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Regime Switches in the Risk-Return Trade-off*

This paper deals with the estimation of the risk-return trade-off. We use a
MIDAS model for the conditional variance and allow for possible switches in
the risk-return relation through a Markov-switching specification. We find
strong evidence for regime changes in the risk-return relation. This finding is
robust to a large range of specifications. In the first regime characterized by
low ex-post returns and high volatility, the risk-return relation is reversed,
whereas the intuitive positive risk-return trade-off holds in the second regime.
The first regime is interpreted as a "flight-to-quality” regime.
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1 Introduction

The ICAPM of Merton (1973) states that the expected excess return on the stock market
is positively related to its conditional variance:

Ey(Ri1) = p+yVi(Reya), (1)

formalizing the intuition that a riskier investment should demand a higher expected re-
turn (relative to the risk-free return). However, in the empirical literature there is mixed
evidence on whether the coefficient v is indeed positive and statistically significant. Ex-
amples include Ghysels et al. (2005), Guo and Whitelaw (2006) and Ludvigson and Ng
(2007), who all find a positive risk-return trade-off.! Instead, Glosten et al. (1993), using
different GARCH specifications, find a negative relation between risk and return. Simi-
larly, Brandt and Kang (2004) model both the expected returns and conditional variance
as latent variables in a multivariate framework and find a negative trade-off.

Omitted variables could play a role to explain these conflicting results. For example,
Scruggs (1998) and Guo and Whitelaw (2006)) emphasize the need to include additional
variables in the risk-return relation to capture shifts in investment opportunities. Lettau
and Ludvigson (2001) suggest using the consumption wealth ratio in the risk-return rela-
tion. Ludvigson and Ng (2007) instead include factors summarizing the information from
a large set of predictors, and Lettau and Ludvigson (2010) find that a positive risk-return
relation is uncovered using lagged mean and lagged volatility as additional predictors.

Another reason for the conflicting results reported in the literature is the way of mod-
eling the conditional variance. Indeed, if one wants to estimate the risk-return trade-off
over a long period of time, the conditional variance is not directly observable and must
be filtered out from past returns. An attractive approach is the one developed by Ghysels
et al. (2005). They introduce a new estimator for the conditional variance - the MIDAS
(MIxed DAta Sampling) estimator - where the conditional variance depends on the lagged
daily returns aggregated through a parametric weight function. The crucial difference with
rolling window estimators of the conditional variance is that the weights on lagged returns
are determined endogenously and in a parsimonious way with the MIDAS approach. In this
paper, we follow the approach of Ghysels et al. (2005) and use a MIDAS estimator of the
conditional variance since it is likely that the MIDAS estimator of the conditional variance
can more fully describe the dynamics of market risk. It is also a convenient approach since
it permits to easily model the dynamics of the risk-return trade-off at different frequencies.

In this paper, we also consider regime changes in the parameter v entering before the
conditional variance to reflect the possibility of a changing relationship between risk and re-
turn.? The relation between risk and return should not necessarily be linear. For example,

French et al. (1987) find a strong negative relation between the unpredictable component of volatility
and expected returns whereas expected risk premia are positively related to the predictable component of
volatility.

2While writing the current version of this paper, we became aware of independent and simultaneously
written work by Arago et al. (2013) using a similar approach with European data.



Backus and Gregory (1993) and Whitelaw (2000) show that non-linear models are consis-
tent with a general equilibrium approach. Campbell and Cochrane (1999) underline the
time-varying nature of risk premia. In particular, Whitelaw (2000) estimates a two-regime
Markov-switching model with time-varying transition probabilities that include aggregate
consumption as a driving variable for the transition probabilities to account for the changes
in investment opportunities. He then finds a non-linear and time-varying relation between
expected returns and volatility. Alternatively, Tauchen (2004) criticizes the reduced form
nature of the models that estimate the risk-return trade-off. He develops a general equilib-
rium model where volatility is driven by a two factor structure with a risk premium that
is decomposed between risk premia on consumption risk and volatility risk.

More recently, Rossi and Timmermann (2010) proposed new evidence on the risk-return
relationship by claiming that the assumption of a linear coefficient entering before the
conditional variance is likely to be too restrictive. They use an approach based on boosted
regression trees and find evidence for a reversed risk-return relation in periods of high
volatility, whereas the relation is positive in periods of low volatility. They also propose to
model risk with a new measure, the realized covariance calculated as the product between
the changes in the Aruoba et al. (2009) index of business conditions and the stock returns.
We follow their approach and include this new measure of risk as a conditioning variable
for estimating the risk-return trade-off.

We estimate regime switching risk-return relations using 1-week, 2-week, monthly and
quarterly returns ranging from February 1929 to December 2010. Our empirical results can
be summarized as follows:

e There is strong evidence for regime changes in the risk-return relation as supported
by the test for Markov-switching parameters recently introduced by Carrasco et al.
(2013).

e In the first regime characterized by low ex-post returns and high volatility, the risk-
return relation is negative, whereas the risk-return relation is positive in the second
regime. This is consistent across all frequencies we consider and a wide range of
specifications (the inclusion of additional predictors, the use of time-varying transition
probabilities, the use of Student-t rather than normal innovations and the use of an
Asymmetric MIDAS estimator of the conditional variance).

e The first regime can be interpreted as a "flight-to-quality” regime. This evidence
corroborates the findings in Ghysels et al. (2013) who document that the Merton
model holds over samples that exclude financial crises, in particular the Great De-
pression and/or the subprime mortgage financial crisis and the resulting Great Reces-
sion. They also report that a simple flight-to-quality indicator, based on the ex post
extreme tail events, separates the traditional risk-return relationship from financial
crises which amount to fundamental changes in that relationship. In this paper we
show that a Markov switching regime model is indeed recovering a similar pattern.



The paper is structured as follows. Section 2 presents the model we use for estimating
the risk-return relation. Section 3 details the main results of the paper and a comparison
of the estimated conditional variances with GARCH specifications. Section 4 provides a
sensitivity analysis across a wide range of models as well as an out-of-sample forecasting
exercise. Section 5 concludes.

2 Estimation of the risk-return trade-off with a Markov-
switching MIDAS model

If returns are normally distributed, the MIDAS estimation of the risk-return trade-off
is such that:

Rt+1 ~ N(/L + 7mMIDAS) ‘/;MIDAS) (2>

However, the assumption of a constant parameter v can be too restrictive and miss
changes in investment opportunities due to e.g. changes in the level of market volatility.
We therefore propose to model regime changes in the parameter v through a Markov-
switching process that can account for time instability in the risk-return relation. We also
consider regime changes in the intercept u to account for time variation in the mean of the
returns. Equation (5) then becomes:

Rip1 ~ N(u(Sps1) + v(Sepr) VMDA MIDAS) (3)

where S;;1 is an M-state Markov chain defined by the following constant transition
probabilities:

pij = Pr(Si1 = j|S; = 1) (4)
M
> piy =10, je{1, ..., M} (5)
j=1

We use a MIDAS estimator for the conditional variance of the stock market since it has
already proven to be a useful specification for the estimation of the risk-return trade-off
(see e.g., Ghysels et al. (2005)). The MIDAS estimator of the conditional variance is based
on the lagged daily returns, which are weighted via a parametric weight function. Two
popular choices in the literature are the beta polynomial and the exponential Almon lag
weight functions:

wiif) = <Z (6)

e~



exp(rij + raj”)
o explha + rzf?)

w(j; 0) = (7)

The above weight functions can take a large variety of shapes depending on the value
of the two parameters x; and ko. In this paper, we use daily absolute returns rather than
squared returns as the use of absolute returns makes the estimated conditional variance
less sensitive to outliers. This is relevant as we include periods of high volatility in our
estimation sample (1929-2010). In addition, Ghysels et al. (2006) and Forsberg and Ghysels
(2007) find that realized power (i.e., the daily sum of the 5-min absolute returns) is the
best predictor of future volatility. The MIDAS estimator of the conditional variance is then
given by:

D
VMIPAS — NS~ wj|ryqf (8)
d=0

where N is a constant that corresponds to the number of traded days at the frequency
of the expected returns to insure that expected returns and conditional variance have the
same scale.?

The model is estimated by maximum likelihood via the EM algorithm since the EM
algorithm performs well for estimating non-linear models (see e.g., Hamilton (1990) and
Guérin and Marcellino (2013)).

Several papers estimated Markov-switching models for assessing the risk-return relation.
Whitelaw (2000) estimates a Markov-switching model with time-varying transition proba-
bilities with monthly aggregate consumption data and finds a non-linear and time-varying
risk-return relation. Mayfield (2004) introduces regime switching in a general equilibrium
model where market risk is characterized by periods of high and low volatility, which evolves
according to a Markov-switching process. He finds evidence for a shift in the volatility pro-
cess in 1940 and uncovers a positive risk-return trade-off. Kim et al. (2004) estimate a
Markov-switching model for stock returns. They find evidence for a negative and signif-
icant volatility feedback effect, which supports a positive risk-return trade-off in normal
times.

In particular, in a general equilibrium exchange economy, the sign of the risk-return
relation depends on the sign of the correlation in between the marginal rate of substitu-
tion (or ”stochastic discount factor”) and the market return (see e.g. Whitelaw (2000)).
Therefore, the parameter v(S;;1) entering before the conditional variance in equation (3)
is not directly interpretable as the coefficient of relative risk-aversion. Instead, v(S;.1)
corresponds to the product of the the volatility of the stochastic discount factor and the
correlation between the stochastic discount factor and the market return.

3N = {5,10,22,66} for regressions at 1-week, 2-week, monthly and quarterly horizons.



Table 1: Summary statistics for monthly US excess stock returns

Statistic 1929:02 - 2010:12  1964:02 - 2010:12
Mean 0.399 0.387
Standard deviation 5.581 4.370
Minimum -29.991 -21.954
Maximum 42.207 15.989
Number of observations 983 263

The last two columns report the sample statistics. Data are the S&P 500 composite portfolio returns

obtained from the Global Financial Database website.

3 Data and empirical results

3.1 Data

We use the S&P500 composite portfolio index ranging from February 1, 1929 to De-
cember 31, 2010 as a proxy for stock returns. The daily returns are taken as 100 times
the daily change in the index. The risk-free rate is obtained from the 3-month Treasury
bill, which is transformed at the daily frequency by appropriately compounding it. We use
excess returns in the empirical analysis of the paper and for brevity we refer to them as
returns. The data for stock returns are obtained from the Global Financial Data website.
The risk-free rate series from 1929 to 1933 are the ” Yields on Short-Term US Securities
Three-Siz Month Treasury Notes and Certificates, Three Month Treasury” from the NBER
Macrohistory database. The risk-free rate from 1934 to 2010 is the 3-month Treasury bill
taken from the Federal Reserve website.

Table 1 reports summary statistics for monthly excess returns. We consider two esti-
mation samples: from 1929:02 to 2010:12 and from 1964:02 to 2010:12. Following Ghysels
et al. (2005), we choose 1964 as the start year for the sub-sample analysis. The average
monthly excess return over the full sample sample is 0.399%, which is slightly higher than in
the shorter estimation sample 0.387%. The monthly excess returns over the full estimation
sample also have higher standard deviation and a larger range than the shorter estimation
sample. Figure 1 plots the data.

3.2 MIDAS and GARCH estimates of the risk-return relation

The MIDAS estimator of the conditional variance aggregates past absolute daily returns
so that to compute the conditional variance for a given month N, we use daily returns until

6



Figure 1: MONTHLY EXCESS STOCK RETURNS 1929:02 - 2010:12
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the last traded day of month N — 1. The past daily returns are aggregated with the beta
weight function since Ghysels et al. (2006) find that it performs well with S&P500 data.?
We then regress the returns of month N on the MIDAS estimator of the conditional variance
for month N to estimate the risk-return relation in equation (1).

The monthly realized absolute variance is computed from the within-month daily abso-

lute returns:
D

RVARt+1 = Z |7"t+1—d|
d=0
where D is the number of traded days in month ¢ 4 1. For brevity, in the sequel, we refer
to realized absolute variance simply as realized variance.

Table 2 reports the empirical results for the linear estimates of the risk-return trade-off
using returns Ry, for the LHS of equation (1) ranging from the weekly to the quarterly
frequency. The results show a positive relation between expected returns and conditional
volatility for both the sub-sample and full sample analyses and across all different fre-
quencies for the expected returns R;;;. However, the coefficient v entering before the
conditional variance is not significant at the 10% level except in the sub-sample analysis

4The use of exponential Almon lag weight function yields qualitatively similar results.

7



at the 2-week horizon. R% is the coefficient of determination from regressing R;,; on the
MIDAS estimator of the conditional variance. The explanatory power for the returns is low
and typically increasing at lower frequency. The last column of Table 2 reports the RZ,s,
which are obtained from the regression of the realized variance on the MIDAS estimator
of the conditional variance. MIDAS estimators of the conditional variance explain from
48.71% to 58.74% of the realized variance. Besides, the predictive power of the MIDAS
estimators is higher at the monthly frequency. Indeed, Figure 2 shows that the monthly
MIDAS estimator of the conditional variance tracks very well the monthly realized variance.

These results, however, differ slightly from the findings of Ghysels et al. (2005) since they
find a positive and significant risk-return trade-off. We see two reasons for this discrepancy:
(i) our MIDAS estimator of the conditional variance is calculated from the absolute returns
rather than the squared returns (ii) our estimation sample is longer as it includes the 2007-
2009 financial crisis, which is likely to affect significantly the results previously reported in
the literature.

Figure 2: MIDAS AND REALIZED VARIANCES 1929:02 - 2010:12

100 4 — Realized Variance — MIDAS variance (linear risk-return relation)
90 +
80 -

70 A

Another way to model the conditional variance is to use GARCH specifications. The
GARCH-in-mean specification is another estimate of the risk-return trade-off (see for ex-
ample French et al. (1987) and Glosten et al. (1993)). It is described by the following
equations:

Rt =i + ,}/V;GARCH + ¢ (9)

8



Table 2: Linear risk return relation: Ry ~ N(u 4 yV,MIPAS [/ MIDAS)

( 1 ) ~y LogL R% R?,
x10

Full sample analysis: February 1929 - December 2010

Quarterly  0.120  0.025 -1227.190 0.94% 57.38%
0.030] [0.273]

Monthly — 0.262  0.009 -2987.476 0.01% 58.74%
[1.334]  [0.664]

2weck  0.088  0.013 -5562.106 0.02% 56.26%
0.828]  [0.750]

l-week  0.066  0.007 -9532.267 0.01% 50.56%
[1.750]  [0.948]

Sub-sample analysis: February 1964 - December 2010

Quarterly -0.327  0.034  -642.927 0.33% 47.52%
0.339] [1.418]

Monthly 0271  0.008 -1593.271 0.10% 54.12%
0.709]  [0.285]

2-week  -0.001  0.026 -2992.930 0.03% 54.08%
:0.008] [2.214]

l-week  0.014  0.022 -5133.369 0.01% 48.71%
0.783]  [1.626]

The MIDAS estimator of the conditional variance is computed using 120 lags for the daily absolute
returns, which are aggregated with the beta polynomial weight function. T-statistics are computed from
the inverse of the outer product estimate of the Hessian and are reported in brackets. LogL is the value

of the log likelihood function. R% is the coefficient of determination when regressing the returns on

VMIDAS and R§2 is the coefficient of determination when regressing the realized variance on V,M1PAS



VEARCH — iyt adk 4 VRN (1)

The absolute GARCH-in-mean (ABSGARCH) specification is instead defined as:

(V;ABSG’ARCH)I/2 = w+ Oé|€t—1| + B(V;é?SGARCH)l/Q (11)

We use both Student-t innovations and Normal innovations and consider two different
sample sizes (1929-2010 and 1964-2010). Table 3 presents the results for the monthly
GARCH-in-mean and monthly absolute GARCH-in-mean specifications, estimated with
quasi-maximum likelihood via the EM algorithm. First note that the use of Student-t
innovations rather than Normal innovations increases the log-likelihood by about 20 in the
full sample case, which is a significant gain from estimating a single parameter v. In the
shorter sample size, the increase in the log-likelihood is lower (about 10). Second, the
estimates for v - the parameter entering before the conditional variance - are positive in
each case. However, it is significant only with the absolute GARCH-in-mean specification
with Student-t and Normal innovations in the full sample period 1929-2010. Finally, the
coefficients of determination R2,s are roughly equivalent to their MIDAS counterparts and
the R%s are higher, especially with Student-t innovations (see Table 2).

Figure 3 plots the ABSGARCH variance with the realized variance. Unlike the MI-
DAS variance, the ABSGARCH variance has troubles to accomodate the periods of high
volatility ranging from 1929 to 1940.

3.3 MIDAS estimates of the regime switching risk-return rela-
tion

Table 4 provides the estimates for the regime switching risk-return relation described
by equation (3).5 For the full sample analysis (1929-2010), we find that for regressions
at the 1-week, 2-week and monthly horizons, the coefficient =, is negative and significant,
while the coefficient in the second regime v, is positive and significant. In both regimes,
the coefficients 7, and 5 tend to be higher in absolute value at higher frequency, which
indicates a steeper risk-return relation at higher frequencies. For the sub-sample 1964-2010,
we find qualitatively similar results.%

An attractive feature of Markov-switching models is their ability to endogenously gener-
ate probabilities of being in a given regime. The unconditional probabilities of being in the
first regime are low (between 2.49% and 20.09%) and are - as expected - typically higher in
the full estimation sample (1929-2010) than in the shorter estimation sample (1964-2010).
Besides, in the regime switching case, the coefficients of determination R2,s are roughly
equivalent to the linear case, and so are the R%s. The monthly MIDAS conditional vari-
ance obtained from the regime switching risk-return relation is very close to the monthly
realized variance (see Figure 4).

5Note that considering regime changes only in the slope parameter v yields qualitatively similar results.
6Table C1 in the appendix provides additional estimation results with different estimation window sizes.
The results reported are consistent with those of Table 4.
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Figure 3: ABSGARCH AND REALIZED VARIANCES 1929:03 - 2010:12
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Figure 5 plots the weights attached to the lagged daily absolute returns at different
frequencies for the regime-switching risk-return relation. For the 1-week and 2-week hori-
zons, the weight function has a decreasing shape, whereas the weight function has a hump
shape at the monthly and quarterly horizons. In all cases, the weights are negligible after
80 traded days, which emphasizes the importance of including more than a month of daily
returns for measuring the conditional variance and the relevance of the MIDAS approach.

Figure 6 shows the estimated probability of being in the first regime (dotted line) and
the actual returns (solid line), the probability is high in periods of high volatility and low
returns. In particular, it peaks at one in all periods of financial turmoil.

To further understand the regime probabilities, we first run OLS regressions for the
smoothed probabilities of the first regime on the slope of the yield curve, the expected
returns, the changes in volatility and we control for business cycle conditions by including
the Aruoba et al. (2009) index of business cycle conditions in the regression. Second, we
use the same set of explanatory variables but instead run logistic regressions using as a
dependent variable a dummy variable that takes on a value of 1 if the smoothed probability
of being in regime 1 is higher than 0.5 and 0 otherwise. The results are reported in Table 5.
First, expected returns always affect negatively and significantly the regime probabilities.
Second, an increase in volatility is positively related to the regime probabilities. Third, the

12



Figure 4: MIDAS AND REALIZED VARIANCES 1929:02 - 2010:12
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slope of the yield curve affects negatively and significantly the regime probabilities, except
at the 2-week and quarterly horizons for the OLS regressions where the coefficient on the
slope of the yield curve is not significant at the 10% level. This means that when the slope
of the yield curve becomes less steep (resulting from a flight-to-quality episode for example)
the probability of the first regime increases. This holds even when controlling for business
cycle conditions as defined by the Aruoba et al. (2009) index of business cycle conditions.

Therefore, in the first regime - characterized by high volatility and low ex-post returns
- we find that there is a reversed risk-return relation with a low premium for volatility.
By contrast, in the second regime, a positive and significant risk-return relation holds. In
addition, the first regime can be interpreted as a flight-to-quality regime since the slope
of the yield curve appears to be negatively related to the regime probabilities of the first
regime. As noted earlier, this evidence corroborates the findings in Ghysels et al. (2013)
who estimate the risk-return relationship using a simple flight-to-quality indicator.

We now compare the different estimated variance processes in Table 6. Panel A reports
the means, variances and goodness-of-fit measures for the MIDAS (for both linear and
non-linear cases) and ABSGARCH conditional variances using the realized variance as a
benchmark. The goodness-of-fit measure is computed as one minus the sum of the absolute
differences between the estimated conditional variance and the realized variance divided by

13



Table 4: Regime-switching risk-return relation: Ryiq ~ N(u(Siy1) + v(Spy1)VMIPAS MIDAS)

P11 P22 th 142 o0 Yo LogL R3, R2,  P(S;=1)
(x10%)  (%10?)
Full sample analysis: February 1929 - December 2010
Quarterly  0.516 0.907 -13.106 -1.845 0.006  0.135 -1174.979 1.99% 52.76%  16.13%
[4.475] [32.219] [-4.143] [-1.738] [0.159] [4.377]
Monthly  0.255 0.934  -2.610 0.158 -0.346 0.066 -2915.114 0.02% 54.17% 8.11%
[3.352] [43.215] [-1.548] [0.517] [-3.223] [2.827]
2-week 0.269 0.938  -2.228 -0.137 -0.459 0.122 -5407.312 0.01% 56.38% 7.86%
[4.464] [72.979] [-2.810] [-0.886] [-6.281] [4.993]
1-week 0.315 0.914  -0.387 -0.088 -0.747 0.174 -9271.982 0.01% 50.79%  11.11%
(6.454] [37.292] [-0.843] [-1.009] [-9.878] [4.016]
Sub-sample analysis: February 1964 - December 2010
Quarterly  0.647  0.911 -5.256  -2.342  -0.035 0.138  -632.893 0.30% 50.48%  20.09 %
[3.402] [13.357] [-0.829] [-1.496] [-0.319] [3.444]
Monthly  0.202 0.944  -1.551  0.208 -0.303 0.043 -1583.303 0.02% 53.23% 6.54%
[1.059] [22.766] [-0.530] [0.446] [-1.360] [1.157]
2-week 0.104 0977  -1.716  -0.039  -0.789  0.061 -2951.106 0.04% 53.75% 2.49%
[1.039] [99.000] [-1.092] [-0.441] [-3.072] [3.322]
1-week 0.273 0.961 -0.238  -0.033  -0.924 0.094 -5070.936 0.01% 48.51% 5.08%
[3.005] [50.523] [-0.212] [-0.487] [-4.557] [4.675]

returns, which are aggregated with the beta polynomial weight function. T-statistics are calculated from

the inverse of the outer product estimate of the Hessian and are reported in brackets. LogL is the value

VMIDAS and R2, is the coefficient of determination when regressing the realized variance on

The MIDAS estimator of the conditional variance is calculated using 120 lags for the daily absolute

of the log likelihood function. R% is the coefficient of determination when regressing the returns on
VMIDAS,

p11 and pog are the transition probabilities of staying in the first and second regime, respectively.

P(S; = 1) is the unconditional probability of being in the first regime.
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Table 5: Explaining the regime probabilities P(S;;1)

Slope of the ~ AVM[PAS R ADS,
yield curve;

Panel A: OLS regression

1-week -0.006*** 0.016***  -0.039***  -0.009**
2-week -0.003 0.007***  -0.021*** -0.004

Monthly -0.007** 0.001 -0.023**F*  _0.011°**
Quarterly -0.010 0.001 -0.024%*%  -0.098***

Panel B: Logistic regression

1-week -0.372%%* 0.331 -1.450%** 0.286
2-week -1.163%%* 0.019 -1.378%FK  1.625%*
Monthly -0.591* 0.010 -1.086%** 0.229
Quarterly -0.375%* 0.004 -0.287##* - _1.308%**

Panel A reports the results of OLS regressions of the estimated smoothed probability of being in the first
regime P(S¢41) on the level of the slope of the yield curve, the changes in the MIDAS estimator of the
conditional variance AV M{PA5 the expected returns Ryy1 and the level of the ADS index of business

cycle conditions ADS;,1. Panel B reports results of logistic regressions using a dummy variable as a
dependent variable and the same set of explanatory variables. The dummy variable takes on a value of 1
if the smoothed probability of being in regime 1 is higher than 0.5 and 0 otherwise. The slope of the yield
curve is defined as the difference between the yields on a 10-year Treasury bond and the yields on a
3-month Treasury bill. *, ** *** indicate significance at the 10% level, 5% level and 1% level,
respectively. We only use the sub-sample 1964-2010 since we do not have data for the ADS index and the

weekly slope of the yield curve for the whole full sample.
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Figure 5: WEIGTHS FOR THE MIDAS ESTIMATOR OF THE CONDITIONAL VARIANCE
(REGIME-SWITCHING RISK-RETURN RELATION) AT DIFFERENT FREQUENCIES 1929:02
- 2010:12
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the sum of the realized variance. The means and the variances of the MIDAS estimators
of the conditional variances are close but slightly below the mean and the variance of the
realized variance. The mean and variance of the ABSGARCH variance are instead strongly
higher than the mean and variance of the realized variance. The goodness-of-fit measure
is higher for the MIDAS estimators of the conditional variance than the ABSGARCH
variance. This is particularly acute in the full sample case, which is expected since the
ABSGARCH variance has troubles to accommodate the high volatility episodes of the late
1920’s and 1930’s.

Panel B of Table 6 reports the cross-correlation matrix for the MIDAS (for both the lin-
ear and non-linear cases), the ABSGARCH conditional variances and the realized variance.
The MIDAS conditional variance in the linear case exhibits the highest correlation with
the realized variance for both samples. Not surprisingly, the MIDAS conditional variances
in the linear and non-linear cases are very highly correlated. The ABSGARCH conditional
variance is the second best correlated with the realized variance although they have smaller
goodness-of-fit values than the MIDAS conditional variances (see last column of Panel A).

Figure 7 provides further insights about the variance processes under scrutiny. Panels
A, B and C plot the MIDAS conditional variances (both in the linear and non-linear

16



Table 6: Comparison of the monthly variance processes

Panel A: Summary Statistics

Full sample analysis: February 1929 - December 2010

Estimator Mean Variance Goodness-of-fit
(x10%) (x10%)

Realized 16.376 133.302 -

MIDAS (linear)  16.170 104.876 0.722

MIDAS (MS) 16.180 109.682 0.706

ABSGARCH 27.836 2271.446 0.138

Sub-sample analysis: February 1964 - December 2010

Estimator Mean Variance Goodness-of-fit
(x10%) (x10%)

Realized 14.583 73.508 -

MIDAS (linear)  15.198 72.466 0.734

MIDAS (MS) 15.221 70.093 0.734

ABSGARCH 15.346 132.171 0.647

Panel B: Correlations

Full sample analysis: February 1929 - December 2010

Realized MIDAS (linear) MIDAS (MS) ABSGARCH
Realized 1 - - -
MIDAS (linear)  0.766 1 - -
MIDAS (MS) 0.736 0.988 1 -
ABSGARCH 0.759 0.715 0.706 1

Sub-sample analysis: February 1964 - December 2010

Realized MIDAS (linear) MIDAS (MS) ABSGARCH
Realized 1 - - -
MIDAS (linear)  0.736 1 - -
MIDAS (MS) 0.730 0.996 1 -
ABSGARCH 0.734 0.762 0.770 1

Panel A reports summary statistics for the MIDAS estimated conditional variances, the realized variance
and the ABSGARCH conditional variances with Student-t innovations. The goodness-of-fit measure is
calculated as one minus the sum of absolute differences between the estimated variance process and the
realized variance divided by the sum of realized variance. Panel B reports a cross-correlation matrix for

the different variance processes under scrutiny.



Figure 6: MONTHLY RETURNS AND PROBABILITIES OF BEING IN THE FIRST REGIME
1929:02-2010:12
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cases) and the ABSGARCH variance against the realized variance with a 45° line, which
indicates a perfect fit with the realized variance. The MIDAS variances show no clear sign
of asymmetry (panels A and B), whereas the estimated ABSGARCH variance (Panel C)
shows that the ABSGARCH variance tends to overestimate the realized variance. Finally,
Panel D of Figure 7 plots the MIDAS variance in the regime switching case against the
MIDAS variance in the linear case: this shows that the MIDAS variances are very close to
each other.
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Figure 7: SCATTERPLOTS OF THE MONTHLY VARIANCES 1929:02 - 2010:12
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3.4 Testing for Markov-switching

Testing for parameter changes in Markov-switching models is a difficult issue since under
the null hypothesis of constant parameters (i) the transition probabilities are not identified
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and (ii) the scores of the log-likelihood are identically equal to zero. Hansen (1992) and
Garcia (1998) proposed tests for Markov-switching but these tests require to estimate the
model under the alternative hypothesis and are often computationally very expensive. Re-
cently, Carrasco et al. (2013) have introduced a new test for Markov-switching parameters
that only requires to estimate the model under the null hypothesis of constant parameters.
Appendix A details the Carrasco et al. (2013) test for Markov-switching parameters. Ta-
ble 7 reports their test statistics for regressions at 1-week, 2-week, monthly and quarterly
horizons and the corresponding 5% bootstrapped critical values.

There is overwhelming evidence for regime changes in the risk-return relation since the
null hypothesis is rejected at the 5% level in all cases. Note that the test statistics are
higher for the full sample estimates (1929-2010) than in the shorter sample (1964-2010).
This is expected since the full sample contains periods of higher volatility and is thus more
prone to exhibit non-linear behavior. Besides, the test-statistics are higher with higher
frequency data for both samples, which indicates that the evidence for regime switching is
stronger at higher frequencies.

Note that the above test requires the parameters to be constant under the null so that we
cannot test a 3-regime model against a 2-regime model. We nevertheless report in appendix
B goodness-of-fit measures for these two models and the linear model. First, the linear
model is always outperformed in terms of SIC by the Markov-switching models. Second,
for the subsample period 1964-2010, the 2-regime model is preferred at the quarterly and
monthly horizons since it obtains the lowest SIC for these regressions, whereas the 3-regime
model gets the lowest SIC at the 1-week and 2-week horizons. Third, the 3-regime model
always obtains the lowest SIC for the full sample estimates. However, the three regime
switching parameters 7(S;;1) are not all significant at the 10% level at the monthly and
quarterly horizons. In addition, the SIC tends to overestimate the true number of regimes
(see e.g., Smith et al. (2006)), particularly when parameter changes are small.

Finally, we also consider models with switches in all parameters of the model (that is,
i, v and the MIDAS parameters k1 and kz). In this way, the weight function also changes
across regimes. The SICs for these models are reported in the fifth column of Table B
in the appendix, which shows that these models are always outperformed by the regime-
switching models with constant parameters x; and ks (except for the sub-sample analysis
at the monthly horizon).

We therefore decide to keep the model with two regimes and regime changes in the
parameters p and v in the subsequent analysis.
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Table 7: Tests of regime switching in the risk-return relation

Carrasco et al. 5% Bootstrapped

test statistic critical values
Quarterly 9.265 2.724
Monthly 14.126 3.443
1929-2010
2-week 21.456 4.522
1-week 54.707 5.605
Quarterly 4.358 2.445
Monthly 3.987 3.060
1964-2010
2-week 6.044 3.807
1-week 17.121 4.397

This table shows the Carrasco et al. (2013) test statistics and the corresponding 5% bootstrapped critical
values. Under the null hypothesis, there is no regime switching in the risk-return relation. The

bootstrapped critical values are based on 1000 Monte Carlo repetitions. Appendix A details the test.
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4 Sensitivity analysis

4.1 Additional predictors in the risk-return relation

The lack of conditioning variables is often cited as a source of misspecification for the
estimates of the risk-return trade-off (see e.g., the literature review in Lettau and Ludvigson
(2010)). Guo and Whitelaw (2006) use two additional predictors: the consumption-wealth
ratio from Lettau and Ludvigson (2001) and the stochastically detrended risk-free rate to
approximate the hedge component of Merton (1973)’s model. Ludvigson and Ng (2007)
use factors extracted from a large macroeconomic and financial database to enlarge the in-
formation set. Both studies conclude that including additional predictors allows to uncover
a positive risk-return trade-off.

Table 8 presents the results when we include as additional predictors the lagged returns
Ry, the slope of the yield curve Slope;, the dividend-price ratio (D/P); and the realized
covariance C'ov; in the risk-return relation. The realized covariance measure is computed
as the product between the daily changes in the Aruoba et al. (2009) index of business
cycle conditions and the expected returns. Rossi and Timmermann (2010) show that
the changes in the ADS index are highly correlated with the changes in consumption, the
realized covariance can then be seen as an approximation for the time-varying risk premium
on consumption that is likely to be important for the estimation of the risk-return trade-off
as emphasized by Tauchen (2004). More generally, it can be seen as a way of controlling
for business cycle conditions. Monthly realized covariance is calculated as follows:

N
Covy =Y AADS;, * Riy
i=1
where AADS;; is the daily change in the ADS index on day ¢ of month ¢ and R, is the
corresponding stock return.

The slope of the yield curve is taken as the difference between the 10-year Treasury
bond and the 3-month Treasury bill. The dividend-price ratio is the difference between
the log of dividends and the log of prices, where dividends are 12-month moving sums of
dividends. The data for the 10-year Treasury bond and the dividend-price ratio are from
Robert Schiller’s website.

Note that, unlike a large part of the literature, we consider returns sampled from the
weekly to the quarterly frequency to describe more precisely the dynamics of the risk-return
trade-off. The results suggest the following.” First, across all frequencies we consider,
the risk-return relation is reversed in the first regime, while it is positive in the second
regime. Second, the risk-return relation is typically steeper at higher frequencies since
the coefficients entering before the conditional variance are higher in absolute value at
higher frequencies. Third, expected returns, the dividend-price ratio and the slope of yield
curve enter positively and significantly in the risk-return relation at the quarterly horizon.
Overall, the results do not differ much from Table 4, suggesting that the detected regime
switching risk-return relation is robust to the inclusion of additional predictors.

"Note that the full sample analysis does not include Cov; as an additional predictor since the ADS
index of business cycle conditions is not available before 1960. Likewise, we do not include the slope of the
yield curve and the dividend-price ratio at the 1-week and 2-week horizons due to data availability.
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4.2 Controlling for asymmetries in stock returns

Modelling asymmetries in the process for conditional variance is potentially important
since one can expect different responses of the conditional variance following negative or
positive shocks. For example, Glosten et al. (1993) find that the sign of the risk-return
trade-off becomes negative when allowing for a different effect of positive and negative
returns on the conditional variance. Ghysels et al. (2005) instead introduce the asymmetric
MIDAS estimator of the conditional variance, which gives different weights to the lagged
returns depending on whether they are positive or negative. They find that negative returns
have a stronger effect on the conditional variance upon impact but this effect dies away
quickly, whereas positive returns have a smaller effect upon impact but are more persistent.

The asymmetric MIDAS estimator of the conditional variance is given by:

VtASYMIDAS ¢de Ky, ko ) greal +(2— ¢ de ki, Ky) 1= d|7"t al] (12)
d=0

where 1,” , is the indicator function for {r,_; < 0} and 1; 4 is the indicator function for
{Tt—d 2 0}

Table 9 reports the results when estimating a linear and regime switching risk-return
relation at the monthly frequency with an Asymmetric MIDAS estimator of the conditional
variance. First, the results are broadly consistent with Table 4. In the linear case, the
coefficients v entering before the conditional variance are not significant at the 10% level for
both the full sample and sub-sample analyses. In the regime-switching case, the risk-return
relation is reversed in the first regime, while the traditional positive risk-return trade-off
holds in the second regime. Besides, the coefficient ¢ - that governs the weights allocated
to the negative returns - is higher than 1 in all cases, which suggests that negative returns
have a stronger impact on the conditional variance than positive returns. In addition, the
asymmetric MIDAS estimator cannot be rejected by a standard likelihood ratio test of no
asymmetries (i.e. k7 = Kk, K5 = Ky, ¢ = 1) except for the regime switching risk-return
relation in the full sample case where the p-value exceeds .05.

Figure 8 plots the weights attached to the positive and negative returns, the overall
asymmetric weights and the symmetric weights for a regime switching risk-return relation.
The positive weights have a bell shape with a maximum effect on the conditional variance
after about 20 traded days. The negative returns have a maximum effect on the conditional
variance upon impact and the effect dies away after 80 traded days.® Overall, the symmetric
and asymmetric weights are relatively close from each other.

8We find the same shapes for the weight functions when we use Student-t rather than Normal innova-
tions and the exponential Almon lag weigth function rather than the beta polynomial weight function for
aggregating the lagged daily absolute returns. We use 80 daily lagged returns for estimating the Asym-
metric MIDAS estimator of the conditional variance since we encountered convergence problems of the
algorithm when we included more than 80 daily lagged returns.
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Figure 8: WEIGHTS FOR THE ASYMIDAS ESTIMATOR OF THE CONDITIONAL VARIANCE
(REGIME SWITCHING RISK-RETURN RELATION) 1929:02-2010:12
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4.3 The risk-return trade-off with Student-t innovations

As an additional robustness check, we use a Student-t rather than a Normal distribution
for the innovations since the Student-t distributions can better account for outliers that
are present in stock returns than the Normal distribution. The log-likelihood function is
then written as:

Lr(0) = " 1(0) (13)

where:

1+v v 1y (41 €r41(Sit1)?
lia(0) = lnF(T)—lnF(§)—0.5ln(77(1/—2))—O.5ln(VtMID )—Tln(l—i—(y - z)vthDAs)
and,

€t+1(5t+1) = Rt+1 - M(St+1) - V(St+1)VtMIDAS

I['(.) is the Gamma function, v are the degrees of freedom for the Student-t innovations and
0 is the vector of parameters to be estimated. The maximum likelihood estimates §MLE
are obtained with the EM algorithm and are reported in Table 10.
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First, the coefficient 7, is always negative, whereas the coefficient 7, is always positive
in the second regime. Both coefficients are significant across all frequencies we consider
(except for 77 in the sub-sample analysis at the quarterly horizon). This is in line with
the results reported in Table 4. However, in absolute terms, the coefficient ~; is smaller
than in Table 4 (except at the quarterly frequency). This is not surprising since the use
of Student-t innovations - unlike Normal innovations - makes the estimates less sensitive
to outliers. As a result, the first regime now captures periods with less volatile and less
negative returns. This translates into higher unconditional probabilities of being in the first
regime. Conversely, the coefficients v, are typically higher than in Table 4 as the second
regime captures fewer episodes of negative returns and moderate volatility, which are now
mostly associated with the first regime.

The Rgz’s are comparable to those reported in Table 4, expect for regressions at the
monthly and quarterly frequencies where the coefficients of determination for the realized
variance R?, are higher for the full sample (1929-2010) estimates.

Table 11 reports the results when regressing the smoothed probabilities of being in the
first regime on the slope of the yield curve, the expected returns, the changes in volatility
and the Aruoba et al. (2009) index of business cycle conditions. We also report in Table 11
results for logistic regressions using as a dependent variable a dummy variable that takes
on a value of 1 if the smoothed probability of being in regime 1 is higher than 0.5 and
zero otherwise. First, the coefficients for the slope of the yield curve are negative (except
at the 1-week horizon for OLS regressions and 1-week and monthly horizons for logistic
regressions). Second, the changes in volatility affects positively the regime probabilities
(except at the 1-week horizon). Third, the coefficients on expected returns are negative
and strongly significant, which is consistent with the results reported in Table 5. The
coefficient on the ADS index of business cycle conditions is negative and significant (except
at the 2-week horizon in the case of logistic regressions). Overall, the results are broadly
consistent with those presented in Table 5 in that the first regime tends to be characterized
by a flattening of the yield curve, a weakening of economic activity as well as an increase
in volatility owing to negative returns.

4.4 Time-varying transition probabilities

In this sub-section, we consider the use of time-varying transition probabilities since (i)
we have provided evidence that some variables can explain the pattern of the probability of
being in a given regime; (ii) it can help us to better understand the regime probabilities; (iii)
it could improve the fit with respect to Markov-switching models with constant transition
probabilities. Filardo (1994) relaxed the assumption of constant transition probabilities
and use logistic functions to bound the transition probabilities between 0 and 1. The
transition probability matrix P is then given by:

p_ | w'=az) p?=1-p)
pi=1-q(z) p=p(z)
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Table 11: Explaining the regime probabilities P(S;;1)

Slope of the ~ AVM[PAS R ADS,
yield curve;

Panel A: OLS regression

1-week 0.002* -0.019%*F%  -0.094***  -0.003*

2-week -0.001 0.004 -0.065%**  -0.023%**
Monthly -0.004 0.002* -0.045%F%  _0.022%**
Quarterly -0.021* 0.001*  -0.028%*FF -0.056***

Panel B: Logistic regression

1-week 0.017 -0.516%  -6.636***  -0.322%**
2-week -0.143 0.089 -2.703*%FF  -0.081

Monthly 0.013 0.050 -2.250%**  -0.667*
Quarterly -0.367 0.059* -0.727%F  -0.735*

Panel A reports the results of OLS regressions of the estimated smoothed probability of being in the first
regime P(S¢41) on the level of the slope of the yield curve, the changes in the MIDAS estimator of the
conditional variance AV M{PA5 the expected returns Ryy1 and the level of the ADS index of business

cycle conditions ADS;,1. Panel B reports results of logistic regressions using a dummy variable as a
dependent variable and the same set of explanatory variables. The dummy variable takes on a value of 1
if the smoothed probability of being in regime 1 is higher than 0.5 and 0 otherwise. The slope of the yield
curve is defined as the difference between the yields on a 10-year Treasury bond and the yields on a
3-month Treasury bill. *, ** *** indicate significance at the 10% level, 5% level and 1% level,
respectively. We only use the sub-sample 1964-2010 since we do not have data for the ADS index and the
weekly slope of the yield curve for the whole full sample.

29



where: 5 o
q(zt) . €$p( 1+ QZt)

1+ exp(0y + 0y2,)

and:

p(z) = exp(0s + 042;)
Y1+ eap(fs + 042

We use alternatively the slope of the yield curve (Slope;yq), the dividend-price ratio
((D/P)t+1), the lagged returns (R;) and the realized covariance measure (Covyq) calculated
as the product between the changes in the ADS index and the returns as driving variables
for the transition probabilities. All regressions are sampled at the monthly frequency.

Table 12 displays the results. First, the coefficients v; and -, are close to the estimates
reported in Table 4: across all indicators, the risk-return relation is negative in the first
regime, while it is positive in the second regime. None of the indicators enters significantly
for explaining the transition probabilities of the first regime, whereas all indicators enter
significantly at the 5% level for explaining the transition probabilities of the second regime
(except for the slope of the yield curve for the full sample analysis and the dividend-price
ratio for the sub-sample analysis).

Table 12 also reports a likelihood ratio test for testing the statistical significance of
the time-varying transition probabilities. Under the null hypothesis of constant transition
probabilities: 6, = 6, = 0. The null hypothesis of no time variation in the transition
probabilities cannot be rejected at the 5% level when using the slope of the yield curve
(full sample analysis) and the dividend-price ratio (sub-sample analysis). This provides
mixed evidence for the use of time-varying transition probabilities for estimating the risk-
return trade-off with regime switching, but overall confirms the robustness of the results
we have obtained.

4.5 Out-of-sample forecasting exercise

In this section, we look at the forecasting performance of the MIDAS estimators for
forecasting realized volatility. We use the MIDAS estimators from both the linear and
regime-switching risk return relation and we take as benchmark a standard AR(1) model
for realized variance following Ludvigson and Ng (2007). Unlike Welch and Goyal (2008)
and Campbell and Thompson (2008) - who study the prediction of excess returns - we
concentrate our analysis on the prediction of realized variance since the MIDAS approach
is primarily designed for modeling the conditional variance.

The design of the out-of-sample forecasting exercise is the following. The first estimation
sample goes from February 1929 to December 1969 so that we first forecast the realized
volatility for January 1970. We then recursively expand the sample size until we reach the
end of the sample December 2010. Therefore, the evaluation sample goes from January 1970
to December 2010. We concentrate our analysis on one-step-ahead forecasts. We forecast
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1-week, 2-week, 3-week and monthly realized volatility, and compute relative mean squared
forecast error (RMSE) and relative mean absolute forecast error (RMAE):

Sy (VAPAS — RV AR, 4)?

SSEL(VAED RV AR, )2

t+1]t

RMSE =

Z;le |VMIDAS . RVARH_1|

t+1t

ST WVARD RV AR, |

t+1]t

RMAFE =

where V;{‘fl]‘fms is the one-step-ahead MIDAS forecast of the realized variance RV AR, 1,

and Vﬁﬁgl) is the one-step-ahead forecast of the realized variance RV AR, from an AR(1)
model. Table 13 presents the results. For monthly forecasts, the AR(1) model outperforms
both MIDAS conditional forecasts. At the monthly horizon, the MIDAS forecasts from the
linear risk-return relation are better than the MIDAS forecasts obtained from the regime
switching risk-return relation. However, at the 1-week horizon, MIDAS forecasts are better
than the forecasts from the AR(1) model. The MIDAS forecasts from the regime-switching
risk-return relation are (slightly) better than the ones from the linear risk-return relation.
This reasonably confirms the in-sample evidence since we found more evidence for regime

switching at the 1-week frequency than at the monthly frequency (see Table 7).
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Table 13: Forecasting Realized Volatility: one-step-ahead forecast

Model RMSE RMAE

l-week ~ MIDAS (linear) 0.920  0.915
MIDAS (MS) 0915  0.913

2-week  MIDAS (linear) 1.078  1.015
MIDAS (MS) 1.072 1.013

3-week  MIDAS (linear) 1.196  1.043
MIDAS (MS) 1185  1.039

Monthly MIDAS (linear) 1.178  1.097
MIDAS (MS)  1.292  1.128

This table reports the relative mean squared forecast error (RMSE) and the relative mean absolute
forecast error (RMAE) for forecasting one-step-ahead realized volatility. The two competing models -
MIDAS (linear) and MIDAS (MS) - are two MIDAS estimators of the conditional variance: one is
estimated from a linear risk-return relation and the other one is estimated from a regime-switching
risk-return relation. The benchmark model is a standard AR(1) model for realized volatility. The first
estimation sample goes from February 1929 to December 1969 and is recursively expanded until we reach
the end of the sample December 2010.
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5 Conclusions

This paper provides evidence for time instability in the risk-return relation. We allow
for regime changes in the risk-return relation through regime switching in the parameter
entering before the conditional variance as well as the intercept of the risk-return rela-
tion. The conditional variance is modeled with a MIDAS estimator, which is less prone to
misspecifications than GARCH models. We consider as dependent variable the US excess
stock returns ranging from the weekly to the quarterly frequency and use two different
estimation samples: (i) from February 1929 to December 2010 and (ii) from February 1964
to December 2010. We find strong statistical evidence for regime changes in the risk-return
relation using the test recently introduced by Carrasco et al. (2013) for Markov-switching
parameters.

In the first regime, we find that the risk-return relation is reversed. Conversely, in the
second regime, we uncover the traditional positive risk-return relation. The regime prob-
abilities for the first regime are associated with a decline in stock returns, an increase in
volatility as well as a flattening of the yield curve, which is concomitant with flight-to-
quality episodes. Our findings help to understand why the literature has reported conflict-
ing results and are qualitatively close to the recent contribution of Rossi and Timmermann
(2010). Our results are also robust to a wide range of modifications: (i) the inclusion of
additional predictors, (ii) the use of Student-t rather than Normal innovations, (iii) the use
of time-varying rather than constant transition probabilities, (iv) an asymmetric MIDAS
estimator of the conditional variance.

One possible avenue for further research on this topic would be to study the dynamics
of the risk-return trade-off using intra-daily returns. This could be done along the lines of
the work by Rosenberg and Engle (2002) and Bakshi et al. (2003).
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Appendix A: We describe here the Carrasco et al. (2013) test for Markov switching
parameters.

Denote l;le) and lt(,29) the first and second derivatives of the log-likelihood function with
respect to the regime switching parameters 6 (where 6 = (u,)).”

Due to the presence of nuisance parameters 8 that are not identified under the null
hypothesis of no Markov-switching, the Carrasco et al. (2013) test statistic for Markov-
switching parameters T'S can be constructed as a sup-type test, that is:

1 r ?
sup T'S = sup5 (max <O, AZA* )>
€*'é

where

u(9) = or (15 + 0000 ) Bl + 2 5 o (10 Bl

s<t

and € is the vector of residuals from the OLS regression of $7,(3) on the entire vector of
derivatives and 7); is the latent variable.

We find the maximum value of TS using a fixed range of values for p € [—0.98,0.98]
with increment 0.01.

We compute critical values with bootstrapping techniques. We first generate M data
series using the maximum likelihood estimates as true parameter values such that:

ygm) ~ N(fi+ ,AW;MIDAS’ V;MIDAS)

where m is the m' sample. We then estimate each of the M samples with maximum
likelihood and compute the test statistic by maximizing T.S™ over a fixed range of values
for p € [—0.98,0.98]. The 5% bootstrapped critical value is then calculated as the 95
percentile of the distribution of the M test statistics 77.5(™).

9Note that here we kept the MIDAS parameters x; and xo constant since the first derivatives with
respect to these parameters is often zero, which is problematic when we regress () on the vector of
derivatives.
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Table Appendix B: Comparison of linear, 2-regime and 3-regime models for the
risk-return trade-off

M=1 M =2 M =2 M=3 at least one y(Siy1)
switch in is not significant
k1 and Ko when M =3

1929-2010
Quarterly LogL -1227.190  -1174.979  -1178.063  -1151.743 YES
SIC 2464.439  2370.074  2381.272  2338.690
Monthly  LogL -2087.476  -2915.114  -2926.598  -2887.108 YES
SIC 5986.922  5854.169  5883.121  5816.111
2-week LogL -5562.106  -5407.312  -5421.151  -5362.068 NO
SIC 11137.531 10841.261 10875.599 10770.749
1-week LogL -9532.267  -9271.982  -9304.984  -9160.942 NO
SIC 19079.056  18573.009  18646.277 18372.714
1964-2010
Quarterly LogL -642.927 -632.893 -633.033 -627.604 YES
SIC 1294.942  1283.960  1288.785 1287.013
Monthly  LogL -1593.271  -1583.303  -1580.036  -1579.456 YES
SIC 3197.544  3188.610 3187.578  3197.419
2-week LogL -2992.930  -2951.106  -2951.495  -2939.819 NO
SIC 5998.212  5926.914  5933.868  5922.866
1-week LogL -5133.369  -5070.936  -5084.024  -5042.182 NO
SIC 10280.293 10168.9819 10201.936 10131.809

LogL is the value of the log-likelihood function, SIC is the Schwarz Information Criterion. The fifth
column reports the LogL, and SIC for the models with switches in u, v and the MIDAS parameters k1
and ko so that the weight function aggregating the lagged daily returns also changes across regime. The
last column indicates whether at least one parameter (S¢+1) entering before the conditional variance is
not significant at the 10% confidence level when a 3-regime model is estimated. Entries in bold outline

the model with the lowest SIC for each regression.
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Appendix C: Additional robustness checks

We report below additional estimation results of the risk-return trade-off with MIDAS
conditional variance and regime switching risk-return relation:

e We stop the estimation in December 2000 for both the full sample and sub-sample
analyses following Ghysels et al. (2005) and Mayfield (2004) so that we do not include
the 2007-2009 financial crisis in the estimation sample.

e We consider estimates of the risk-return trade-off at the weekly frequency for two
short estimation samples 2001-2010 and 2007-2010.

e We use as a proxy for stock returns CRSP data rather than the S&P 500 composite
portfolio.

e We use a model with a NBER dummy variable entering before the estimate of the
conditional variance. The NBER dummy variable takes a value of 1 if the US economy
is in recession and a value of 0 is the US economy is in expansion according to the
NBER business cycle dating committee.

e We use a credit spread (defined as the difference between the yields on the Moody’s
Corporate bond (all industries - BAA) and the yields on the 10-year US Treasury
bond) instead of the slope of the yield curve as an additional predictor in the risk-
return relation.

o We use the realized variance instead of a MIDAS estimator for the conditional vari-
ance.

First, the results shown in Panel A of Table C1 are consistent with the results reported
previously so that the choice of the estimation window does not seem to drive our results.
Second, using CRSP value-weighted portfolio as a proxy for stock market returns yield
comparable results to those obtained using the S&P500 composite portfolio index. Third,
estimating the risk-return relation with a NBER dummy variable entering before the es-
timate of the conditional variance to take into account the fluctuations of the business
cycle also yields an inverted risk return relation during US recessions, while the risk-return
relation remains positive during US expansions. Fourth, using the lagged realized variance
as a proxy for the conditional variance (instead of a MIDAS estimator) does not affect
qualitatively the results. Finally, using the credit spread as an additional predictor in the
risk-return relation yields similar results than when using the slope of the yield curve.
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