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The Allocation of Time in Sleep: a Social Network Model with 
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We analyze peer effects in sleeping behavior using a representative sample of 
U.S. teenagers from the National Longitudinal Survey of Adolescent Health. 
The sampling design of the survey causes the conventional 2SLS estimator to 
be inconsistent. We extend the NLS estimator in Wang and Lee (2013a) to 
estimate network models with sampled observations on the dependent 
variable. When accounting for sampling, we find that the sleeping behaviour of 
the friends is important to shape own sleeping behaviour, besides the impact 
of individual, family and friend characteristics. 
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“Sleep that knits up the ravelled sleave of care, The death of each day’s life, sore labour’s

bath, Balm of hurt minds, great Nature’s second course, Chief nourisher in life’s feast.”

Shakespeare, Macbeth

1 Introduction

Nearly a third of a person’s life is spent in slumber. In the U.S. those with insomnia spend

about $1 billion a year on prescription sleep aids, and another $1 billion on over-the-counter

sleep medications (Yaniv, 2004). The economic costs, both direct (expenditure within the

health system) and indirect (absenteeism, low productivity, and work-related injuries) of

sleep disorders in the U.S. in 2004 was estimated to be $109 billion (Hillman et al., 2006).

Yet, sleeping behaviour has received relatively little attention in economics. While sleep

is primarily a function of the body’s internal biological clock (circadian rhythm), individual

choice also plays an important role in determining the timing and duration of sleep. Biddle

and Hamermesh (1990) posit a simple economic model that accounts for the endogenous

nature of sleep choice, but empirical work on the subject has been very limited.

In particular, there is virtually no evidence on the importance of social interactions in

shaping sleeping behaviour. In many circumstances, the decision of agents to exert effort

in some activity cannot adequately be explained by their personal characteristics and the

intrinsic utility derived from the activity. Rather, its rationale may be found in how peers and

others value this activity. There is indeed strong evidence that the behaviour of individual

agents is affected by that of their peers.1 The individual utility when allocating time in

work or leisure may depend on the same choice made by peers. As a consequence, social

interactions might be important for understanding the duration of sleep, which is the residual

activity.2

In this paper, we exploit the unique information contained in the National Longitudinal

Survey of Adolescent Health (AddHealth) to provide evidence on sleeping patterns among
1The integration of models of social interactions within economic theory is an active and interesting area

of research. See the recent Handbook of Social Economics, Benhabib et al. (2011).
2Biddle and Hamermesh (1990) study the demand for sleep in this perspective without social incentives.
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adolescents in the U.S. Sleeping behaviour during teenage years is of particular interest be-

cause of its effect on human capital formation. Research suggests that lack of sleep reduces

attendance, increases tardiness, and lowers grades of adolescent students (Eide and Showal-

ter, 2012). Furthermore, lack of sleep in youth is correlated with health and behavioral

problems such as moodiness, depression, diffi culty controlling behaviour, and increased frus-

tration - all of which make learning in school diffi cult (National Sleep Foundation; (Mitru

et al., 2002)).

The AddHealth data contain unique information on friendship relationships among a

representative sample of students from U.S. high school teenagers together with basic in-

formation on individual, family, neighborhood and school characteristics (in-school survey).

The survey design also includes a questionnaire administered to a random sample of those

students collecting information on more sensitive topics (health issues, crime, drug, sexual

behaviour, etc.), including time and duration of sleep on week days during the school year

(in-home survey). The use of this additional information, however, comes at a cost. The

in-home sampling scheme may result in missing observations on the behaviour of friends

who were not sampled, and induce measurement error to the endogenous peer effect variable

given by the average behaviour of friends. As a result, the existing estimation methods for

network models of social interactions (see, e.g., Bramoullé et al., 2009; Lee et al., 2010) are

not generally valid.3

Recently, social network studies have drawn a great deal of attention. Network models are

widely used to represent relational information among interacting units and the implications

of these relations. Most inference for social network models assumes that the all possible

links are observed and that all the relevant information is available. This is clearly not

true in practice, as much network data is collected though sample surveys. In a recent

paper, Sojourner (2013) considers a linear-in-means social interaction model with missing

observations on covariates. He shows that random assignment of agents to peer groups can

3This issue is typically neglected in most empirical papers using the information on friends together with
the in-home survey in the AddHealth data set.
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help to overcome the missing data problem. On the other hand, Chandrasekhar and Lewis

(2011) consider the estimation of network models with sampled observations on network

links. They propose a set of analytical corrections for commonly used network statistics

and a two-step estimation procedure using graphical reconstruction. Our case is different.

We observe all the network links and the covariates for all nodes, but we have sampled

observations on the dependant variables.

The social network model considered in this paper has the specification of a spatial autore-

gressive (SAR) model with group-specific fixed effect. Kelejian and Prucha (2010) consider

the estimation of the SAR model with missing observations on the dependent variable and

covariates. They suggest two-stage least squares (2SLS) estimators that are based on a sub-

set of the sample so that the dependent variable and covariates are observed, and the spatial

lags are either completely observed or partially observed with an asymptotically negligible

measurement error. Our set up is similar to the one proposed by Wang and Lee. Wang

and Lee consider the estimation of the SAR model with missing observations on the depen-

dent variable for cross-sectional data (Wang and Lee, 2013a) and for random effect panel

data (Wang and Lee, 2013b). They propose the generalized method of moments (GMM)

estimator, the nonlinear least squares (NLS) estimator, and the 2SLS estimator with im-

putation. They show that the three estimators are consistent and robust against unknown

heteroskedasticity. In this paper, we extend the NLS estimator in Wang and Lee (2013a) to

estimate social network models with sampled observations on the dependent variable.

Our results show that the conventional 2SLS is inconsistent without accounting for sam-

pling. In our case, 2SLS fails to detect the presence of peer effects. When sampling is

taken into account, we instead find that the sleeping behaviour of the friends is important in

shaping own sleeping behaviour, besides the impact of individual and friends characteristics.

We use the approach recently proposed by Goldsmith-Pinkham and Imbens (2013) to inves-

tigate testable implications of network endogeneity, finding no sign of troubling individual

level unobservables that may invalidate our results. Our results are also robust when using
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an unique information on siblings to eliminate possible unobserved family factors.

We start our analysis by describing our data in Section 2. Section 3 presents the network

model, together with the identification and estimation strategy. We discuss our estimation

results in Section 4, whereas Section 5 contains some robustness checks. Section 6 concludes.

2 Data and Descriptive Evidence

Our data source is the AddHealth data that has been designed to study the impact of the

social environment (i.e. friends, family, neighborhood and school) on adolescents’behav-

iour in the United States by collecting data on students in grades 7-12 from a nationally

representative sample of roughly 130 private and public schools in years 1994-95. Every stu-

dent attending the sampled schools on the interview day is asked to compile a questionnaire

(in-school survey) containing questions on respondents’demographic and behavioral charac-

teristics, education, family background and friendship. Most notably, students were asked to

identify their best friends from a school roster - up to five males and five females. The limit

in the number of nominations, however, is not binding (not even by gender),4 and in the

large majority of cases (more than 90%) the nominated best friends are in the same school.

Hence, it is possible to reconstruct the entire geometry of the friendship networks within each

school. In addition, by matching the identification numbers of the friendship nominations

to respondents’identification numbers, one can obtain information on the characteristics of

nominated friends. This sample contains information on roughly 90,000 students. These

features make these data almost unique. It is extremely rare to have information on the

universe of network contacts (here school friends), together with their detailed characteris-

tics.5 The survey design also includes a longer questionnaire (in-home survey) containing

questions related to more sensitive individual and household information which is adminis-

4Less than 1 percent of the students in our sample show a list of ten best friends, less than 3 percent a
list of five males and roughly 4 percent name five females. On average, they declare to have 4.35 friends with
a small dispersion around this mean value (standard deviation equal to 1.41).

5The information on social network contacts collected in other existing surveys is about "ego-networks",
i.e. the respondent is asked to name few personal contacts and provides (self-reported) information about
an extremely limited number of their charactersitics.
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tered to a subset of adolescents. We use the core sample of in-home survey which provides

information on a random and self-weighting subset of adolescents, about 12,000 individuals.6

The in-home questionnaire contains detailed information about the timing and duration of

sleep. The questions has been slightly reformulated over time to measure sleeping patterns

more precisely. Indeed, the (in-home survey) students are interviewed again one year later,

in 1995—96 (wave II).7 We derive the information on sleeping patterns by using the wave II

question: During the school year, what time do you usually go to bed on week nights?8 ,9

Figure 1 plots the empirical distribution. The graph shows a notable dispersion around

the mean "bed time" value (mean equal to 10:37pm and standard deviation equal to 58.7

minutes). About 50% of the students go to bed between 10pm and 11.30pm.

Figure 2 shows the distribution of students by GPA distinguishing between students with

different sleeping patterns. It appears that students with sleep deficit (red curve) show a

statistically significant lower performance at school.10 In other words, a student that goes

to bed earlier is more likely to have a higher GPA.

Table 1 and Figure 3 collects some further evidence on the relationship between sleeping

patterns and other relevant characteristics. We run a principal component analysis (PCA)11

on body mass index (BMI), GPA, general health, use of alcohol and cigarette smoking. The

first principal component explains over one third of the total inertia. Table 1 shows that this

variation is associated to differences between two clusters of students, one with high body

6The core sample contains roughly the 60% of the individuals interviewed in the in-home survey (which
are about 20,000 individuals). The difference is due to the fact that in the in-home sampling design some
types of individuals are oversampled.

7Those subject are also interviewed again in 2001-02 (wave III), and again in 2007-08 (wave IV). For the
purposes of this paper, we do not use this longitudinal information. The friendship nominations are only
collected when the students were at school (i.e. in waves I and II).

8The questions formulated in wave I do not differentiate between the school period and summer time.
9We rescaled each hour in 100 units, so for instance half an hour is transformed to a distance of 50. We

dropped individuals declaring going to sleep before 5pm and after 6am.
10The rejection of the null hypothesis in a Kolmogorov-Smirnov test confirms the difference between these

two distributions.
11PCA uses an orthogonal transformation to convert a set of observations of possibly correlated variables

into a set of values of linearly uncorrelated variables (called principal components). This transformation is
defined in such a way that the first principal component has the largest possible variance (that is, accounts
for the largest portion of variability in the data).
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mass index, poor school performance, poor general health, drinking alcohol and smoking

cigarettes (type A students), and the other with the opposite profile (type B students). In

other words, splitting the population between type A and type B individuals maximizes

the between-group variation and minimizes the within-group variation. Figure 3 shows that

type A students tend to sleep for fewer hours than type B students. This is in line with

an (expected) relationship between sleeping behaviour and individual socio-economic profile

(Eide and Showalter, 2012).

3 Regression Analysis

Our aim is to assess the actual empirical relationship between the individual sleeping be-

haviour and the sleeping behaviour of the peers using the unique information provided by

the AddHealth data. This exercise requires facing the traditional challenges in identifying

endogenous social interaction effects, while also overcoming a further (and so far neglected)

issue stemming from the sampling design of the AddHealth survey. We present the net-

work model in Section 3.1, whereas the estimation of network models with sampling on the

dependant variable is considered in detail in Section 3.2.

3.1 The network model

Consider a population of n individuals partitioned into r̄ networks. For the nr individuals in

the rth network, their connections with each other are represented by an nr × nr adjacency

matrix G∗r = [g∗ij,r] where g
∗
ij,r = 1 if individuals i and j are friends and g∗ij,r = 0 otherwise.12

Let Gr = [gij,r] be the row-normalized G∗r such that gij,r = g∗ij,r/
∑nr

k=1 g
∗
ik,r.

Given the network adjacency matrix Gr, we assume yi,r, the sleeping behaviour of indi-

vidual i in network r, is given by the following network model

yi,r = φ
∑nr

j=1 gij,ryj,r +
∑p

k=1 xik,rβk +
∑p

k=1(
∑nr

j=1 gij,rxjk,rγk) + ηr + εi,r. (1)

12For ease of presentation, we focus on the case where the connections are undirected and no agent is
isolated so that G∗r is symmetric and

∑n
j=1 g

∗
ij,r 6= 0 for all i. The result of the paper holds for a directed

network with an asymmetric G∗r .
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In this model,
∑nr

j=1 gij,ryj,r is the average sleeping behaviour of i’s direct friends with its

coeffi cient φ representing the endogenous effect, wherein an individual’s choice/outcome may

depend on those of his/her friends about the same activity. xik,r, for k = 1, · · · , p, are

exogenous control variables. For k = 1, · · · , p,
∑nr

j=1 gij,rxjk,r is the average value of the

k-th control variable taking over i’s direct friends with its coeffi cient γk representing the

contextual effect, wherein an individual’s choice/outcome may depend on the exogenous

characteristics of his/her friends. ηr is a network-specific parameter representing the cor-

related effect, wherein individuals in the same group tend to behave similarly because they

face a common environment. εi,r is an i.i.d. error term with zero mean and finite variance

σ2.

Let xi,r = (xi1,r, · · · , xip,r)′, β = (β1, · · · , βp)′ and γ = (γ1, · · · , γp)′. In matrix form, (1)

can be rewritten as

Yr = φGrYr +Xrβ +GrXrγ + ηrlnr + εr, (2)

where Yr = (y1,r, · · · , ynr,r)′, Xr = (x1,r, · · · , xnr,r)′, εr = (ε1,r, · · · , εnr,r)′, and lnr is an nr×1

vector of ones.

Let diag{Aj}mj=1 denote a generalized diagonal block matrix with the diagonal blocks

being Aj’s, where Aj may or may not be a square matrix. Then, for all r̄ networks, we can

stack the data such that (3) becomes

Y = φGY +Xβ +GXγ + Lη + ε, (3)

where Y = (Y ′1 , · · · , Y ′r̄ )′, G = diag{Gr}r̄r=1, X = (X ′1, · · · , X ′r̄)′, L = diag{lnr}r̄r=1, η =

(η1, · · · , ηr̄)′, and ε = (ε′1, · · · , ε′r̄)′.

The identification and estimation of endogenous, contextual, and correlated effects have

been the main interests of social network models. The conventional identification and esti-

mation strategy in the literature (see, e.g., Lee, 2007; Bramoullé et al., 2009; Lee et al., 2010)

8



relies on the assumption that E(εr|Gr, Xr, ηr) = 0.13 Based on this assumption, Bramoullé

et al. (2009) show that if intransitivities exist in networks so that In, G,G2, G3, are linearly in-

dependent, then model (2) is identified. For estimation, we first eliminate the incidental para-

meters η using a within-transformation projector J = diag{Jr}r̄r=1, where Jr = Inr− 1
nr
lnr l

′
nr .

As JL = 0, premultiplying (3) by J , we have

JY = φJGY + JXβ + JGXγ + Jε.

Let Z = (GY,X,GX) and θ = (φ, β′, γ′)′. For the instrumental variable (IV) matrix Q =

(X,GX,G2X), the two-stage least squares estimator is given by

θ̂2sls = (Ẑ ′JZ)−1Ẑ ′JY, (4)

where JẐ = JQ(Q′JQ)−1Q′JZ is the predicted JZ from the first-stage regression.

In the following section, we focus on the sampling issue of the network model that has

been largely ignored by the literature.

3.2 Estimation of peer effects with sampling

In our and many other studies, the analysis of the network model (1) has been made possible

by the use of a unique database on friendship networks from the AddHealth data.14 As we

explain in Section 2, students are asked to identify their best friends from the school roster

in the in-school survey. Thus, we can observe all friendship links in the networks. However,

as some more sensitive individual information - (i.e. sleeping behaviour) - is in the in-home

survey, we only have this information for the sampled students.15

Without loss of generality, suppose the first mr (mr > 1) individuals in network r are

sampled. Suppose we can observe network connections Gr = [gij,r] and controls xi,r for all

individuals in network r, but we can only observe yi,r’s of sampled individuals. For the

13We will investigate the validity of this assumption for this empirical study in Section 5.
14See, e.g. Lin (2010), Patacchini and Zenou (2008) and the references herein.
15The use of the core sample is crucial because otherwise the sampled students are not random.
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sampled individuals, i = 1, · · · ,mr, (1) becomes

yi,r = φ
∑mr

j=1 gij,ryj,r + x′i,rβ +
∑nr

j=1 gij,rx
′
j,rγ + ηr + ε∗i,r. (5)

By comparing (1) and (5), we have ε∗i,r = φ
∑nr

j=mr+1 gij,ryj,r + εi,r. Therefore, the error

term of model (5) contains two types of errors - the error due to unobserved individual

heterogeneity εi,r and the measurement error due to the sampling design φ
∑nr

j=mr+1 gij,ryj,r.

The measurement error could be correlated with the control variables and, as a result, the

2SLS given by (4) may not be consistent.

To further illustrate this point, we rewrite (5) in matrix form. Let

Gr =

 GS
r

GN
r

 =

 GSS
r GSN

r

GNS
r GNN

r

 ,
where GS

r is an mr × nr matrix of the first mr rows of Gr and GSS
r is an mr ×mr matrix of

the first mr columns of GS
r . Then, for the sampled individuals, we have

Y S
r = φGSS

r Y S
r +XS

r β +GS
rXrγ + ηrlmr + ε∗r, (6)

where Y S
r = (y1,r, · · · , ymr,r)

′ denotes the mr × 1 vector of observations on the dependent

variable of the sampled individuals, XS
r = (x1,r, · · · , xmr,r)

′ denotes the mr × p matrix of

observations on the control variables of the sampled individuals, and ε∗r = εSr + φGSN
r Y N

r

with εSr = (ε1,r, · · · , εmr,r)
′ and Y N

r = (ymr+1,r, · · · , ynr,r)′. As E(εr|Gr, Xr, ηr) = 0, we have

E(ε∗r|Gr, Xr, ηr) = E(εSr + φGSN
r Y N

r |Gr, Xr, ηr) = φGSN
r E(Y N

r |Gr, Xr, ηr).

To obtain E(Y N
r |Gr, Xr, ηr), we need to inspect the reduced form equation of the model. If
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(Inr − φGr) is nonsingular, the reduced form equation of (2) is given by

Yr = (Inr − φGr)
−1(Xrβ +GrXrγ) +

ηr
1− φlnr + (Inr − φGr)

−1εr. (7)

Let DN
r = [0(nr−mr)×mr , Inr−mr ] denote an (nr −mr)× nr matrix of the last (nr −mr) rows

of an identity matrix. Then, it follows from (7) that

E(Y N
r |Gr, Xr, ηr) = DN

r E(Yr|Gr, Xr, ηr) = DN
r (Inr − φGr)

−1(Xrβ +GrXrγ) +
ηr

1− φlnr−mr .

Therefore,

E(ε∗r|Gr, Xr, ηr) = φGSN
r E(Y N

r |Gr, Xr, ηr) = φGSN
r DN

r (Inr−φGr)
−1(Xrβ+GrXrγ)+

φηr
1− φG

SN
r lnr−mr .

As E(ε∗r|Gr, Xr, ηr) is not zero in general, the 2SLS estimator given by (4) may not be

consistent for (6).

To avoid the measurement error due to sampling, we consider the NLS approach sug-

gested by Wang and Lee (2013a) based on the reduced form equation (7). Let DS
r =

[Imr , 0mr×(nr−mr)] be an mr × nr matrix of the first mr rows of an identity matrix. Then,

Y S
r = DS

r Yr = DS
r (Inr − φGr)

−1(Xrβ +GrXrγ) +
ηr

1− φlmr + ur, (8)

where ur = DS
r (Inr −φGr)

−1εr. As E(ur|Gr, Xr, ηr) = 0, a regression estimator based on (8)

would be consistent.

First, to eliminate the incidental parameters ηr, we apply a within transformation using

the projector JSr = Imr − 1
mr
lmr l

′
mr
so that (8) becomes

JSr Y
S
r = JSr hr(θ) + JSr ur,

where hr(θ) = DS
r (Inr − φGr)

−1(Xrβ + GrXrγ) with θ = (φ, β′, γ′)′. The NLS estimator of
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θ is given by

θ̂nls = arg min
θ

∑r̄
r=1[Y S

r − hr(θ)]′JSr [Y S
r − hr(θ)]. (9)

Let JS = diag{JSr }r̄r=1 and D
S = diag{DS

r }r̄r=1. Following a similar argument in Wang

and Lee (2013a), the NLS estimator θ̂nls is consistent with an asymptotic distribution

√
n(θ̂nls − θ)

d→ N(0,Σnls),

where Σnls = limn→∞ n(C ′B′BC)−1C ′B′ΩBC(C ′B′BC)−1, with B = JSDS(I − φG)−1,

C = [G(I − φG)−1(Xβ +GXγ), X,GX] and Ω = σ2BB′.16

3.3 A simulation experiment

We conduct a Monte Carlo simulation in which we compare the 2SLS estimator which is

commonly used for the estimation of peer effects and the NLS estimator given in (9). The

setup of our simulations is as follows. The population numerosity is 500 nodes and the

number of separated networks is 50, resulting in subnetworks of 10 nodes. Each node is

allowed to have three connections as a maximum and zero as a minimum with a uniform

distribution within the subnetwork to which it belongs. Links are formed randomly. We

consider sampling rates of 40 percent, 60 percent, 80 percent, 100 percent . For each rate

and for each estimator, we estimate 5,000 times model (1) using one variable x. The control

variable x and the network fixed effect η are randomly generated by a normal distribution

N(0, 1). The innovation ε is generated by a normal distribution N(0, σ2). We set λ = 0.3,

β = 1.0, γ = 1.0, and σ2 = 2 in the data generating process.17 Table 2 reports the results of

our Monte Carlo study. The NLS estimates roughly coincide with the true parameter values.

The 2SLS estimates are downwards biased, with the magnitude of the bias increasing as the

sampling rate decreases. The NLS and 2SLS have similar performance when all individuals

16As in Wang and Lee (2013a), we assume the number of sampled individuals is proportional to n so that
the convergence rate of the estimator can be written in terms of n.
17Conclusions of our simulation study are not sensitive to the parameters values. For the sake of brevity

we do not show the output of all simulations.
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are sampled (i.e. the sampling rate is zero). We have also repeated our simulations when

varying the maximum number of connections (i.e. the network density) and using various

distributions (other from uniform). The results are stable across the different specifications.18

4 Estimation Results

Having in mind the simulation results, we move to the empirics and follow the same com-

parative approach among different methods.

Our main estimation results are reported in Table 3. The dependent variable is the time

students go to bed. During the school days, this variable captures the time allocated to sleep

- the later a student goes to bed, the lower is her/his sleep duration. The different columns

show the results with an increasing set of controls. In the first specification, we include

individual demographic characteristics, family background characteristics, contextual effects

(the average of peers’ characteristics) and network fixed effects. We introduce scores in

mathematics and history/social science in the second specification, and finally we include a

risky behaviour factor in the third specification.19 The results can be summarized as follows.

First, with the exception of peer effects, point estimates and standard errors are stable

across specifications and estimators. The results are in line with the expectations. Biddle

and Hamermesh (1990) model the demand for sleep as a function of wage and leisure. In

their model, the higher the value of an additional worked hour (i.e. the higher the wage), the

lower is the time allocated to sleep. Although we deal with students rather than workers, the

general mechanisms still apply. If one interprets the return of school performance as wage,

then we expect a negative correlation between student grade and sleep duration because

incentives to spend hours in studying increase over the school years. Similarly, if time spent

in risky behaviour is seen as leisure time, then an increase in risky activities should negatively

impact the amount of time allocated to sleep.

Second, the peer effect estimated coeffi cient is significantly different from zero for all

18We do not report these further results for brevity. They remain available upon request.
19The Risky Behavior Factor is the score of a factor analysis run on use of alchool, cigarette smoking and

general health. The results are robust to alternativfe sets of controls.
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specifications when estimated using the NLS estimator, while it is never significantly different

from zero when using 2SLS. In addition, our estimator shows both point estimates and

standard errors which are stable across specifications. In terms of magnitude, in the average

group of four people, an additional hour of sleep of each of the friends translates to about

45 minutes in the individual sleeping duration.

Note that this empirical evidence is in line with the simulation results, since the down-

wards bias here leads the 2SLS to suggest that no peer effect is at work, unlike with NLS.

5 Robustness Checks

5.1 Endogenous network formation

An important feature of our identification strategy is the use of network fixed effects. In

most cases individuals sort into groups non-randomly. For example, kids whose parents are

low educated or worse than average in unmeasured ways would be more likely to sort with

low human capital peers. If the variables that drive this process of selection are not fully

observable, potential correlations between (unobserved) group-specific factors and the target

regressors are major sources of bias. It is thus diffi cult to disentangle the endogenous peer

effects from the correlated effects, i.e. from effects arising from the fact that individuals in

the same group tend to behave similarly because they face a common environment. Net-

work fixed effect are a remedy for the selection bias that originates from the possible sorting

of individuals with similar unobserved characteristics into a network. The underlying as-

sumption is that such unobserved characteristics are common to the individuals within each

network. This is reasonable in our case study where the networks are quite small (see Section

2). However, if there are student-level unobservables that drive both network formation and

outcome choice, then this strategy fails.

Recently, Goldsmith-Pinkham and Imbens (2013) highlight the fact that endogeneity of

this sort can be tested. Signals of individual-level correlated unobservables would motivate

the use of parametric modeling assumptions and Bayesian inferential methods to integrate a

14



network formation with the study of behaviour over the formed networks. We present below

the results which are obtained by applying the approach proposed by Goldsmith-Pinkham

and Imbens (2013) in our case.

Model (6) can be written as follows:

Yr = φGrYr +Xrβ +GrXrγ + ηrlnr + ζvr + er︸ ︷︷ ︸
εr

, (10)

where vr = (v1,r, · · · , vnr,r)
′
denotes a vector of unobserved characteristics at the individual

level and er = (e1,r, · · · , enr,r)
′
is a vector of random disturbances.

Let us consider a network formation model where the variables that explain gij,r are

distances in terms of observed and unobserved characteristics between students i and j:

gij,r = α +
M∑
m=1

δm|xmi,r − xmj,r|+ θ|vi,r − vj,r|+ ηr + uij,r. (11)

Homophily in the unobserved characteristics implies that θl < 0, i.e. that the closer two

individuals are in terms of unobservables, the higher is the probability that they are friends.

If ζ is different from zero, then these unobservables have a direct effect on outcome as well.

A testable implication of the presence of this problem would be to find in the data a

positive and statistical significant correlation between the predicted probability to observe a

link between i and j, qij = ĝij, and the difference between residuals of i and j in the outcome

equation (6), |̂εi,r − ε̂j,r|, when gij = 1.

The intuition is as follows. If we observe in the data that two students are friends, i.e.

gij = 1, and a low value of qij, then it means that we are not explaining network formation

with the observed characteristics. As a result, we should find low values of qij associated

with low values of |̂εi,r − ε̂j,r|, i.e. friendship between i and j is explained by similarity

in unobserved rather than observed characteristics. A similar argument can be applied for

nonfriend pairs, gij = 0.
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Table 4 contains our evidence, which is obtained when performing a logit estimation

of model (11). The upper panel reports the results when gij = 1. We use the empirical

distributions of the predicted probabilities qlij to measure low values of qij. We choose three

different thresholds. Specifically, we define low values of qlij those below the 25% or 35% or

45% percentile. The results can be summarized as follows.

(i) First, we fail to predict the existence of a link in less than 4% of the cases.

(ii) Second, in those cases, we find no sign of correlation of the sort discussed above.

(iii) Those results are robust when moving through the different thresholds.

In order to get more confidence in our exercise, we perform the following experiment. We

deliberately leave out one individual characteristic, which will then act as unobserved factor

(to the econometrician). We exclude grade, which is relevant both in the link formation

process and in determining "bed time". If our exercise detects this problem, then we should

obtain a correlation between qij and |̂εi,r − ε̂j,r| positive and significantly different from zero.

The last columns of Table 4 report the results. One can see that the correlation is now

constantly different from zero, irrespective of the threshold used. The lower panel of Table

4 shows the results when gij = 0. The evidence is similar.

As a result, conditional on the (unusually) large set of individual characteristics provided

by the AddHealth, peer characteristics and network effects, we find no evidence of network

endogeneity.

5.2 Siblings

Let us conclude our analysis with a further robustness check.

The restricted-use version of the AddHealth dataset contains sibling pairs data. For each

respondent, we know who is the sibling, her/his characteristics, the nominated friends and

her/her friends’characteristics. We exploit this unique source of information to test whether

peer effects are still significantly different from zero if we introduce sibling fixed effects. If

our peer effect estimate is simply picking up unobserved individual characteristics, then we

should find no effect when washing away the influence of factors that are common for siblings

16



who grew up in the same family and consequently have been educated by the same persons,

lived in the same neighborhood and more generally faced a wide number of common shocks.

Almost all our sample of siblings (about 97%) are in the same social network, i.e. are

indirectly connected through a chain of friends. However, they have different direct friends.

So this is the source of variation which is exploited in our sibling fixed effect strategy.

Table 5 shows the estimation results. The coeffi cient estimates are reduced in magnitude

and the parameters are less precisely estimated due to the reduced sample size. However,

the substance of the results remain unchanged: the peer effect estimate remains significantly

different from zero when using the NLS estimator in all specifications.

6 Conclusions

There is remarkably little evidence on the determinant of individual differences in sleep

duration. By implementing sound econometric techniques, our study is able to provide novel

evidence in this respect. We have two contributions to the literature. One, we extend the

NLS estimator in Wang and Lee (2013a) to estimate social network models with sampled

observations on the dependent variable. Two, we analyze peer effects in sleeping behaviour

using a representative sample of U.S. teenagers, finding not-negligible endogenous effects.

That is, besides the impact of individual and friend characteristics, we show that the sleeping

behaviour of the friends is important in shaping own sleeping behaviour. Unique information

on siblings and their friends allows us to check the robustness of our results to unobserved

family factors.

Adolescent sleep patterns deserve particular attention because of their potential to affect

school performance. Side effects associated with sleep deprivation - inattention, irritability,

hyperactivity, and impulse control problems - are likely to show up in school. It is important

for educators to screen for sleep problems when concerns exist about a student’s attention or

behavior problems. Our analysis suggests that an effective intervention should not only be

measured by the possible sleep disorder reduction it implies but also by the group interactions
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it engenders.
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Figure 1: Kernel Density Estimate of “Bed Time” 

 

Notes. Kernel = Epanechnikov, bandwidth = 40.429. We report the distribution of student by the time they go to sleep. 

Figure 2: “Bed Time”and School Performance 

 

Notes. Kernel = Epanechnikov, bandwidth = 17.793. We report the distributions of students by school performance as measured by 

GPA, distinguishing between students that sleep more and less than average. GPA is the composite score of a factor analysis run on 

Mathematics score, English score, History/Social Science score and Science score. 

 

 



Table 1: Student Characteristics - PCA results - 

    

Variable Correlation with the first PC 

  

Body mass Index 0.19 

GPA -0.32 

General Health -0.39 

Use of Alchool 0.56 

Cigarette smoking 0.57 

Notes. The first PC explain 32% of the total variance. Body mass index is the ratio between weight (in kilos) and the height squared 

(in meters). GPA is the composite score of a factor analysis run on Mathematics score, English score, History/Social Science score and 

Science score. General health is derived from the question: “In general how is your health?”, coded as 1= excellent, 2= very good, 3= 

good, 4= fair, 5= poor. The use of alchool is measured using the question: “During the past twelve months,  how often did you: drink 

beer, wine, or liquor?”, coded as 0 = never, 1= once or twice, 2= once a month or less, 3= 2 or 3 days a month, 4= once or twice a 

week, 5= 3 to 5 days a week, 6= nearly every day. Cigarette smoking uses responses to the question: “During the past twelve months, 

how often did you: smoke cigarettes?”, coded as 0 = never, 1= once or twice, 2= once a month or less, 3= 2 or 3 days a month, 4= once 

or twice a week, 5= 3 to 5 days a week, 6= nearly every day.  

Figure 3: “Bed Time”and First PC 

 

Notes. Kernel = Epanechnikov, bandwidth = 40.429. We report the distributions of Type A students (blu line) and Type B students 

(red line). Type A students have high body mass index, poor school performance, poor general health, drink alcohol and smoke 

cigarettes, whereas Type B students have the opposite profile. 

 

 

 



Table 2: Simulation Results 

Sampling rate Method Parameter Point estimation Standard error MSE 

40%      

   0.293 0.152 0.152 

 NLS  1.002 0.093 0.093 

    1.013 0.179 0.180 

   0.255 0.546 0.548 

 2SLS  0.995 0.120 0.120 

    1.007 0.535 0.535 

60%      

   0.294 0.117 0.117 

 NLS  1.001 0.072 0.072 

    1.011 0.138 0.139 

   0.252 0.216 0.221 

 2SLS  0.997 0.081 0.081 

    1.013 0.222 0.222 

80%      

   0.294 0.100 0.101 

 NLS  1.001 0.062 0.062 

    1.009 0.116 0.116 

   0.272 0.132 0.135 

 2SLS  0.999 0.066 0.066 

    1.007 0.141 0.141 

100%      

   0.295 0.090 0.093 

 NLS  1.001 0.050 0.054 

     1.008 0.100 0.103 

   0.300 0.091 0.091 

 2SLS  1.000 0.054 0.054 

     1.002 0.101 0.101 

Notes. Number of replications =5000. Sample size = 500. Number of groups = 50. Number of nodes per group = 10. Maximum 

number of connections for a node = 3. Distribution of nodes’ connections: uniform. Model: y = Gy +  x + Gx+  . =  0.3,  =  

1.0,  =  1.0, σ^2 =  2. MSE= .,,;)ˆvar()ˆ( 2  
. 

 

 

 

 

 

 

 

 

 

 



 Table 3: Peer effect Estimation – Different method comparison- Increasing set of controls 

       

Variable 
NLS 2SLS 

Peer effect 0.723** 0.753** 0.726** -0.213 -0.435 -0.309 

 (0.328) (0.336) (0.367) (0.186) (0.300) (0.196) 

Female 5.579 4.628 5.217 -1.632 -1.350 -1.684 

 (5.470) (5.520) (5.566) (5.235) (5.247) (5.152) 

Grade 27.000*** 24.501*** 26.812*** 24.173*** 23.970*** 22.780*** 

 (5.694) (5.668) (5.652) (2.907) (2.787) (2.739) 

Black 14.624 17.895 22.084 16.208 19.995 22.707 

 (16.188) (16.121) (16.029) (12.509) (12.595) (15.402) 

Asian 20.565 20.006 25.703 24.249 25.255 26.762 

 (16.125) (15.976) (15.943) (15.151) (15.197) (14.933) 

Mathematics score  7.290** 8.491**  9.417*** 10.657*** 

  (3.331) (3.377)  (3.376) (3.338) 

History/Social Science 

score 
 -10.675*** -9.669***  -10.742*** -8.622*** 

  (3.434) (3.490)  (3.417) (3.358) 

Risky Behavior Factor   9.557***   10.373*** 

   (2.518)   (2.343) 

       

Family Characteristics yes yes yes yes yes yes 

Contextual effects 
yes yes yes yes yes yes 

Network fixed effects yes yes yes yes yes yes 

         

1,127 Sampled individuals over 3,700 Individuals in 77 Networks 
       

Notes: Robust standard errors in parentheses, *** p<0,01, ** p<0,05, * p<0,1. Family characteristics include occupation and education 

of the parents, household size as measured by the number of people living in the household, and a dummy taking value one if the 

respondent lives in a household with two parents (both biological and non biological) that are married. Parental education is the 

schooling level of the (biological or non-biological) parent who is living with the child, distinguishing between “never went to school”, 

“not graduate from high school”, “high school graduate”, “graduated from college or a university”, “professional training beyond a 

four-year college”, coded as 0 to 4. We consider only the education of the father if both parents are in the household. Mather and father 

occupation dummies include the following categories: manager, professional/technical, officer or sales worker, military or security, 

farm or fishery, other. “None” is the reference group The Risky Behavior Factor is the score of a factor analysis run on use of alcohol 

cigarette smoking and general health (see the notes to Table 1 for the definition of these variables). 

 

 

 

 

 

 

 

 



Table 4: Endogeneous network formation -Testable implications  

 

 
Dep var. |𝜺𝒊̂ − 𝜺𝒋̂| 

𝒈𝒊𝒋 = 𝟏 Full set of controls Grade unobserved  

Threshold  

(percentile %) 
T = 25% T = 35% T = 45% T = 25% T = 35% T = 45% 

             

𝒒𝒊𝒋 = 𝒈𝒊𝒋̂ Nc 168,158.2270 129,781.5472 Nc 61,490.1352** 44,023.8723* 

 Nc (116,612.652) (85,513.336) Nc (28,200.874) (23,788.400) 

 

    

  

Constant Nc 45.0100 -23.5495 Nc -127.8422 -12.2902 

 

Nc (85.440) (111.309) Nc (218.685) (209.029) 

Network fixed effects Nc Yes Yes Nc Yes Yes 

       

𝑷(𝒒𝒊𝒋 < 𝒕|𝒈𝒊𝒋 = 𝟏) Nc 3% 4% Nc 11% 16% 

𝑷(𝒒𝒊𝒋 > 𝑡|𝒈𝒊𝒋 = 𝟏) Nc 97% 96% Nc 89% 84% 

       

𝒈𝒊𝒋 = 𝟎 Full set of controls Grade unobserved 

Threshold  

(percentile %) 
T = 95% T = 85% T = 75% T = 95% T = 85% T = 75% 

             

𝒒𝒊𝒋 = 𝒈𝒊𝒋̂ -21.7473 -1.2709 -54.2087 -1,234.0554* -1,382.8678** -1,417.9023** 

 (140.834) (65.105) (40.550) (615.024) (671.879) (684.427) 

       

Constant 141.2311*** 124.2897*** 120.6849*** 719.5613*** 702.9793*** 635.2061*** 

 

(33.725) (8.810) (4.012) (77.366) (67.153) (50.571) 

Network fixed effects Yes Yes Yes Yes Yes Yes 

       

𝑷(𝒒𝒊𝒋 > 𝒕|𝒈𝒊𝒋 = 𝟎) 4% 12% 21% 8% 13% 22% 

𝑷(𝒒𝒊𝒋 < 𝑡|𝒈𝒊𝒋 = 𝟎) 96% 88% 79% 92% 87% 78% 

       

 

Notes: nc = not computed, number of observation < 30. Threshold  based on percentiles of the empirical distributions of qij. Robust 

standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.𝑞𝑖𝑗is estimated with a logit model. Full set of controls as listed in Table 

3 are included. 

 

 

 

 

 

 

 



Table 5: Robustness Check. Peer Effect Estimation with Sibling Fixed Effects  

          

Variable 
NLS 2SLS 

Peer effect 0,614* 0,547* 0,667* 0,653 0,439 0,128 

 (0,319) (0,298) (0,395) (1,063) (0,895) (0,943) 

Sex 18,243 10,507 -1,433 14,369 12,908 12,321 

 (16,608) (17,126) (16,901) (14,351) (14,361) (14,272) 

Grade 28,115*** 26,989*** 30,348*** 30,817*** 28,976*** 27,498*** 

 (6,045) (8,180) (7,950) (5,080) (4,729) (4,736) 

Black 57,389 29,551 115,329 -10,817 -7,852 -8,849 

 (101,692) (105,599) (106,494) (20,428) (20,016) (19,927) 

Asian 153,274* 90,641 132,325 76,334* 71,505* 70,623* 

 (78,011) (79,331) (79,610) (39,991) (39,423) (39,131) 

Mathematics score  4,332 10,200  13,557* 18,430** 

  (9,796) (10,216)  (8,151) (8,585) 

History/Social Science 
score  -15,418 -5,331  -5,764 -5,479 

  (11,049) (10,787)  (8,467) (8,431) 

Risky Behavior Factor   12,334   10,526 

   (7,743)   (6,825) 

       

Family Characteristics yes yes yes yes yes yes 

Contextual effects 
yes yes yes yes yes yes 

Sibling fixed effects yes yes yes yes yes yes 

       

171 Sampled individuals over 3,700 Individuals in 77 Networks 

        

Notes: Robust standard errors in parentheses, *** p<0,01, ** p<0,05, * p<0,1. Family characteristics include occupation and education 

of the parents, household size as measured by the number of people living in the household, and a dummy taking value one if the 

respondent lives in a household with two parents (both biological and non biological) that are married. Parental education is the 

schooling level of the (biological or non-biological) parent who is living with the child, distinguishing between “never went to school”, 

“not graduate from high school”, “high school graduate”, “graduated from college or a university”, “professional training beyond a 

four-year college”, coded as 0 to 4. We consider only the education of the father if both parents are in the household. Mather and father 

occupation dummies include the following categories: manager, professional/technical, officer or sales worker, military or security, 

farm or fishery, other. “None” is the reference group The Risky Behavior Factor is the score of a factor analysis run on use of alcohol 

cigarette smoking and general health (see the notes to Table 1 for the definition of these variables). 

 

 




