
 
 
 
 

DISCUSSION PAPER SERIES 

 
 
 

     ABCD 
 

www.cepr.org 
 
 

Available online at: www.cepr.org/pubs/dps/DP9663.php
 www.ssrn.com/xxx/xxx/xxx

  

 
 

 
 
 
 

No. 9663 
 

SOLVING AND ESTIMATING 
INDETERMINATE DSGE MODELS 

 
 

Roger E A Farmer and Vadim Khramov 
 
 

  INTERNATIONAL MACROECONOMICS 
 
 

 



ISSN 0265-8003 

SOLVING AND ESTIMATING INDETERMINATE DSGE 
MODELS 

Roger E A Farmer, UCLA, Bank of England and CEPR 
Vadim Khramov, International Monetary Fund 

 

Discussion Paper No. 9663 
September 2013 

Centre for Economic Policy Research 
77 Bastwick Street, London EC1V 3PZ, UK 

Tel: (44 20) 7183 8801, Fax: (44 20) 7183 8820 
Email: cepr@cepr.org, Website: www.cepr.org 

This Discussion Paper is issued under the auspices of the Centre’s research 
programme in  INTERNATIONAL MACROECONOMICS.  Any opinions 
expressed here are those of the author(s) and not those of the Centre for 
Economic Policy Research. Research disseminated by CEPR may include 
views on policy, but the Centre itself takes no institutional policy positions. 

The Centre for Economic Policy Research was established in 1983 as an 
educational charity, to promote independent analysis and public discussion 
of open economies and the relations among them. It is pluralist and non-
partisan, bringing economic research to bear on the analysis of medium- and 
long-run policy questions.  

These Discussion Papers often represent preliminary or incomplete work, 
circulated to encourage discussion and comment. Citation and use of such a 
paper should take account of its provisional character. 

Copyright: Roger E A Farmer and Vadim Khramov 



CEPR Discussion Paper No. 9663 

September 2013 

ABSTRACT 

Solving and Estimating Indeterminate DSGE Models* 

We propose a method for solving and estimating linear rational expectations 
models that exhibit indeterminacy and we provide step-by-step guidelines for 
implementing this method in the Matlab-based packages Dynare and Gensys. 
Our method redefines a subset of expectational errors as new fundamentals. 
This redefinition allows us to treat indeterminate models as determinate and to 
apply standard solution algorithms. We provide a selection method, based on 
Bayesian model comparison, to decide which errors to pick as fundamental 
and we present simulation results to show how our procedure works in 
practice. 

JEL Classification: C11, C13 and C54 
Keywords: Bayesian estimation, Dynare and indeterminacy 

Roger E A Farmer 
Department of Economics  
UCLA  
Bunche Hall 8283  
Box 951477  
Los Angeles, CA 90095-1477  
USA  
 
Email: rfarmer@econ.ucla.edu  
 
For further Discussion Papers by this author see: 
www.cepr.org/pubs/new-dps/dplist.asp?authorid=106388 

Vadim Khramov 
International Monetary Fund 
700 19th Street 
Washington, DC 20431  
USA  
  
 
 
Email: vkhramov@imf.org  
 
For further Discussion Papers by this author see: 
www.cepr.org/pubs/new-dps/dplist.asp?authorid=174012 

*We would like to thank the participants of UCLA seminars for their useful 
comments and suggestions. We gratefully acknowledge the comments from 
seminar participants at the DYNARE workshop in Paris on July 2nd, 2010, 
where Roger Farmer first presented the method of solving indeterminate 
models by redefining one or more of the endogenous errors as exogenous 
errors during his lectures. This study was written while Farmer was a Senior 
Houblon-Norman Fellow at the Bank of England. Farmer would like to thank 
the Trustees of the Houblon-Norman Fund for their support. The ideas 
expressed herein do not reflect those of the Bank of England, nor those of the 
Monetary Policy Committee or the IMF. 

Submitted 15 September 2013 



1 Introduction

It is well known that linear rational expectations (LRE) models can have an

indeterminate set of equilibria under realistic parameter choices. Lubik and

Schorfheide (2003) provided an algorithm that computes the complete set of

indeterminate equilibrium, but their approach has not yet been implemented

in standard software packages and has not been widely applied in practice.

In this paper, we propose an alternative methodology based on the idea

that a model with an indeterminate set of equilibria is an incomplete model.

We propose to close a model of this kind by treating a subset of the non-

fundamental errors as newly defined fundamentals.

Our method builds upon the approach of Sims (2001) who provided a

widely used computer code, Gensys, implemented in Matlab, to solve for the

reduced form of a general class of linear rational expectations (LRE) models.

Sim’s code classifies models into three groups; those with a unique rational

expectations equilibrium, those with an indeterminate set of rational ex-

pectations equilibria, and those for which no bounded rational expectations

equilibrium exists. By moving non-fundamental errors to the set of funda-

mental shocks, we select a unique equilibrium, thus allowing the modeler to

apply standard solution algorithms. We provide step-by-step guidelines for

implementing our method in the Matlab-based software programs Dynare

and Gensys.

Our paper is organized as follows. In Section 2, we provide a brief lit-

erature review. Section 3 discusses the general solution method for inde-

terminate models and in Section 4, we discuss the choice of expectational

errors that should be moved to the set of fundamental shocks and we prove

that there is a one-to-one correspondence between variances and covariances

of shocks under different selection methods. In Section 5, we apply our

method to a simple New-Keynesian model and in section 6 we show how to

implement our method in Dynare. Section 7 provides a practical method for

choosing which shock to define as fundamental and Section 8 provides a brief
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conclusion.

2 Related Literature

Blanchard and Kahn (1980) showed that a LRE model can be written as a

linear combination of backward-looking and forward-looking solutions. Since

then, a number of alternative approaches for solving linear rational expecta-

tions models have emerged (King andWatson, 1998; Klein, 2000; Uhlig, 1999;

Sims, 2001). These methods provide a solution if the equilibrium is unique,

but there is considerable confusion about how to handle the indeterminate

case. Some methods fail in the case of a non-unique solution, for example,

Klein (2000), while others, e.g. Sims (2001), generate one solution with a

warning message.

All of these solution algorithms are based on the idea that, when there is

a unique determinate rational expectations equilibrium, the model’s forecast

errors are uniquely defined by the fundamental shocks. These errors must be

chosen in a way that eliminates potentially explosive dynamics of the state

variables of the model.

McCallum (1983) has argued that a model with an indeterminate set

of equilibria is incompletely specified and he recommends a procedure, the

minimal state variable solution, for selecting one of the many possible equi-

libria in the indeterminate case. Farmer (1999) has argued instead, that we

should exploit the properties of indeterminate models to help understand

data, but with the exceptions of an early piece by Farmer and Guo (1995)

and a more recent literature (Belaygorod and Dueker, 2009; Castelnuovo and

Fanelli, 2013; Hirose, 2011; Zheng and Guo, 2013) that follows the approach

of Lubik and Schorfheide (2004), there has not been much empirical work

that seeks to formally estimate indeterminate models. That is in contrast to

a large body of theoretical work, surveyed in Benhabib and Farmer (1999),

which demonstrates that the theoretical properties of models with indetermi-
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nacy present a serious challenge to conventional classical and new-Keynesian

approaches.

The empirical importance of indeterminacy began with the work of Ben-

habib and Farmer (1994) who established that a standard one-sector growth

model with increasing returns displays an indeterminate steady state and

Farmer and Guo (1994) who exploited that property to generate business

models driven by self-fulfilling beliefs. More recent New-Keynesian models

have been shown to exhibit indeterminacy if the monetary authority does not

increase the nominal interest rate enough in response to higher inflation (see,

for example, Clarida, Galí, and Gertler (2000); Kerr and King (1996)). Our

estimation method should be of interest to researchers in both literatures.

3 Solving LRE Models

Consider the following -equation LRE model. We assume that  ∈ 

is a vector of deviations from means of some underlying economic variables.

These may include predetermined state variables, for example, the stock of

capital, non-predetermined control variables, for example, consumption; and

expectations at date  of both types of variables.

We assume that  is an  × 1 vector of exogenous, mean zero, shocks
and  is a × 1 vector of endogenous shocks.1 The matrices Γ0 and Γ1 are

of dimension  × , possibly singular, Ψ and Π are respectively,  ×  and

×  known matrices. Sims (2001) shows that this way of representing a

LRE is very general and most LRE models that are studied in practice by

economists can be written in this form.

Using the above definitions, we will study the class of linear rational

1Sims (2001) allows  to be autoregressive with non zero conditional expectation. We
assume, instead, that  always has zero conditional mean. That assumption is unrestric-
tive since an autoregressive error can always be written in our form by defining a new state

variable, ̃ and letting the innovation of the original variable, , be the new fundamental
shock.
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expectations models described by Equation (1),

Γ0 = Γ1−1 +Ψ +Π (1)

where we assume that

−1 () = 0 and −1 () = 0 (2)

We define the  ×  matrix Ω,

−1
³






´
= Ω (3)

which represents the covariance matrix of the exogenous shocks. We refer to

these shocks as predetermined errors, or equivalently, predetermined shocks.

The second set of shocks, , has dimension . Unlike the , these shocks

are endogenous and are determined by the solution algorithm in a way that

eliminates the influence of the unstable roots of the system. In many impor-

tant examples, the  have the interpretation of expectational errors and, in

those examples,

 =  −−1 ()  (4)

3.1 The QZ Decomposition

Sims (2001) shows how to write equation (1) in the form"
11 12

0 22

#"
̃1

̃2

#
=

"
11 12

0 22

#"
̃1−1
̃2−1

#

+

"
Ψ̃1

Ψ̃2

#
 +

"
Π1

Π2

#
 (5)

where the matrices   , Ψ̃ and Π̃ and the transformed variables ̃ are
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defined as follows. Let

Γ0 =   and Γ1 =   (6)

be the  decomposition of {Γ0Γ1} where  and  are ×  orthonormal

matrices and  and  are upper triangular and possibly complex.

The  decomposition is not unique. The diagonal elements of  and

 are called the generalized eigenvalues of {Γ0Γ1} and Sims’s algorithm
chooses one specific decomposition that orders the equations so that the

absolute values of the ratios of the generalized eigenvalues are placed in

increasing order that is,

||  || ≥ ||  || for    (7)

Sims proceeds by partitioning ,  ,  and  as

 =

"
11 12

0 22

#
  =

"
11 12

0 22

#
 (8)

 =

"
11 12

21 22

#
  =

"
11 12

21 22

#
 (9)

where the first block contains all the equations for which ||  ||  1

and the second block, all those for which ||  || ≥ 1 The transformed
variables ̃ are defined as

̃ =  (10)

and the transformed parameters as

Ψ̃ = Ψ, and Π̃ = Π (11)
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3.2 Using the QZ decomposition to solve the model

The model is said to be determinate if Equation (5) has a unique bounded

solution. To establish existence of at least one bounded solution we must

eliminate the influence of all of the unstable roots; by construction, these are

contained in the second block,

̃2 = −122 22̃2−1 + −122
³
Ψ̃2 + Π̃2

´
 (12)

since the eigenvalues of −122 22 are all greater than one in absolute value.

Hence a bounded solution, if it exists, will set

̃2 = 0 (13)

and

Ψ̃2 + Π̃2 = 0 (14)

Since the elements of ̃2 are linear combinations of 2, a necessary con-

dition for the existence of a solution is that there are at least as many non-

predetermined variables as unstable generalized eigenvalues. A sufficient con-

dition requires checking that the rows ofh
Ψ̃2 Π̃2

i
 (15)

are linearly independent so that there is at least one solution to Equation

(14) for the endogenous shocks,  as a function of the fundamental shocks,

. In the case that Π̃ is square and non-singular, we can write the solution

for  as

 = −Π̃−12 Ψ̃2 (16)

More generally, Sims’ code checks for existence using the singular value de-

composition of (15).

To find a solution for ̃1 we take equation (16) and plug it back into the
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first block of (5) to give the expression,

̃1 = −111 11̃−1 + −111
³
Ψ̃1 − Π̃1Π̃

−1
2 Ψ̃2

´
 (17)

Even if there is more than one solution to (14) it is possible that they all

lead to the same solution for ̃1. Sims provides a second use of the singular

value decomposition to check that the solution is unique. Equations (13)

and (17) determine the evolution of
n
̃

o
as functions of the fundamental

shocks {} and, using the definition of
n
̃

o
from (11), we can recover the

original sequence {}.

3.3 The Indeterminate Case

There are many examples of sensible economic models where the number of

expectational variables is larger than the number of unstable roots of the

system. In that case, Gensys will find a solution but flag the fact that there

are many others. We propose to deal with that situation by providing a

statistical model for one or more of the endogenous errors.

The rationale for our procedure is based in economic theory. Agents

situated in an environment with multiple rational expectations equilibria

must still choose to act. And to act rationally, they must form some forecast

of the future. As long as that forecast is constructed in the same way each

period, we can model the process of expectations formation by specifying

how the forecast errors covary with the other fundamentals.

If a model has  unstable generalized eigenvalues and  non-fundamental

errors then, under some regularity assumptions, there will be  =  − 

degrees of indeterminacy. In that situation we propose to redefine  non-

fundamental errors as new fundamental shocks. This transformation allows

us to treat indeterminate models as determinate and to apply standard so-

lution and estimation methods.

Consider model (1) and suppose that there are  degrees of indetermi-
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nacy. We propose to partition the  into two pieces,  and  and to

partition Π conformably so that,

Γ0
×


×1

= Γ1
×

−1
×1

+ Ψ
×


×1
+

∙
Π
×

Π
×

¸⎡⎢⎣ 
×1

×1

⎤⎥⎦  (18)

Here,  is an  × 1 vector that contains the newly defined fundamental
errors and  contains the remaining  non-fundamental errors.

Next, we re-write the system by moving  from the vector of expecta-

tional shocks to the vector of fundamental shocks:

Γ0
×


×1

= Γ1
×

−1
×1

+

∙
Ψ
×

Π
×

¸ e
(+)×1

+ Π
×

2
×1

 (19)

where we treat

e
(+)×1

=

⎡⎢⎣ 
×1

×1

⎤⎥⎦  (20)

as a new vector of fundamental shocks and  as a new vector of non-

fundamental shocks. To complete this specification, we define Ω̃

Ω̃
(+)×(+)

= −1

⎛⎜⎝
⎡⎢⎣ 

×1

×1

⎤⎥⎦
⎡⎢⎣ 

×1

×1

⎤⎥⎦
⎞⎟⎠ ≡

⎛⎜⎝ Ω
×

Ω
×

Ω


×
Ω
×

⎞⎟⎠  (21)

to be the new covariance matrix of fundamental shocks. This definition

requires us to specify  (+ 1 + 2) 2 new variance parameters, these are

the  (+ 1) 2 elements of Ω , and  new covariance parameters, these

are the elements of Ω . By choosing these new parameters and applying

Sims’ solution algorithm, we select a unique bounded rational expectations

equilibrium. The diagonal elements of Ω̃ that correspond to  have the

interpretation of a pure ‘sunspot’ component to the shock and the covariance
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of these terms with  represent the response of beliefs to the original set of

fundamentals.

Our approach to indeterminacy is equivalent to defining a new model

in which the indeterminacy is resolved by assuming that expectations are

formed consistently using the same forecasting method in every period. Our

newly transformed model can be written in the form of Equation (1), but

the fundamental shocks in the transformed model include the original fun-

damental shocks , as well as the vector of new fundamental shocks, .

Indeterminacy is resolved by specifying a new set of fundamental parameters

contained in the covariance matrix Ω̃. This matrix specifies the variance of

the ‘sunspot shocks’ and their covariance with the original fundamentals.

4 Choice of Expectational Errors

Our approach raises the practical question of which non-fundamentals should

we choose to redefine as fundamental. Here we show that, given a relatively

mild regularity condition, there is an equivalence between all possible ways

of redefining the model.

Definition 1 (Regularity) Let  be an indeterminate equilibrium of model

(1) and use the  decomposition to write the following equation connecting

fundamental and non-fundamental errors.

Ψ̃2 + Π̃2 = 0 (22)

Let  be the number of generalized eigenvalues that are greater than or equal

to 1 and let    be the number of non-fundamental errors. Partition 

into two mutually exclusive subsets,  and  such that ∪ =  and
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partition Π̃2 conformably so that

Π̃2
×


×1

=

∙
Π̃2
×

Π̃2
×

¸⎡⎢⎣ 
×1

×1

⎤⎥⎦  (23)

The indeterminate equilibrium, , is regular if, for all possible mutually ex-

clusive partitions of ; Π̃2 has full rank.

Regularity rules out situations where there is a linear dependence in the

non-fundamental errors and all of the indeterminate LRE models that we are

aware of, that have been studied in the literature, satisfy this condition.

Theorem 1 Let  be an indeterminate equilibrium of model (1) and let 

be an exhaustive set of mutually exclusive partitions of  into two non-

intersecting subsets; where

(
 ∈  |  =

Ã

×

 
×

!)
. Let 1 and 2 be

elements of  and let Ω̃1 be the covariance matrix of the new set of funda-

mentals,
£
 

¤
associated with partition 1. If  is regular then there is

a covariance matrix Ω̃2, associated with partition 2 such that the covariance

matrix

Ω = 

⎛⎜⎜⎝
⎡⎢⎣ 





⎤⎥⎦
⎡⎢⎣ 





⎤⎥⎦

⎞⎟⎟⎠  (24)

is the same for both partitions. 1 and 2, parameterized by Ω̃1 and Ω̃2, are

said to be equivalent partitions.

Proof. See Appendix A.

Corollary 1 The joint probability distribution over sequences {} is the
same for all equivalent partitions.
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Proof. The proof follows immediately from the fact that the joint probability

of sequences {}, is determined by the joint distribution of the shocks.
While the question of which set of expectational errors should be fun-

damental shocks is irrelevant from the theoretical standpoint, it becomes

important in estimation. Some choices of  are more natural than others.

When using Bayesian methods, it is usual to place a prior over the elements of

Ω̃ and a simple prior for one choice of  may lead to a complicated expression

for some alternative partition. In practice, we find that the results of alter-

native priors over different partitions leads to different parameter estimates.

In the following sections, we illustrate these ideas with two examples.

5 Example: A Simple New-Keynesian Model

In this section, we show how to apply our proposed method to a simple form

of the New-Keynesian model, discussed in Lubik and Schorfheide (2004),

where we simplify the model by assuming that there is only one fundamental

shock. This model has three equations:

[+1] + [+1] =  +  (25)

 =  +  (26)

 = [+1] +  (27)

where  is output,  is inflation,  is the interest rate, and  is a funda-

mental interest rate shock. The first equation is a consumption-Euler equa-

tion, the second is a monetary policy rule, and the third is a New-Keynesian

Phillips curve. This model has two forward-looking variables and one funda-

mental shock.

Substituting  into Equation (25), this model can be reduced to the

11



following system of two equations:

 +  −[+1]− [+1] = − (28)

− +  − [+1] = 0 (29)

Writing the system out in Sims’ notation gives,

Γ0 = Γ1−1 +Ψ +Π (30)

where the parameter matrices Γ0 Γ1 Ψ and Π are given by the expressions,

Γ0 =

⎡⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

1  −1 −
− 1 0 −

⎤⎥⎥⎥⎥⎦ Γ1 =
⎡⎢⎢⎢⎢⎣
0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎦  (31)

Ψ =

⎡⎢⎢⎢⎢⎣
0

0

−
0

⎤⎥⎥⎥⎥⎦  Π =

⎡⎢⎢⎢⎢⎣
1 0

0 1

0 0

0 0

⎤⎥⎥⎥⎥⎦  (32)

and the vector of variables,  is,

 = [  [+1] [+1]]

 (33)

The fundamental and non-fundamental shocks are

 = [] and,  = [1 2]
  (34)

where

1 =  −−1 []  2 =  −−1 []  (35)
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5.1 The Determinate Case

The determinacy properties of this example are determined by the roots of

the matrix Γ−10 Γ1, and, in the determinate case, some tedious, but straight-

forward algebra, reveals that the vector of expectational errors is described

by the following function of the fundamental shock:

 = −


 + 1

"
1



#
 (36)

In this case, the first two equations of system (30), yield the following solution

for  and , "




#
= − 

 + 1

"
1



#
 (37)

Using the symbols 2 and 2 for the variances of  and , and 2, for the

variance of , some further algebra gives,

2 =

µ


 + 1

¶2
2 2 =

µ


 + 1

¶2
22

In this example, when there is a unique determinate equilibrium, the dy-

namics of real variables are completely determined by the dynamics of the

fundamental shock.

5.2 The Indeterminate Case

Suppose instead that the equilibrium is indeterminate, a case which occurs if

0    1 (Lubik and Schorfheide, 2004). When the model is indeterminate,

we propose two new alternative models, described below by equations (38)

13



and (39).2"




#
=

"


+ 1  − 



−


1


#"
−1
−1

#
(38)

+

"
0

−−12 0

#
 +

"
1

− 

−1
++−1
+++1

#
1 +

"


0

#
−1

"




#
=

"


+ 1  − 



−


1


#"
−1
−1

#
(39)

+

"
−−11 0

0

#
 ++

"
−−11 2

1

#
2 +

"


0

#
−1

In this example, the analog of Equation (22) is (40), which links the funda-

mental and non-fundamental errors,

2 = −−12
£
0 + 11

¤
 (40)

and where 0, 1, 2 and  are known functions of the underlying parameters.

This simple example illustrates that the choice of which expectational

error to move to the set of fundamental shocks is irrelevant for identification

purposes. By specifying 1 as fundamental, Equation (40) determines the

variance-covariance properties of 2 with  and 1. By picking 2 as the

fundamental, the same equation determines the variance-covariance proper-

2Sims’ code will always generate a purely autoregressive solution in the state vector 

but, in the indeterminate case, one of the lagged expectations, either −1 () or−1 (),
will appear as a lagged state. If we are interested in an equivalent representation that uses

 and  as state variables, we must rewrite the system by finding an expression for the

lagged expectation in terms of realized values of  and  and the lagged shock. Rewriting
the system in this way introduces a moving average error term and the resulting system of

equations is a VARMA(1,1). This is related to the point made by Lubik and Schorfheide

(2004) who show that models with indeterminacy display higher order dynamics than

determinate models.
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ties of 1. In both cases, the variance of the two expectational shocks and

their covariance with the fundamental shock are linearly related.

Notice however, that the variance of the non-fundamental shock will, in

general, depend on the coefficients 0 1 and 2 which are functions of all of

the other parameters of the model. It follows that, when we place restrictions

on one representation of the model, for example, by setting covariance terms

to zero, those restrictions will have non-trivial implications for the behavior

of the observables.

6 Implementing our Procedure in Dynare

This section shows how to implement our method in the popular software

package, Dynare.3 Consider the following elaboration of the model described

in (25)—(27) which complicates that example by adding two additional shocks.

 = [+1]− ( −[+1]) +  (41)

 = [+1] +  +  (42)

 = −1 + (1− )(1 + 2) +  (43)

Here,  is output,  is inflation, and  is the interest rate. The first equa-

tion is a consumption-Euler equation, the second one is the New-Keynesian

Phillips curve, and the third one is a monetary policy rule. The model is

indeterminate of degree one if the monetary policy is passive, 0  1  1,

and determinate if the monetary policy is active, 1  1.

3Dynare is a Matlab-based software platform for handling a wide class of economic mod-

els, in particular dynamic stochastic general equilibrium (DSGE). Visit www.dynare.org

for details.
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Table 1: Determinate Model

Variable Definitions var  ;

varexo _ _ _;

Parameter Definitions parameters   _ 1

2   ;

Model equations model(linear);

 =  (+1)−  ∗ (−  (+1)) +  ∗ _;
 = 095 ∗  (+1) +  ∗ +  ∗ _;
 = _ ∗ (−1) + (1− _) ∗
(1 ∗ + 2 ∗ ) +  ∗ _;
end;

In the case of the determinate model, Dynare finds the unique series of

non-fundamental errors that keeps the state variables bounded. In the case of

the indeterminate model, running Dynare produces an error with a message

“Blanchard-Kahn conditions are not satisfied: indeterminacy.” For regions

of the parameter space where the code produces that message, we provide

two alternative versions of the model that redefine one or other of the non-

fundamental shocks as new fundamentals. We refer to these cases as Model

1, where 1 = −−1[] is a fundamental shock, and Model 2, where it is

2 = −−1[] and we present Dynare code to estimate the determinate

case and two indeterminate cases in Tables 1, 2 and 3.

Tables 2 and 3 show how to amend the code from Table 1 when one of

the non-fundamental errors is redefined as fundamental. In Table 2, we

show how to change the model by redefining 1 as fundamental and Table

3 presents an equivalent change to Table 1 in which 2 becomes the new

fundamental. We have represented the new variables and new equations in

that table using bold typeface.

16



Table 2: Indeterminate Model 1: 1 =  −−1 [] is new fundamental

Variable Definitions var  xs;

varexo _ _ _ sunspot;

Parameter Definitions parameters   _ 1

2    sigmasun;

Model equations model(linear);

 = xs−  ∗ (−  (+1)) +  ∗ _;
 = 095 ∗  (+1) +  ∗ +  ∗ _;
 = _ ∗ (−1) + (1− _) ∗
(1 ∗ + 2 ∗ ) +  ∗ _;
xs (−1)= x+ sigmasun ∗ sunspot;
end;

Table 3: Indeterminate Model 2: 2 =  −−1 [] is new fundamental

Variable Definitions var  pis;

varexo _ _ _ sunspot;

Parameter Definitions parameters   _ 1

2    sigmasun;

Model equations model(linear)

 =  (+1)−  ∗ (− pis) +  ∗ _
 = 095 ∗ +  ∗ +  ∗ _
 = _ ∗ (−1) + (1− _) ∗
(1 ∗ + 2 ∗ ) +  ∗ _;
pis (−1)= pi+ sigmasun ∗ sunspot;
end;

The following steps explain the changes in more detail. First, we define a

new variable,  ≡  [+1] and include it as one of the endogenous variables
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in the model. This leads to the declaration:

    xs; (44)

which appears in the first line of Table 2. Next, we add an expectational

shock, which we call sunspot, to the set of exogenous shocks. In our code

we call the other three fundamental shocks, _, _ and _. This

leads to the Dynare statement

 _ _ _ sunspot; (45)

which appears in row 2. Next, we add a new standard deviation parameter,

we call this, sigmasun, to the parameter vector. This leads to the parameter

definition statement

parameters   _ 1 2  (46)

  sigmasun;

Then we replace  (+1) by  in the consumption-Euler equation, which

becomes,

 = xs− 1 ∗ (− (+1)) +  ∗ _; (47)

and we add a new equation that defines the relationship between ,  and

the new fundamental error:

xs(−1) = x− sigmasun ∗ sunspot; (48)

Similar steps apply in the case of Model 2, but with 2 taking the role

of 1 Note that, by substituting expectations of forward-looking variables

(+1) in Model 1, and (+1) in Model 2, with xs and pis, respectively,

we decrease the number of forward-looking variables by one. Since these
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variables are no longer solved forwards, we must add an equation — this

appears as Equation (48) — to describe the dynamics of the new fundamental

shock.

7 A Model Selection Criterion

In this section, we propose a selection criterion to decide which expectational

errors to move to the set of fundamental shocks in the model with  expec-

tational variables and  degrees of indeterminacy. For a given data set, we

recommend that the economist write down the determinate model, together

with a set of indeterminate models, determined by all possible permutations,

 ∈  of partitions of the non-fundamental shocks. The decision as to which

indeterminate models are a priori plausible will be a matter of judgement,

often guided by simple examples.

In the new-Keynesian example, there is a substantial body of work which

indicates how to partition the parameter space into determinate and inde-

terminate cases. To specify a class of determinate models, for example, the

researcher would place a prior on the parameter space that puts zero weight

on models for which 0 ≤ ||  1. The determinate model can then be com-
pared with an alternative in which the prior restricts || to be greater than
1. In this example, the researcher has two choices as to which endogenous

shock should be redefined as fundamental. In our simulations, described be-

low, we placed priors over correlation coefficients and we assumed that those

coefficients have uniform distributions in the open interval (−1 1).
To check the plausibility of our selection we criterion, we simulated data

from equations (41)—(43) and we attempted to recover the parameters by

estimating the model under two alternative model specifications. Tables 4

and 5 illustrate our results.
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Table 4: Model 1: Model 2:

1 is fundamental 2 is fundamental

Prior Model Probability 05 05

Log Marginal Density −9772 −9825
Posterior Model Probability 0995 0005

Data comes from Model 1

Table 4 shows the result of an experiment in which we generated data from

Model 1, in which we treated 1 as a new fundamental, and we compared

two alternative estimation methods, one treating 1 as fundamental and the

other treating 2 as fundamental. We placed a prior weight of 05 on the two

models. The table shows that the posterior odds ratio, computed in Dynare,

overwhelmingly favors the true model.

Table 5: Model 1: Model 2:

1 is fundamental 2 is fundamental

Prior Model Probability 05 05

Log Marginal Density −84872 −82806
Posterior Model Probability 0 1

Data comes from Model 2

Table 5 constructs the same comparison when model 2 is the true model

and, once again, estimates on the simulated data overwhelmingly favor the

true model. Although our theoretical results illustrate that there is an equiv-

alence between alternative representations of the model, that equivalence

imposes strong parameter restrictions on the variance properties of the en-

dogenous shock. Our estimation results show that in practice it is possible

to distinguish between models. Models 1 and 2 are not equivalent because

we do not impose those restrictions when we move between representations.
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8 Conclusion

We have shown how to solve and estimate indeterminate LRE models using

standard software packages. Our method transforms indeterminate models

by redefining a subset of the non-fundamental shocks and classifying them

as new fundamentals. We show how to implement our method in the case

of a simple monetary model and we provide parameterized examples of two

alternative indeterminate equilibria.

Our procedure raises the question of which non-fundamental shocks to

reclassify as fundamental. We provide a practical solution to that problem;

we propose that the researcher compare a range of alternative models, each

of which reclassifies a different non-fundamental shock as a new fundamental.

Those alternative models are, effectively, different theories of how expecta-

tions are formed. By carrying out a Bayesian model comparison, a researcher

can use our approach to distinguish which of several alternative theories of

expectation formation are the best fit for a given data set. Our simulation

results show that this technique works well in a simple new-Keynesian ex-

ample. Our work should be of particular interest to economists who are

interested in estimating models that do not impose a determinacy prior.
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Appendix A

Proof of Theorem 1. Let 1 and 2 be two orthonormal row operators

associated with partitions 1 and 2;⎡⎢⎣ 

1

1

⎤⎥⎦ = 1

"




#


⎡⎢⎣ 

2

2

⎤⎥⎦ = 2

"




#
 (49)

We assume that the operators,  have the form

 =

⎡⎣ 
×

0

0 ̃

×

⎤⎦  (50)

where ̃ is a permutation of the columns of an  identity matrix. Premul-

tiplying the vector [ ]

by the operator  permutes the rows of  while

leaving the rows of  unchanged. Define matrices Ω

 and Ω

 for  ∈ {1 2}
to be the new terms in the fundamental covariance matrix,



⎛⎝" 



#"




#⎞⎠ =

"
Ω Ω



Ω
 Ω



#


Next, use (22) and (23) to write the non-fundamentals as linear functions of

the fundamentals,

 = Θ
 +Θ



 (51)

where

Θ
 ≡ −Π̃−12 Ψ̃2 and Θ

 ≡ −Π̃−12 Π̃2  (52)
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and define the matrix 

 =

⎡⎢⎢⎢⎢⎣

×

0
×

0
×


×

Θ


(−)×
Θ


(−)×

⎤⎥⎥⎥⎥⎦  (53)

Using this definition, the covariance matrix of all shocks, fundamental and

non-fundamental, has the following representation,



⎛⎜⎜⎝
⎡⎢⎣ 





⎤⎥⎦
⎡⎢⎣ 





⎤⎥⎦

⎞⎟⎟⎠ = 

"
Ω Ω



Ω
 Ω



#
  (54)

We can also combine the last two row blocks of  and write  as follows

 =

⎡⎢⎣ 
×

0
×


21

×

22

×

⎤⎥⎦  (55)

where,


21 =

⎡⎢⎣ 0
×
Θ


(−)×

⎤⎥⎦  
22 =

⎡⎢⎣ 
×
Θ


(−)×

⎤⎥⎦  (56)

Using (49) and the fact that  is orthonormal, we can write the following

expression for the complete set of shocks

"




#
= 

⎡⎢⎣ 





⎤⎥⎦  (57)
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Using equations (54) and (57), it follows that



⎛⎝" 



#"




#⎞⎠ =    for all  ∈  (58)

where

  ≡
"

Ω Ω


Ω
 Ω



#
 (59)

and

 ≡  =

"
 0

0 ̃

#"
 0


21 

22

#
=

"
 0


21 

22

#
 (60)

Using this expression, we can write out equation (58) in full to give,



⎛⎝" 



#"




#⎞⎠ =

"
 0


21 

22

#"
Ω Ω



Ω
 Ω



#"
 

21

0 
22

#
 (61)

We seek to establish that for any partition , parameterized by matrices Ω

 

and Ω
 that there exist matrices Ω


 and Ω


 for all partitions  ∈   6= ,

such that

Ω = 

⎛⎝" 



#"




#⎞⎠ =   =    (62)

To establish this proposition, we write out the elements of (61) explicitly.

Since   and  are symmetric we need consider only the upper-triangular

elements which give three equations in the matrices of Ω
 and Ω

 

Ω11 = Ω

Ω12 = Ω



21 + Ω



22  (63)

Ω22 = 
21Ω





21 + 2


21Ω





22 +

22Ω




22 
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The first of these equations defines the covariance of the fundamental shocks

and it holds for all  . Now define

 =  (Ω)   = 
¡
Ω


¢
  = 

¡
Ω


¢
 (64)

Using the fact that

 () =
¡
 ⊗

¢
 ()  (65)

we can pass the  operator through equation (63) and write the following

system of linear equations in the unknowns  and 



"




#
+   = 

"




#
+   (66)

 =

" ¡

22 ⊗ 

¢
0¡


22 ⊗


21

¢ ¡

22 ⊗

22

¢ #    =

" ¡

21 ⊗ 

¢¡

21 ⊗

21

¢ #   ∈ { } 
(67)

It follows from the assumption that the equilibrium is regular that  has full

rank for all  hence for any permutation  parameterized by { }we can
find an alternative permutation  with associated parameterization { } "





#
=
¡

¢−1Ã



"




#
+
£
  −  

¤


!
 (68)

that gives the same covariance matrix Ω̃ for the fundamental and non-

fundamental shocks.

References

Belaygorod, A., and M. Dueker (2009): “Indeterminacy Change Points

and the Price Puzzle in an Estimated DSGE Model,” Journal of Economic

25



Dynamics and Control, 33(3), 624—648.

Benhabib, J., and R. E. A. Farmer (1994): “Indeterminacy and Increas-

ing Returns,” Journal of Economic Theory, 63, 19—46.

(1999): “Indeterminacy and Sunspots inMacroeconomics,” inHand-

book of Macroeconomics, ed. by J. B. Taylor, and M. Woodford. North-

Holland.

Blanchard, O. J., and C. M. Kahn (1980): “The Solution of Linear

Difference Models under Rational Expectations,” Econometrica, 48, 1305—

1313.

Castelnuovo, E., and L. Fanelli (2013): “Monetary Policy Indetermi-

nacy and Identification Failures in the U.S.: Results from a Robust Test,”

Mimeo, University of Padova.

Clarida, R., J. Galí, and M. Gertler (2000): “Monetary Policy Rules

and Macroeconomic Stability: Evidence and Some Theory,” Quarterly

Journal of Economics, 115(1), 147—180.

Farmer, R. E. A. (1999): The Macroeconomics of Self-Fulfilling Prophecies.

MIT Press, Cambridge, MA, second edn.

Farmer, R. E. A., and J. T. Guo (1994): “Real Business Cycles and the

Animal Spirits Hypothesis,” Journal of Economic Theory, 63, 42—73.

Farmer, R. E. A., and J.-T. Guo (1995): “The Econometrics of Indeter-

minacy,” Carnegie Rochester Series on Public Policy, 43, 225—273.

Hirose, Y. (2011): “Monetary Policy and Sunspot Fluctuation in the US

and Euro Area,” Munich Personal RePEc Archive No. 33693.

Kerr, W. R., and R. G. King (1996): “Limits on Interest Rate Rules in

IS-LM Models,” Federal Reserve Bank of Richmond Economic Quarterly.

26



King, R. G., and M. Watson (1998): “The solution of singular linear

difference systems under rational expectations,” International Economic

Review, 39(4), 1015—1026.

Klein, P. (2000): “Using the generalized Schur form to solve a mutivariate

linear rational expectations model,” Journal of Economic Dynamics and

Control, 24(10), 1405—1423.

Lubik, T. A., and F. Schorfheide (2003): “Computing Sunspot Equi-

libria in Linear Rational Expectations Models,” Journal of Economic Dy-

namics and Control, 28(2), 273—285.

(2004): “Testing for Indeterminacy: An Application to U.S. Mone-

tary Policy,” American Economic Review, 94, 190—219.

McCallum, B. T. (1983): “On Non-Uniqueness in Rational Expectations

Models: An Attempt at Perspective,” Journal of Monetary Economics, 11,

139—168.

Sims, C. A. (2001): “Solving Linear Rational Expectations Models,” Journal

of Computational Economics, 20(1-2), 1—20.

Uhlig, H. (1999): “A Toolkit for Analyzing Nonlinear Dynamic Stochas-

tic Models Easily,” in Computational Methods for the Study of Dynamic

Economies, ed. by R. Marimon, and A. Scott, pp. 30—61. Oxford University

Press, Oxford, England.

Zheng, T., and H. Guo (2013): “Estimating a Small Open Economy with

Indeterminacy: Evidence from China,” Economic Modelling, 31, 642—652.

27


