the results obtained using the scraped BPP data from two large retailers with our

results based on the CPI data for a similar type of outlet: to this end we restrict our dataset

to CPI price records in “hypermarkets”, excluding gasoline. We also compare with the BBP

data from a large French retailer specialized in electronic and appliances. In that case we

restrict the CPI dataset to goods in the category of appliances and electronic using the

Coicop nomenclature, collected in outlets type “hypermarkets”,“supermarkets”, and “large

area specialists”.

Comparing the values of kurtosis from both data sets suggests that ζ ∼= 0.5. We can

apply this magnitude to the full sample of CPI data of Table 1, for which no “measurement

error-free” counterpart like the BPP exists, to obtain a corrected kurtosis. The number thus

obtained for the Kurtosis ranges between 4 and 5 (using the kurtosis of 8.89 of standardized

price changes), so it lays in between the kurtosis of the Normal and the Laplace distribution.

2.3 A comparison with the US data

To assess whether the patterns documented above are specific to France we compare our

data with the US figures presented, respectively, in Klenow and Kryvtsov (2008) and in

Eichenbaum et al. (2012). Figure 2 plots four histograms: two are price changes from the

US and France, while the other two are theoretical benchmarks. The first one (in red) is

the distribution of standardized (weighted) price changes (excluding sales) for the US based

13 We are extremely grateful to Alberto Cavallo for sharing part of his data with us.
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Figure 2: Histogram of Standardized Price Adjustments: US and French CPI
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Sales data are excluded. Data for France are from the CPI as in Figure 1. The CPI data for the US are
taken from Figure 3 in Klenow and Kryvtsov (2008). Price changes equal to zero are discarded.
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on Figure 3 of Klenow and Kryvtsov (2008).14 Since the distribution is truncated at -3 and

+3, its standard deviation is 0.83 instead of 1, its kurtosis is 6.95. The second histogram (in

blue) is the distribution of the standardized price changes (excl. sales) for the French CPI,

constructed using the trimming criteria used for the US. This distribution has a standard

deviation 0.95 and a kurtosis of 4.42. The smaller standard deviation and much smaller

kurtosis than in Table 1 are due to the discretization and truncation. To see the effect of

these treatment of the data, note that Klenow and Malin (2010) report a kurtosis of 10 for

posted prices and 17.4 for regular prices, without discretizing, censoring, or standardizing

the data. For comparison Vavra (2013) finds that, after trimming the data in a way similar

to our treatment of the French data, but without standardizing it, the kurtosis of US CPI

price changes is 6.4 On the other hand, Vavra finds that the kurtosis of standardized price

changes is 4.9.15 The figure also reports the standardized Normal and Laplace distributions

(discretized and truncated).

The main outcome of Figure 2 is that the histogram of standardized, non-sales, price

change are very similar in France and the US. Furthermore, in both cases the shape is closer

to that of a Laplace distribution than to a Gaussian one (and consistently with previous

sub-section, in both cases we conjecture measurement error explains why these distribution

are actually more peaked than the Laplace).

Table 3 uses the same thresholds of Eichenbaum et al. (2012) to measure the fraction of

small price changes. The presence of small price changes (in absolute value) is at first sight a

more prominent fact in France than in the US. One factor that may contribute to explaining

this pattern is the fact that sales are less prevalent in France. Measurement error, as discussed

above, may play a role, but we see no obvious reason to presume that measurement errors are

larger in the French CPI data. We observe that, if we define small price change as relative to

the mean average price change, rather than with an absolute threshold, the fraction of small

price change appears to be lower in France than in the US, as shown in Table 3.

Table 4 provides a further comparison based on datasets presumably less subject to mea-

surement errors. For France we use data from the BPP, and those from hypermarkets in the

CPI dataset. For the US we use the results on scanner data reported by Midrigan (2011), as

well as results on scanner data from a large US supermarket chain. As reflected by our three

summary statistics, the distribution is somewhat more peaked in France; for instance the

kurtosis is 5 in the BPP against 3.5 in Midrigan (2011). However, these results still support

14The histogram has twenty four bins, spaced every 0.25 units, of the distribution of standardized regular
price changes (excl. sales). The standardization was done by ELI, the narrowest categories of goods. After
standardization the distributions are weighed according to the CPI weight.

15See Table IV and footnote 6 of Vavra (2013) for the specifics on the trimming. We thank Vavra for
providing this statistics which is not available in his paper.
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Table 3: Fraction of small price changes: US and French CPI

Moments for the absolute value of price changes: |∆p|
France US Normal Laplace

Average |∆p| 9.2 14.0
Fraction of |∆p| below 1% 11.8 12.5
Fraction of |∆p| below 2.5% 32.5 24.0
Fraction of |∆p| below 5% 57.1 40.6
Fraction of |∆p| below (1/14) · E (|∆p|) 2.4 12.5 4.5 6.9
Fraction of |∆p| below (2.5/14) · E (|∆p|) 13.5 24.0 11.3 16.4
Fraction of |∆p| below (5/14) · E (|∆p|) 28.7 40.6 22.4 30.0
Number of obs 1,542,586 1,047,547

For France, source is INSEE, monthly price records from French CPI, data from 2003:4 to 2011:4. Cov-
erage is around 65% of CPI weight since rents, and prices of fresh food and centrally collected items
(e.g. electricity, train and airplane tickets) are not included in the dataset. Frequency of price change
is monthly, in percent. Size of price change are the first-difference in the logarithm of price per unit,
expressed in percent. Data are trimmed as in the baseline of Table 1. Observations with imputed prices
or quality change are discarded. Moments are computed aggregating all prices changes using CPI weights
at the product level. The US data are taken from Eichenbaum et al. (2012) Table 1, and refer to “Posted
price changes” from 1998:1 to 2011:6. The mean absolute size of price changes is taken from Klenow and
Kryvtsov (2008) table III where data are from 1998:1 to 2005:1. Figures for the US are weighted and
cover around 70% of the CPI (US CPI includes owners equivalent rents, while French CPI does not). In
the third panel we compute the threshold for defining small price changes as fraction of the mean so as
to match the US figures in column 2 of the second panel. The Normal and Laplace distributions used in
the last two columns have a zero mean and, without loss of generality, standard deviation equal to one.

the notion that the share of small price changes is sizable in both countries.

Table 4: Comparison across datasets for large Hypermarkets in France and the US

France US
CPI BPP data scanner data Midrigan (2009)
Statistics for standardized price changes: z

mean of |z| 0.65 0.70 0.80 -
% below 0.50 mean |z| 45 39 31 29
% below 0.25 mean |z| 24 21 20 13
kurtosis of z 10 5 2.8 3.5

Percentages. All price changes, including sales. The BPP statistics for France are an average of the ones
reported in Table 2. The US scanner data in the third column are from a large US supermarket chain. The
data from Midrigan (2009) are taken from his Table 1 and 2b, using simple averages of the AC Nielsen and
Dominick’s scanner data.

Overall we conclude that, after accounting for heterogeneity and extrapolating our es-

timate of the effect of measurement error from large retailers to the rest of vendors, the

prevalence of both small and large price changes appears relevant in France as well as in the
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US. The shape of standardized empirical distribution of price changes lays in “between” a

Normal and a Laplace distribution even though the distribution appears close to a Normal

in the US and closer to Laplace in France. As a benchmark we summarize the shapes of

the standardized distributions for broad price indices, after taking measurement error into

account, as having kurtosis of about 4 for US and of about 5 for France.

3 A tractable menu cost model

This section presents a menu cost model aimed at qualitatively matching some of the pat-

terns documented above. In the canonical menu cost model price adjustments occur when a

threshold is hit, so that the implied distribution of price changes fails to generate the small

changes that appear in the data (see the discussion in Midrigan (2011); Cavallo (2010); Al-

varez and Lippi (2013)). The model that we propose here is able to produce a large mass of

small price changes and the positive excess Kurtosis of the distribution of price changes that

we documented above. Two ingredients are key to this end: (i) the random menu costs and

that (ii) the menu cost faced by the firm, ψ, applies to a bundle of n goods, so that after

paying the fixed cost the firm can reprice one or all goods at no extra cost. Each of these

assumptions individually is capable to generate some small price changes and higher kurtosis

than in a canonical model where n = 1 and where menu costs are constant. The assumption

of random menu costs is key to generate a positive excess kurtosis in the distribution of price

changes. The combination of the two however is important: in the models where n = 1 (with

or without random menu costs) the distribution of price changes has a mass point at the

adjustment threshold, a feature that is in stark contrast with the evidence discussed above.

The prominence of “large” price changes (i.e. a “U shaped” distribution) persists even in a

model with n = 2, as in Midrigan (2011) where the distribution of price changes asymptotes

near the adjustment threshold, or n = 3. We show below that in order to generate a shape

of the size distribution that is comparable to the one in the data one needs n ≥ 6.

Our model relates to the seminal work by Dotsey, King, and Wolman (1999) on the

aggregate effects in models where firms face a menu cost for prices changes that is random

and is drawn from a distribution with a smooth density. In our model the menu costs

is either ψ with probability 1 − λdt (in a time period of length dt) or 0 with probability

λdt. Additionally, our model has persistent idiosyncratic shocks to marginal cost – as well

as multi-product firms– which combined with the random menu cost create a rich class of

distributions for price changes (including Binomial, Normal and Laplace), where in Dotsey,

King, and Wolman (1999) random menu cost are the only source of idiosyncratic variation
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in prices.16 Other researchers find the random menu cost a tractable useful model, such as

the recent work by Vavra (2013). More recently Dotsey, King, and Wolman (2009) extended

a version of their model introducing idiosyncratic productivity shock and characterizing the

implications for the distribution of price changes. One difference with our paper is that our

streamlined model delivers a tractable analytical characterization of the frequency of price

changes, size of price changes, the shape of distribution of price changes and the expenditure

in price changes, which is relatively simple and useful to calibrate the model. Moreover the

simplicity of our model provides a semi-analytical characterization of the impulse response

to a once and for all shock, while Dotsey, King, and Wolman (1999, 2009) produce numerical

decision rules for general stochastic money supply or interest rates rules.

For ease of exposition we first illustrate the model with random menu costs where the

firm sells a single good (i.e. n = 1) and then extend the model to include any number of

goods n > 1.

3.1 A random menu cost problem for a firm selling n = 1 good.

Consider a firm whose profit-maximizing price at time t, p∗(t), follows the process dp∗(t) =

σ dW (t) where W (t) is a standard brownian motion with no drift and i.i.d. innovations with

standard deviation σ. The technology to change prices is as follows: to change the price at

will the firm needs to incur a fixed menu cost of size ψ. However, with some probability

the firm receives an opportunity to adjust the price “for free”. Assume this probability is

Poisson, i.e. that the free-adjustments have a constant hazard rate per unit of time, equal to

λ. Let p(t) denote the “price gap” at time t, i.e. the difference between the actual sale price

P (t) and the profit maximizing price p∗(t), i.e. p(t) ≡ P (t)− p∗(t). The instantaneous firm

losses (i.e. reduction in profits) created by the price gap are given by the quadratic: B p2(t).

Let v(p) be the present-value cost function for a firm with price gap p. Upon the arrival

of a free adjustment opportunity the firm optimally resets the price gap to zero, hence the

Bellman equation for the range of inaction reads:

r v(p) = Bp2 + λ [v(0)− v(p)] +
σ2

2
v′′(p), for p ∈ (0, p̄) ,

where p̄ is the boundary of the region in which inaction is optimal. This equation states that

the flow value of the Bellman equation is given by the instantaneous losses, Bp2, plus the

expected change in the value function, which is due either to a free adjustment (with rate

λ in which case the price gap is reset to zero) or to the volatility of shocks σ2 (there is no

16There are other differences, such as the absence of capital accumulation in our set-up, and small difference
in functional forms for money demand and preferences.
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first order derivative of the value function since the price gaps have no drift).17 The value

matching and smooth pasting conditions are given by v(p̄) = v(0) + ψ and v′(p̄) = 0.

Next we describe the optimal decision rules and some key statistics implied by the model

with n = 1 (see Appendix D for the derivation). A Taylor expansion of the value function

yields the following approximate optimal threshold p̄ =
(

6ψσ2

B

) 1
4

which is accurate when

ψ/B is small.18 We comment on two properties of the decision rule of this problem which

are proved later for the more general case: the value function, and the optimal decision rules,

are a function of λ + r, as opposed to each of them separately. Intuitively this is because

when a free adjustment opportunity occurs the price gap is adjusted, so that λ acts as an

addition to the discount factor. Second, for a small value of ψ/B or a small value of λ + r,

the value of p̄ is insensitive to λ + r, as the previous approximation shows. More precisely,

the derivative of p̄ with respect to λ+ r is zero as ψ/B or λ+ r tend to zero. This property,

which was known for the case of λ = 0, extends to the case where λ + r > 0 using the first

property of the decision rule.

Computing the expected time between adjustments yields an expression for the average

number of adjustments per period, Na, which we use to write an expression for the fraction

of free adjustments over the total number of adjustments, `, as

` ≡ λ

Na

=
e
√

2φ + e−
√

2φ − 2

e
√

2φ + e−
√

2φ
∈ (0, 1) where we define φ ≡ λp̄2

σ2

which shows that the fraction of free adjustments ` depends only on the parameter φ. The

parameter φ can be interpreted as the ratio between λ, the number of free adjustments, and

σ2/p̄2, the number of adjustments in a model where λ = 0 and the threshold policy p̄ is

followed.

The distribution of price changes w(∆pi) is symmetric around ∆pi = 0. This distribution

has a mass point at ∆pi = ±p̄ with probability 1 − `, i.e. this is the fraction of price

changes that occurs because the price gap reaches the boundaries of the inaction region. The

remaining fraction of price changes, ` occurs when a free adjustment opportunity arrives, at

which time the price gap is set to zero. Price changes in the range p ∈ (−p̄, p̄) have a density

` h(p) where h(p) denotes the density of the invariant distribution of price gaps

h(p) =

√
2φ

2p̄
(
e
√

2φ − 1
)2

(
e
√

2φ(2− |p|
p̄ ) − e

√
2φ
|p|
p̄

)
for p ∈ [−p̄, p̄] .

17See Dixit (1991) and Stokey (2008) for more discussions of continuous time Bellman equations.
18 Exactly the same expression was established by Barro (1972); Dixit (1991) for the case in which λ = 0.

Below we discuss an approximate threshold for the case in which ψ is large.
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Thus the distribution of price changes is given byPr (∆pi = {−p̄, p̄}) = 1
2

(1− `)

Pr (∆pi ∈ dp) = ` h(p)dp ≡ w(∆pi)dp for p ∈ (−p̄, p̄)

which is a symmetric “tent shaped” distribution in the (−p̄, p̄) interval with the two mass

points at the boundaries ±p̄. As detailed below the kurtosis of this distribution is increasing

in λ, and in particular the distribution of price changes is more peaked than that of a standard

menu cost model λ = 0.

We make two remarks about this simple model which will hold, and be generalized, in

the more general model developed next. The first one is that the shape of the distribution

of price changes depends only on the fraction of free adjustments ` (or, equivalently, on φ).

This means that two economies, or sectors, that differ in the standard deviation of price

changes Std(∆pi) and/or in the frequency of price adjustment Na will display a distribution

of price changes with exactly the same shape (once its scale is adjusted) provided that the

have the same value of `. This property is useful to aggregate the sectors of an economy

that are heterogenous in their steady state features (Na, Std(∆pi)). Because of this property

the ratio of moments from the size distribution of price changes, such as kurtosis, are scale

free and can be used to retrieve information on φ. The second property, which we state here

and prove below for the more general economy, is that the “shape” of the impulse response

function of this economy to a (once and for all) monetary shock depends only on `. We will

show how one can simply scale (or relabel) one or both axes of an impulse function to analyze

economies with the same ` that differ in either Na or Std(∆pi).

3.2 Extending the model to multi-product firms

This section incorporates the model with free adjustment opportunities discussed above into

the model of Alvarez and Lippi (2013) where the firm is selling n goods, as opposed to a

single good, but pays a single fixed adjustment cost to change the n prices. We incorporate

this feature for several reasons. First, as explained above, in the model with n = 1 good

there is a mass point on price changes of size |∆pi| = p̄. There is no evidence of this in

any data set we can find. Second, and related to the previous point, in the model with

n = 1 a simple estimate of p̄ will be the highest price change. We propose to use a different

one, since this order statistic is both difficult to measure in practice and its role to measure

p̄ is very sensitive to the specification of the model. Third, the model with λ = 0 has a

kurtosis that increases with n, hence providing and alternative to randomness on fixed cost,

as discussed below. Fourth, for large n and λ = 0 the distribution of price changes tends
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to the Normal distribution, which is both a nice benchmark and an accurate description of

the price changes for some sectors. Fifth, the multi-product model with (i.e. n > 1) has an

alternative, broader, interpretation for the menu cost ψ. In this case one can assume that

the firm freely observes the profits for all products, but not the individual ones, unless it

either pays the cost ψ or a free observation opportunity arrives, in which case is able to set

the optimal price to each of them. This is useful, because it allows a broader interpretation

of menu cost, including not only the physical cost of changes prices but also those related to

gathering the information for individual products.19

We now briefly describe the setup of the firm problem with n products. As before the

free adjustment opportunities are independent of the driving processes {Wi(t)} for price

gaps, and arrive according to a Poisson process with constant intensity λ. In between price

adjustments each of the price gaps evolves according to a Brownian motion dpi(t) = σ dWi(t).

It is assumed that all price gaps are subject to the same variance σ2 and that the innovations

are independent across price gaps. We assume that, when the opportunity arrives, the firm

can adjust all prices without paying the cost ψ. The analysis of the multi product problem

can be greatly simplified by using the sum of the squared price gaps, y ≡ ||p||2, as a state,

as done in Alvarez and Lippi (2013). The scalar y summarizes the state because the period

objective function can be written as a function of it and because, from an application of Ito’s

lemma, one can derive one dimensional diffusion which describes its behavior, namely

dy = nσ2 dt + 2σ
√
y dW

where W is a standard BM.

Using Na and V ar(∆pi) to denote the frequency and the (cross sectional) variance of the

price changes of product i the next proposition establishes a useful relationship that holds

in a large class of models for any policy for price changes, which we describe by a stopping

time rule:

Proposition 1 Let τ describe the time at which a price change takes place, so that all price

gaps are closed. Assume the stopping time treats each of the n price gaps symmetrically. For

any finite stopping time τ we have:

Na · V ar(∆pi) = σ2 . (2)

19As an example, see Chakrabarti and Scholnick (2007) who argue that for stores as Amazon or Barnes
and Noble physical menu cost are small, yet prices change infrequently, and thus conclude that the cost may
be of a different nature. Interestingly, they find that for such retailers price changes are synchronize across
products, which is an implication of the multi-product model.
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The proposition highlights the trade-off for the firm’s policy: more frequent adjustments

are required to have smaller price gaps. We underline that equation (2) holds for any stopping

rule, not just for the optimal one. See Appendix A for the proof, where the reader can verify

that the key assumptions are the random walks and symmetry; indeed equation (2) holds for

a larger class of models, for instance those with correlated price gaps and a richer class of

random adjustment cost.

Upon the arrival of a free adjustment opportunity the firm will set the price gap to zero,

hence the Bellman equation for the range of inaction reads:20

r v(y) = By + λ [v(0)− v(y)] + nσ2 v′(y) + 2σ2y v′′(y), for y ∈ (0, ȳ) , (3)

where By is the sum of the deviation from the optimal profits from the n goods. The use of

the one dimensional y instead of the vector (p1, ..., pn) simplifies the problem substantially.

We note that given the symmetry of the problem after an adjustment of the n prices the

firm will set each of the price gap to zero, i.e. will set ||p||2 = y = 0. The value matching

condition is then v(0)+ψ = v(ȳ), which uses that when y reaches a critical value, denoted by

ȳ, by paying the fixed cost ψ the firm can change the n prices. The smooth pasting condition

is v′(ȳ) = 0.

The next lemma establishes how to solve for ȳ using the solution of a simpler problem

where λ = 0 discussed in Alvarez and Lippi (2013). It turns out that a simple change of

variables allows us to use the solution for the case of λ = 0 with the solution for the case of

interest in this paper. The change of variables consists on using r + λ as the interest rate in

the solution of the problem with λ = 0. We have:

Lemma 1 Let ȳ(r, λ) and v(y; r, λ) be the optimal value function and adjustment threshold

for a problem with discount rate r and arrival rate λ. Then v(y; r, λ) = v(y; r + λ, 0) +
λ
r
v(0; r + λ, 0) for all y ≥ 0 and thus ȳ(r, λ) = ȳ(r + λ, 0).

The proof of this lemma follows immediately from a guess and verify strategy. The lemma

allows us to use the characterization of ȳ with respect to r given in Proposition 4 of Alvarez

and Lippi (2013) to study the effect of r + λ on ȳ. In Appendix E we write the analytical

solution for the value function, and give more details on it. The next proposition summarizes

that result and extends the characterization of the optimal threshold to the case where ψ

is large, a case that is useful to understand the behavior of an economy with a lot of free

adjustments opportunity as in a Calvo mechanism (see Appendix A for the proof).

20With a slight abuse of notation we use v(·) to denote the value function defined over the sum of the
squared price gaps y, while in the case of n = 1 the value function was defined over the price gap p.
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Proposition 2 Assume σ2 > 0, n ≥ 1, λ+ r > 0 and B > 0, and let ȳ be the threshold for

the optimal decision rule. We then have that:

1. As ψ → 0 then ȳ√
2(n+2)σ2 ψ

B

→ 1 or ȳ ≈
√

2(n+ 2)σ2 ψ
B

.

2. As ψ → ∞ we have ȳ
ψ
→ (r + λ)/B or ȳ ≈ ψ

B
(r + λ) . Moreover this also holds for

large n and large ψ
n

, namely limψ/n→∞ limn→∞
ȳ/n
ψ/n

= (r + λ)/B or ȳ
n
≈ ψ/n

B
(r + λ).

The proposition shows that ȳ is approximately constant with respect to λ for small values

of ψ, so that for small menu costs the result is the well known quartic root formula (recall that

y has the units of a squared price gap) and the inaction region is increasing in the variance

of the shock, due to the higher option value. Interestingly, and novel in the literature, the

second part of the proposition shows that for large values of the adjustment cost the rule

becomes a square root and that the optimal threshold does not depends on σ, which shows

that for large adjustment costs the option value component of the decision becomes negligible.

Moreover, when the menu costs are large the threshold ȳ is increasing in λ: the prospect of

receiving a free adjustment tomorrow increases inaction today.

We now turn to the discussion of the model implications for the frequency of price changes.

We let Na(ȳ;λ) be the expected number of adjustments per unit of time of a model with a

given λ and ȳ. We establish the following (see Appendix A for the proof):

Proposition 3 The fraction of free adjustments is ` = λ/Na = L(φ, n), where

L(φ, n) ≡
φ
[
1 +

∑∞
i=1

(∏i
k=1

n
(k+1) (n+2k)

)
φi
]

1 + φ
[
1 +

∑∞
i=1

(∏i
k=1

n
(k+1) (n+2k)

)
φi
] where φ ≡ λȳ

nσ2
(4)

The proposition shows that `, a key parameter for the behavior of the model, is a function

only of two variables: n and φ. As for the n = 1 model, the parameter φ can be interpreted as

the ratio between λ, the number of free adjustments, and nσ2/p̄2, the number of adjustments

in a model where λ = 0 and the threshold policy ȳ is followed. A second order approximation

of L(φ, n) shows that λ has a negligible effect on the frequency of adjustment Na when ȳ is

small, i.e. the first order term is the same as the one for the model with λ = 0.21

We now turn to characterize the invariant distribution of y for the case where λ > 0, a

key ingredient to compute the size-distribution of price changes. The density of the invariant

distribution solves the Kolmogorov forward equation: λ
2σ2f(y) = f ′′(y)y −

(
n
2
− 2
)
f ′(y) for

y ∈ (0, ȳ), with the two boundary conditions f(ȳ) = 0 and
∫ ȳ

0
f(y)dy = 1. It is clear from

21The expansion gives 1
Na

= ȳ
nσ2

[
1− λ ȳ

nσ2

(n+4)
(2n+2)

]
+o
(
λ
(
ȳ
σ2

)2)
which shows that 1/Na = ȳ/(nσ2)+o (ȳ).
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these conditions that f(·) is uniquely defined for a given triplet: ȳ > 0, n ≥ 1 and λ/σ2 ≥ 0.

The general solution of this ODE is

f(y) =

(
λy

2σ2

)(n4−
1
2)
[
C1 Iν

(
2

√
λy

2σ2

)
+ C2 Kν

(
2

√
λy

2σ2

)]
(5)

where Iν and Kν are the modified Bessel functions of the first and second kind, C1, C2 are

two arbitrary constants and ν = |n
2
− 1|, see Zaitsev and Polyanin (2003) for a proof. The

constants C1, C2 are chosen to satisfy the two boundary conditions.22 While the density in

equation (5) depends on 3 constants n, φ and ȳ, its shape depends only on 2 constants,

namely n and φ, as formally stated in Lemma 2 in Appendix A. The lemma shows that one

can normalize ȳ to 1 and compute the density for the corresponding φ.

We denote the marginal distribution of price changes by w(∆pi). Recall that firms change

prices either when y first reaches ȳ or when they get a free adjustment opportunity even

though y < ȳ. Thus to construct the distribution of price changes we need three objects: the

fraction of free adjustments `, the invariant distribution f(y) and the marginal distribution of

price changes conditional on a value of y, ω(∆pi; y) which, following Proposition 6 of Alvarez

and Lippi (2013) when n ≥ 2, is

ω(∆pi; y) =


1

Beta(n−1
2
, 1
2) √y

(
1−

(
∆pi√
y

)2
)(n−3)/2

if (∆pi)
2 ≤ y

0 if (∆pi)
2 > y

(6)

where Beta(·, ·) denotes the Beta function. In this case the (cross-sectional) standard de-

viation of the price changes is Std ( ∆pi ; y) =
√
y/n. The marginal distribution of price

changes w(∆pi) is given by

w(∆pi) = ω(∆pi; ȳ) (1− `) +

[∫ ȳ

0

ω(∆pi; y)f(y)dy

]
` for n ≥ 2 . (7)

For the case when n = 2 the density of the price changes diverges at the boundaries of the

domain where ∆pi = ±
√
ȳ/n, as can be seen in Figure 3. This feature echoes the two mass

points that occur in the n = 1 case where a non-zero mass of price changes occurs exactly

at the boundaries. For n ≥ 6 the shape of the density takes a tent-shape, similar to the one

that is seen in the data. As the fraction of free adjustments approaches 1 the shape of the

density function converges to the shape of the Laplace distribution. The next proposition

22 We note that both modified Bessel functions are positive, that Iν(y) is exponentially increasing with
Iν(0) ≥ 0, and that Kν(y) is exponentially decreasing with Kν(0) = +∞.
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shows that n and ` completely determine the shape of the distribution of price changes. (see

Appendix A for the proof):

Proposition 4 Let w(∆pi;n, `, 1) be the density function for the price changes ∆pi in an

economy with n goods, a share ` of free adjustments, and a unit standard deviation of price

changes Std(∆pi) = 1. This density function is homogenous of degree -1 in ∆pi and Std(∆pi),

which implies

w (S∆pi;n, `, S) =
1

S
w (∆pi;n, `, 1) for all S > 0. (8)

The proposition establishes that the “shape” of the size distribution of price changes has

2 parameters: n and `. Every two economies sharing these parameters will have the same

size distribution of price changes once the scale is adjusted. The proposition implies that

we can aggregate firms or industries that are heterogenous in terms of frequency Na and

standard deviation of price changes Std(∆pi) provided that n and ` are the same. Notice in

particular that the frequency of price changes Na does not have an independent effect on the

distribution of price changes as long as ` remains constant.

Notice that the distribution w(∆pi) is a mixture of the ω(∆pi, y) densities. These densi-

ties are scaled versions of each other with different standard deviations. This increases the

kurtosis of the distribution of price changes compared to the case where λ = 0. In particular

Proposition 6 in Alvarez and Lippi (2013) shows that the variance and kurtosis of ω(∆pi, y)

are given by y/n and 3n/(n + 2) respectively. Using that ∆pi is distributed as a mixture of

the ω(∆pi, y), we can compute several moments

E(|∆pi|) =
(1− `)

√
ȳ + `

∫ ȳ
0

√
y f(y)dy

n−1
2
Beta

(
n−1

2
, 1

2

)
V ar(∆pi) = (1− `) ȳ

n
+ `

∫ ȳ

0

y

n
f(y)dy

Kurt(∆pi) =
3n

2 + n

(1− `) ȳ2 + `
∫ ȳ

0
y2 f(y)dy[

(1− `) ȳ + `
∫ ȳ

0
y f(y)dy

]2 >
3n

2 + n

It is immediate from Proposition 4 that the value of the kurtosis and the value of the ratio

E(|∆pi|)/Std(∆pi) depend only on two parameters: n and `. For instance, if one were to

change the parameters ψ/B, λ and σ2 keeping the same values for ` and n, the kurtosis of the

price changes will be the same. The inequality that appears in the third line is a well known

result: the mixture of distributions with the same kurtosis but with different variances has

higher kurtosis, which itself follows from Jensen’s inequality. Moreover as ȳ →∞ (as it will

happen if ψ/B → ∞) then ` → 1 and one can show that Kurt(∆pi) → 6. This is because
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Figure 3: Size distribution of price changes
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Note: All distributions are zero mean with unit standard deviation. As stated in Proposition 4 the shape
of this distribution only depends on ` and n.
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as ȳ → ∞ the price changes in each coordinate are independent, and hence it has the same

distribution than in the case of n = 1, i.e. a Laplace distribution. To reiterate, the maximum

kurtosis that the model with free adjustments can produce is 6 which happens in the limiting

case in which all adjustments are free (e.g. when ` → 1 and ȳ → ∞) and is independent

of the number of products that are priced by the firm, n. Table 5 computes the kurtosis of

the model for the intermediate cases in which only a fraction of adjustments are free.23 The

columns correspond to different values of n, the number of goods. Each line corresponds to

a different proportion of free adjustments: `. When the fraction of free adjustment is small

(first and second line of the table) the model behaves essentially like the one described in

Alvarez and Lippi (2013): kurtosis is increasing in n up to a level of about 3. As the fraction

of free adjustments increases the kurtosis increases towards 6, and becomes less responsive

to n.

Table 5: Model statistic for the Kurtosis of Price changes

% of free adjustments: number of products n
` 1 2 4 6 10 50

0 % 1.0 1.5 2.0 2.3 2.5 2.9
10% 1.1 1.6 2.1 2.4 2.6 3.0
20% 1.2 1.7 2.2 2.5 2.7 3.1
50% 1.6 2.2 2.7 3.0 3.2 3.6
70% 2.1 2.8 3.3 3.5 3.7 4.1
80% 2.6 3.2 3.7 3.9 4.1 4.4
90% 3.4 3.9 4.3 4.5 4.7 4.9
95% 4.1 4.5 4.8 5.0 5.1 5.3
100% 6.0 6.0 6.0 6.0 6.0 6.0

3.3 On the implied cost of price adjustment

In this section we give a thorough characterization of the implications of the model for the

size of the menu cost, i.e. a mapping between observable statistics and the value of ψ. The

model presented above has four independent parameters: the scaled menu cost ψ/B, the

volatility of shocks σ, the number of goods n and the rate of free adjustment opportunities λ.

We find it convenient to pin down two of these parameters by matching observable statistics

that are available in micro datasets: the frequency and the variance of price changes: Na

and V ar(∆pi). Given these statistics the model has two residual parameters: ` = λ/Na and

23More statistics, concerning e.g. the fraction of small price changes, are shown in Appendix H.
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n. The parametrization of the model can thus be usefully interpreted as choosing these 2

parameters to match two empirical observations. It was shown in Proposition 4 how ` and n

shaped the distribution of price changes, in particular its kurtosis. This section shows how

` and n map into the cost of price adjustments, for given values of Na and V ar(∆pi). This

is useful because it shows how to discipline the model parametrization using evidence on the

cost of price adjustment, a topic that has been explored by e.g. Levy et al. (1997); Zbaracki

et al. (2004).

We consider two measures for the cost of price adjustment: the first one is the cost

of a single price adjustment (per product) as a fraction of the (per product) profits: ψ/n.

This is the cost that a firm must pay if it decides to adjust all prices instantaneously (i.e.

without waiting for the possibility of a free adjustment). Measuring this cost as a fraction

of profits transforms these magnitudes into units that have an intuitive interpretation. The

second measure is the average flow cost of price adjustment given by: Na
ψ
n

(1− `). This

cost measures the average amount of resources that the firm pays to adjust prices per period.

The difference between the two measures should be clear: when all price adjustments are

costly, as in a model where ` = 0, the relevant measure of price adjustments is ψ/n, so that

the total flow cost of price adjustment borne by a firm per year is Na ψ/n. Allowing for a

fraction of adjustments to be free the total flow cost must be multiplied by 1− `, as some of

the adjustments that occur during the period are free. The latter measure is useful because

it relates more directly to what has been measured in the data by the empirical studies

mentioned above, namely the “average” cost of a price adjustment. The next proposition

analyzes the mapping between the scaled menu cost ψ/n , and B, `, n, Na and V ar(∆pi).

Proposition 5 Fix the number of products n ≥ 1 and let r ↓ 0. There is a unique triplet

(σ2, λ, ψ) consistent with any triplet ` ∈ [0, 1], V ar(∆pi) > 0 and Na > 0. Moreover, fixing

any value `, the menu cost ψ ≥ 0 can be written as:

ψ

n
= B

V ar(∆pi)

Na

Ψ (n , `) (9)

where Ψ is only a function of (n, `). For all n ≥ 1 the function Ψ(n, ·) satisfies:

lim
`→0

Ψ (n, `) =
n

2 (n+ 2)
, lim

`→1
Ψ (n, `) =∞ , lim

`→1
Ψ (n, `) (1− `) = 0 , (10)

lim
`→1

Ψ(n′, `)/n′

Ψ(n, `)/n
≤ 1 for n′ ≥ n, and lim

n→∞

Ψ(n, `)/n

Ψ(1, `)/1
→ 0 as `→ 1 . (11)

We comment and interpret the results in Proposition 5: first, equation (9) shows that for

any fixed n ≥ 1 and ` ∈ [0, 1] the menu cost ψ is proportional to the ratio V ar(∆pi)/Na. This
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is very intuitive: everything else the same, economies with higher frequency of price changes

are obtained by having a proportionally lower menu cost, and economies with more extreme

price changes, are obtained with a proportionally higher menu cost. Second, equation (9)

shows that the menu cost is proportional to B, which measures the benefits of closing a

(unit square) price gap. The parameter B is related to the curvature of the profit function,

and thus –as standard– it relates to demand elasticities and mark-ups.24 Using a fully

specified microeconomic problem where firms face a constant demand elasticity η (equal

across products) gives that B = η(η − 1)/2, which can be written in terms of the markup

over marginal costs µ ≡ 1/(η − 1) so that B = (1 + µ)/(2µ2). The last expression is

useful to calibrate the model using empirical estimates of the markup such as the ones by

Christopoulou and Vermeulen (2012): the estimated markups average around 28% for the

US manufacturing sector, and around 36% for market services (slightly smaller values are

obtained for France, see their Table 1).25

Next we comment on the effect of ` and n on the implied menu cost, fixing B V ar(∆pi)/Na,

i.e. we comment on the function Ψ(n, `). This function can be readily computed using our

characterization of the optimal threshold, Lemma 1, the value of Na and ` from Proposition 3

and the values of Na V ar(∆pi) from Proposition 1. Figure 4 plots the value of ψ/n for four

values of n, and the following remark displays a closed form solution for the two limiting

cases in which n = 1 and n→∞:

Remark 1 In the case of n = 1 or n→∞, the function Ψ is:

Ψ (1 , `) =
1

`2

[
arcosh

(
1

1− `

)2
1

2
− ` arcosh

(
1

1− `

)
coth

(
arcosh

(
1

1− `

))]
, (12)

Ψ (n , `)→ − log (1− `) + `

`2
, as n→∞ (13)

Fixing a value of n, using Remark 1 and the top panel of Figure 1, it can be seen that the

menu cost is increasing in `. This is quite intuitive: a larger fraction of free adjustments

` requires a higher menu cost, since firms must choose not to adjust prices even when the

current price is far away from their ideal price. Indeed equation (10) shows that as `→ 1, the

implied menu cost diverges to +∞. This is also expected, since in the limit case of our version

of Calvo’s model, the menu cost must prevent any price change, but since the underlying

shocks are assumed to follow a random walk in some instances there are arbitrarily large

benefits of changing prices. On the other hand, for ` = 0, our version of Golosov-Lucas ’s

24See Appendix B in Alvarez and Lippi (2013) for a derivation.
25 The evidence for the US services is consistent with the gross margins, based on accounting data, reported

in the Annual Retail Trade Survey by the US Census (see http://www.census.gov/retail/).
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Figure 4: Implied cost of price adjustment
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All economies in the figures feature Std(∆pi) = 0.10 and a markup of 25%. For those
in the top panel we set Na = 1.5.
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model, attains its smallest value, which is strictly positive.

Finally, we comment on the effect of n on the implied fixed cost. For a fixed proportion

`, the implied per good fixed cost ψ/n is not monotone in the number of products n. Indeed,

as stated in equation (10) for a very small share ` the values of ψ/n are increasing in n. On

the other hand, for larger value of the share `, the order of the implied fixed cost is reversed.

Indeed as ` goes to 1, equation (11) shows that the ratio of the menu cost per good is lower for

higher number of products, and that the ratio between the cost ψ/n between and economy

with n = 1 and an economy with n→∞ diverges towards +∞ (this is not obvious because,

as shown above, in both economies the implied menu cost ψ/n diverges to ∞.)

Under the view that a plausible model should have a value of ψ/n that is not too high,

then the limit of ` = 1, which gives Calvo pricing, should be discarded since the implied cost

of a single price adjustment becomes extremely large (it diverges to +∞). Nevertheless, we

find it interesting to assess how large are the implied menu cost for models that are close to

Calvo pricing, i.e. for ` close to one. In this regard, we view the result that for large n the

(relative) implied cost is smallest as ` ≈ 1 as an argument to favor large values of n. The

top panel of Figure 4 shows that –given a Std(∆pi) = 0.1, Na = 1.5 and a markup of 25%–

the implied menu cost of one price change is a little above 15% of annual profits if ` ≈ 0.95

and n→∞, compared to the 25% level in the case of n = 1.

The model also has clear predictions about the per period (say yearly) cost of price

adjustments borne by the firms: (1 − `)Na ψ/n. In spite of the fact that the cost of a

single deliberate price adjustment diverges as ` → 1, the total yearly cost of adjustment

converge to zero continuously. This can be seen in the bottom panel of Figure 4 and is shown

analytically in the limiting case of n→∞: equation (13) gives a simple expression showing

that the cost of one price adjustment is monotonically increasing in `, while the total flow

cost of adjustment Ψ(n, `) (1− `) is monotonically decreasing.

A simple transformation gives the yearly cost of price adjustments as a fraction of rev-

enues: (1−`)Na ψ/n
η

, where the scaling by η transforms the units from fraction of profits into

fraction of revenues.26 This statistic is useful because it empirical counterparts, studied e.g.

by Levy et al. (1997). Using equation (9) and the previous definition for the markup yields

Yearly costs of price adjustment

Yearly revenues
=

1

2

V ar(∆pi)

µ
(1− `) Ψ (n , `) (14)

Figure 4 plots the two cost measures in equation (9) and (14) as functions of `, n for an

economy with Na = 1.5, Std(∆pi) = 0.10 and a markup µ ∼= 25% (i.e. B = 10). We see

this parametrization as being consistent with the US data on price adjustments, markups,

26Since R = ηΠ where R is revenues per good and Π profits per good.
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and the size distribution of price changes discussed above. Alternative parametrizations are

readily computed, as discussed below. The figure illustrates how observations on the costs

of price adjustments can be used to parametrize the model. Levy et al. (1997) and Dutta

et al. (1999) (Table IV and Table 3, respectively) document that for multi-product stores (a

handful of supermarkets chain and one drugstore chain) the average cost of price adjustment

is around 0.7 percent of revenues. For an economy with n = 10 (a reasonable parametrization

to fit the size-distribution of price changes) the bottom panel of the figure shows that the

model reproduces the yearly cost of 0.7% of revenues when the fraction of free adjustments

` is around 60%. The upper panel indicates that at this level of ` the cost of one price

adjustment is around 5% of profits.

4 The aggregate response to a monetary shock

In this section we give a description of the impulse response of prices and output to an

unexpected (once and for all) increase of the money supply of size δ, starting from a steady

state with zero inflation. We first describe the general equilibrium set up which is, essentially,

the one in Golosov and Lucas (2007), adapted to a multi-product firm as in Alvarez and

Lippi (2013). Then we describe the impulse response of prices and output to a monetary

shock. Our objective is to characterize the impulse response of the aggregate price level as

a function of 4 fundamental parameters: the frequency and scale of price changes, Na and

Std[∆pi] respectively, the number of products in the firm’s bundle n, and the fraction of free

adjustments `.27

General Equilibrium Setup. Briefly, this is an economy where each firm produces n

goods, each with a linear labor only technology subject to independent idiosyncratic produc-

tivity shocks, whose logs follows a BM with instantaneous variance σ2. As in the previous

sections, a firm is subject to a random menu cost to simultaneously change the price of

its n products. In a period of length dt this cost equals ψ` units of labor with probability

1− λdt, or zero. Also each firm faces a demand with constant elasticity η > 1 for each of its

n products, coming from households’s CES utility function for the consumption aggregate.

The pi(t) in our previous sections are the logs of the markups in each product of the firm

relative to the static optimal markup, and our quadratic objective function can be taken

27 Caballero and Engel (2007) perform a related exercise using the Caplin Spulber (S,s) model augmented
with a random opportunity of price change, which occurs at rate λ. They study how increasing λ affects
the response of the price level (see their Figure 3). There are two channels through which this works:
by affecting the frequency of price adjustment and by changing the size and mass of price adjusters. One
important difference with respect to them is that our comparative static analysis of a higher λ is done keeping
the frequency of adjustment (as well as the scale of the distribution of price changes) constant.
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to be a second order expansion on the firm’s profits with B = (1/2)η(η − 1). Households’

period utility function is additively separable: log in real balances, linear in leisure, and has

constant intertemporal elasticity of substitution 1/ε for the consumption aggregate.

4.1 The price response to a monetary shock

The initial conditions are the steady state of the economy with constant money supply, and

hence constant economy wide price index. The mechanics of the impulse response is that in

this economy nominal wages jump on impact by the same percentage as money supply. In

Proposition 7 of Alvarez and Lippi (2013) we show that, up to first order, the firm’s optimal

policy is to keep ȳ unaltered during the transition, a result that can be extended to the

present case with λ > 0. Given this result the characterization of the impulse response is

an exercise in aggregation: the steady state distribution of price gaps is perturbed by the

common increase in cost across all firms, which will return to steady state slowly, in a process

which we describe below. Letting P(t) be the impulse response of the percentage change in

aggregate price level at horizon t, then the percentage change in output is proportional to

δ − P(t), where the constant of proportionality is 1/ε.

To compute the IRF of the aggregate price level we find the contribution to the aggregate

price level of each firm at the time of the shock. They start with price gaps distributed

according to g, the invariant distribution. Then the monetary shock displaces them, by

subtracting the monetary shock δ to each of them. After that we divide the firms in two

groups. Those that adjust immediately and those that adjust at some future time. Note

that, for each firm in the cross section, it suffices to keep track only of the contribution to

the aggregate price level of the first adjustment after the shock because after that one the

future contributions are all equal to zero in expected value. Now we develop the notation to

define the impulse response of the aggregate price level.

Let g (p;n, λ/σ2, ȳ) be the density of firms with price gap vector p = (p1, ..., pn) at time

t = 0, just before the monetary shock, which corresponds to the invariant distribution with

constant money supply. The density g equals the density f of the steady state square norms

of the price gaps given by Lemma 2 evaluated at y = p2
1 + · · ·+ p2

n times a correction for area

of sphere and the different variables.28 In particular we have

g

(
p1, ..., pn ;n,

λ

σ2
, ȳ

)
= f

(
p2

1 + · · ·+ p2
n ;n,

λ

σ2
, ȳ

)
Γ (n/2)

πn/2 (p2
1 + · · ·+ p2

n)
(n−2)/2

To define the impulse response we introduce two extra pieces of notation. First we let

28See Section 5 of Alvarez and Lippi (2013) for this result and the Online appendix for a derivation.
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{(p̄1(t, p), . . . , p̄n(t, p))} the process for n independent BM, each one with variance per unit

of time equal to σ2, which at time t = 0 start at p, so p̄i(0, p) = pi. We also define the

stopping time τ(p), also indexed by the initial value of the price gaps p as the minimum of

two stopping times, τ1 and τ2(p). The stopping time τ1 denotes the first time since t = 0 that

jump occurs for a Poisson process with arrival rate λ per unit of time. The stopping time

τ2(p) denotes the first time that ||p̄(t, p)||2 > ȳ. Thus τ(p) is the first time a price change

occurs for a firm that starts with price gap p at time zero. The stopped process p̄(τ(0), p) is

the vector of price gaps at the time of price change for such a firm.

We can write the impulse response function as:

P(t, δ;σ, λ, ȳ) = Θ(δ;σ, λ, ȳ) +

∫ t

0

θ(δ, s;σ, λ, ȳ) ds , (15)

where Θ(δ) gives the impact effect, the contribution of the monetary shock δ to the aggregate

price level on impact, i.e. at the time of the monetary shock. The integral of the θ’s gives the

remaining effect of the monetary shock in the aggregate price level up to time t, i.e. θ(δ, s)ds

is the contribution to the increase in the average price level in the interval of times (s, s+ds)

from a monetary shock of size δ. Instead the functions θ and Θ are easily defined in terms

of the density g, the process {p̄} and the stopping times τ :

Θ(δ;σ, λ, ȳ) ≡
∫
||p(0)−ιδ||≥ȳ

(
δ −

∑n
j=0 pj(0)

n

)
g

(
p(0);n,

λ

σ2
, ȳ

)
dp1(0) · · · dpn(0)

and θ(δ, t;σ, λ, ȳ) is the density, i.e. the derivative with respect to t of the following expression:

∫
||p(0)−ιδ||<ȳ

E

[
−
∑n

j=0 p̄j (τ(p), p)

n
1{τ(p)≤t}

∣∣∣ p = p(0)− ιδ

]
g

(
p(0);n,

λ

σ2
, ȳ

)
dp1(0) · · · dpn(0)

where ι is a vector of n ones. This expression takes each firm that has not adjusted price on

impact, i.e. those with p(0) satisfying ||p(0)− ιδ|| < ȳ, weight them by the relevant density

g, displace their initial price gap by the monetary shock, i.e. sets p = p(0) − ιδ, and then

looks a the (negative) of the average price gap at the time of the first price adjustment, τ(p),

provided that the price adjustment has happened before or at time t. We make a few remarks

about this expression. First, price changes equal the negative of the price gaps because price

gaps are defined as prices minus the ideal price. Second, we define θ as a density because,

strictly speaking, there is no effect on the price level due to price changes at exactly time t,

since in continuous time there is a zero mass of firms adjusting at any given time. Third, we

can disregard the effect of any subsequent adjustment because each of them has an expected
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Figure 5: CPI response to a monetary shock of size δ = 1%
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The figures represent an economy with Na = 1.0 and std(∆pi) = 0.10.
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zero contribution to the average price level. Fourth, the impulse response is based on the

steady-state decision rules, i.e. adjusting only when y ≥ ȳ even after an aggregate shock

occurs. This approximation is justified by Proposition 7 in Alvarez and Lippi (2013) which

shows that disregarding the general equilibrium feedbacks has a second order impact on the

results.

Given the results in Proposition 3 -Proposition 4 we can parametrize our model either

in terms of (n, λ, σ2, ψ/B) or instead parametrize it, for each n, in terms of the implied

observable statistics (Na, Std[∆pi], `). These propositions show that this mapping is indeed

one-to-one and onto. We refer to ` as an “observable” statistic, because the have shown that

the “shape” of the distribution of price changes depends only on it.

Proposition 6 Fix an economy whose firms produce n products and with steady state statis-

tics (Na, Std[∆pi], `). The cumulative proportional response of the aggregate price level t ≥ 0

periods after a once and for all proportional monetary shock of size δ can be obtained from

the one of an economy with one price change per period and with unitary standard deviation

of price changes as follows:

Pn,` (t , δ ; Na , Std[∆pi]) = Std[∆pi] Pn,`
(
tNa ,

δ

Std[∆pi]
; 1 , 1

)
. (16)

This proposition extends the result of Proposition 8 in Alvarez and Lippi (2013) to the

case of ` ≡ λ/Na > 0.29 The proposition establishes that the shape of the impulse response

is completely determined by 2 parameters: n and `. Economies sharing these parameters but

differing in terms of Na or Std[∆pi] are immediately analyzed by rescaling the values of the

horizontal and/or vertical axis. In particular, a higher frequency of price adjustments will

imply that the economy “travels faster” along the impulse response function (this is the sense

of the rescaling the horizontal axis). Instead, the effect of a larger dispersion of price changes

is seen by rescaling the monetary shock δ by Std[∆pi] and by a proportional scaling of the

vertical axis. A further simplification to the last result is given by next corollary, showing

that for small values of the monetary shocks one can overlook the scaling by Std[∆pi] so that,

for a given n and ` determining the shape, the most important parameter is the frequency

of price changes Na:

Corollary 1 For small monetary shocks δ > 0, the impulse response is independent of

29The proof in Alvarez and Lippi (2013) is constructive in nature, exploiting results from applied math on
the characterization of hitting times for BM in hyper-spheres, which is not longer valid for λ > 0. Here we
use a different strategy which relies on limits of discrete-time, discrete state approximations.
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Std[∆pi]. Differentiating equation (16) gives:

Pn,` (t , δ ; Na , Std[∆pi] ) = δ
∂

∂δ
Pn,` (tNa , 0 ; 1 , 1 ) + o(δ)

for all t > 0 and, since f(ȳ) = 0, then the initial jump in prices can be neglected, i.e.:

Pn,` (0 , δ ; Na , Std[∆pi] ) ≡ Θ = o(δ) .

We conclude the section by noting another implication of Proposition 6: the half life of

a small monetary shock, relative to the mean frequency of adjustment Na, depends only on

n and `. To see this define the half life of a monetary shock of size δ as the (smallest) time

T̂1/2 which solves:
δ

2
= Pn,`

(
T̂1/2 , δ ; Na , Std[∆pi]

)
(17)

Using the time scaling property we obtain that: δ
2

= Pn,`
(
T̂1/2Na , δ ; 1 , Std[∆pi]

)
. Next

define T1/2 as the normalized half-time, i.e the half-life relative to the mean time between

price adjustments: T1/2 ≡ T̂1/2Na, we immediately see that the normalized half life does

not depend on Na. Finally for small monetary shocks we have the simpler expression: 1
2

=
∂
∂δ
Pn,`

(
T1/2 , 0 ; 1 , 1

)
which depends exclusively on n and `, so in particular it does not

depend on δ nor on Std[∆pi].

4.2 The cumulated output effect of a monetary shock

We provide an analytical characterization of a summary measure for the effect of monetary

shocks. The summary measure is the area under the impulse response for output, i.e. the

cumulative sum of the output above the steady-state level after a monetary shock of size

δ > 0. We denote the cumulated output effect as:

Mn,`(δ) = (1/ε)

∫ ∞
0

[δ − Pn,`(δ, t)] dt (18)

where 1/ε is the intertemporal elasticity of consumption, and where Pn,`(δ, t) is the cumulative

effect of monetary shock δ on the (log) of the price level after t periods (for notation simplicity

we omit the 2 scaling parameters from the Pn,` function). We consider here the case of small

shocks δ, a realistic standard in this literature, by taking the first order approximation to

equation (18), so we considerMn,`(δ) ≈M′
n,`(0)δ.30 As a consequence of our characterization

30For sufficiently large shocks, given the fixed cost of changing prices, the model displays a substantial
price flexibility.
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in Proposition 6, the derivative M′
n,`(0) is the product of 1/(εNa) times a function that

depends on n and ` only. The scaling for Na is quite intuitive: the effect of monetary

policy is inversely proportional to price flexibility. Likewise the scaling by 1/ε reflects the

intertemporal elasticity of consumption. The next result links the scaled effect of monetary

policy with the kurtosis of the price changes.

Proposition 7 Fix an economy whose firms produce n > 1 products and with steady-state

statistics (Na, Std[∆pi], `) and kurtosis of price changes Kurtn,` (∆pi). Then:

Mn,` (δ;Na, Std[∆pi]) = δ M′
n,` (0;Na, 1) + o(δ) =

δ

εNa

Kurtn,` (∆pi)

6
+ o(δ)

This proposition is quite useful to explain what produces the different results that are

found in the literature on the real effects of monetary policy. The proposition illustrates how

it is possible for two models sharing similar features, e.g. calibrated to the same observables

Na, Std(∆pi) and sharing the same preference specification (substitution elasticity), to pro-

duce different predictions about the output effect: what is needed is that the model predicts

a different kurtosis of price changes.

Recall from Proposition 4 that the shape of the size distribution of price changes, and

hence kurtosis, depends only on n and `. For a fixed n, kurtosis is increasing in `. Indeed,

as ` goes to 1 then kurtosis goes to 6, and hence we obtain Mn,`(δ) ∼= δ/(εNa), which is the

result produced by the Calvo pricing model. On the other extreme, as ` = 0 we have that

kurtosis equals 3n/(n+ 2). This implies that, for instance, in the Golosov and Lucas case of

n = 1, the impact of monetary policy is 1/6 of Calvo. Also, keeping ` = 0 and varying n the

effect goes from 1/6 to 1/2 of Calvo, as n diverges towards infinity. Indeed in the case of ` = 0

and n = ∞ the model becomes Taylor’s staggered price model or, equivalently, Reis (2006)

model. The model also illustrates that the assumption of non-gaussian shocks in Midrigan

(2011) is quite crucial to obtain real effects that are closer to Calvo than to Golosov-Lucas.

What is needed for the effects to be large is a large Kurtosis, which Midrigan obtains by

assuming a process for the shocks hitting the firms costs that are fat-tailed.

Figure 6 offers a richer systematic comparison of the real effects of monetary shocks as n

and ` vary: the vertical axis plots the real output effect produced by a small monetary shock

relative to the effect produced by a Calvo model where ` = 1. Four curves are plotted in the

figure, corresponding to n = 1, 2, 10,∞. It appears that the model behavior for n = 2 remains

quite close to the case where n = 1, as was also seen from the analysis of the distribution

of price changes. Instead, the model behavior for n = 10 is quite close to that of a model

where n = ∞. This is useful because the latter is quite tractable analytically, as discussed

below. Figure 6 shows that at any level of ` the real output effect are smallest for n = 1. As
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Figure 6: Cumulated output effect relative to Calvo pricing: Kurtn,`(∆pi)
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explained in Alvarez and Lippi (2013) a larger number of goods dampens the selection effect

of monetary policy increasing the real output consequences of a monetary shock. Indeed at

any level of ` the effect is increasing in n. As mentioned, the figure shows that fixing n the

output effect is increasing in `. In the limit, as ` → 1 the economy converges to a Calvo

model where the real effects are largest and independent of n.

It is interesting to notice that the curves plotted in the figure are convex. In particular,

some analysis (see the next subsection) reveals that the slope of the curve as `→ 1 diverges

to +∞ for any level of n. The economic implication of this property is that a small deviation

from Calvo pricing, i.e. a fraction of adjustment ` that is slightly below 1 is going to give

rise to a large deviation from the real effects predicted by the Calvo pricing.

4.3 The output effect in two limiting cases: n = 1 and n =∞.

We conclude by discussing two limiting cases for which a tractable closed form expression

can be derived, namely the n = 1 case and the n→∞ case. These special cases bracket the

possible range of output effects that are achievable by our model. For each case we derive

the implications for the cumulated output effect while considering the full range of values for

` ∈ (0, 1) and keeping the frequency and variance of price changes constant.
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The expression for these effects are given by (see Appendix G for a derivation)

M′(0) =


1

εNa
e2
√

2φ+1

(e
√

2φ−1)
2

(
e
√

2φ+e−
√

2φ−2(1+φ)

e
√

2φ+e−
√

2φ−2

)
where ` = e

√
2φ+e−

√
2φ−2

e
√

2φ+e−
√

2φ and n = 1

1
εNa

(
1−(1+φ)e−φ

(1−e−φ)
2

)
where ` = 1− e−φ and n→∞

where different values of φ map monotonically into the fraction of free adjustments ` as shown

in the display. We find the n → ∞ case interesting because of its tractability and because,

as shown in Figure 6, provides a close benchmark for the cases where n is high but not huge

(e.g. n ∼= 10).

5 Concluding remarks

The paper offered new evidence on price setting behavior using the micro data underlying

the French CPI. The patterns reveal that, after correcting for time invariant cross section

heterogeneity and measurement error, the size distribution of price changes in France has a

shape in between the Normal and the Laplace distribution. In words, it displays more small

as well as more large price changes than a Normal distribution. Similar patterns, although

perhaps closer to the Normal, appear in the US data.

The paper developed a theoretical model that is able to qualitatively reproduce these

cross sectional patterns. The model can be calibrated to the data by matching 4 moments,

all of which can be disciplined by empirical observations on: the frequency, scale and kurtosis

of price changes, as well as a measure of the costs of price adjustment. The model provides

an analytical characterization of the propagation of the monetary shocks and illustrates how

the propagation depends on the fundamental parameters. We see this as progress because

previous contributions rely on numerical solutions which are less apt in identifying the key

causes of the effects, as in e.g. Caballero and Engel (2007); Golosov and Lucas (2007); Dotsey,

King, and Wolman (2008); Midrigan (2011). Our analytical model nests several classic models

of price setting, as Taylor (1980); Calvo (1983); Reis (2006); Golosov and Lucas (2007);

Midrigan (2011); Alvarez and Lippi (2013), and allows for an immediate comparison showing

what empirical observations are useful to select among them. In particular, a somewhat

surprising result is that the real cumulated output effect of a monetary shock is proportional

to the kurtosis of the size-distribution of price changes. The model thus suggests that a

precise measurement of Kurtosis is key to answer the question on the size of the real effects

of monetary policy, and explains the large differences predicted by the previous model largely

in terms of their different predictions for kurtosis. For instance if the Kurtosis of price changes
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is 6, as under a Laplace distribution of price changes, the real effects of monetary policy are

the ones produced by a Calvo model; if the Kurtosis is 3, as under a Normal distribution of

price changes, the real effects of monetary policy are the ones produced by a Taylor model,

which are 1/2 of the ones in Calvo. Our empirical evidence for France suggested that a

kurtosis that is between 4 and 5, which implies real effects of monetary policy that are 4

times larger than in the classic menu cost model of Golosov and Lucas (2007), but between

20 to 30% smaller than predicted by the widely used Calvo’s price setting mechanism. For the

US, where the size distribution of price changes appears close to a Normal (once measurement

error is accounted for), the effect seems to be about 50% smaller than in the Calvo model.
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A Proofs

Proof. (of Proposition 1)
Let p(0) = 0. Define x(t) ≡ ||p(t)||2 − nσ2 t for t ≥ 0. Using Ito’s lemma we can verify

that the drift of ||p||2 is nσ2, and hence x(t) is a Martingale. By the optional sampling
theorem x (τ), the process stopped at τ , is also a martingale. Then

E
[
x(τ)

∣∣∣ p(0)
]

= E
[
||p(τ)||2

∣∣∣ p(0)
]
− nσ2E

[
τ
∣∣∣ p(0)

]
= x(0) = 0

and since
Na = 1/E

[
τ
∣∣∣ p(0)

]
and V ar(∆pi) = E

[
||p(τ)||2

∣∣∣ p(0)
]
/n

we obtain the desired result. �

Proof. (of Lemma 1 ) First, note that since two value functions different in a constant,
then all their derivatives are identical. Hence, if the one for the discount rate and arrival
rate of free adjustment (r + λ, 0) satisfies value matching and smooth pasting, so does the
one for discount rate and arrival rate of free adjustment (r, λ, 0), for the same boundary.
Second, consider the range of inaction, subtracting the value function for the problem with
parameters (r + λ, 0) from the one with parameters (r, λ), and using that all the derivatives
are identical, one verifies that if the Bellman equations holds for the problem with (r+λ, 0),
so it does for the problem with (r, λ). �

Proof. (of Proposition 2 ) The first part is straightforward given Lemma 1 and Proposition 3
in Alvarez and Lippi (2013). The second part is derived from the following implicit expression
determining ȳ (see the proof of Proposition 3 in Alvarez Lippi (2013) for a derivation):

ψ =
B

r + λ
ȳ

[
1−

2σ2(n+2)
r+λ

ȳ + ȳ2 + ȳ2
∑∞

i=1 κi (r + λ)i ȳi

2σ2(n+2)
r+λ

ȳ + 2ȳ2 + ȳ2
∑∞

i=1 κi (i+ 2) (r + λ)i ȳi

]
(19)

where κi = (r + λ)−i
∏i

s=1
1

σ2(s+2)(n+2s+2)
. So we can write this expression as:

ψ =
B

r + λ
ȳ
[
1− ξ(σ2, r + λ, n, ȳ)

]
where ξ(σ2, r + λ, n, ȳ) is given by:

ξ(σ2, r + λ, n, ȳ) ≡
2σ2(n+2)
r+λ

ȳ + ȳ2 + ȳ2
∑∞

i=1 κi (r + λ)i ȳi

2σ2(n+2)
r+λ

ȳ + 2ȳ2 + ȳ2
∑∞

i=1 κi (i+ 2) (r + λ)i ȳi

Since ȳ →∞ as ψ →∞ then we can define the limit:

lim
ψ→∞

ψ

ȳ
=

B

r + λ

[
1− lim

ȳ→∞
ξ(σ2, r + λ, n, ȳ)

]
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Simple analysis can be used to show that limȳ→∞ ξ(σ
2, r + λ, n, ȳ) = 0 which gives the

expression in the proposition (see the Online Appendix F for a detailed derivation). �

Proof. (of Proposition 3 ).
To characterize Na we write the Kolmogorov backward equation for the expected time

between adjustments T (y) which solves (see Appendix E for a discussion of the solution to
this equation): λT (y) = 1 + n σ2 T ′(y) + 2 y σ2 T ′′(y) for y ∈ (0, ȳ) and T (ȳ) = 0. Then
the expected number of adjustments is given by Na = 1/T (0), subject to T (0) <∞.

We guess that the solution of the ODE equation (3) has a power series representation:

T (y) =
∞∑
i=0

αi y
i , for y ∈ [0, ȳ] . (20)

and then obtain the following conditions on its coefficients {αi}:

α1 =
λα0 − 1

nσ2
, αi+1 =

λ

(i+ 1) σ2 (n+ 2i)
αi , for i ≥ 1 . (21)

and where 0 < α0 < 1/λ is chosen to that 0 ≥ αi for i ≥ 1, limi→∞
αi+1

αi
= 0 and 0 =∑∞

i=0 αi ȳ
i. Moreover, T (0) = α0 is an increasing function of ȳ since α0 solves:

0 = α0 +
(α0 − 1/λ)

n

(
ȳλ

σ2

)[
1 +

∞∑
i=1

(
i∏

k=1

1

(k + 1) (n+ 2k)

)(
ȳλ

σ2

)i]
or

α0

{
1 +

1

n

(
ȳλ

σ2

)[
1 +

∞∑
i=1

(
i∏

k=1

1

(k + 1) (n+ 2k)

)(
ȳλ

σ2

)i]}

=
1

λn

(
ȳλ

σ2

)[
1 +

∞∑
i=1

(
i∏

k=1

1

(k + 1) (n+ 2k)

)(
ȳλ

σ2

)i]
.

Solving for α0 gives the desired expression. The second order approximation follows from
differentiating this expression twice. �

We first state a lemma about the density f(y).

Lemma 2 Let f(y;n, λ
σ2 , ȳ) be the density of y ∈ [0, ȳ] in equation (5) satisfying the boundary

conditions. For any k > 0

f

(
y;n,

λ

σ2
, ȳ

)
=

1

k
f

(
y

k
;n,

λk

σ2
,
ȳ

k

)
Proof. (of Lemma 2 ). Consider the function f(y;n, λ

σ2 , ȳ) solving equation (5) (and
boundary conditions) for given n, λ

σ2 , ȳ. Without loss of generality set σ′ = σ and consider
ȳ′ = ȳ/k and λ′ = λk. Notice that by setting C ′1 = C1k and C ′2 = C2k we verify that the
boundary conditions hold (because C ′1/C

′
2 = C1/C2) and that (5) holds (which is readily

verified by a change of variable). �
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Proof. (of Proposition 4) Let w (∆pi;n, `, Std(∆pi)) be the density function in equation (7).
Next we verify equation (8). From the first term in equation (7) notice that

(1− `)ω (∆pi; ȳ) = s (1− `)ω
(
s∆pi; s

2ȳ
)

where the first equality uses the homogeneity of degree -1 of ω(∆pi; y) (see equation (6)).
From the second term in equation (7) for n ≥ 2

`

∫ ȳ

0

ω(∆pi; y)f(y;n,
λ

σ2
, ȳ)dy = `

∫ ȳ

0

s ω
(
s∆pi; s

2y
)
s2 f

(
ys2;n,

λ

s2σ2
, ȳs2

)
dy

where the first equality follows from Lemma 2 for k = 1/s2, and the homogeneity of degree
-1 of ω(·, ·). Further we note

`

∫ ȳ

0

s ω
(
s∆pi; s

2y
)
s2 f

(
ys2;n,

λ

s2σ2
, ȳs2

)
dy = s3`

∫ ȳ

0

ω
(
s∆pi; s

2y
)
f

(
ys2;n,

λ′

σ′2
, ȳ′
)
dy

where we note that λ′ȳ′

σ′2
= λȳ

σ2 , so that ` is the same across the two economies. Using the
change of variable z = y s2

s3`

∫ ȳ

0

ω
(
s∆pi; s

2y
)
f

(
ys2;n,

λ′

σ′2
, ȳ′
)
dy = s `

∫ ȳ′

0

ω (s∆pi; z) f

(
z;n,

λ′

σ′2
, ȳ′
)
dz .

where ȳ′ = s2ȳ, which completes the verification of equation (8). �

Proof. (of Proposition 5)
To obtain expression in equation (9) we use the characterization of ` = Ln

(
λ ȳ
nσ2

)
of

Proposition 3, it is equivalent to fix a value of φ ≡ λ ȳ
nσ2 . We let the optimal decision rule be

ȳ (ψ/B, σ2, r + λ, n) so that we have:

ȳ

(
ψ

B
, σ2, r + λ, n

)
λ

nσ2
= φ

Moreover we have that to be consistent with V ar(∆pi) and Na we have, using Proposition 1
and ` = L(φ, n):

Na = λ/L(φ, n) and
λ

σ2
= L(φ, n)/V ar(∆pi) .

Thus, after taking r ↓ 0 and using the expression above we can write:

ȳ

(
ψ

B
, NaV ar(∆pi) , L(φ, n)Na , n

)
L(φ, n)

nV ar(∆pi)
= φ

Fixing n and totally differentiating this expression with respect to (ψ/B,Na, V ar(∆pi)), and
denoting by ηψ, ησ2 , ηλ the elasticities of ȳ with respect to ψ/B, σ2, λ we have:

ηψ ψ̂ + ησ2 (N̂a + V̂ ar(∆pi)) + ηλ N̂a = V̂ ar(∆pi)
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where a hat denotes a proportional change. Using Proposition 3-(iv) in Alvarez and Lippi
(2013) and Lemma 1 we have that these elasticities are related by:

ηλ = 2ηψ − 1 and ησ2 = 1− ηψ .

Thus
ηψ ψ̂ + (1− ηψ) (N̂a + V̂ ar(∆pi)) + (2ηψ − 1) N̂a = V̂ ar(∆pi) .

Rearranging:

ηψ ψ̂ + (1− ηψ + 2ηψ − 1) N̂a + (1− ηψ − 1)V̂ ar(∆pi) = 0 ,

and canceling terms:
ηψ ψ̂ + ηψ N̂a − ηψV̂ ar(∆pi) = 0 .

Dividing by ηψ we obtain that ψ̂ = V̂ ar(∆pi)− N̂a. Additionally, since ȳ is a function of B,
then we can write ψ/n = B (V ar(∆pi)/Na) Ψ(n, φ).

That ψ →∞ as `→ 1 follows because L(φ, n)→ 1 as φ→∞ and because, by Proposition
3-(i) in Alvarez and Lippi (2013), ȳ is increasing in ψ and has range and domain [0,∞).

For λ = 0 and Na > 0 we obtain:

ψ

n
= B

V ar (∆p)

Na

n

2 (n+ 2)
.

This follows from using the square root approximation of ȳ for small ψ (λ+r)2, the expression
for Na = nσ2/ȳ and Proposition 1, i.e. Na V ar(∆pi) = σ2.

To obtain the expression for Ψ(n, 0) we use Proposition 6 in Alvarez and Lippi (2013)
where it is shown that for λ = 0 then Kur (∆pi) = 3n/(n+ 2).

Finally, for n =∞, we can consider the value function per product, obtaining

v = min
T
B

∫ T

0

σ2 t e−(λ+r)t dt+

∫ T

0

λ v e−(λ+r) dt+ e−(r+λ)T (ψ̄ + v)

where ψ̄ = limn→∞ ψ/n. The first order condition for T gives:(
T − (r + λ)

ψ̄

Bσ2

)(
1− e−(λ+r)T

)
= (r + λ)

∫ T

0

t e−(λ+r)t dt+ e−(r+λ)T (r + λ)
ψ̄

Bσ2

canceling terms, solving the integral, and taking r ↓ 0 gives λT+e−λT−1 = λ2 ψ̄
Bσ2 , which can

we written as: ψ̄ = Bσ2

λ2

[
e−λT − 1 + λT

]
. From the dynamics of the price gaps as n → ∞

we have that ` = λ
Na

= 1− e−λT , which combined with the fundamental lemma for price gaps

σ2 = V ar (∆pi) Na. Using this in the expression for ψ̄ we obtain:

ψ̄ = B
V ar (∆pi)Na

λ2
[−log (1− `)− `] = B

V ar (∆pi)

Na

[
−log (1− `)− `

`2

]
.

�
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Proof. (of Proposition 6) The proof has three parts. First we introduce a discrete time,
discrete state version of the model, second we show the scaling of the time with Na , and
finally the homogeneity of degree one in terms of Std[∆pi] and δ.

Discrete Time Formulation. We start with discrete time version of the process for price
gaps, with length of the time period ∆, which makes some of the arguments more accessible.
Let N be a

N(t+ ∆) =

{
N(t) with probability (1− λ∆)

N(t) + 1 with probability λ∆
(22)

Thus, as ∆ ↓ 0 this process converges to a continuous time Poisson counter with instantaneous
intensity rate λ per unit of time. Let p̄i follow n drift-less random walks

p̄i(t+ ∆, p) =

{
p̄i(t, p) + σ

√
∆ with probability 1/2

p̄i(t, p) − σ
√

∆ with probability 1/2
(23)

where the initial condition satisfies:

p̄i(0) = pi for i = 1, .., n ,

and where the n random walks are independent of each other and of the Poisson counter. As
∆ ↓ 0 the process for p̄ converges to a Brownian motion whose changes have variance σ2 per
unit of time. We define the stopping time of the first price adjustment τ(p), conditional on
the starting at price gap vector p at time zero, as:

τ1 ≡ min {t = 0,∆, 2∆, ... : N(j∆ + ∆)−N(j∆) = 1} ,

τ2(p) ≡ min

{
t = 0,∆, 2∆, ... :

n∑
i=1

(p̄i(j∆ + ∆, p))2 ≥ ȳ

}
and

τ(p) ≡ min {τ1 , τ2(p)} .

The function g is the density for the continuous time limit, i.e. the case where ∆ ↓ 0. For
small ∆, we can approximate the distribution of the fraction of firms with price gap vector p
as the product of the density g and a correction to convert it into a probability, i.e a fraction.
This gives:

g
(
p1, ..., p;n, λ/σ

2, ȳ
) (

σ
√

∆
)n

where the last term uses that in each dimension price gaps vary discretely in steps of size
σ
√

∆. We can write the discrete time impulse response function as:

P(t, δ;σ, λ, ȳ,∆) = Θ(δ;σ, λ, ȳ,∆) +
t∑

s=∆

θ(δ, s;σ, λ, ȳ, ,∆) ∆ ,

In this expression we can, without loss of generality, restrict t to be an integer multiple of
∆. We have divided the expression for θ by ∆, and hence multiplied its contribution back
by ∆ in P , so that it has the interpretation of the contribution per unit of time to the IRF
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of price changes at time t, i.e. it has the units of a density. Moreover, in this manner the
term has a non-zero limit, and the expression in P converges to an integral. Thus we get the
P = limP(∆) as ∆ ↓ ∞. The functions θ and Θ are given by:

Θ(δ;σ, λ, ȳ,∆) ≡
∑

||p(0)−ιδ||≥ȳ

(
δ −

∑n
j=0 pj(0)

n

)
g

(
p(0);n,

λ

σ2
, ȳ

) (
σ
√

∆
)n

, and

θ(δ, t;σ, λ, ȳ,∆) ≡

− 1

∆

∑
||p(0)−ιδ||<ȳ

E

[∑n
j=0 p̄j(t, p)

n
1{τ(p)=t}

∣∣∣ p = p(0)− ιδ

]
g

(
p(0);n,

λ

σ2
, ȳ

) (
σ
√

∆
)n

Time scaling of the IRF with Na. For this (i) Note that if multiply the parameters σ2

and λ by a constant k > 0, leaving ȳ unaltered, then N ′a = k Na, where primes are used
to denote the values that correspond to the scaled parameters. This follows directly from
the expression we derive for Na = 1/T (0) in Proposition 3. (ii) By Proposition 4 with these
changes the distribution of price changes implied by (σ2, λ, ȳ) is exactly the same as the one
implied by (kσ2, kλ, ȳ). (iii) we change notation and write (σ2, λ, ȳ) instead of (λ, σ2, ψ/B)
and omit n. We establish that

Pn
(
t

k
, δ; kσ2, kλ, ȳ

)
= Pn

(
t, δ;σ2, λ, ȳ

)
We will do so by establishing this proposition for the discrete time version of the IRF. Yet
the result is immediate, since λ and σ2 are the only two parameters which are rates per unit
of time (the other parameters are n and ȳ), so by multiplying them by k we just scale time.
The details can be found in the discrete time formulation, whose notation we develop below.
We show that

P(t, δ; kσ2, kλ, ȳ,∆/k) = P(t/k, δ;σ2, λ, ȳ,∆) (24)

We will do so by establishing this proposition for the discrete time version of the IRF. Let
∆′ = ∆ /k, σ′2 = σ2 k and λ′ = λk. Note that, by construction σ′

√
∆′ = σ

√
∆ and

λ′/(σ′)2 = λ/(σ)2. To establish this we first note that, for a given shock δ, Θ depends only
on n, ȳ, σ

√
∆, and λ/σ2. This is because the invariant density g and the scaling factor to

convert it into probabilities depends only on those parameters. Second we show that

t/k∑
s=∆/k

∆

k
θ

(
s, δ; kσ2, kλ, ȳ,

∆

k

)
=

t∑
s=∆

∆ θ (s, δ;σ, λ, ȳ,∆)
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This follows because for each s and p(0)

E

[∑n
j=0 p̄j (s, p)

n
1{τ(p)=s}

∣∣∣ p = p(0)− ιδ ; σ, λ,∆

]

= E

[∑n
j=0 p̄j

(
s
k
, p
)

n
1{τ(p)= s

k}
∣∣∣ p = p(0)− ιδ ; σ′, λ′,∆′

]

where we include the parameters (λ, σ2,∆) as argument of the expected values. This itself
follows because, using equation (22) and equation (23) then the processes for {p̄i} are the
same in the original time and in the time time scales by k since the probabilities of the
counter to go up λ′∆′ = λ∆ and the steps of the symmetric random walks σ′

√
∆′ = σ

√
∆

are the same in the original time and the time scaled by k. In particular we have that

p̄j

( s
k
, p;λ′, σ′2,∆′

)
≡ p̄j

(
s

k
, p; kλ, kσ2,

∆

k

)
= p̄j

(
s, p;λ, σ2,∆

)
= p̂

with exactly the same probabilities for each price gap p̂ ∈ R and each time s ≥ 0. Also, re-

peating the arguments used for Θ, we have g
(
p(0);n, λ

σ2 , ȳ
) (

σ
√

∆
)n

= g
(
p(0);n, λ

′

σ′2
, ȳ
) (

σ′
√

∆′
)n

.

Thus, since equation (24) holds for all ∆ > 0, taking limits

P
(
t

k
, δ; kσ2, kλ, ȳ

)
= lim

∆↓0
P
(
t

k
, δ; kσ2, kλ, ȳ,

∆

k

)
= lim

∆↓0
P
(
t, δ;σ2, λ, ȳ,∆

)
= P

(
t, δ;σ2, λ, ȳ

)
Scaling of the IRF in the monetary shock with Std[∆pi]. For this we use properties of
the invariant distribution f , which are then inherited by g. In particular, we will compare the
IRF with parameters (λ, σ2, ȳ) with one with parameters (λ′, σ′2, ȳ) where λ′ = λ, σ′2 = k σ2

and ȳ′ = k ȳ. With this choice we have N ′a = Na and thus ` = λ′/N ′a since λȳ/(nσ2) =
λ′ȳ′/(nσ′2) (see Proposition 3). Then by Proposition 1 we have that the standard deviation
of price changes scales up with k, i.e.: Std[∆pi]

′ =
√
k Std[∆pi]. The main idea is that the

invariant distribution corresponding to the ′ parameters is a radial expansion of the original,
so that

∫ y
0
f(x;λ, σ2, ȳ)dx =

∫ yk
0
f(x;λ′, σ′2, ȳ′)dx and thus f(y, λ, σ2, ȳ) = kf(yk, λ′, σ′2, ȳ′).

Indeed using Lemma 2 we have:

f

(
y;
λ

σ2
, ȳ

)
= k f

(
yk;

λ

kσ2
, kȳ

)
≡ k f

(
yk;

λ′

σ′2
, ȳ′
)
. (25)

Thus we have:

g

(
p1, ..., p;n,

λ

σ2
, ȳ

)
= f

(
p2

1 + · · ·+ p2
n;n,

λ

σ2
, ȳ

)
Γ (n/2)

2 πn/2 (p2
1 + · · ·+ p2

n)
(n−2)/2

=

= kf

(
k(p2

1 + · · ·+ p2
n);n,

λ′

σ′2
, ȳ′
)

Γ (n/2) k(n−1)/2

2πn/2 (k(p2
1 + · · ·+ p2

n))
(n−2)/2

= g

(√
k(p1, ..., pn);n,

λ′

σ′2
, ȳ′
)
k(n−2)/2 k
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Using this for the discrete time formulation we have:

g

(
p;n,

λ

σ2
, ȳ

)(
σ
√

∆
)n

= g

(√
k p;n,

λ′

σ′2
, ȳ′
)(

σ′
√

∆
)n
k(n−2)/2 k k−n/2

= g

(√
k p;n,

λ′

σ′2
, ȳ′
)(

σ′
√

∆
)n

Note that {||p(0)− ιδ|| ≥ ȳ} = {||
√
k p(0)− ι

√
k δ|| ≥

√
k ȳ} = {||

√
k p(0)− ιδ′|| ≥ ȳ′}. Also(

δ −
∑n

j=0 pj(0)

n

)
√
k =

(
δ′ −

∑n
j=0

√
k pj(0)

n

)

Thus

√
k

∑
||p(0)−ιδ||≥ȳ

(
δ −

∑n
j=0 pj(0)

n

)
g

(
p(0);n,

λ

σ2
, ȳ

) (
σ
√

∆
)n

=
∑

||
√
kp(0)−ιδ′||≥ȳ′

(
δ′ −

∑n
j=0

√
kpj(0)

n

)
g

(√
k p(0);n,

λ′

σ′2
, ȳ′
) (

σ′
√

∆
)n

Using the definition of Θ(·,∆):

√
kΘ(δ;σ, λ, ȳ,∆) = Θ

(√
k δ; kσ2, λ, kȳ,∆

)
≡ Θ

(
δ′;σ′2, λ′, ȳ′∆

)
.

Since this holds for all ∆, by taking limits as ∆ ↓ 0, we have shown the desired result for
Θ. The result for θ follows the steps for g. We set ∆′ = ∆ and note that for all p(0) ∈ Rn,
scaling factor k > 0 and time horizon s > 0:

√
k E

[∑n
j=0 p̄j (s, p)

n
1{τ(p)=s}

∣∣∣ p = p(0)− ιδ ; σ, λ,∆

]

= E

[∑n
j=0 p̄j (s, p)

n
1{τ(p)=s}

∣∣∣ p =
√
k p(0)− ιδ′ ; σ′, λ′,∆

]
.

This follows because λ′ = λ and σ′
√

∆′ =
√
k σ
√

∆, thus the each p ∈ Rn the paths√
k p̄(s, p;σ, λ) = p̄(s,

√
kp;σ′, λ′) occur with the same probabilities. �
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B Related literature on stochastic menu costs

Models with random cost of adjustment have been introduced by Caballero and Engel (1999)
and Dotsey, King, and Wolman (1999). Caballero and Engel (1999) study and solve numer-
ically a model of investment with random fixed cost of adjustement. Two outcomes are (i)
that the decision rule has the form of a “generalized (S,s) rule”, thus time-varying inaction
thresholds, and (ii) that higher moments of the cross-sectional distribution of firm disequilib-
ria can predict aggregate investment. Dotsey, King, and Wolman (1999) introduce random
menu cost in a price-setting context, to develop a tractable general equilibrium model of
state-dependent pricing. While at the individual level, adjustment is discrete, the introduc-
tion of random menu costs makes the fraction of adjusting firms become a relevant state
variable which reacts smoothly to shocks. The model can then be solved with standard lin-
earization techniques, using the property that it is sufficient to keep track of vintages of firms
each characterized by the same reset dates.31 Dotsey, King, and Wolman (1999) and Dotsey
and King (2005) use the model to investigate how the response to monetary policy shocks
under state–dependent pricing differ from that time–dependent pricing.

Recently, a series of papers have used random menu cost models with the explicit aim
of fitting of micro data on price changes.32 Dotsey, King, and Wolman (2008) follow up on
Dotsey, King, and Wolman (1999) by introducing idiosyncratic shocks and calibrating the
model using inter alia the distribution of micro economic price changes in the US. Caballero
and Engel (2007) apply the generalized hazard approach of Caballero and Engel (1999) to
price dynamics and illustrate how introducing random free opportunity of price changes alters
the response of the economy to a monetary shock. Midrigan (2011) show that economies
of scales in price setting for a multiproduct firm, and random menu costs, are alternative
mecanisms that generate small price changes at the individual level. He concludes that under
either economies of scales in price setting, or random menu costs, monetary policy have more
persistent effect than in the Golosov and Lucas (2007) menu cost model. Burstein and Hellwig
(2006) reach the same conclusion when adding random menu cost in a model with pricing
complementarity. Nakamura and Steinsson (2010) also examine, in a multisector menu cost
model, to which extend monetary non-neutrality is increased in a variant of the model in
which the menu cost can randomly receive a low or high value. Woodford (2009) develops
a model of price-setting under information capacity constraint. Optimal policy gives rise to
randomisation of the price review decision. Costain and Nakov (2011, 2012) develop a model
in which the probability of adjustment is a function of the value of adjustment for firms.
Both in Woodford (2009) and Costain and Nakov (2011, 2012), the model is calibrated using
moments of the distribution of price changes from micro data, and the obtained decision
rule is observationally equivalent to that derived under a random menu cost model. Overall,
two common features of this series of recent models is that they are solved using numerical
techniques, and they obtain that under random menu cost the degree of monetary policy
non-neutrality is to some extent larger than in the fixed menu cost model of Golosov and

31The model is set-up under the assumptions of no idiosyncratic shocks and i.i.d. random cost, so all firms
that reset price set the same price. To have a finite number of vintages, the model requires positive steady
state inflation.

32Previous to the recent research, Willis (2000) had estimated a partial equilibrium model stochastic menu
cost model on magazine data
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Lucas (2007).
The present paper is related to this recent literature. A distinctive feature is that results

are derived analytically, and the way the impact of monetary policy shock depends on “deep”
parameters is studied in a systematic way. The model with random menu cost is also extended
to incorporate economies of scales in price adjustment.

C Data Appendix

C.1 Details on data treatment and further sectoral statistics

Some additional features of our data treatment are as follows.
Dealing with product replacement. The dataset contains flags for product replacement
as well as imputed prices which we use as follows to design our dataset. First, we discarded
observations with item substitution, as item substitution may result into spurious values for
price changes, if quality adjustment is not accounted for or imperfectly measured (Berardi,
Gautier, and Le Bihan (2013) investigate the inclusion of information on item substitutions).
Second, we replaced any “imputed price” in the dataset, by the previous price of the same
item in the same outlet present in the data, i.e. a carry–forward procedure. In the source
dataset imputed prices are introduced by the INSEE when prices are missing.33 Imputed
prices are constructed either using the carry–forward procedure, or imputing the average
price change of similar goods observed in the close area. The latter procedure makes sense
from the aggregate CPI point of view but is obviously ill-suited for characterizing price change
at the individual level. We used the flag for imputed prices to locate and replace them by
carry-forward prices. This procedure amounts to discarding imputed prices when computing
the distribution of (non-zero) price changes.
Computing price changes and dealing with outliers. Price changes were computed as
100 times the log-difference in prices per unit. We compute a consistent price per unit by,
when relevant, dividing prices by the indicator of quantity sold (package size). We removed
outliers, which in our baseline analysis we define as price changes smaller in absolute value
than 0.1 percent, or larger in absolute value than ln(10/3). These thresholds are set as a
first crude ways to deal with measurement errors. Some robustness checks are presented in
Table 7.

The upper threshold for outliers is set with sales in mind, as we informally observe that
price rebates as large as 70% are sometime advertised in sales periods. Our threshold allows
for a price to decrease by up to 70% and subsequently return to its former level without
discarding the observation. Price changes larger than this threshold are discarded as being
outliers.34

Identifying sales. The flag for sale allows to identify sales. Two kinds of sales-promotion
discounts, that have a different status, exist in France: seasonal sales or temporary discounts.
Seasonal sales (‘soldes’) are subject to administrative restrictions: the time period (twice a
year) is decided by local authorities and price posting is subject to precise regulations. Tem-

33Prices may be missing because of stock-outs, closed outlet due e.g. to holidays or seasonality in product
availability, for instance.

34An example of outlier is the fee for parking in the street, which is free in some cities in summer.
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porary discounts are not subject to such restrictions but sales below cost are prohibited by
commercial law. By contrast, selling below cost is allowed in the case of seasonal sales.
On the sample period, seasonal sales are observed only in some specific categories of goods
(mainly clothes). The proportion of price quotes that are flagged as seasonal sales is 0.76%
and the proportion of temporary discounts amounts to 1.92%.

Some sectoral facts of price changes are as follows.
Main facts at sectoral level. The different sectors in the CPI have very different pricing
patterns, as well documented in recent research. The purpose of this appendix section is
to illustrate that the peakedness of the price change distribution is a fact observed in all
sectors. Table 6 documents pricing patterns fact using a breakdown 6 into broad economic
sectors.35 As previous research, we observe many sectoral specificities: prices change less
often and rarely decrease in services; the size of price changes is smaller in services; energy
prices change frequently and by small amounts; reflecting sales, the variance of price change is
huge in clothes. However, noticeably a large kurtosis is observed in all sectors, one exception
being clothes for which kurtosis (2.09) is lower than that of the Gaussian distribution. The
fraction of small price changes, using one fourth of mean absolute price change as a threshold,
ranges between 8% and 27% for all categories other than energy. Using a sector and type of
good partition, further documents that this fact is consistently observed at higher levels of
disaggregation.

Table 6: Results by type of goods
Good type Freq Avg |∆p| Std |∆p| Kurt (∆p) Frac25
Food 19.38 9.18 12.31 10.78 29.26
Durable goods 15.16 14.73 13.57 5.99 18.07
Clothing 11.00 42.48 24.71 2.16 10.21
Other manufactured goods 11.43 10.39 14.34 9.36 34.02
Energy 77.00 3.79 3.10 6.90 12.13
Services 6.53 7.80 10.29 17.58 21.29

Source is INSEE, monthly price records from French CPI, data from 2003:4 to 2011:4. Coverage
is aroud 65% of CPI weight since rents, and prices of fresh food and centrally collected items
(e.g. electricity, train and airplane tickets) are not included in the dataset. Freq. denotes monthly
frequency of price change in percent. Size of price change ∆p are the first-difference in the logarithm
of price per unit, expressed in percent. Avg is average, Std standard devation, Frac25 the share
of absolute price change that are inferior to 0.25 Avg[|∆p|], Kurt denotes Kurtosis. Observations
with imputed prices or quality change are discarded. Moments are computed aggregating all prices
changes using CPI weigths at the product level.

35The breakdown we use (food; durable goods; clothing & textile; other manufactured goods ; en-
ergy;services) is one we deem the most meaningful to capture price-setting idiosyncracies.
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Table 7: Robustness to trimming
Type of trimming Flag Freq. Avg(|∆p|) Std[|∆p|] Frac25 Kurt[∆pi] Kurt[z]
|∆pi| ≤ ln(2) 1 17.10 8.51 12.00 28.93 10.23 7.35
Exc. flagged sales 2 14.82 5.05 5.90 18.77 13.59 8.60
|∆pi| ≤ ln(10/3) 3 17.21 9.12 13.79 30.33 12.92 9.04
0.1/100 ≤ |∆pi| ≤ln(2) 4 16.98 8.59 12.03 28.48 10.14 7.21
0.5/100 ≤ |∆pi| ≤ ln(2) 5 16.56 8.84 12.12 27.06 9.84 6.86
0.1/100 ≤ |∆pi| ≤ln(10/3) & ex.sales 6 14.70 5.15 6.23 18.21 20.86 10.40
0.1/100 ≤ |∆p| ≤ln(10/3) 8 17.09 9.19 13.82 29.91 12.81 8.89
1/100 ≤ |∆pi| ≤ln(2) 11 15.27 9.66 12.44 22.46 8.94 6.33

(Table, continued) Moments of standardized price change

Type of trimming Flag Frac(< 0.25m) Frac(< 0.5m) Frac(> 2m) Frac(> 4m)
|∆pi| ≤ ln(2) 1 39.29 22.01 13.10 1.75
Exc. flagged sales 2 38.59 20.62 12.58 1.97
|∆pi| ≤ ln(10/3) 3 39.55 22.25 12.95 1.82
0.1/100 ≤ |∆pi| ≤ln(2) 4 39.10 21.90 13.07 1.72
0.5/100 ≤ |∆pi| ≤ ln(2) 5 38.36 20.91 12.85 1.61
0.1/100 ≤ |∆pi| ≤ln(10/3) & ex.sales 6 38.55 20.67 12.51 1.96
0.1/100 ≤ |∆p| ≤ln(10/3) 8 39.31 22.18 12.91 1.79
1/100 ≤ |∆pi| ≤ln(2) 11 35.61 17.74 12.09 1.29

Source is INSEE, monthly price records from French CPI, data from 2003:4 to 2011:4. Coverage is aroud 65%
of CPI weight since rents, and prices of fresh food and centrally collected items (e.g. electricity, train and
airplane tickets) are not included in the dataset. Freq. denotes monthly frequency of price change in percent.
Size of price change ∆p are the first-difference in the logarithm of price per unit, expressed in percent. Avg is
average, Std standard devation, Frac25 the share of absolute price change that are inferior to 0.25 Avg[|∆p|],
Kurt denotes Kurtosis. Kurt[z] denotes Kurtosis of the distribution of standardized price changes. Standardized
price changes are computed at the category of good * type of outlet level. Observations with imputed prices
or quality change are discarded. Moments are computed aggregating all prices changes using CPI weigths at
the product level. Each row describes a sub-sample constructed applying the filter described by the column
“type of trimming”.“Ex. sales” exclude observations flagged as sales by the INSEE data collectors. “ex. euro”
indicates the 12 month period (2001:7-2002:6)surrounding the euro cash change-over is discarded. Subsample
described by the last row, with flag code 8, is taken as a baseline in the tables of the paper.

C.2 Small price changes and measurement error

This appendix examines to what extent the arguments of Eichenbaum et al. (2012) apply to
our data and investigates the robustness of our findings to various criteria for trimming the
data. Measurement errors may arise for several reasons. Eichenbaum, Jaimovich, and Rebelo
(2008) and Eichenbaum et al. (2012) articulate two concerns about the small price change.
First they notice that in scanner data studies the price level of an item is typically computed
as the ratio of recorded weekly revenues to quantity sold. To the extent that there are
temporary or individual specific discounts (say coupons), this will generate spurious small
price changes.36 Moreover Eichenbaum et al. (2012) highlight a related problem for some

36 Notice that in principle CPI data are immune from this type of measurement error, as these data are
direct transaction prices observed by a field agent. Indeed, in the instance of a temporary discount, the
CPI dataset will record either no price change, or the large price change of observed during the discount, if
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Figure 7: Distribution of standardized Price Adjustments by group of goods

−5 0 5
0

0.2

0.4

0.6

0.8

1

 Distribution of dp sector: 
Food

−5 0 5
0

0.2

0.4

0.6

0.8

1

 Distribution of dp sector: 
Durable goods

−5 0 5
0

0.2

0.4

0.6

0.8

1

 Distribution of dp sector: 
Clothing, textile

−5 0 5
0

0.2

0.4

0.6

0.8

1

 Distribution of dp sector: 
Other manufactured goods

−5 0 5
0

0.2

0.4

0.6

0.8

1

 Distribution of dp sector: 
Energy

−5 0 5
0

0.2

0.4

0.6

0.8

1

 Distribution of dp sector: 
Services

The figures uses the elementary CPI data from France 2003-2011 (see the text).

CPI items: they spot 27 items (named ELIS in the BLS terminology) that are problematic
because these prices are typically computed as a Unit Value Index (a ratio of expenditure
to quantity purchased), or they are not consistently recorded in the same outlet, or they
are the price of a bundle of goods (for instance the sum of airplane fare and airport tax).
We were able to match these items with their counterparts in our French dataset. Out of
the 27 problematic items 15 are not present in our data because in the French CPI those
items are not recorded by a field agent but are centrally collected (thus not made available
in the subset of CPI we have access to).37 Concerning the 12 remaining items virtually no
price record in the French CPI is computed as a Unit Value Index, which is hypothesized by
Eichenbaum et al. (2012) as a major source of small price changes. Inspecting the patterns
of price changes over these 12 potentially “problematic” items in our dataset shows that the
amount of small price changes is not significantly different from the one detected over the rest
of our sample. One exception is the price of “Residential water” where it can be suspected
that many small variations in local taxes occur.38

A second investigation on measurement error was developed by varying the upper and

the field agent happens to be collecting data during the temporary discount. Further, the protocol of data
collection requires that the field agent records the price faced by a regular customer, not benefiting from
individual-specific discounts.

37These items are Hospital room in-patient; Hospital in-patient services other than room ; Electricity;
Utility natural gas service; Telephone services, local charges ; Interstate telephone services ; Community
antenna or cable TV ; Cigarettes; Garbage and trash collection; Airline fares; New cars; New trucks; Ship
fares; Prescription drugs and medical supplies; Automobile insurance.

38Otherwise, on the bulk of consumption items, there are no local taxes in France, and the main, nation-
wide, rate of the Value Added Tax rate did not move over the sample period.
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lower thresholds of small and large price changes used to define outliers. Results are displayed
in Table 7 of the Appendix. In each of the variants considered in Table 7, both kurtosis and
the fraction of small price changes remain large. The lowest level of kurtosis obtains when
we use the most stringent thresholds for outliers, discarding price change smaller than 0.5%
and larger than ln(2) (i.e. treating price decreases larger in absolute value than 50% and
price increases larger than 100% as outliers). However, even in this case, the kurtosis of the
standardized prices change is still as large as 6.33.

D Details of the solution for the model with n = 1

Integrating the bellman equation gives the following value function

v(p) =
Bp2 + λv(0)

λ+ r
+

Bσ2

(λ+ r)2
+ C

(
ep
√

2(λ+r)

σ2 + e−p
√

2(λ+r)

σ2

)
where we already used that v(p) = v(−p). Notice that the value function has a minimum
(and zero derivative) at p = 0, which is the optimal return point. The constant C and the
threshold value p̄ are the values that solve the 2 equation system given by the value matching
condition and the smooth pasting conditions.

The expected time to adjustment, T (p) obeys the differential equation λT (p) = 1 +
σ2

2
T ′′(p) with boundary condition T (p̄) = 0. Given the symmetry of the law of motion for p,

the function is symmetric, i.e. T (p) = T (−p). Integrating gives T (p) = 1
λ

(
1− e

√
2λ
σ2 p+e

−
√

2λ
σ2 p

e

√
2λ
σ2 p̄+e

−
√

2λ
σ2 p̄

)
.

The distribution of price gaps h(p) satisfies the Kolmogorov forward equation 0 = −2λ
σ2h(p)+

h′′(p) for 0 < |p| ≤ p̄. The density is symmetric, h(p) = h(−p), and satisfies the boundary
conditions: h(p̄) = 0 and it integrates to one i.e. 2

∫ p̄
0
h(p) dp = 1 where we used that it is

symmetric.39

Now we compute some moments for price changes ∆pi which are illustrative of the map-
ping between the model and the data. The mean absolute value of price changes is

E|∆p| =
2λ

Na

∫ p̄

0

p h(p) dp+ (1− `) p̄ = H p̄

where it is to be noticed that the term H depends only on φ, namely

H =

`
 e

√
2φ − e−

√
2φ − 2

√
2φ

√
2φ
(
e
√

2φ
2 − e−

√
2φ

2

)2

+ 1− `


39The first boundary can be derived as the limit of the discrete time, discrete state, low of motion where

each period is of length ∆ and where p increases or decreases with probability 1/2, so that h(p) = 1
2h(p +

∆) + 1
2h(p −∆). At the boundary p̄ this law of motion is h(p̄) = 1

2h(p̄ −∆), which shows that h(p̄) ↓ 0 as
∆ ↓ 0 .
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The variance of price changes

V ar (∆p) =
2λ

Na

∫ p̄

0

p2 h(p) dp+ (1− `) p̄2 =
σ2

Na

and a closed form expression for the kurtosis

kurt (∆p) =
E (∆p)4[
E (∆p)2]2 =

2λ
Na

 12
(
√

2φ)4 − 12+(
√

2φ)2

(
√

2φ)2

(
e

√
2φ
2 −e

−
√

2φ
2

)2

+ (1− `)

(
2λ
Na

(
1

(
√

2φ)2 + 1
2−e−

√
2φ−e

√
2φ

)
+ (1− `)

)2

Since ` is a function only of φ, then the equation shows that φ completely determines the
value of the kurtosis. Likewise, the absolute value of the mean price change and the variance
depend on this parameter (through the term in the square bracket) as well as on p̄.

Next we compute the fraction of price adjustments below a given threshold κ E|∆pi, which
we label F(κ). We can use this formula to quantify the fraction of price changes smaller than
a proportion κ ∈ (0, 1) of the mean absolute price change E|∆p| = Hp̄ and compare this to
the data. This gives

F(κ) =
2λ

Na

∫ κHp̄

0

h(p) dp = `

e2
√

2φ
(

1− e−κH
√

2φ
)

+ 1− eκH
√

2φ(
e
√

2φ − 1
)2


which is an expression that depends only on two parameters: κ and φ. Simple algebra shows
that in the limit as p̄ → ∞ and adjustments occur only when the free opportunity arrives,
as in the Calvo model, then the right hand side of the function is 1− e−k.

E Note on Solutions of value function V , expected time

to adjust T and invariant density of the squared price

gap f .

First we state a proposition which gives an explicit closed form solution to the value func-
tion v(y) in the inaction region, i.e. for y ∈ (0, ȳ) subject to v(0) < ∞. The solution is
parameterized by β0 = v(0).

Proposition 8 Let σ > 0. The ODE in equation (3) is solved by the analytical function:
v(y) =

∑∞
i=0 βi y

i , for y ∈ [0, ȳ] where, for any β0, the coefficients {βi} solve: β0 = nσ2

r
β1,

β2 = (r+λ)β1−B
2σ2(n+2)

, βi+1 = r+λ
(i+1)σ2 (n+2i)

βi for i ≥ 2 .

The function described in this proposition allows to fully characterize the solution of the
firm’s problem. One can use it to evaluate the two boundary conditions described above,
value matching and smooth pasting, and define a system of two equations in two unknowns,
namely β0 and ȳ.
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The alert reader may have noticed that to solve for the invariant density f we have
followed a standard procedure, i.e. set a 2nd order ordinary linear difference equation (the
Kolmogorov forward equation) and find its solutions in terms of two constant, and using two
boundary conditions to find the value of the constants. Instead to solve for V and T we
have followed a different approach, we guess an infinite expansion around y = 0 and compute
its coefficients. Additionally, it may have looked that we did not provide enough boundary
conditions to be able to solve for T and V . For instance, for T we gave only one equation
as boundary conditions, namely T (ȳ) = 0. Here we explain that we could have followed the
more standard route, which required an analysis of the behavior close to the y = 0 boundary,
to set one constant to zero and also would have produced a less informative result, i.e. one
in terms of modified Bessel functions. Nevertheless we include it here for completeness.

Note that V (y), T (y) and f(y) are solutions to a linear ODE on y whose homogeneous
component, say q(·), solves :

y q′′(y) + a q′(y) + b q(y) = 0 (26)

for y ∈ [0, ȳ], for (different) constants a and b, with different particular solution, and different
boundary conditions. The general solution of the homogeneous equation (26) is given by:

q(y) = |b y|(1−a)/2
[
C1Iν

(
2
√
|b y|

)
+ C2Kν

(
2
√
|b y|

)]
(27)

provided that b y < 0, i..e. that b < 0, where C1 and C2 are arbitrary constants, ν = |1−a| and
where Iν and Kv are the modified Bessel functions of the first and second kind respectively.
The values of b = −λ/(2σ2) in the three cases. The value of a = n/2 for T and for V ,
which are the same Kolmogorov backward equation, and a = −(n/2− 2) for f , which is the
Kolmogorov forward equation.

It is important to notice the behavior of Iν(z) and Kν(z) for values of 0 < z but very
close to zero. We have:

Iν v
1

Γ(ν + 1)

(z
2

)ν
(28)

and

Kν v

{
Γ(ν+1)

2

(
2
z

)ν
if ν > 0

− log(z/2)− γ if ν = 0
(29)

We thus have that each of the solution will behave as:

I|1−a|
(
y1/2

)
y(1−a)/2 v

1

Γ(|1− a|+ 1)

(
y1/2

2

)|1−a|
y(1−a)/2

=
1

Γ(|1− a|+ 1)

(
1

2

)|1−a|
y(1−a)/2+|1−a|/2

8



So if 1− a = −|1− a|, i.e. if 1− a ≤ 0, the value of this product is finite at y ↓ 0. Otherwise
it diverges to ∞. Likewise for ν = |1− a| > 0:

K|1−a|
(
y1/2

)
y(1−a)/2 v

Γ(|1− a|+ 1)

2

(
2

y1/2

)|1−a|
y(1−a)/2

=
Γ(|1− a|+ 1)

2

(
2

1

)|1−a|
y(1−a)/2−|1−a|/2

So if 1− a = |1− a|, i.e. if 1− a ≥ 0, the value of this product is finite at y ↓ 0. Otherwise
it diverges to ∞. The case of ν = 0 i.e. a = 1 is special, but K0(z) also diverges and I0(z)
converges to a non-zero constant as z ↓ 0.

Note that V (0) and T (0) are both finite. For these two cases the Kolmogorov backward
equation has a = n/2 so 1 − a ≥ 0 iff n ≥ 2. In these cases we have that C2, the constant
associated with Kν must be zero. We can use the constant C1 to impose the boundary
condition T (ȳ) = 0 for T and to have a one dimensional representation of V in the range of
inaction given ȳ. Then we can use smooth pasting and value matching, i.e. two boundary
conditions, to find the constants C1 and ȳ.

Note that for f we don’t require that f(0) be zero, since the density at zero gap can be
infinite if the y mean reverts to zero fast enough. Thus in this case we will, in general, have
both constants be non-zero.

F Proof that limȳ→∞ ξ(σ2, r + λ, n, ȳ) = 0

Note that, by examining the definition of κi and the sums in the expression for ξ we have
that:

lim
ȳ→∞

ξ(σ2, r + λ, n, ȳ) = lim
ȳ→∞

ξ

(
1, 1, n,

(r + λ) ȳ

σ2

)
so this limit cannot depend on r + λ or σ2. Thus we denote it as:

ξ̄(n) ≡ lim
ȳ→∞

ξ(1, 1, n, ȳ)

So we have:

ȳ ≈ ψ

B
(r + λ)

[
1− ξ̄(n)

]
for large ψ .

Now we show that ξ̄(n) = 0. First we notice that the power series:

g(x) =
∞∑
i=1

i∏
s=1

1

(s+ 2)(n+ 2s+ 2)
xi
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converges for all values of x since its coefficients satisfy the Cauchy-Hadamard inequality.
Then we can write:

ξ(1, 1, n, ȳ) ≡
2(n+2)

ȳ
1

g(ȳ)
+ 1

g(ȳ)
+ 1

ȳ2

2(n+2)
ȳ

1
g(ȳ)

+ 2 1
g(ȳ)

+
∑∞

i=1 ω(i, ȳ) (2 + i)

where the weights ω(i, ȳ) are given by:

ω(i, x) =

xi∏i
s=1(s+2)(n+2s+2)∑∞

j=1

∏j
s=1

1
(s+2)(n+2s+2)

xj

Note that for higher x the weights of smaller i decrease relative to the ones for higher i. Now
since g(ȳ)→∞ as ȳ →∞, then:

ξ̄(n) =
1

limȳ→∞
∑∞

i=1 ω(i, ȳ) (2 + i)

To show that ξ̄(n) = 0, suppose, by contradiction that is finite. Say, without loss of generality
that equals j + 2 for some integer j. Note that, by the form of the ω′s and because g(ȳ)
diverges as ȳ gets large enough, then by any j and ε > 0 there exist a y∗ large enough so
that

∑j
i=1 ω(i, ȳ) < ε for any ȳ > y∗. Thus, the expected value must be larger than 2 + j.

Finally, we consider the case of n → ∞. In this case we have that, the value function
divided by n gives:

v = min
T
B

∫ T

0

σ2 t e−(λ+r) dt+ e−(r+λ)T (Ψ + v)

where Ψ = limn→∞ ψ/n. The first order condition for T gives, for a finite T :

0 =
(
B σ2 T − (r + λ)Ψ

)
− (r + λ)e−(r+λ)Tv (30)

Now consider the case where Ψ→∞. Note that v is finite since T =∞, a feasible strategy
as a finite value. Also let Ȳ = σ2T = limn→∞

ȳ(n)
n

. Note that as Ψ → ∞ then Ȳ must also
diverge towards ∞. Dividing the previous expression by Ψ:

Ȳ

Ψ
=

(r + λ)

B
+ (r + λ)e−(r+λ)T v

Ψ

and taking the limits:

lim
Ψ→∞

Ȳ

Ψ
=
r + λ

B
.

�
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G Analytical expressions for M when n = 1 or n =∞.

This section derives the closed form solution for two tractable cases.

G.1 Analytical computation of M in the case of n = 1

We give an analytical summary expression for the effect of monetary shocks in two interesting
cases, those for one product, i.e. n = 1, and those for the large number of product, i.e. n =∞.
The summary expression is the area under the impulse response for output, i.e. the sum of
the output above steady state after a monetary shock of size δ > 0, which we denote as:

Mn(δ) = (1/ε)

∫ ∞
0

[δ − Pn(δ, t)] dt (31)

where ε is a the reciprocal of intertemporal elasticity of substitution, and where Pn(δ, t) is
the cumulative effect of monetary shock δ in the (log) of the price level after t periods. For
large enough shocks, given the fixed cost of changing prices, the model display more price
flexibility. Because of their preminence in the literature, and because of realism, we consider
the case of small shocks δ by taking the first order approximation to equation (31), so we
consider Mn(δ) ≈M′

n(0)δ.
For the case of n = 1 we obtain an analytical expression which, after normalizing by Na

depends only on λ/Na. Thus as λ/Na ranges from 0 to 1 the model ranges from a version of
the menu cost model of Golosov and Lucas to a version using Calvo pricing. The analytical
expression is based upon the following characterization:

M1(δ) = (1/ε)

∫ p̄−δ

p̄

m(p0)h(p0 + δ) dp0 (32)

where p0 is the price gap after the monetary shocks and where m(p) gives the contribution
to the area under the IRF of firms that start with price gap, after the shock, equal to p0.
Since the monetary shock happens when the economy is in steady state, the distribution
right after the shock has the steady state density h displaced by δ. Immediately after the
shock the firms with the highest price gap have price gap p̄ − δ. Note that the integral in
equation (32) does not include the firms that adjust on impact, those that before the shock
have price gaps in the interval [p̄, p̄− δ), whose adjustment does not contribute to the IRF.
The definition of m is:

m(p) = −E
[∫ τ

0

p(t) dt
∣∣ p(0) = p

]
(33)

where τ is the stopping time denoting the first time that the firm adjust its price. This
function gives the integral of the negative of the price gap until the first price adjustment.
This expression is based on the fact that those firms with negative price gaps, i.e. low
markups, contribute positively to output being in excess of its steady state value, and those
with high markups contribute negatively. Given a decision rule summarized by p̄ we can
characterize m as the solution to the following ode and boundary conditions:

λm(p) = −p+
σ2

2
m′′(p) for all p ∈ [−p̄, p̄] and m(p) = 0 otherwise . (34)

11



The solution for the function m is:

m(p) = −p
λ

+
p̄

λ

(
e
√

2φ p
p̄ − e−

√
2φ p

p̄

e
√

2φ − e−
√

2φ

)
for all p ∈ [−p̄ , p̄] . (35)

We have then:

M(δ) ≈M′(0)δ = (δ/ε)

∫ p̄

p̄

m(p)h′(p) dp = (δ/ε) 2

∫ p̄

0

m(p)h′(p) dp (36)

since m(p̄)h(p̄) = 0. The last equality uses that m is negative symmetric, i.e. m(p) =
−m(−p), and that h is symmetric around zero. Using the expression for h in Section 3.1

h′(p) = − 2φ

2p̄2
(
e
√

2φ − 1
)2

(
e
√

2φ(2− p
p̄) + e

√
2φ p

p̄

)
for p ∈ [0, p̄] .

we obtain:

M′(0)δ =

(
δ

ε

)
−2φ

λ
(
e
√

2φ − 1
)2

(
e
√

2φ
(
2 + 2φ− 2 cosh

(√
2φ
))

2φ

)

=

(
δ

ε

)
−2

λ
(
e
√

2φ − 1
)2

(
e
√

2φ

(
1 + φ− e

√
2φ + e−

√
2φ

2

))

Using the expression for Na for the n = 1 case:

M′(0)δ =

(
δ

ε

)
2

Na

e
√

2φ + e−
√

2φ(
e
√

2φ + e−
√

2φ − 2
) (
e
√

2φ − 1
)2

(
e
√

2φ

(
e
√

2φ + e−
√

2φ

2
− 1− φ

))

To double check the result for φ = 0 we compute directly the IRF for the Golosov-Lucas
model. In this case we let λ = 0 and p̄ > 0. In this case we have:

m(p) = − p̄
2 p

3σ2
+

p3

3σ2

Also h′(p) = −1/p̄2 for p ∈ (0, p̄]. We then have:

M′(0)δ =

(
δ

ε

)
2

−3σ2p̄2

∫ p̄

0

[
−p̄2p+ p3

]
dp =

(
δ

ε

)
−2

3σ2p̄2

[
− p̄

4

2
+
p̄4

4

]
=

(
δ

ε

)
2p̄2

3σ2

2

8
=

(
δ

ε

)
1

Na

1

6

This is the same value as taking φ to zero in the general expression.

G.2 Analytical computation of M in the case of n =∞
Define

Yn(t, δ) ≡ 1

n

n∑
i=1

[pi(t)− δ] = Yn(t, 0)− 2δ

∑n
i=1 pi(t)

n
+ δ2 .

12



where the pi(t) are independent of each other, start at pi(0) = 0 and have normal distribution
with E [pi(t)] = 0 and V ar [pi(t)] = σ2t. Then, by an application of the law of large numbers,
we have:

Y∞(t, δ) = Y∞(t, 0) + δ2 = tσ2 + δ2

Letting Ȳ ≡ limn→∞ ȳ(n)/n we can represent the steady state optimal decision rule as
adjusting prices when t, the time elapsed since last adjustment, attains T = Ȳ /σ2. We
compute the density of the distribution of products indexed by the time elapsed since the
last adjustment t and, abusing notation, we denote it by f . This distribution is a truncated
exponential with decay rate λ and with truncation T , thus the density is:

f(t) = λ
e−λ t

1− e−λT
for all t ∈ [0, T ] .

The (expected) number of price changes per unit of time is given by the sum of the free
adjustments and the ones that reach T , so

Na = λ+ f(T ) = λ

[
1 +

e−λT

1− e−λT

]
=

λ

1− e−λT

Note that, using the definition of T given above, λT = Ȳ λ/σ2 the parameter which indexes
the shape of f and of the distribution of price changes. Since this figures prominently in this
expressions we define:

φ ≡ λT =
Ȳ λ

σ2
.

which is consistent with the definition of φ in Proposition 3. Using this definition we get:

` =
λ

Na

= 1− e−φ and thus Na =
λ

1− e−φ

Impulse Response of Prices to a monetary Shock. We can now define the impulse
response. Note that after the monetary shock firms that have adjusted their prices t periods
ago, in average will adjust their price up by δ. This highlights that as n → ∞ there is no
selection.

Now we turn to the characterization of the impact effect Θ. In this case we have

Y∞(t, δ) = Y∞(t, 0) + δ2 = tσ2 + δ2 ≥ Ȳ = σ2T ⇐⇒ t ≥ T − δ2/σ2 .

Thus the impact effect is:

Θ(δ) = δ

∫ T

T−δ2/σ2

f(t)dt = δ
e−λT+ λ

σ2 δ
2

− e−λT

1− e−κ
= δ

e−κ+ λ
σ2 δ

2

− e−κ

1− e−κ

13



Using that NaV ar[∆pi] = σ2 we can write:

Θ(δ) = δ + δ
e
−κ+ λ

Na
δ2

V ar[∆pi] − 1

1− e−κ
= δ + δ

(
1− λ

Na

)
e
λ
Na

δ2

V ar[∆pi] − 1

λ/Na

Note that

lim Θ(δ) =

δ
(

δ
Std[∆pi]

)2

as λ/Na → 0

0 as λ/Na → 1

and in general

Θ(δ)

∂(λ/Na)
= δ

e
λ
Na

δ2

V ar[∆pi]

(
δ2

V ar[∆pi]
λ
Na

(
1− λ

Na

)
− 1
)

+ 1

(λ/Na)2
< 0

whenever δ < 2Std[∆pi].

θ(t) = δe−λt

[
f
(
T − δ2/σ2 − t

)
+ λ

∫ T−δ2/σ2−t

0

f(s)ds

]

= δe−λt

[
λ
e−λ(T−δ

2/σ2−t)

1− e−λT
+ λ

∫ T−δ2/σ2−t

0

λ
e−λs

1− e−λT
ds

]

= δe−λt

[
λ
e−λ(T−δ

2/σ2−t)

1− e−λT
+ λ

1− e−λ(T−δ2/σ2−t)

1− e−λT

]

= δ
λe−λt

1− e−λT
[
e−λ(T−δ

2/σ2−t) + 1− e−λ(T−δ2/σ2−t)
]

= δ
λe−λt

1− e−λT

We can interpret θ(t)dt as θ(t) times the number of firms that adjust its price at times (t, dt).
This is the sum of two terms. The first term is the fraction that adjust because they hit the
boundary between t and t + dt. The second term is the fraction that have not yet adjusted
times the fraction that adjust, λdt due to a free opportunity. Both terms are multiplied by
e−λt to take into account those firms that have received a free adjustment opportunity before
after the monetary shock but before t.

Thus we have:

P∞(t, δ) = Θ(δ) + δ

∫ t

0

λe−λs

1− e−λT
ds = Θ(δ) + δ

1− e−λt

1− e−λT
= Θ(δ) + δ

1− e−
λ
Na

tNa

1− e−κ

= Θ(δ) + δ
1− e−

λ
Na

tNa

λ/Na

We discussed the half-life of the price adjustment. We will consider the case of a small
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monetary shock δ, in which case we can disregard Θ since it is of order δ2. In this case the
half-life of the response of the price level P and the one of output δ−P are the same, which
explain our interest on the half-life of prices, as opposed to inflation. The normalized half-life
solves

1

2
=

1− e−
λ
Na

T1/2

λ/Na

or T1/2 = −
log
(

1− λ/Na
2

)
λ/Na

.

Using P∞ we can compute the IRF for output, and a summary measure for it, namely
the area below it:

M∞(δ) =
1

ε

∫ T

0

[δ − P∞(δ, t)] dt ≈ δ
1

ε

∫ T

0

[
1− 1− e−λt

1− e−λT

]
dt

=
δ

ε

[
T − T

1− e−λT
+

1

λ

]
=
δ

ε

[
−T e−λT

1− e−λT
+

1

λ

]
=

δ

ε

1− e−λT

λ

1

1− e−λT

[
−λT e−λT

1− e−λT
+ 1

]
=

δ

εNa

1

1− e−φ

[
1− φ e−φ

1− e−φ

]
=

δ

εNa

[
1− (1 + φ) e−φ

(1− e−φ)2

]
=

δ

εNa

1

λ/Na

[
1 + log

(
1− λ

Na

) (
1− λ

Na

λ/Na

)]

where the approximation uses the expression for small δ, i.e. its first order Taylor’s expansion.

Characterization of Cumulated output effect. The above formula gives

M∞(δ) = δM′
∞(0) =

δ

εNa

(
`+ (1− `) log(1− `)

`2

)
Now consider the derivative of the ratio that depends on `.

∂ `+(1−`) log(1−`)
`2

∂`
= −

(
2`+ (2− `) log(1− `)

`3

)
The limit for ` → 1 is straigthforward and diverges to +∞. The limit for ` → 0 gives an
indeterminate form 0/0, we therefore apply Hopital rule:

−

(
2 + (2− `) −1

1−` − log(1− `)
3`2

)

which gives an indeterminate form 0/0 to which we again apply Hopital rule:

−

(
1

1−` − (2− `)(1− `)−2 + 1
1−`

6`

)
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which gives an indeterminate form 0/0 to which we again apply Hopital rule:

−
(

(1− `)−2 + (1− `)−2 − 2(2− `)(1− `)−3 + (1− `)−2

6

)
which shows that the limit for `→ 0 is

−
(

1 + 1− 4 + 1

6

)
=

1

6

Kurtosis. For completeness we also include here an expression for the kurtosis of the
distribution of price changes in the case of n =∞. Price changes are distributed as:

E
[
(∆p)2

]
= σ2/Na =

σ2

λ

λ

Na

=
Tσ2

Tλ

λ

Na

= Tσ2 1

Tλ

λ

Na

E
[
(∆p)4

]
= 3

λ

Na

∫ T

0

(σ2t)2λe−λt

1− e−λT
dt+

(
1− λ

Na

)
3
(
σ2T

)2

= 3σ4

[
λ

∫ T

0

t2e−λtdt+

(
1− λ

Na

)
T 2

]
= 3σ4

[
2− e−λT (λT (λT + 2) + 2)

λ2
+

(
1− λ

Na

)
T 2

]
= 3σ4T 2

[
2− e−λT (λT (λT + 2) + 2)

(Tλ)2 +

(
1− λ

Na

)]
Kurtosis is then given by:

E [(∆p)4]

(E [(∆p)2])2 = 3

2−e−λT (λT (λT+2))

(Tλ)2 +
(

1− λ
Na

)
(

1
Tλ

)2
(

λ
Na

)2 = 3
2− e−λT (λT (λT + 2) + 2) + (Tλ)2

(
1− λ

Na

)
(

λ
Na

)2

= 3
2− e−λT (λT (λT + 2) + 2) + (Tλ)2

(
1− λ

Na

)
(

λ
Na

)2

= 3

(
2− e−λT2λT − e−λT2

)(
λ
Na

)2 = 6

(
1− e−λT (1 + λT )

)(
λ
Na

)2 = 6
1− e−λT (1 + λT )

(1− e−λT )2

= 6
1− e−φ (1 + φ)

(1− e−φ)2

Inflation Rates. Note that T1/2 is the normalized half life of the price level. The literature
has concentrated on persistence of inflation rates. In our model, instantaneous inflation rates
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are the time derivative of P , since this price is expressed in logs. As such, the instantaneous
inflation rate is infinite at t = 0 and otherwise given by θ(t) at times t > 0. We will
concentrate on the case of small δ and hence disregard the instantaneous inflation rate at
impact.

One approach taken in the measurement of persistent of inflation is to fit (discrete) time
time series models to different sectors and relate them to the average frequency of price
changes of the sector. We will use these estimates and interpret in light of our model.
Consider the following AR(1) representation:

πππt+∆ = (1−∆ρ)πππ(t)

for t > 0 and π(0) > 0 and for a period of length ∆. We will regard the literature as
producing estimates of average number of price changes for each sector, Na in our notation,
and autocorrelations of inflation rates, (1−∆ρ) in our notation. The continuous time limit
of this process is:

π̇̇π̇π(t) = −ρπππ(t) for t ∈ (0, T ) and

∫ T

0

πππ(t) dt = δ ,

which has solution:

πππ(t) = δ
ρ e−ρt

1− e−ρT

We define the half life T̂1/2 as the solution:

δ

2
=

∫ T̂1/2

0

πππ(t) dt = δ
1− eρT̂1/2

1− e−ρT

H More model statistics

This appendix reports more model statistics that are functions only of n and `. First we
provide a formula to quantify the fraction of price changes that are smaller than a threshold
κE|∆pi|, which will prove useful to compare with the empirical evidence discussed above:

Fn(κ) = 2

∫ κE|∆pi|

0

w(x) dx

where w(x) is density of price changes in equation (7).

I A model with random costly adjustment

This version of the model assumes that with probability λ per unit of time the menu cost is
smaller than the regular adjustment, namely that it costs bψ with b ∈ (0, 1). The optimal
policy now involves two thresholds: p and p̄. For p ∈ [0, p] the firm optimally decides not to
adjust the price, even if an opportunity for cheap adjustment occurs. For p ∈ [p, p̄) the firm
adjusts the price only if a cheap adjustment opportunity arises. For p ≥ p̄ the firm adjusts
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Table 8: Model statistic for the fraction of price changes smaller than 1
4
E|∆pi|

% of free adjustments: number of products n
` 1 2 4 6 10 50

0 % 0.00 0.10 0.13 0.14 0.15 0.16
10% 0.04 0.12 0.15 0.15 0.16 0.16
20% 0.08 0.13 0.16 0.16 0.17 0.17
50% 0.17 0.18 0.19 0.19 0.19 0.19
70% 0.20 0.20 0.20 0.20 0.20 0.21
80% 0.21 0.21 0.21 0.21 0.21 0.21
90% 0.22 0.22 0.22 0.22 0.22 0.22
95% 0.22 0.22 0.22 0.22 0.22 0.22

Table 9: Model statistic for E|∆pi|/Std(∆pi)

% of free adjustments: number of products n
` 1 2 4 6 10 50

0 % 1.00 0.90 0.85 0.83 0.82 0.80
10% 0.98 0.87 0.84 0.82 0.81 0.80
20% 0.95 0.86 0.83 0.81 0.80 0.79
50% 0.87 0.81 0.79 0.78 0.77 0.76
70% 0.81 0.77 0.76 0.75 0.75 0.75
80% 0.78 0.75 0.74 0.74 0.74 0.73
90% 0.74 0.73 0.73 0.73 0.72 0.72
95% 0.73 0.72 0.72 0.72 0.72 0.71

the price. The value function then solves:

r v0(p) = Bp2 +
σ2

2
v′′0(p), for p ∈ [0, p] ,

r v1(p) = Bp2 + λ [v0(0) + bψ − v1(p)] +
σ2

2
v′′1(p), for p ∈ [p, p̄]

where we use that the optimal return point upon adjustment is v0(0). This gives

v0(p) =
Bp2

r
+
Bσ2

r2
+K0

(
e
p
√

2r
σ2 + e

−p
√

2r
σ2

)
v1(p) =

Bp2 + λ (v0(0) + bψ)

λ+ r
+

Bσ2

(λ+ r)2
+K1

(
ep
√

2(λ+r)

σ2 + e−p
√

2(λ+r)

σ2

)
where we already used that vi(p) = vi(−p).

To solve for the two constants K0 and K1 and the two parameters 0 < p, p̄ we use that
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the value function must satisfy the boundary conditions v0(p) = v1(p) and v0(0) + ψ = v1(p̄)
and the smooth pasting conditions v′0(p) = v′1(p) and 0 = v′1(p̄)

The expected time to adjustment, T (p) obeys the following ODE

0 = 1 +
σ2

2
T ′′0 (p) for 0 < |p| ≤ p and λT1(p) = 1 +

σ2

2
T ′′1 (p) for p < |p| ≤ p̄

with Ti(p) = Ti(−p) and boundary conditions T0(p) = T1(p) and T1(p̄) = 0. Thus

T0(p) =
1

λ

(
1− eφp + e−φp

eφp̄ + e−φp̄

)
−
p2 − p2

σ2
and T1(p) =

1

λ

(
1− eφp + e−φp

eφp̄ + e−φp̄

)
where φ ≡

√
2λ

σ2

so that the average number of adjustment per period is

Na =
1

T0(0)
=

1

1
λ

(
1− e

φp
+e
−φp

eφp̄+e−φp̄

)
+

p2

σ2

(37)

The density function for the price gaps h(p) ∈ [0, p̄] solves

0 = f ′′0 (p) for 0 ≤ |p| ≤ p and 0 = −2λ

σ2
f1(p) + f ′′1 (p) for p < |p| ≤ p̄ or

f0(p) = C1 + C2 |p| for 0 ≤ |p| ≤ p and f1(p) = C3e
φ|p| + C4e

−φ|p| for p ≤ |p| ≤ p̄

where the 4 constants solve the 4 equations f0(p) = f1(p), f ′0(p) = f ′1(p), f1(p̄) = 0 and

1/2 =
∫ p

0 f0(p) dp+
∫ p̄
p
f1(p) dp which use that the density is differentiable (see the Appendix).

Then using that only the fraction 2
∫ p̄
p
f1(x)dx of cheap adjustment opportunities will

trigger an actual price change, the distribution of (non-zero) price changes x ∈ [−p̄,−p]∪[p, p̄]
is symmetric and is given by (we only report the formulas for x > 0){

density for a price change of size x ∈ [p, p̄) : λ
Na
f1(x)

mass point at p̄ 1
2
− λ

Na

∫ p̄
p
f1(x)dx

So the mean absolute price change is

E|∆p| = `

∫ p̄

p

x 2f1(x) dx+

1−
λ
∫ p̄
p

2f1(x)dx

Na

 p̄

and the j − th moment of price changes for j even is

E
(
∆pj

)
= `

∫ p̄

p

xj 2f1(x) dx+

1−
λ
∫ p̄
p

2f1(x)dx

Na

 p̄j
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I.1 Density function

To determine the 4 unknowns of the density function, using f1(p̄) = 0 and f ′0(p) = f ′1(p),
gives

C3 = −C4e
−2φp̄ and C2 = −C4φ

(
e−2φp̄+φp + e−φp

)
Next, using f0(p) = f1(p) gives

C1 = −C2p− C4

(
e−2φp̄+φp − e−φp

)
= C4

[
e−2φp̄+φp

(
φp− 1

)
+ e−φp

(
φp+ 1

)]
Finally we solve for C4 by imposing 1/2 =

∫ p
0 f0(p) dp+

∫ p̄
p
f1(p) dp i.e.

1

2
= C1p+

1

2
C2p

2 +
1

φ

[
C3

(
eφp̄ − eφp

)
− C4

(
e−φp̄ − e−φp

)]
or, substituting the expressions,

1

2C4

=
[
e−2φp̄+φp

(
φp− 1

)
+ e−φp

(
φp+ 1

)]
p− 1

2
φ
(
e−2φp̄+φp + e−φp

)
p2

−1

φ

[
e−2φp̄

(
eφp̄ − eφp

)
+ e−φp̄ − e−φp

]
J More sectoral empirical results

Source is INSEE, monthly price records from French CPI, data from 2003:4 to 2011:4. Coverage is around
65% of CPI weight since rents, and prices of fresh food and centrally collected items (e.g. electricity, train
and airplane tickets) are not included in the dataset. Freq. denotes monthly frequency of price change
in percent. Size of price change ∆p are the first-difference in the logarithm of price per unit, expressed
in percent. Avg is average, Std standard deviation, Frac25 the share of absolute price change that are
inferior to 0.25 Avg[|∆p|], Kurt denotes Kurtosis. Observations with imputed prices or quality change
are discarded. Moments are computed aggregating all prices changes using CPI weights at the product
level.
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Table 10: Statistics by type of goods and outlet category (un-standardized price changes)
Good type Outlet type Freq Avg |∆p| Std |∆p| Kurt (∆pi) Frac25
Food Hypermakets 27.56 8.89 11.88 10.25 30.79
Food Supermarkets 18.84 9.84 13.48 10.57 30.36
Food Traditional 7.52 7.84 8.48 11.68 15.63
Food Services 7.14 9.45 9.41 7.52 12.06
Durable goods Hypermakets 15.82 13.35 12.97 6.36 21.02
Durable goods Supermarkets 19.11 14.96 12.97 5.52 16.38
Durable goods Traditional 7.93 14.77 15.82 7.08 22.02
Durable goods Services 8.02 23.45 20.95 3.36 20.14
Clothing Hypermakets 8.09 45.13 27.42 1.89 17.41
Clothing Supermarkets 9.55 43.23 25.42 2.20 10.79
Clothing Traditional 12.68 41.85 24.23 2.24 7.31
Clothing Services 10.86 41.20 21.76 1.87 12.53
Other manufactured goods Hypermakets 15.69 9.40 12.92 11.25 32.71
Other manufactured goods Supermarkets 12.14 11.87 14.79 7.94 33.99
Other manufactured goods Traditional 8.22 11.51 16.40 8.16 34.59
Other manufactured goods Services 11.25 6.59 10.55 12.91 32.85
Energy Hypermakets 80.89 3.56 2.84 9.23 8.28
Energy Supermarkets 76.43 3.56 2.81 8.50 8.60
Energy Traditional 75.55 4.22 3.51 5.39 14.35
Energy Services 71.93 3.35 2.56 4.69 8.99
Services Hypermakets 5.13 13.84 14.32 7.71 22.64
Services Supermarkets 9.99 9.70 10.99 10.33 26.22
Services Traditional 6.34 7.74 10.13 19.97 19.54
Services Services 6.41 7.65 10.20 18.30 20.86
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