
 
 
 
 

DISCUSSION PAPER SERIES 

 
 
 

     ABCD 
 

www.cepr.org 
 
 

Available online at: www.cepr.org/pubs/dps/DP9655.php
 www.ssrn.com/xxx/xxx/xxx

  

 
 

 
 
 
 

No. 9655 
 

TESTING FOR GRANGER CAUSALITY 
WITH MIXED FREQUENCY DATA 

 
 

Eric Ghysels, Jonathan B. Hill  
and Kaiji Motegi 

 
 

  FINANCIAL ECONOMICS 
 
 

 



ISSN 0265-8003 

TESTING FOR GRANGER CAUSALITY WITH MIXED 
FREQUENCY DATA 

Eric Ghysels, University of North Carolina and CEPR 
Jonathan B. Hill, University of North Carolina 

Kaiji Motegi, University of North Carolina 
 

Discussion Paper No. 9655 
September 2013 

Centre for Economic Policy Research 
77 Bastwick Street, London EC1V 3PZ, UK 

Tel: (44 20) 7183 8801, Fax: (44 20) 7183 8820 
Email: cepr@cepr.org, Website: www.cepr.org 

This Discussion Paper is issued under the auspices of the Centre’s research 
programme in  FINANCIAL ECONOMICS.  Any opinions expressed here are 
those of the author(s) and not those of the Centre for Economic Policy 
Research. Research disseminated by CEPR may include views on policy, but 
the Centre itself takes no institutional policy positions. 

The Centre for Economic Policy Research was established in 1983 as an 
educational charity, to promote independent analysis and public discussion 
of open economies and the relations among them. It is pluralist and non-
partisan, bringing economic research to bear on the analysis of medium- and 
long-run policy questions.  

These Discussion Papers often represent preliminary or incomplete work, 
circulated to encourage discussion and comment. Citation and use of such a 
paper should take account of its provisional character. 

Copyright: Eric Ghysels, Jonathan B. Hill and Kaiji Motegi 



CEPR Discussion Paper No. 9655 

September 2013 

ABSTRACT 

Testing for Granger Causality with Mixed Frequency Data* 

It is well known that temporal aggregation has adverse effects on Granger 
causality tests. Time series are often sampled at different frequencies. This is 
typically ignored, and data are merely aggregated to the common lowest 
frequency. We develop a set of Granger causality tests that explicitly take 
advantage of data sampled at different frequencies. We show that taking 
advantage of mixed frequency data allows us to better recover causal 
relationships when compared to the conventional common low frequency 
approach. We also show that the mixed frequency causality tests have higher 
local asymptotic power as well as more power in finite samples compared to 
conventional tests. 
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1 Introduction

It is well known that temporal aggregation may have spurious effects on testing for Granger causality, as

noted by Clive Granger himself in a number of papers, see e.g. Granger (1980), Granger (1988), Granger

(1995). In this paper we deal with what might be an obvious, yet largely overlooked remedy. Time series

processes are often sampled at different frequencies and are typically aggregated to the common lowest

frequency to test for Granger causality. The analysis of the present paper pertains to comparing testing

for Granger causality with all series aggregated to the common lowest frequency, and testing for Granger

causality taking advantage of all the series sampled at whatever frequency they are available. We rely on

mixed frequency vector autoregressive models to implement a new class of Granger causality tests.1

We show that mixed frequency data Granger causality tests better recovercausality patterns in an

underlying high frequency process compared to the traditional low frequency approach. We also formally

prove that mixed frequency causality tests have higher asymptotic power against local alternatives and

show via simulation that this also holds in finite samples involving realistic data generating processes.

The simulations indicate that the mixed frequency VAR approach works well for small differences in

sampling frequencies - like quarterly/monthly mixtures.

The paper is organized as follows. In Section 2 we first briefly review theGranger causality and

MIDAS literatures and then frame mixed frequency VAR models. In Section 3 we develop the mixed

frequency data causality tests. Section 4 discusses how we can recoverunderlying causality using a

mixed frequency (henceforth MF) approach compared to a traditional lowfrequency approach. Section

5 shows that the MF causality tests have higher local asymptotic power than thelow frequency ones do.

Section 6 reports Monte Carlo simulation results and documents the finite sample power improvements

achieved by MF causality test. Section 7 provides some concluding remarks.

2 Mixed Frequency Data Model Specifications

In this section we frame a mixed frequency vector autoregressive (henceforth MF-VAR) model and derive

some asymptotic properties. We first provide a short review of the related literature. We then formally

present the MF-VAR model. Finally, we establish large sample results for parameter estimators and

corresponding Wald statistics.

In the remainder of the paper we will use the following notational conventions. LetA∈R
n×l. Thel2-

norm is|A| := (
∑n

i=1

∑l
j=1 a

2
ij)

1/2 = (tr[A′A])1/2; theLr-norm is‖A‖r := (
∑n

i=1

∑l
j=1E|aij |r)1/r;

the determinant is det(A); and the transpose isA′. 0n×l is ann × l matrix of zeros.Var[A] is the

variance-covariance matrix of a stochastic matrixA.

1MIDAS, meaning Mi(xed) Da(ta) S(ampling), regression models have been put forward in recent work by Ghysels, Santa-
Clara, and Valkanov (2004), Ghysels, Santa-Clara, and Valkanov (2006) and Andreou, Ghysels, and Kourtellos (2010). See
Andreou, Ghysels, and Kourtellos (2011) and Armesto, Engemann, and Owyang (2010) for surveys. VAR models for mixed
frequency data were independently introduced by Anderson, Deistler,Felsenstein, Funovits, Zadrozny, Eichler, Chen, and
Zamani (2012), Ghysels (2012) and McCracken, Owyang, and Sekhposyan (2013). An early example of related ideas appears
in Friedman (1962). Foroni, Ghysels, and Marcellino (2013) provide asurvey of mixed frequency VAR models and related
literature.
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2.1 Brief Literature Review

The notion of causality introduced by Granger (1969) is defined in terms ofincremental predictive ability,

beyond the past observations of a time series processX, by past observations of another time series

processY. Although so-calledGranger causalityhas been extended to fairly general settings including

nonlinear and random volatility models, it is typically discussed in a linear regression framework, in

particular since Sims (1972).

Early contributions by Zellner and Montmarquette (1971) and Amemiya and Wu (1972) pointed out

the potentially adverse effects of temporal aggregation on testing for Granger causality. The subject has

been extensively researched ever since. See e.g. Granger (1980), Granger (1988), L̈utkepohl (1993),

Granger (1995), Renault, Sekkat, and Szafarz (1998), Marcellino (1999), Breitung and Swanson (2002),

McCrorie and Chambers (2006), Silvestrini and Veredas (2008), among others. It is worth noting that

whenever Granger causality and temporal aggregation are discussed,it is typically done in a setting

whereall series are subject to temporal aggregation. In such a setting it is well-known that even the

simplest models, like a bivariate VAR(1) with stock (or skipped) sampling, may suffer from spuriously

hidden or generated causality, and recovering the original causal pattern is very hard or even impossible

in general.

As in the single frequency VAR literature, exploring mixed frequency Granger causality among more

than two variables invariably relates to the notion of multi-horizon causality studied by Lütkepohl (1993),

Dufour and Renault (1998) and Hill (2007). Of direct interest to us is Dufour and Renault (1998) who

generalized the original definition of single-horizon or short run causality to multiple-horizon or long

run causality to handle causality chains: in the presence of an auxiliary variableZ, Y may be useful for

a multiple-step ahead prediction ofX even if it is useless for the one-step ahead prediction. Dufour and

Renault (1998) formalize the relationship between VAR coefficients and multiple-horizon causality and

Dufour, Pelletier, and Renault (2006) formulate accordingly single step Wald tests of multiple-horizon

non-causality. Their framework will be used extensively in our analysis.See Hill (2007) for a sequential

method of testing for multiple-horizon non-causality.

In addition to the causality literature, the present paper also draws upon and contributes to the MI-

DAS literature originated by Ghysels, Santa-Clara, and Valkanov (2004)and Ghysels, Santa-Clara, and

Valkanov (2005). A number of papers have linked MIDAS regressionsto (latent) high frequency VAR

models, such as Foroni, Marcellino, and Schumacher (2013) and Kuzin,Marcellino, and Schumacher

(2011), whereas Ghysels (2012) discusses the link between mixed frequency VAR models and MIDAS

regressions. None of these papers study in any detail the issue of Granger causality.

2.2 Mixed Frequency VAR Models

We want to characterize three settings which we will refer to as HF, MF and LF - respectively high,

mixed and low frequency. We begin by considering a partially latent underlying HF process. Using

the notation of Ghysels (2012), the HF process contains{{xH(τL, k)}mk=1}τL and{{xL(τL, k)}mk=1}τL ,

whereτL ∈ {0, . . . , TL} is the LF time index (e.g. quarter),k ∈ {1, . . . ,m} denotes the HF (e.g. month),

andm is the number of HF time periods between LF time indices. In the month versus quarter case, for
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example,m equals three since one quarter has three months. ObservationsxH(τL, k) ∈ R
KH×1 are

called HF variables, whereasxL(τL, k) ∈ R
KL×1 are latent LF variables because they are not observed

at high frequencies - as only some temporal aggregates are available.

Note that two simplifying assumptions have implicitly been made. First, there are assumed to be

only two sampling frequencies. Second, it is assumed thatm is fixed and does not depend onτL. Both

assumptions can be relaxed at the cost of much more complex notation and algebra which we avoid for

expositional purpose - again see Ghysels (2012).

In reality the analyst’s choice is limited to MF and LF cases. Only low frequencyvariables are

aggregated in a MF setting, whereas both high and low frequency variables are aggregated to form a LF

process. Following L̈utkepohl (1987) we consider only linear aggregation schemes involving weights

w = [w1, . . . , wm]′ such that:

xH(τL) =
m
∑

k=1

wkxH(τL, k) and xL(τL) =
m
∑

k=1

wkxL(τL, k). (2.1)

Two cases are of special interest given their broad use: (1)stockor skippedsampling, wherewk = I(k =

m); and (2)flow sampling, wherewk = 1 for k = 1, . . . ,m.2 In summary, we observe:

• all high and low frequency variables{{xH(τL, j)}mj=1}τL and{{xL(τL, j)}mj=1}τL in a HF pro-

cess;

• all high frequency variables{{xH(τL, j)}mj=1}τL but only aggregated low frequency variables

{xL(τL)}τL in a MF process;

• only aggregated high and low frequency variables{xH(τL)}τL and{xL(τL)}τL in a LF process.

A key idea of MF-VAR models is to stack everything observable given a MF process according to

their order over time. This results in the followingK = KL + mKH dimensional vector:

X(τL) = [xH(τL, 1)
′, . . . ,xH(τL,m)′,xL(τL)

′]′. (2.2)

Note thatxL(τL) is the last block in the stacked vector - a conventional assumption implying that itis

observed afterxH(τL,m). Any other order is conceptually the same, except that it implies a different

timing of information about the respective processes. We will work with the specification appearing in

(2.2) as it is most convenient.

In order to proceed, we will make a number of standard regulatory assumptions.

Assumption 2.1. The processX(τL) is governed by a VAR(p):

X(τL) =

p
∑

k=1

AkX(τL − k) + ǫ(τL), (2.3)

2One can equivalently letwk = 1/m for k = 1, . . . ,m in flow sampling if the average is preferred to a summation.
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whereAk is aK×K matrix fork = 1, . . . , p, andǫ(τL) = [ǫ1(τL), . . . , ǫK(τL)]
′ is aK×1 error vector

that is assumed to be i.i.d. overτL.

Remark: The main results in this paper do not rely on error independence. Indeed, standard asymp-

totics for our Wald test statistic holds when{ǫ(τL)} is a stationary second order white noise process

provided{X(τL), ǫ(τL)} satisfy an additional weak dependence property like strong mixing, along with

the stationarity, distribution and moment properties under Assumptions 2.2 - 2.3 below. In this case

Ak does not necessarily carry all the usual information about first ordercausation, where the latter is

typically defined in terms of mean-squared-error improvement of anh-step ahead linear forecast error

(cfr. Granger (1969), Sims (1972), Dufour and Renault (1998)) (see Section 3 for further detail). This is

irrelevant for our purposes, however, because in the tradition of Dufour and Renault (1998) our analysis

is primarily about deducing nonlinear restrictions on{A1, ...,Ap} that relate information about predic-

tive ability, and about recovering information on (non-)causation in HF-VAR by using MF- or LF-VAR

models. Nevertheless, we impose the i.i.d. assumption in order to simplify some technical arguments.

Furthermore, without independence the close relationship between Granger’s (1969) and Sims’ (1972)

notions of causality in terms of linear predictive improvement breaks down, as shown in Florens and

Mouchart (1982).

In addition, the following standard assumptions ensure stationarity and geometric strong mixing of

the observed time series.3

Assumption 2.2. All roots of the polynomialdet(IK −∑p
k=1Akz

k) = 0 lie outside the unit circle.

Assumption 2.3. ǫ(τL) has an absolutely continuous distribution with a bounded joint densityfǫ(u) ≤
M for all u ∈ R

K and someM ∈ (0,∞). FurtherE[ǫ(τL)] = 0K×1, ||ǫ(τL)||2+δ ∈ (0,∞) for some

δ > 0, andΩ ≡ E [ǫ(τL)ǫ(τL)
′] is positive definite. Finally, the sigma-fields induced by the history

{ǫ(τL), ǫ(τL − 1), ...} are strictly increasing.

We assumeǫ(τL) has a bounded joint density so that, in combination with stationarity,{X(τL)} is

geometrically strong mixing by classic arguments (cfr. Section 3.2 in Dedeckeret al. (2007) ). Recall that

strong mixing implies mixing (in the ergodic sense) and therefore ergodicity (see Petersen (1983)). The

mixing property is useful since the necessary steps for inference involve finite lag functions ofǫ(τL) and

X(τL) which are also mixing and therefore satisfy a standard limit theory (see Dedecker et al. (2007)).4

Note also that we do not include a constant term in (2.3) solely to reduce notation, thusX(τL)

should be thought of as a de-meaned process. Finally, it is straightforward to allow an infinite order VAR

structure, and estimate a truncated finite order VAR model as in Lewis and Reinsel (1985), L̈utkepohl

and Poskitt (1996), and Saikkonen and Lütkepohl (1996).

3Although a large body of literature exists on Granger causality in non-stationary or cointegrated systems (e.g. Yamamoto
and Kurozumi (2006)), the generalization is beyond the scope of this paper.

4A continuous bounded distribution forǫ(τL) can be dispensed with at the cost of additional steps in our limit theory proofs
since{X(τL)} is geometricallyL2+δ-Near Epoch Dependent with respect to an i.i.d. base{ǫ(τL)}. All functions ofX(τL)
andǫ(τL) in this paper are also Near Epoch Dependent, and a complete limit theory for such a weak dependence property is
available. See Davidson (1994) for a textbook treatment.
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2.3 Estimators and Their Large Sample Properties

If the VAR(p) model appearing in (2.3) were standard, then the off-diagonal elementsof any matrix

Ak would tell us something about causal relationships for some specific horizon. The fact that MF-VAR

models involve stacked replicas of high frequency data sampled across different (high frequency) periods

implies that potentially multi-horizon causal patterns reside inside any of the matricesAk. It is therefore

natural to start with a multi-horizon setting. We do so, at first, focusing on multiple low frequency

prediction horizons which we will denote byh ∈ N.5

It is convenient to iterate (2.3) over the desired test horizon in order to deduce simple testable pa-

rameter restrictions for non-causality. Recall that under Assumption 2.2 a unique stationary and ergodic

solution to (2.3) exists:

X(τL) =
∞
∑

k=0

Ψkǫ(τL − k), (2.4)

whereΨk satisfiesΨ0 = IK , Ψk =
∑p

s=1AsΨk−s for k ≥ 1 andΨk = 0K×K for k < 0, and|Ψk|
= O(ρk) for someρ ∈ (0, 1). We then have what Dufour, Pelletier, and Renault (2006) labeled as a

(p, h)-autoregression:

X(τL + h) =

p
∑

k=1

A
(h)
k X(τL + 1− k) +

h−1
∑

k=0

Ψkǫ(τL + h− k), (2.5)

where

A
(1)
k = Ak and A

(i)
k = Ak+i−1 +

i−1
∑

l=1

Ai−lA
(l)
k for i ≥ 2.

By conventionAk = 0K×K wheneverk > p. The MF-VAR causality test exploits Wald statistics based

on the OLS estimator of the(p, h)-autoregression parameter set

B(h) =
[

A
(h)
1 , . . . ,A(h)

p

]′
∈ R

pK×K . (2.6)

The OLS estimator̂B(h) of B(h) is

B̂(h) ≡ arg min
B(h)

{

vec [Uh(h)]
′ vec [Uh(h)]

}

=
[

W p(h)
′W p(h)

]−1
W p(h)

′Wh(h),

whereUh(h) is a matrix of stacked sums of{Ψk} and{ǫ(τL)} while W p(h) andWh(h) are matrices

of stacked{X(τL)}. See Appendix A.1.1 for derivation of{Uh(h),W p(h),Wh(h)}.
Assumptions 2.1 through 2.3 suffice for̂B(h) to be consistent forB(h) and asymptotically normal.

Limits are with respect toTL →∞ henceT ∗
L →∞, whereT ∗

L = TL − h+1 is the effective sample size

for the(p, h)-autoregression.

5Another reason for studying multiple horizons is the potential of causality chains whenKH > 1 or KL > 1. Note,
however, that despite the MF-VAR being by design multi-dimensional thereare no causality chains whenKH = KL = 1 since
them × 1 vector of the high frequency observations refers to a single variable.
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Theorem 2.1. Under Assumptions 2.1 through 2.3̂B(h)
p→B(h) and

√

T ∗
Lvec

[

B̂(h)−B(h)
]

d→ N
(

0pK2×1,Σp(h)
)

, (2.7)

whereΣp(h) is positive definite.

Remark: See Appendix A.2 for a proof, and see Appendices A.1-A.2 for a complete characterization of

Σp(h).

If all variables were aggregated into a common low frequency and expanded into a(p, h)-autoregression,

thenh-step ahead non-causality has a simple parametric expression in terms ofA
(h)
k ; cfr. Dufour, Pel-

letier, and Renault (2006). Recall, however, that the MF-VAR has a special structure because of the

stacked HF vector. This implies that the Wald-type test for non-causality thatwe derive is slightly more

complicated than those considered by Dufour, Pelletier, and Renault (2006) since in MF-VAR models

the restrictions will often deal with linear parametric restrictions across multiple equations. In a generic

sense, we show in Section 3 that non-causality between any set of variables in a MF-VAR model can be

expressed as linear constraints with respect toB(h). Hence, the null hypothesis of interest is a linear

restriction:

H0(h) : Rvec [B(h)] = r, (2.8)

whereR is aq × pK2 selection matrix of full row rankq, andr ∈ R
q. We leave complete details of the

construction ofR for Section 3.

With a consistent estimator̂Σp(h) for the least squares asymptotic varianceΣp(h) which isalmost

surelypositive semi-definite forT ∗
L ≥ 1, we can define the Wald statistic

W [H0(h)] ≡ T ∗
L

(

Rvec
[

B̂(h)
]

− r
)′

×
(

RΣ̂p(h)R
′
)−1

×
(

Rvec
[

B̂(h)
]

− r
)

. (2.9)

Implicitly, of course,RΣ̂p(h)R
′ must be non-singular for anyR ∈ R

q×pK2
with full row rank. In

view of positive definiteness ofΣp(h) by Theorem 2.1, and the suppositionΣ̂p(h) = Σp(h) + op(1), it

follows (RΣ̂p(h)R
′)−1 is well defined asymptotically with probability approaching one.

We therefore obtain the following result, which we prove in Appendix A.2.

Theorem 2.2. Let Σ̂p(h) be a consistent estimator forΣp(h) that isalmost surelypositive semi-definite

for anyT ∗
L ≥ 1. Given Assumptions 2.1 through 2.3,W [H0(h)]

d→ χ2
q underH0(h).

Remark: A consistent,almost surelypositive semi-definite estimator̂Σp(h) is easily constructed by

using Newey and West’s (1987) HAC estimator, given the stronger moment assumption||ǫ(τL)||4+δ <

∞ for someδ > 0.. See Appendix A.1.3 for complete details.

In the remainder of the paper we will provide various tests for Granger causality which are special

cases of the generic framework derived so far.
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3 Testing Causality with Mixed Frequency Data

In this section we define non-causality when data are sampled at mixed frequencies and describe Wald-

type tests associated with it. We first cover some preliminary notions of multiple-horizon causality and

extend it to the mixed sampling frequency case. We discuss in detail testing non-causality from one

variable to another, and whether they are high or low frequency variables. We also cover non-causality

from all high frequency variables to all low frequency variables and vice versa, cases for which we give

explicit formulae for the selection matrixR used in the null hypothesis (2.8) and test statistic (2.9).

3.1 Preliminaries

We start with adopting the notion of non-causality to a mixed sampling frequencydata filtration setting.

Using the notation of Dufour and Renault (1998) we define the relevant information sets for the purpose

of characterizing non-causality. In particular, letL2 be a Hilbert space of covariance stationary real-

valued random variables defined on a common probability space, and the covariance as inner product.

Moreover, letI(τL) be a closed increasing subspace ofL2 such thatI(τL) ⊂ I(τ ′L) wheneverτL < τ ′L,

whereτL, τ ′L ∈ Z.

Furthermore, define the indicesi1, i2 ∈ {1,. . . ,KH} andj1, j2 ∈ {1, . . . ,KL}, and writexH,i1 =

{xH,i1(τL)}τL , wherexH,i1(τL) = [xH,i1(τL, 1), . . . , xH,i1(τL,m)]′. Note thatxH,i1(τL) is a vector

of all m observations of thei1-th high frequency variable available at periodτL, whereasxH,i1 is the

collection of that vector over all periods. Similarly, we writexL,j1 = {xL,j1(τL)}τL and note that

xL,j1(τL) is a scalar since it is thej1-th low frequency variable at periodτL. Finally, letxH = {xH,i1}i1
andxL = {xL,j1}j1 .

Denote byx(−∞, τL] the Hilbert space spanned by{x(τ)| τ ≤ τL}. The information setI is said to

beconformablewith x if x(−∞, τL] ⊂ I(τL) for all τL. We call the information set derived fromI(τL)
= X(−∞, τL], whereX(τL) is given in (2.2), as theMF reference information set in periodτL, whereas

I = {I(τL)| τL ∈ Z} is theMF reference information set. Therefore, the only information available up

to periodτL is the high frequency observations of all high frequency variables andthe low frequency

observations of all low frequency variables. In addition, letI(H,i1) denote the MF reference information

set except forxH,i1 , and letI(L,j1) denote the information set except forxL,j1 . Similarly, I(H) (I(L)) is

the MF reference information set except forxH (xL). Notice that since high and low frequency variables

xH,i1(τL) andxL,j1(τL) belong toX(τL) for all i1 ∈ {1, . . . ,KH} andj1 ∈ {1, . . . ,KL}, it is clear that

the MF reference information setI = {I(τL)| τL ∈ Z} is conformable withxH,i1(τL) andxL,j1(τL).

Finally, letE andF be two subspaces ofL2, and letE + F denote the Hilbert subspace generated

by the elements ofE andF. Let P [x(τL + h)| I(τL)] be the best linear forecast ofx(τL + h) based on

I(τL) in the sense of a covariance orthogonal projection.

For any generic information set and pair of processes (high or low frequency) the notion of non-

causality is defined as follows.

Definition 3.1. (Non-causality at Different Horizons). Suppose thatI is conformable withx. (i) y does

7



not causex at horizonh givenI (denoted byy9hx| I) if:

P [x(τL + h)|I(τL)] = P [x(τL + h)|I(τL) + y(−∞, τL]] ∀τL ∈ Z.

Moreover, (ii)y does not causex up to horizonh givenI (denoted byy 9(h) x| I) if y 9k x| I for

all k ∈ {1, . . . , h}.

Definition 3.1 applies to a mixed sampling frequency setting when suitable information set and pro-

cesses are used.6 Consider, for example, non-causality from thej1-th low frequency variable to the

i1-th high frequency variable. Similarly,xL,j1 does not causexH,i1 at horizonh givenI (denoted by

xL,j19hxH,i1 | I) if P [xH,i1(τL + h)| I(L,j1)(τL)] = P [xH,i1(τL + h)| I(τL) ] for all τL ∈ Z. When

we consider non-causality between a pair of high frequency series, namely xH,i1 9h xH,i2 | I(H,i1) it

should be noted that we focus exclusively on low frequency horizonsh, or equivalently horizonsh×m.

Any other horizon, not a multiple ofm, are not considered here. They can be handled with the existing

same frequency setting of Dufour and Renault (1998).

In a mixed sampling frequency setting, there are six basic cases to consider.

Case 1 (low to low) Non-causality from thej1-th low frequency variable,xL,j1 , to thej2-th low fre-

quency variable,xL,j2 , at horizonh. The null hypothesis can be written asH1
0 (h) : xL,j1 9h

xL,j2 |I(L,j1).

Case 2 (high to low)H2
0 (h) : xH,i1 9h xL,j1 | I(H,i1).

Case 3 (low to high)H3
0 (h) : xL,j1 9h xH,i1 | I(L,j1).

Case 4 (high to high)H4
0 (h) : xH,i1 9h xH,i2 | I(H,i1).

Case I (all high to all low) HI
0 (h) : xH 9h xL| I(H).

Case II (all low to all high) HII
0 (h) : xL 9h xH | I(L).

Cases 1 through 4 handle individual variables, while Cases I and II handle entire groups of variables.

In the sequel we often consider Cases I and II for simplicity since - viewedas a bivariate system -

causality chains can be excluded in both cases since non-causality at onehorizon is synonymous to non-

causality at all horizons (see Dufour and Renault (1998: Proposition 2.3), cfr. Florens and Mouchart

(1982: p. 590)). To avoid tedious matrix notation, we do not treat in detail cases involving non-causation

from a subset of all variables to another subset. Our results straightforwardly apply, however, in such

cases as well.

3.2 Causality Tests in Mixed Frequency VAR Models

Our next task is to construct the selection matricesR for the various null hypotheses (2.8) associated

with the six generic cases. This requires deciphering parameter restrictions for non-causation based on

the(p, h)-autoregression appearing in equation (2.5).

6Definition 3.1 corresponds to Definition 2.2 in Dufour and Renault (1998) for covariance stationary processes.
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Characterizing restrictions onA(h)
k for each case above requires some additional matrix notation. Let

N ∈ R
n×n, and leta, b, c, d, ι, ι′ ∈ {1, . . . , n} with a ≤ b, c ≤ d, and(b − a)/ι and(d − c)/ι′ being

nonnegative integers. Then we defineN(a : ι : b, c : ι′ : d) as the( b−a
ι + 1)× (d−c

ι′ + 1) matrix which

consists of thea-th, (a + ι)-th, (a + 2ι)-th, . . . , b-th rows andc-th, (c + ι′)-th, (c + 2ι′)-th, . . . ,d-th

columns ofN . To put differently,a signifies the first element to pick,b is the last, andι is the increment

with respect to rows.c, d, andι′ play analogous roles with respect to columns. It is clear that:

N(a : ι : b, c : ι′ : d)′ = N ′(c : ι′ : d, a : ι : b). (3.1)

A short-hand notation is used whena = b : N(a : ι : b, c : ι′ : d) = N(a, c : ι′ : d). Whenι = 1, we

write: N(a : ι : b, c : ι′ : d) = N(a : b, c : ι′ : d). Analogous notations are used whenc = d or ι′ = 1,

respectively.

By Theorem 3.1 in Dufour and Renault (1998) and in view of model (2.5),it follows thatH i
0(h) are

equivalent to:

A
(h)
k (a : ι : b, c : ι′ : d) = 0 for eachk ∈ {1, . . . , p}, (3.2)

wherea, ι, b, c, ι′, d, and the size of the null vector differ across casesi = 1, . . . , 4 andI andII.7 In

Table 1 we detail the specifics fora, ι, b, c, ι′, d in these quantities for each of the six cases.

Table 1: Linear Parametric Restrictions of Non-causality
The null hypotheses of non-causality casesHi

0(h) for i = 1, . . . , 4 andI andII. can be written asA(h)
k

(a : ι : b, c : ι′ : d) = 0 for all

k ∈ {1, . . . , p}, wherea, ι, b, c, ι′, d, and the size of the null vector appear as entries to the table.

Cases a ι b c ι′ d 0

H1
0 (h) mKH + j2 1 mKH + j2 mKH + j1 1 mKH + j1 1× 1

H2
0 (h) mKH + j1 1 mKH + j1 i1 KH i1 + (m− 1)KH 1×m

H3
0 (h) i1 KH i1 + (m− 1)KH mKH + j1 1 mKH + j1 m× 1

H4
0 (h) i2 KH i2 + (m− 1)KH i1 KH i1 + (m− 1)KH m×m

HI
0 (h) mKH + 1 1 K 1 1 mKH KL ×mKH

HII
0 (h) 1 1 mKH mKH + 1 1 K mKH ×KL

Each case in Table 1 can be interpreted as follows. In Case 1, the(mKH+j2,mKH+j1)-th element

of A(h)
k (i.e., the impact of thej1-th low frequency variable on thej2-th low frequency variable) is zero

if and only if H1
0 (h) is true. Likewise, in Case 2, the(mKH + j1, i1)-th, (mKH + j1, i1 + KH)-th,

. . . , (mKH + j1, i1 + (m − 1)KH)-th elements ofA(h)
k are all zeros underH2

0 (h). Note that we are

testing whether or not allmp coefficients of thei1-th high frequency variable on thej1-th low frequency

variable are zeros, i.e., thei1-th high frequency variable has no impact as a whole on thej1-th low

frequency variable at a given horizonh.

WhenH3
0 (h) holds, allmp coefficients of thej1-th low frequency variable on thei1-th high fre-

quency variable are zeros at horizonh.Note that the parameter constraints run across thei1-th, (i1+KH)-

th, . . . , (i1 + (m − 1)KH)-th rows ofA(h)
k , not columns. This means that we are testingsimultaneous

7Recall thatxL,j1 andxH,i1 belong toX in (2.2) for all j1 ∈ {1, . . . ,KL} and i1 ∈ {1, . . . ,KH}. This is why the
non-causality under mixed frequencies is well-defined and Theorem 3.1 in Dufour and Renault (1998) can be applied directly.
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linear restrictionsacross multiple equations, unlike Dufour, Pelletier, and Renault (2006) who focus

mainly onsimultaneouslinear restrictionswithin one equation, and unlike Hill (2007) who focuses on

sequentiallinear restrictionsacross multiple equations.

In Case 4, thei1-th high frequency variable has no impact on thei2-th high frequency variable if and

only if H4
0 (h) is true. In this casem2 elements out ofA(h)

k are restricted to be zeros for eachk, so the

total number of zero restrictions ispm2. UnderHI
0 (h), theKL × mKH lower-left block ofA(h)

k is a

null matrix. Finally, in Case II, themKH ×KL upper-right block ofA(h)
k is a null matrix if and only if

HII
0 (h) is true.

We can now combine the(p, h)-autoregression parameter setB(h) in (2.6) with the matrix construc-

tion (3.1), its implication for testable restrictions (3.2), and Table 1, to obtain generic formulae forR and

r so that all six cases can be treated as special cases of (2.8).

The above can be summarized as follows:

Theorem 3.1. All hypothesesH i
0(h) for i ∈ {1, 2, 3, 4, I, II} are special cases ofH0(h) with

R =
[

Λ(δ1)
′,Λ(δ2)

′, . . . ,Λ(δg(a,ι,b)p)
′
]′

(3.3)

and

r = 0g(a,ι,b)g(c,ι′,d)p×1, (3.4)

whereg(a, ι, b) = (b− a)/ι+ 1, δ1 = pK(a− 1) + c,

δl = δl−1 +K + pK(ι− 1)I(l − 1 = zp for somez ∈ N) (3.5)

for l = 2, . . . , g(a, ι, b)p, andΛ(δ) is ag(c, ι′, d) × pK2 matrix whose(j, δ + (j − 1)ι′)-th element is

1 for j ∈ {1, . . . , g(c, ι′, d)} and all other elements are zeros.

Several key points will help us understand (3.3) through (3.5). First,g(a, ι, b) andg(c, ι′, d) represent

how many rows and columns ofA(h)
k have zero restrictions for eachk ∈ {1, . . . , p}, respectively. The

total number of zero restrictions is thereforeq = g(a, ι, b)g(c, ι′, d)p as in (3.4). Second,Λ(δ) has only

one nonzero element in each row that is identically1, signifying which element ofvec[B(h)] is supposed

to be zero. The location of 1 is determined byδ1, . . . , δg(a,ι,b)p, which are recursively updated according

to (3.5). As seen in (3.5), the increment ofδl is basicallyK, but an extra increment ofpK(ι−1) is added

whenl − 1 is a multiple ofp in order to skip some columns ofB(h).

Theorem 3.1 provides unified testing for non-causality as summarized below.

Step 1 For a given VAR lag orderp and test horizonh, estimate a(p, h)-autoregression.8

8A potential drawback of our approach as well as Dufour, Pelletier, andRenault (2006) is that the prediction horizonh is
fixed at each test and thus the entire set of results for multipleh’s may yield a contradiction. See footnote 2 in Hill (2007). Hill
(2007) avoids this problem by a sequential multiple-horizon non-causation test, in which a series of individual non-causation
tests are performed to deduce causal chains and causation horizon. The present paper takes the Dufour, Pelletier, and Renault
(2006) approach because of its simplicity. See Hill (2007) and Salamalikiand Venetis (2013) for a comparison of the two
methods.
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Step 2 Calculatea, ι, b, c, ι′, d according to Table 1 for a given case of non-causality relation. Put those

quantities into (3.3) and (3.4) to getR andr.

Step 3 UseR andr in order to calculate the Wald test statisticW [H0(h)] in (2.9).

Since Table 1 and Theorem 3.1 are rather abstract, we present a concrete example of howR andr are

constructed based in our trivariate simulation. In Section 6.2 we fit a MF-VAR(1) model with prediction

horizonsh ∈ {1, 2, 3} to two high frequency variablesX andY and one low frequency variableZ with

m = 3. In this case the mixed frequency vector appearing in (2.2) can be written as:

W (τL) = [X(τL, 1), Y (τL, 1), X(τL, 2), Y (τL, 2), X(τL, 3), Y (τL, 3), Z(τL)]
′.

Notice thatKH = 2, KL = 1, and henceK = 7 in this example. Although the construction ofR andr

do not depend on the value ofh, considerh = 1 for simplicity, and write the parameter matrix:

A1 =









a11 . . . a17
...

. ..
...

a71 . . . a77









or A′
1 =









a11 . . . a71
...

. ..
...

a17 . . . a77









.

Sincep = h = 1, B(h) appearing in (2.6) is simplyA′
1.

Consider the null hypothesis thatZ does not causeX at horizon 1. This null hypothesis is equiva-

lently a17 = a37 = a57 = 0 sincea17, a37, anda57 represent the impact ofZ(τL − 1) on X(τL, 1),

X(τL, 2), andX(τL, 3), respectively. Note thata17, a37, anda57 are respectively the 7th, 21st, and 35th

element of vec[B(h)] appearing in (2.8). Hence, the proper choice ofR andr is:

R =







01×6 1 01×13 0 01×13 0 01×14

01×6 0 01×13 1 01×13 0 01×14

01×6 0 01×13 0 01×13 1 01×14






and r = 03×1. (3.6)

We now confirm that the sameR andr can be obtained via Table 1 and Theorem 3.1. Non-causality

from Z to X falls in Case 3 withi1 = j1 = 1 (i.e. non-causality from the first low frequency variable

to the first high frequency variable). Using Table 1, we have that(a, ι, b, c, ι′, d) = (1, 2, 5, 7, 1, 7) and

thereforeg(a, ι, b) = 3, g(c, ι′, d) = 1, and{δ1, δ2, δ3} = {7, 21, 35} in view of Theorem 3.1. This

implies thatr = 03×1 andR = [Λ(7)′,Λ(21)′,Λ(35)′]′, whereΛ(δ) is a 1 × 49 vector whoseδ-th

element is 1 and all other elements are zeros forδ ∈ {7, 21, 35}. We can therefore confirm that Table 1

and Theorem 3.1 provide correctR andr shown in (3.6).

4 Recovery of High Frequency Causality

The existing literature on Granger causality and temporal aggregation has three key ingredients. Starting

with (1) a data generating process (DGP) for HF data, and (2) specifying a (linear) aggregation scheme,

one is interested in (3) the relationship between causal patterns - or lack thereof - among the HF series
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and the inference obtained from LF data whenall HF series are aggregated. So far, we refrained from

(1) specifying a DGP for HF series and (2) specifying an aggregation scheme. We will proceed along

the same path as the existing literature in this section with a different purpose, namely to show that

the MF approach recovers more underlying causal patterns than the standard LF approach does. While

conducting Granger causality tests with MF does not resolve all HF causalpatterns, using MF instead of

using exclusively LF series promotes sharper inference.

We first start with a fairly straightforward extension of Lütkepohl (1984), establishing the link be-

tween HF-VAR and MF data representations. We then analyze the link between HF, MF and LF causality.

4.1 Temporal Aggregation of VAR Processes

Lütkepohl (1984) provides a comprehensive analysis of temporal aggregation and VAR processes. We

extend his analysis to a MF setting. While the extension is straightforward, it provides us with a frame-

work that will be helpful for the analysis in the rest of the paper.

Let K∗ = KH + KL, and defineX(τL, k) = [xH(τL, k)
′, xL(τL, k)

′]′ ∈ R
K∗

for k = 1, . . . ,m.

Note that part of theX vector process is obviously latent, namely the high frequency observations of the

LF process, represented by thexL(τL, k) elements of the vector process.

To proceed, letLH denote thehigh frequencylag operator, in particular

Ll
HX(τL, k) = X(τL − ι, ι′)

with

ι =







0 if 0 ≤ l < k

1 + ⌊ l−k
m ⌋ if l ≥ k

and ι′ =







k − l if 0 ≤ l < k

ιm+ k − l if l ≥ k.

Note⌊x⌋ is the largest integer not larger thanx. For example,LHX(τL, 2) = X(τL, 1) andLHX(τL, 1)

= X(τL−1,m). LettingLL be thelow frequencylag operator, we have thatLLX(τL, 1) = Lm
HX(τL, 1)

= X(τL − 1, 1).

Assume that{{X(τL, k)}k}τL follows a VAR(p) process withp ∈ N ∪ {∞}:

X(τL, k) =

p
∑

l=1

ΦlLl
HX(τL, k) + η(τL, k), (4.1)

whereη(τL, k)
i.i.d.∼ (0K∗×1,V ). The coefficient matrixΦl is partitioned in the following manner:

Φl =

[

ΦHH,l ΦHL,l

ΦLH,l ΦLL,l

]

,

whereΦyz,l ∈ R
Ky×Kz with y, z ∈ {H,L}.

A general linear aggregation scheme is considered, appearing in (2.1).By an application of Theorem

1 in Lütkepohl (1984), the mixed frequency vectorX(τL) defined in (2.2) and the low frequency vector
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defined as

X(τL) = [xH(τL)
′,xL(τL)

′]′ ∈ R
K∗

(4.2)

follow VARMA processes. More specifically, we have the following.

Theorem 4.1. Suppose that an underlying high frequency process follows a VAR(p). Then the cor-

responding MF process is a VARMA(pM , qM ), and the corresponding low frequency process is a

VARMA( pL, qL). Moreover,

pM ≤ deg
[

det(A(LL))
]

≡ g andpL ≤ g,

whereg is the degree of polynomial of det(A(LL)). Furthermore,

qM ≤ max
{

deg
[

Akl(LL)
]

− g + pM | k, l = 1, . . . ,mK∗
}

,

whereAkl(LL) is the(k, l)-th cofactor ofA(LL). Similarly,

qL ≤ max
{

deg
[

Akl(LL)
]

− g + pL| k, l = 1, . . . ,mK∗
}

.

Finally, if the high frequency VAR process is stationary then so are the mixedand low frequency VARMA

processes.

Remark: See Appendix B for a proof, and for completeness the construction ofA(LL).

In general it is impossible to characterizepM , qM , pL, or qL exactly (cfr. L̈utkepohl (1984)). Never-

theless, if the HF process{X(τL, k)} is governed by a VAR(p) then the MF and LF processes{X(τL)}
and{X(τL)} have VARMA representations, and therefore VAR(∞) representations under the assump-

tion of invertibility. Thus, one can still estimate those invertible VARMA processes by using a finite

order approximation as in Lewis and Reinsel (1985), Lütkepohl and Poskitt (1996), and Saikkonen and

Lütkepohl (1996). Moreover, the VARMA order can be characterizedunder certain simple cases such as

stock sampling withp = 1.

Example : stock sampling withp = 1: Suppose that an underlying HF process follows a VAR(1)

X(τL, k) = Φ1L1
HX(τL, k) + η(τL, k) whereη(τL, k)

i.i.d.∼ (0K∗×1,V ). Then it is easy to show that

the corresponding MF process also follows a VAR(1) if we consider stock sampling:

X(τL) = A1X(τL − 1) + ǫ(τL). (4.3)

The parameterA1 is

A1 =













0KH×(m−1)KH
Φ

[1]
HH,1 Φ

[1]
HL,1

...
...

...

0KH×(m−1)KH
Φ

[m]
HH,1 Φ

[m]
HL,1

0KL×(m−1)KH
Φ

[m]
LH,1 Φ

[m]
LL,1













, (4.4)
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where

Φk
l ≡

[

Φ
[k]
HH,l Φ

[k]
HL,l

Φ
[k]
LH,l Φ

[k]
LL,l

]

.

It follows that ǫ(τL)
i.i.d.∼ (0K×1,Ω) whereΩ can be explicitly characterized as a function ofΦ1

andV . First, observe that

ǫ(τL) =

















∑1
k=1

[

Φ
[1−k]
HH,1 Φ

[1−k]
HL,1

]

η(τL, k)

...
∑m

k=1

[

Φ
[m−k]
HH,1 Φ

m−k]
HL,1

]

η(τL, k)
∑m

k=1

[

Φ
[m−k]
LH,1 Φ

[m−k]
LL,1

]

η(τL, k)

















.

The covariance matrixΩ ≡ E[ǫ(τL)ǫ(τL)
′] has a block representation

Ω =













Ω1,1 . . . Ω1,m Ω1,m+1

...
.. .

...
...

Ω′
1,m . . . Ωm,m Ωm,m+1

Ω′
1,m+1 . . . Ω′

m,m+1 Ωm+1,m+1













∈ R
K×K , (4.5)

with components

Ωi,j =
i
∑

k=1

[

Φ
[i−k]
HH,1 Φ

[i−k]
HL,1

]

V

[

Φ
[j−k]′

HH,1

Φ
[j−k]′

HL,1

]

for i, j ∈ {1, . . . ,m} andi ≤ j, (4.6)

Ωi,m+1 =
i
∑

k=1

[

Φ
[i−k]
HH,1 Φ

[i−k]
HL,1

]

V

[

Φ
[m−k]′

LH,1

Φ
[m−k]′

LL,1

]

for i ∈ {1, . . . ,m}

and

Ωm+1,m+1 =

m
∑

k=1

[

Φ
[m−k]
LH,1 Φ

[m−k]
LL,1

]

V

[

Φ
[m−k]′

LH,1

Φ
[m−k]′

LL,1

]

. (4.7)

Similarly, the LF process follows a VAR(1):

X(τL) = A1X(τL − 1) + ǫ(τL), (4.8)

where

A1 = Φm
1 , (4.9)

andǫ(τL)
i.i.d.∼ (0K∗×1,Ω). The covariance matrix follows by notingǫ(τL) =

∑m
k=1Φ

m−k
1 η(τL, k)

hence

Ω =
m
∑

k=1

Φm−k
1 V (Φm−k

1 )′ ∈ R
K∗×K∗

. (4.10)
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4.2 Causality and Temporal Aggregation

Felsenstein et al. (2013) explore conditions for identifying a HF processbased on MF data. When their

conditions are satisfied, recovery of HF causality is trivially feasible by looking at off-diagonal elements

of the identified HF-VAR coefficients. The conditions for identification are stringent, however, and one

may therefore wonder what happens if they are not satisfied. In this subsection we fill some of the gap by

focusing on testing for causality since this does not require full identification of the entire HF process.

Since Granger causality is based on information sets, we need to define reference information sets

for HF- and LF-VAR processes. To this end, we rewrite a HF-VAR(p) process in (4.1) with a single

time indext: Yt =
∑p

l=1ΦlYt−l + ξt, whereYt ∈ R
K∗

is simply a single-index version ofX(τL, k).

One way of mapping(τL, k) to t is to let t = m(τL − 1) + k so thatY1 corresponds toX(1, 1). The

same mapping is used betweenξt andη(τL, k). Recall from Section 3.1 thatI(τL) is the MFreference

information set in periodτL, while I = {I(τL)| τL ∈ Z} is the MF reference information set. We

now introduce HF and LF versions of the information set. TheHF reference information set at timet is

defined asI(t) = Y (−∞, t]. TheHF reference information setis defined asI = {I(t) | t ∈ Z}. The

prediction horizon for non-causality givenI is in terms of the high frequency, denoted byh ∈ Z. For

example, non-causality from all high frequency variables to all low frequency variables at high frequency

horizonh givenI is written asxH 9h xL | I. Similarly, theLF reference information set at timeτL
is defined asI(τL) = X(−∞, τL], whereX(τL) is given in (4.2). TheLF reference information set

is defined asI = {I(τL) | τL ∈ Z}. Whether (non-)causality is preserved under temporal aggregation

depends mainly on three conditions: an aggregation scheme, VAR lag orderp, and the presence of an

auxiliary variable and therefore the possibility of causality chains. The existing literature has found that

temporal aggregation may hide or generate causality even in very simple cases. We show that the MF

approach recovers underlying causality patterns better than the traditional LF approach.

Theorem 4.2. Consider the linear aggregation scheme appearing in (2.1) and assume a HF-VAR(p) with

p ∈ N ∪ {∞}. Then, the following two properties hold when applied respectively to all low and all high

frequency processes: (i) IfxH 9 xL | I, thenxH 9 xL | I. (ii) If xL 9 xH | I, thenxL 9 xH | I.

Proof: See Appendix C.

Note that the prediction horizon in Theorem 4.2 is arbitrary since there are no auxiliary variables

involved. This follows since we only examine the relationship between all low and all high frequency

processes respectively.9

Theorem 4.2 part (i) states that non-causality from all high frequency variables to all low frequency

variables is preserved between MF and LF processes, while part (ii) states that non-causality from all

low frequency variables to all high frequency variables is preserved between HF and MF processes. One

might incorrectly guess from Theorem 4.2 part (ii) thatxL 9 xH | I ⇒ xL 9 xH | I. This statement

does not hold in general. A simple counter-example is a HF-VAR(2) process with stock sampling,m = 2,

KH = KL = 1,

9We can deduce virtually no theoretical results in the presence of auxiliary variables since potential causal chains complicate
causality patterns substantially.
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Φ1 =

[

φHH,1 0

φLH 0

]

, and Φ2 =

[

φHH,2 0

0 0

]

.

Assume thatφHH,1, φHH,2, andφLH are all nonzero. Note that, givenI, xL does not causexH
while xH does causexL. In this particular case, we can derive the corresponding MF- and LF-VAR(1)

processes. The MF coefficient is

A1 =







φHH,2 φHH,1 0

φHH,1φHH,2 φ2
HH,1 + φHH,2 0

φLHφHH,2 φLHφHH,1 0






, (4.11)

while the LF coefficient is

A1 =

[

φ2
HH,1 + φHH,2 φHH,1φHH,2/φLH

φLHφHH,1 φHH,2

]

. (4.12)

Equations (4.11) and (4.12) indicate thatxL does not causexH givenI, butxL does causexH givenI.
Thus, we confirm that non-causality from all low frequency variables toall high frequency variables is

not necessarilypreserved between MF and LF processes.

Summarizing Theorem 4.2 and the counter-example above, a crucial condition for non-causality

preservation is that the information for the ”right-hand side” variables (i.e.xL for (i) andxH for (ii))

is not lost by temporal aggregation. In this sense, the MF approach yieldsmore implications on hidden

causality patterns than the LF approach, which switches directly from a HF process by aggregating all

variables.

To conclude the subsection we again focus on stock sampling withp =1 as this particular case yields

much sharper results.

Example: stock sampling withp = 1: Whenp = 1 and stock sampling is of interest, the exact functional

form for the MF and LF processes is known and appear in (4.3) and (4.8). Equation (4.4) highlights what

kind of causality information gets lost by switching from a HF- to MF-VAR. Similarly, (4.9) reveals the

information loss when moving from a MF- to LF-VAR. This brings us to the following theorem.

Theorem 4.3. Consider stock sampling withp = 1. Then, the corresponding MF-VAR and LF-VAR

processes are also of order 1. Furthermore, non-causation among theHF-, MF-, and LF-VAR processes

is related as follows.

i. In Case 1 (low9 low) and Case 2 (high9 low), non-causation up to HF horizonm given the

HF information setI implies non-causation at horizon1 given the MF information setI, which

is necessary and sufficient for non-causation at horizon1 given the LF information setI.

ii. In Case 3 (low9 high) and Case 4 (high9 high), non-causation up to HF horizonm given

I is necessary and sufficient for non-causation at horizon1 givenI, which implies non-causation

at horizon1 givenI.
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iii. In Case I (all high9 all low), non-causation at HF horizon1 givenI implies non-causation at

horizon1 givenI, which is necessary and sufficient for non-causation at horizon1 givenI.

iv. In Case II (all low9 all high), non-causation at HF horizon1 givenI is necessary and sufficient

for non-causation at horizon1 givenI, which implies non-causation at horizon1 givenI.

Proof: See Appendix D.

Although Theorem 4.3 is much sharper than Theorem 4.2 due to much stronger assumptions, they

share an interesting feature that causality tends to be contaminated more whentemporal aggregation

discards information for ”right-hand side” variables. For example, item 2 shows that no relevant infor-

mation for testing low-to-high or high-to-high causality is lost when moving fromI to I (i.e., when

aggregating low frequency variables), while some information is lost when moving from I to I (i.e.,

when aggregating high frequency variables).

Theorem 4.3 suggests that the MF causality test should never perform worse than the low frequency

causality test, and the former should be more powerful than the latter especially when Cases 3, 4, and II

are of interest. Sections 5 and 6 verify this point by a local asymptotic poweranalysis and a Monte Carlo

simulation, respectively.

5 Local Asymptotic Power Analysis

The goal of this section is to show that the MF causality tests have higher localasymptotic power com-

pared to the LF causality test. We need to constrain our attention to analytically tractable DGPs, which

is why we consider a bivariate HF-VAR(1) process with stock sampling. Asshown in the previous sec-

tion, for the bivariate HF-VAR(1) one can derive analytically the corresponding MF- and LF-VAR(1)

processes. Recall that Case I considers unidirectional causality fromthe high frequency variable to the

low frequency variable, while Case II considers unidirectional causalityfrom the low frequency variable

to the high frequency variable. We first compute the local asymptotic power functions for both cases,

and then plot them in a numerical exercise.

Case I: High-to-Low Causality In order to characterize local asymptotic power, assume that the high

frequency DGP is given by:

X(τL, k) = Φ(ν/
√
T )LHX(τL, k) + η(τL, k), (5.1)

where

Φ(ν/
√
T ) =

[

ρH 0

ν/
√
T ρL

]

with ρH , ρL ∈ (−1, 1), whereν ∈ R is the usual Pitman drift parameter. Assume for computational

simplicity thatη(τL, k)
i.i.d.∼ (02×1, I2), hence the errors are uncorrelated andX(τL, k) has a strictly

stationary solution. In the true DGP, the low frequency variable does not cause the high frequency
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variable, while forν 6= 0 the high frequency variable causes the low frequency variable with a marginal

impact ofν/
√
T which vanishes asT → ∞. First note we havep = h = 1. We will therefore simplify

notation, namely denote the least squares asymptotic covariance matrixΣp(h) asΣ1.

Assuming stock sampling and generalm ∈ N, the corresponding MF-VAR(1) process of dimension

K = m + 1 (sinceKH = KL = 1) is as follows:

X(τL) = A(ν/
√
T )X(τL − 1) + ǫ(τL), (5.2)

where

A(ν/
√
T ) =













01×(m−1) ρH 0
...

...
...

01×(m−1) ρmH 0

01×(m−1)

∑m
k=1 ρ

k−1
H ρm−k

L (ν/
√
T ) ρmL













(5.3)

andǫ(τL)
i.i.d.∼ (0K×1,Ω) See (4.5)-(4.7) in Section 4.1 for a characterization ofΩ. The MF-VAR(1)

being estimated is:

X(τL) = A×X(τL − 1) + ǫ(τL)

with coefficient matrixA =A(ν/
√
T ). Table 1 and Theorem 3.1 provide us the Case I selection matrix

R to formulate the null hypothesis of high-to-low non-causality:

HI
0 : Rvec

[

A′
]

= 0m×1 where R ∈ R
m×K2

.

Thus, the corresponding local alternativesHI,L
A are written as

HI,L
A : Rvec

[

A′
]

= (ν/
√
T )a,

where by (5.3) it followsa is them × 1 vector [0, ..., 0,
∑m

k=1 ρ
k−1
H ρm−k

L ]′. Now let Â be the least

squares estimator ofA. Theorem 2.2 implies thatW [HI
0 ]

d→ χ2
m asT → ∞ underHI

0 . Similarly, by

classic arguments it is easy to verify underHI,L
A thatW [HI,L

A ]
d→ χ2

m(κMF ), whereχ2
m(κMF ) is the

non-central chi-squared distribution withm degrees of freedom and non-centrality parameterκMF :

κMF = ν2a′
[

RΣ1R
′
]−1

a, (5.4)

whereΣ1 is the asymptotic variance of̂A, in particular

Σ1 = Ω⊗Υ−1
0 with Υ0 =

∞
∑

i=0

AiΩAi′ where A ≡ lim
T→∞

A(ν/
√
T ). (5.5)

Equation (5.5) can be obtained from non-local least squares asymptoticswith A ≡ limT→∞A(ν/
√
T ).

See Appendices A.1.1 and A.1.2, in particular the example in Appendix A.1.2, for details on deriving
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Σ1 in (5.5). Using the discrete Lyapunov equation,Υ0 can be characterized by:

vec[Υ0] = (IK2 −A⊗A)−1vec[Ω].

Let F0 : R → [0, 1] be the cumulative distribution function (c.d.f.) of the null distribution,χ2
m.

Similarly, letF1 : R → [0, 1] be the c.d.f. of the alternative distribution,χ2
m(κMF ). The local asymptotic

power of the MF high-to-low causality test,P, is given by:

P = 1− F1

[

F−1
0 (1− α)

]

, (5.6)

whereα ∈ [0, 1] is a nominal size.

We now derive the local asymptotic power of the LF high-to-low causality test.First, the LF-VAR(1)

process corresponding to (5.1) is given by:

X(τL) = A(ν/
√
T )X(τL − 1) + ǫ(τL), (5.7)

where

A(ν/
√
T ) =

[

ρmH 0
∑m

k=1 ρ
k−1
H ρm−k

L (ν/
√
T ) ρmL

]

(5.8)

andǫ(τL)
i.i.d.∼ (02×1,Ω). Note thatΩ is characterized in (4.10).

Suppose that we fit a LF-VAR(1) model with coefficient matrixA ∈ R
2×2, that isX(τL) =AX(τL

− 1) + ǫ(τL). The null hypothesis of high-to-low non-causality is that the lower-left element of A is

zero:

HI
0 : Rvec

[

A′
]

= 0,

whereR = [0, 0, 1, 0]. The corresponding local alternative hypothesis is:

HI,L
A : Rvec

[

A′
]

=
m
∑

k=1

ρk−1
H ρm−k

L (ν/
√
T ).

Let Â be the least squares estimator ofA. We have thatW [HI
0 ]

d→ χ2
1 asT → ∞ underHI

0 , while

W [HI,L
A ]

d→ χ2
1(κLF ) underHI,L

A with κLF given by:

κLF =

(

ν
∑m

k=1 ρ
k−1
H ρm−k

L

)2

RΣ
1
R′

,

whereΣ
1

is the asymptotic variance of̂A ≡ limT→∞{A(ν/
√
T )}, in particular as in (5.5) it can be

shownΣ1 = Ω ⊗ Υ−1
0 with Υ0 =

∑∞
i=0A

iΩAi′ . The local asymptotic power of the LF high-to-low

causality test is given by (5.6), whereF0 is the c.d.f. ofχ2
1 andF1 is the c.d.f. ofχ2

1(κLF ).
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Case II: Low-to-High Causality Assume that the true DGP is given by (5.1) with

Φ(ν/
√
T ) =

[

ρH ν/
√
T

0 ρL

]

with ρH , ρL ∈ (−1, 1). Assume again thatη(τL, k)
i.i.d.∼ (02×1, I2). In the true DGP, the high frequency

variable does not cause the low frequency variable, while the low frequency variable causes the high

frequency variable, a relationship which vanishes asT → ∞.

Assuming stock sampling and generalm ∈ N, the corresponding MF-VAR(1) process is given by

(5.2) with

A(ν/
√
T ) =













01×(m−1) ρH
∑1

k=1 ρ
k−1
H ρ1−k

L (ν/
√
T )

...
...

...

01×(m−1) ρmH
∑m

k=1 ρ
k−1
H ρm−k

L (ν/
√
T )

01×(m−1) 0 ρmL













. (5.9)

Our model is again a MF-VAR(1) model, so the local asymptotic power of the MFlow-to-high causality

test can be computed exactly as in Case I with only two changes. First,a in (5.4) has different elements

here: a = [
∑1

k=1 ρ
k−1
H ρ1−k

L , . . . ,
∑m

k=1 ρ
k−1
H ρm−k

L ]′. Second, the selection matrixR is specified ac-

cording to Case II in Section 3.2. These differences will produce an interesting asymmetry between the

MF high-to-low causality test and the MF low-to-high causality test.

We now consider the LF low-to-high causality test. The LF-VAR(1) process is given by:

A(ν/
√
T ) =

[

ρmH
∑m

k=1 ρ
k−1
H ρm−k

L (ν/
√
T )

0 ρmL

]

. (5.10)

The local asymptotic power of the LF low-to-high causality test can again be computed exactly as in

Case I with the only difference being thatR = [0, 1, 0, 0] here, so there is no asymmetry between the LF

high-to-low causality test and the LF low-to-high causality test.

Numerical Exercises To study the local asymptotic power analysis more directly, we rely on some

numerical calculations. In Figure 1 we plot the ratio of the local asymptotic power of the MF causality

test to that of the LF causality test, which we call thepower ratiohereafter. We assume a nominal sizeα

= 0.05. Panel A focuses on high-to-low causality, while Panel B focuses on low-to-high causality. Each

panel has four figures depending onρH , ρL ∈ {0.25, 0.75}. The x-axis of each figure hasν ∈ [0.5, 1.5],

while the y-axis hasm ∈ {3, . . . , 12}. The case thatm = 3 can be thought of as the month versus quarter

case, while the case thatm = 12 can be thought of as the month versus year case. Note that the scale of

each z-axis is different.

In Panel A, the power ratio varies within[0.5, 1], hence the MF causality test is as powerful as, or is

in fact lesspowerful than, the LF causality test. This is reasonable since a MF process contains the same

information about high-to-low causality test as the corresponding LF process does (cfr. (5.3), (5.8), and

Theorem 4.3) and the former has more parameters: recall thatA is (m+1)× (m+1) whileA is 2× 2.
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Note: The z-axis of each figure has the power ratio (i.e. the ratio of the local asymptotic power of the MF causality test to that

of the low frequency causality test). Note that the scale of each z-axis is different. The x-axis hasν ∈ [0.5, 1.5], while the

y-axis hasm ∈ {3, . . . , 12}.

Figure 1: Local Asymptotic Power of Mixed and Low Frequency Causality Tests
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The power ratio tends to be low in the bottom figures of Panel A, whereρH = 0.75. This result is also

understandable since the information loss caused by aggregating a high frequency variable is less severe

when it is more persistent.

Panel B highlights the advantage of the MF approach over the LF approach. Note that the power ratio

always exceeds one and the largest value of the z-axis is 5, 15, 3, or 6when(ρH , ρL) = (0.25, 0.25),

(0.25, 0.75), (0.75, 0.25), or (0.75, 0.75), respectively. This result is consistent with (5.9), (5.10), and

Theorem 4.3, where we show that a MF process contains more information about low-to-high causality

test than the corresponding LF process does. Given the sameρL, the power ratio tends to be low when

the high frequency variable is more persistent. The reason for this resultis again that aggregating a high

frequency variable produces less severe information loss when it is morepersistent.

Another interesting finding from Panel B is that the power ratio is decreasing in m for (ρH , ρL) =

(0.25, 0.25) and increasing inm for (ρH , ρL) = (0.75, 0.75). To interpret this fact, letρH = ρL =

ρ and consider a key quantity in the upper-right block ofA,
∑m

k=1 ρ
k−1
H ρm−k

L = mρm−1 ≡ f(m).

Givenm, the upper-right block ofA hasf(1), . . . , f(m) while that ofA hasf(m) only, therefore it

is {f(1), . . . , f(m − 1)} that determines the power ratio. Hence, whether the power ratio increasesor

decreases by switching fromm to m + 1 depends on the magnitude off(m). If f(m) is close to zero,

then the power ratio decreases due to more parameters in a MF-VAR model and negligible informational

gain fromf(m). If f(m) is away from zero, then the power ratio increases since such a large coefficient

helps us reject the incorrect null hypothesis of low-to-high non-causality. Figure 2 plotsf(m) for ρ ∈
{0.25, 0.75}. It shows thatf(m) converges to zero quickly asm grows whenρ = 0.25, while it does

much more slowly whenρ = 0.75. Thus, the power ratio is decreasing inm for ρ = 0.25 and increasing

in m for ρ = 0.75.
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Note: The horizontal axis hasm ∈ {1, . . . , 12}, while the vertical axis hasmρm−1 for ρ ∈ {0.25, 0.75}.

Figure 2: Plot of the Functionmρm−1 - Driver of Local Asymptotic Power Ratios

In summary, the local asymptotic power of the MF low-to-high causality test is higher than that of

the LF counterpart. The ratio of the former to the latter increases as a high frequency variable gets less

persistent, given the persistence of a low frequency variable. Moreover, the power ratio increases inm
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for persistent series, while it decreases inm for transitory series.

6 Power Improvements in Finite Samples

This section conducts Monte Carlo simulations for a bivariate case and a trivariate case to evaluate the fi-

nite sample performance of the mixed frequency causality test. In bivariate cases with stock sampling, we

know how causality is transferred among HF-, MF-, and LF-VAR processes and hence we can compare

the finite sample power of MF and LF causality tests. In trivariate cases we have little theoretical results

on how causality is transferred because of potential causality chains, sowe just evaluate the performance

of the MF causality test itself by checking empirical size and power based ona MF-VAR model. All

tests in this section are performed at the 5% level.

6.1 Bivariate Case

This section considers a bivariate HF-VAR(1) with stock sampling as in Section 5 so that the corre-

sponding MF- and LF-VAR models are known and correctly specified. One drawback of this experimen-

tal design is that we cannot easily study flow sampling since the corresponding MF and LF processes

only have VARMA representations of unknown order, and therefore may not have a finite order VAR

representation, by Theorem 4.1.10

6.1.1 Simulation Design

We drawJ independent samples from a HF-VAR(1) process{{X(τL, k)}} according to (4.1) withΦ1

partitioned in two possible ways:

(a)

[

φHH,1 φHL,1

φLH,1 φLL,1

]

=

[

0.4 0.0

0.2 0.4

]

and (b)

[

φHH,1 φHL,1

φLH,1 φLL,1

]

=

[

0.4 0.2

0.0 0.4

]

.

Thus we have in (a) unidirectional causality from the high frequency variable to the low frequency

variable and in (b) unidirectional causality from the low frequency variable to the high frequency variable.

Since we assume stock sampling here, these causal patterns carry over tothe corresponding MF- and

LF-VAR processes under this parametrization. The innovations are mutuallyand serially uncorrelated

standard normal:η(τL, k)
i.i.d.∼ N(02×1, I2). The low frequency sample size isTL ∈ {50, 100, 500}.

The sampling frequency is taken fromm ∈ {2, 3}, so the high frequency sample size isT = mTL ∈
{100, 150, 200, 300, 1000, 1500}. The case that(m,TL) = (3, 100) can be thought of as a month versus

quarter case covering 25 years.

We extract the MF process{X(τL)}TL

1 and the LF process{X(τL)}TL

1 according to (2.2) and (4.2)

respectively, and fit MF-VAR(1) and LF-VAR(1), which are correctly specified. We then compute Wald

10In simulations not reported here we explored Lütkepohl and Poskitt’s (1996) finite-order approximation for VAR(∞). The
resulting test exhibited large empirical size distortions and was therefore not considered in this paper.
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statistics for two separate null hypotheses of high-to-low non-causalityHH9L: xH 9 xL and low-to-

high non-causalityHL9H : xL 9 xH , each for horizonh = 1.11 The Wald statistic shown in (2.9) is

computed by OLS with two covariance matrix estimators. The first one is based on the Bartlett kernel

HAC estimator discussed in Appendix A.1.3. We use a bandwidth of the formnT ∗
L
≡ max{1, λ(T ∗

L)
1/3}

since this optimizes the estimator’s rate of convergence (Newey and West (1994)), whileλ is determined

by Newey and West’s (1994) automatic bandwidth selection. This so-calledHAC casecorresponds to

a situation where the researcher merely uses one robust covariance estimation technique irrespective

of theory results.12 The second covariance matrix is the true analytical matrix, and is therefore called

the benchmark case. This case corresponds to a complete-information situation where the researcher

knows the true parameters. The benchmark covariance matrix for the MF-VAR model can be computed

according to (5.5). In the LF-VAR model,A andΩ in that expression should be replaced withA andΩ,

respectively (see (4.4), (4.5), (4.9), and (4.10)).

To circumvent size distortions for small samplesTL ∈ {50, 100}, we employ a parametric bootstrap

as in Dufour, Pelletier, and Renault (2006, p. 351).13 Althoughp = h = 1 in this section, we present

the procedure with generalp andh for completeness. We present the concrete procedure with respect to

H2
0 (h) : xH,i1 9h xL,j1 | I(H,i1), but all other cases can be treated analogously.

Step 1 Fit an unrestricted MF-VAR(p) model for prediction horizon one to get̂B(1) andΩ̂ (cfr. (2.3)

and (2.6)). Also fit an unrestricted MF-VAR(p) model for prediction horizonh to getB̂(h) (cfr.

(2.5)).

Step 2 Using (2.9), compute the Wald test statistic based on the actual data,W [H2
0 (h)].

Step 3 SimulateN samples from (2.5) usingB(h) = B̂(h) andΩ = Ω̂ and the hypothesis thatǫ(τL) is

jointly standard normal, where we impose parametric constraints corresponding toH2
0 (h), found

in (3.2) and Table 1. Estimates of the impulse response coefficientsΨk can be obtained using

B̂(1) and (2.4). We denote byWi[H
2
0 (h)] the Wald test statistic based on thei-th simulated

sample, wherei ∈ {1, . . . , N}.

Step 4 Compute the resulting p-valuêpN (W [H2
0 (h)]), defined as

p̂N (W [H2
0 (h)]) ≡

1

N + 1

(

1 +
N
∑

i=1

I(Wi[H
2
0 (h)] ≥ W [H2

0 (h)])

)

.

The null hypothesisH2
0 (h) is rejected at levelα if p̂N (W [H2

0 (h)]) ≤ α.

11Notice from (4.3) and (4.8) thatHH9L corresponds toA1(m+ 1, 1 : m) = 01×m in the MF-VAR and toA1(2, 1) = 0
in the LF-VAR models, whileHL9H corresponds toA1(1 : m,m+ 1) = 0m×1 in the MF-VAR and toA1(1, 2) = 0 in the
LF-VAR models.

12In the special case whenh = 1, a consistent andalmost surelypositive definite least squares asymptotic variance estimator
is easily computed without a long-run variance HAC estimator (see Appendix A.1). Based on this insight, we also tried a
sufficiently smallλ instead of Newey and West’s (1994) automatic selection. The results weresimilar to those of the HAC case,
so are not reported here.

13Chauvet, G̈otz, and Hecq (2013) explore an alternative approach of parameter reductions based on reduced rank conditions,
the imposition of an ARX(1) structure on the high frequency variables, and the transformation of MF-VAR into LF-VAR
models.
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For small sample sizesTL ∈ {50, 100}, we drawJ = 1, 000 samples withN = 100 replications in

bootstrap. For the larger sample sizeTL = 500, we drawJ = 100, 000 samples without bootstrap since

size distortions do not occur.

We expect the following two results based on Theorem 4.3 and Section 5. First, the MF high-to-low

causality test should have the same or lower power than the LF high-to-low causality test does since they

contain the same amount of causal information and the former entails more parameters. Second, the MF

low-to-high causality test should have higher power than the LF low-to-highcausality test does since the

former contains more causal information than the latter.

6.1.2 Simulation Results

In Table 2 we report rejection frequencies for the simulation design described in the previous subsection.

Notice that, in case (a), size is computed with respect to low-to-high causality while power is computed

with respect to high-to-low causality. In case (b), size is computed with respect to high-to-low causality,

while power is computed with respect to low-to-high causality. Values in parentheses are the benchmark

rejection frequencies based on the analytical covariance matrix, and values not in parentheses concern

the HAC case.

Empirical size varies within[0.035, 0.069], so there are no serious size distortions in any case. Focus-

ing on power, the results are consistent with the two conjectures above. First, the gap between rejection

rates for MF and LF causality tests forHH9L is not large (see case (a) in Table 2). For example, when

(m,TL) = (2, 50) and the HAC covariance matrix is used, power for the MF high-to-low causality test is

0.125 while power for the LF high-to-low causality test is 0.177. Second, theMF low-to-high causality

test has clearly higher power than the LF counterpart (see case (b)).This difference is most prominent

for the largestm andTL, where the rejection frequencies in the HAC case are 0.997 and 0.556 forthe

MF- and LF-VAR models, respectively. These results indicate that the MF causality test never performs

worse than the LF causality test in terms of size and power when sample size is fairly large, and the

former is much more powerful than the latter when low-to-high causality is of interest.

6.2 Trivariate Case

We now focus on a trivariate MF-VAR model with multiple prediction horizons in order to see if the

mixed frequency causality test can capture causality chains properly. Since there is no clear theory on

how causality is linked between MF- and LF-VAR processes in the presence of causality chains, we do

not consider LF-VAR models, and therefore the aggregation scheme does not matter here.

6.2.1 Simulation Design

Suppose that there are two high frequency variablesX andY and one low frequency variableZ with

sampling frequencym = 3 so thatKH = 2, KL = 1, andK = 7. The low frequency sample size is
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Table 2: Size and Power for Causality Tests Based on VAR (Stock Sampling)
Rejection frequencies at the 5% level for mixed and low frequency causality tests at horizonh = 1. The two cases are (a)φHL,1 = 0 and

φLH,1 = 0.2 (unidirectional high-to-low causality) and (b)φHL,1 = 0.2 andφLH,1 = 0 (unidirectional low-to-high causality). In case

(a), size is computed with respect to low-to-high causality,while power is computed with respect to high-to-low causality. In case (b), size

is computed with respect to high-to-low causality, while power is computed with respect to low-to-high causality. Entries in parentheses are

based on the benchmark analytical covariance matrix, and entries not in parentheses are based on the HAC estimator. A parametric bootstrap

is employed forTL ∈ {50, 100} to avoid size distortions.m is the sampling frequency andTL is the sample size in terms of low frequency.

Sample SizeTL = 50

Case (a) Case (b)
m=2 m=3 m=2 m=3

Size
MF: 0.065(0.051)
LF: 0.048(0.048)

MF: 0.046(0.046)
LF: 0.064(0.055)

MF: 0.035(0.053)
LF: 0.037(0.044)

MF: 0.046(0.049)
LF: 0.050(0.041)

Power
MF: 0.125(0.143)
LF: 0.177(0.203)

MF: 0.057(0.071)
LF: 0.072(0.092)

MF: 0.232(0.261)
LF: 0.178(0.200)

MF: 0.186(0.228)
LF: 0.104(0.109)

Sample SizeTL = 100

Case (a) Case (b)
m=2 m=3 m=2 m=3

Size
MF: 0.057(0.059)
LF: 0.047(0.053)

MF: 0.048(0.041)
LF: 0.040(0.047)

MF: 0.054(0.049)
LF: 0.042(0.045)

MF: 0.036(0.069)
LF: 0.046(0.052)

Power
MF: 0.229(0.253)
LF: 0.301(0.330)

MF: 0.098(0.115)
LF: 0.133(0.140)

MF: 0.455(0.487)
LF: 0.317(0.329)

MF: 0.383(0.427)
LF: 0.136(0.168)

Sample SizeTL = 500

Case (a) Case (b)
m=2 m=3 m=2 m=3

Size
MF: 0.059(0.051)
LF: 0.056(0.052)

MF: 0.064(0.051)
LF: 0.055(0.051)

MF: 0.060(0.052)
LF: 0.056(0.050)

MF: 0.066(0.052)
LF: 0.056(0.053)

Power
MF: 0.900(0.898)
LF: 0.943(0.944)

MF: 0.414(0.390)
LF: 0.557(0.551)

MF: 0.998(0.998)
LF: 0.943(0.944)

MF: 0.997(0.997)
LF: 0.556(0.550)
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TL = 100. Define a mixed frequency vector:

W (τL) = [X(τL, 1), Y (τL, 1), X(τL, 2), Y (τL, 2), X(τL, 3), Y (τL, 3), Z(τL)]
′.

Our true DGP is MF-VAR(1):

W (τL) = AW (τL − 1) + ǫ(τL), ǫ(τL)
i.i.d.∼ (07×1, I7)

with

A =



























0.2 0 −0.3 0 0.6 0 0

0.3 0.3 0.3 −0.4 0.4 0.5 0

0 0 −0.2 0 0.4 0 0

0 0 0.2 0.2 0.2 0.4 0

0 0 0 0 0.3 0 0

0 0 0 0 0.3 0.3 0

0
�

�

�

�0.3 0
�

�

�

�0.3 0
�

�

�

�0.4 0.6



























, (6.1)

where the nine elements in rectangles represent the impact ofX on Y , the three underlined elements

represent the impact ofX onZ, and the three boxed elements represent the impact ofY onZ. All other

non-zero elements are autoregressive coefficients, so not directly relevant for causal patterns. Equation

(6.1) thus implies that there are only two channels of causality ath = 1: X →1 Y | I andY →1 Z | I.

In particular, note thatX does not causeZ at h = 1. Forh ≥ 2, we have three channels of causality

because of a causal chain fromX toZ via Y : X →h Y | I, Y →h Z | I, andX →h Z | I. This point is

verified by observingA2 andA3:

A2 =



























0.04 0 0 0 0.18 0 0

0.15 0.09 -0.14 −0.04 0.61 0.14 0

0 0 0.04 0 0.04 0 0

0 0 -0.08 0.04 0.22 0.04 0

0 0 0 0 0.09 0 0

0 0 0 0 0.18 0.09 0

0.09
�

�

�

�0.27 0.15
�

�

�

�0 0.30
�

�

�

�0.63 0.36



























(6.2)

and

A3 =



























0.01 0 −0.01 0 0.08 0 0

0.06 0.30 0.00 −0.03 0.29 0.07 0

0 0 −0.01 0 0.03 0 0

0 0 0.02 −0.01 0.05 0.03 0

0 0 0 0 0.03 0 0

0 0 0 0 0.08 0.03 0

0.10
�

�

�

�0.19 0.02
�

�

�

�-0.00 0.50
�

�

�

�0.47 0.22



























. (6.3)

We fit (p, h)-autoregression withp = 1 andh ∈ {1, 2, 3} to implement the mixed frequency causality
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test from an individual variable to another. We are particularly interestedin whether we can findnon-

causalityfrom X to Z at h = 1 andcausalityfrom X to Z at h = 2, 3. We drawJ = 1, 000 samples

andN = 100 parametric bootstrap replications to avoid size distortions. The HAC covariance estimator

with Newey and West’s (1994) automatic bandwidth selection is used as in the bivariate simulation.

6.2.2 Simulation Results

Table 3 reports the rejection frequencies (empirical size is accurate in viewof the parametric bootstrap).

Empirical power for the test ofX 9h Y is 0.997, 0.815, and 0.161 for horizons 1, 2, and 3, respec-

tively. Diminishing power is reasonable given the diminishing impact ofX on Y ; see the elements in

rectangles in (6.1), (6.2), and (6.3).

Power for the test ofY 9h Z vanishes more slowly ash increases: 1.000, 0.996, and 0.700 for

horizons 1, 2, and 3, respectively. In fact the boxed elements ofA2 andA3 contain relatively large

loadings 0.63 and 0.47, respectively. The intuitive reason for this slowerdecay is thatY has a more

persistent impact onZ thanX does onY ; see the upper triangular structure of the rectangles in (6.1).

Finally, the rejection frequency forX 9h Z is 0.047, 0.555, and 0.631 for horizons 1, 2, and

3, respectively. At horizon 1 we get the desired result of non-causality from X to Z, while we have

relatively high power forh = 2, 3 due to the indirect impact ofX on Z via Y (see the underlined

elements in (6.1)-(6.3)). Thus, our mixed frequency causality test performs well even in the presence of

a causality chain.

Table 3: Rejection Frequency in Trivariate Simulation
This table lists rejection frequencies based on(p, h)-autoregression withp = 1 andh ∈ {1, 2, 3}. The upper right triangular matrices have

empirical size forY 9h X, Z 9h X, andZ 9h Y . Each test deals with the null hypothesis of non-causality from an individual variable

to another at horizonh. We drawJ = 1, 000 samples andN = 100 bootstrap replications. The HAC covariance estimator with Newey and

West’s (1994) automatic bandwidth selection is used. The nominal size is 5%.

Null Hypothesis h = 1 h = 2 h = 3




− Y 9h X Z 9h X
X 9h Y − Z 9h Y
X 9h Z Y 9h Z −









− 0.050 0.052
0.997 − 0.052
0.047 1.000 −









− 0.055 0.047
0.815 − 0.047
0.555 0.996 −









− 0.052 0.062
0.161 − 0.062
0.631 0.700 −





7 Concluding Remarks

Time series processes are often sampled at different frequencies andare typically aggregated to the com-

mon lowest frequency to test for Granger causality. This paper compares testing for Granger causality

with all series aggregated to the common lowest frequency, and testing for Granger causality taking ad-

vantage of all the series sampled at whatever frequency they are available. We rely on mixed frequency

vector autoregressive models to implement the new class of Granger causality tests.
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We show that mixed frequency causality tests better recover causality patterns in an underlying high

frequency process compared to the traditional low frequency approach. Moreover, we show formally

that mixed frequency causality tests have higher asymptotic power against local alternatives and show

via simulation that this also holds in finite sample involving realistic data generating processes. The

simulations indicate that the mixed frequency VAR approach works well for small differences in sam-

pling frequencies (denoted bym) like month versus quarter. Current work in progress (Ghysels, Hill,

and Motegi (2013)) considers MIDAS regression-based causality tests inspired by Sims (1972) in order

to handle relatively largem like month versus year.
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Technical Appendices

A Asymptotic Properties of MF-VAR Parameter Estimators

In this section we derive the asymptotic distribution of theMF-VAR parameter estimators leading to the proofs of

Theorems 2.1 and 2.2. We additionally present a simple consistentalmost surelypositive semi-definite estimator

of the least squares asymptotic variance that we use in the simulation study.

A.1 Least Squares Estimator and Asymptotic Variance

In this subsection we present the compact model that leads tothe least squares estimator̂B(h) of the parameter

setB(h) appearing in equation (2.6). We then characterize the matrix components that enter into the least squares

asymptotic covarianceΣp(h) = (IK ⊗Γ−1
p,0)Dp(h)(IK ⊗Γ−1

p,0)
′ appearing in the proof of Theorem 2.1 below. We

save notation by writingΣp instead ofΣp(h) throughout the appendix. We then explicitly derive the covariance

matricesΓp,0 andDp(h). Finally, we present a simple consistent HAC estimator ofΣp that satisfies the require-

ments of Theorem 2.2. The proofs of Theorems 2.1 and 2.2 are presented in Appendix A.2 where we explicitly

verify the form ofΣp.

A.1.1 Least Squares Estimator

We require a more compact notation in order to derive the least squares estimator̂B(h). Define

Wh(k) = [X(h),X(1 + h), . . . ,X(TL − k + h)]
′ ∈ R

(TL−k+1)×K

W (τL, p) = [X(τL)
′,X(τL − 1)′, . . . ,X(τL − p+ 1)′]

′ ∈ R
pK×1

W p(h) = [W (0, p),W (1, p), . . . ,W (TL − h, p)]
′ ∈ R

(TL−h+1)×pK ,

(A.1)

and define the error

u(h)(τL) =

h−1
∑

k=0

Ψkǫ(τL − k) (A.2)

stacked as follows:

Ul(k) =
[

u(h)(l),u(h)(1 + l), . . . ,u(h)(TL − k + l)
]

′

∈ R
(TL−k+1)×K . (A.3)

Then the(p, h)-autoregression appearing in (2.5) has the equivalent representation

Wh(h) = W p(h)B(h) +Uh(h). (A.4)

The estimatorB̂(h) = [W p(h)
′W p(h)]

−1W p(h)
′Wh(h) then follows.

A.1.2 Asymptotic Variance Components: Covariance Matrices

We now derive the componentsΓp,0 andDp(h) of the asymptotic varianceΣp. First, letΓp,0 denote the variance

matrices forW (τL, p) in (A.1):

Γp,0 ≡ E [W (τL, p)W (τL, p)
′] .
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By Assumptions 2.1 through 2.3 it is easily verified thatΓp,0 is positive definite. Second, by a standard first order

expansion we require the long-run variance of a vectorizedW (τL, p)u(τL + h)′, denoted

Y (τL + h, p) ≡ vec
[

W (τL, p)u
(h)(τL + h)′

]

= (IK ⊗W (τL, p))u
(h)(τL + h) ∈ R

pK2
×1. (A.5)

By construction{Y (τL + h, p)}τL is a zero mean covariance stationary process with auto-covariances

∆p,s(h) ≡ E [Y (τL + h+ s, p)Y (τL + h, p)′] where∆p,s(h) = 0 ∀s ≥ h.

Of particular note, although in generalY (τL + h, p) is not finite dependent, it has zero auto-covariances at

lag s ≥ h. Analytical characterizations ofΓp,0 and∆p,s(h) are presented below. The partial sum variance of

Y (τL + h, p) is therefore:

Dp,T∗

L
(h) ≡ Var





1
√

T ∗

L

T∗

L
−1
∑

τL=0

Y (τL + h, p)



 (A.6)

= ∆p,0(h) +

h−1
∑

s=1

[

1− s

T ∗

L

]

× [∆p,s(h) +∆p,s(h)
′]

= ∆p,0(1) if h = 1,

whereT ∗

L = TL − h + 1. We defineDp(h) as the long-run variance ofY (τL + h, p):

Dp(h) ≡ lim
T∗

L
→∞

Dp,T∗

L
(h) = ∆p,0(h) +

h−1
∑

s=1

[∆p,s(h) +∆p,s(h)
′]

= ∆p,0(1) if h = 1. (A.7)

Observe thatDp(h) is well defined for anyh ≥ 1 in view of the stationary geometric strong mixing property

of W (τL, p), the i.i.d. property forǫ(τL), and theL2+δ-boundedness. In particularDp(h), andDp,T∗

L
(h) for T ∗

L

sufficiently large, are positive definite. Simply note that sinceX(τL) is a stationary VAR with an i.i.d. errorǫ(τL)

that has a positive definite variance, it followsX(τL) and thereforeY (τL + h, p) have a continuous bounded

spectral density that is positive definite at frequency zero. Thereforea′Dp(h)a > 0 for all conformablea 6= 0

(see Theorem 2.2 in Ibragimov (1975)). HenceDp(h) is positive definite, and sinceDp,T∗

L
(h) =Dp(h) + o(1) it

follows forN ∈ N sufficiently large and allT ∗

L ≥ N thatDp,T∗

L
(h) is positive definite.

We now explicitly characterize the covariance matricesΓp,0 ≡E[W (τL, p)W (τL, p)
′] and∆p,s(h)≡E[Y (τL

+ h + s, p)Y (τL + h, p)′]. Denote the auto-covariances ofX(τL) as

Υs = [υij,s]
K

i,j=1 ≡ E [X(τL + s)X(τL)
′] =







∑

∞

k=0 Ψs+kΩΨ′

k if s ≥ 0

Υ′

−s if s < 0,
(A.8)

whereΨk is defined by the moving average representation (2.4). In view of |Ψk|=O(ρh) for ρ ∈ (0, 1) it follows
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∑

∞

s=−∞
|υij,s| < ∞ for anyi, j. The process{W (τL, p)}τL defined by (A.1) therefore has auto-covariances

Γp,s ≡ E [W (τL + s, p)W (τL, p)
′] =













Υs Υs+1 · · · Υs+p−1

Υs−1 Υs · · · Υs+p−2

...
...

.. .
...

Υs−p+1 Υs−p+2 · · · Υs













. (A.9)

Further,u(h)(τL) has auto-covariances

Qs(h) ≡ E
[

u(h)(τL + s)u(h)(τL)
′

]

=















∑h−s−1
k=0 Ψs+kΩΨ′

k if 0 ≤ s < h

Q−s(h)
′ if −h < s < 0

0K×K if |s| ≥ h.

(A.10)

Using (A.10) andY (τL + h, p) ≡ (IK ⊗W (τL, p))u
(h)(τL + h), the auto-covariances ofY (τL + h, p) are

∆p,s(h) ≡ E[Y (τL + h+ s, p)Y (τL + h, p)′] =















Q0(h)⊗ Γp,0 if s = 0

∆p,−s(h)
′ if −h < s < 0

0pK2×pK2 if |s| ≥ h.

(A.11)

NoticeY (τL + h, p) is serially uncorrelated at lag|s| ≥ h, although in general we cannot sayY (τL + h, p) is h

− 1 dependent. Evidently a convenient expression for∆p,s(h) does not exist whens ∈ {1, . . . , h− 1}.
We now prove∆p,s(h) = 0pK2×pK2 for |s| ≥ h. Assume without loss of generality thats ≥ h. Equation

(A.5) and the definition of∆p,s(h) imply that

∆p,s(h) = E
[

(IK ⊗W (τL + s, p))u(h)(τL + s+ h)u(h)(τL + h)′ (IK ⊗W (τL, p)
′)
]

. (A.12)

Let I(τL + s) = σ{ǫ(τ)|τ ≤ τL + s}. Note thatW (τL, p), W (τL + s, p), andu(h)(τL + h) are all known

at periodτL + s, while u(h)(τL + s + h) depends only on{ǫ(τL + s + 1), . . . , ǫ(τL + s + h)} and therefore

E[u(h)(τL + s + h)|I(τL + s)] = E[u(h)(τL + s + h)] = 0K×1 by the i.i.d. assumption. We can thus get the

desired result by applying the law of iterated expectationsto (A.12). Similarly,∆p,0(h) = Q0(h) ⊗ Γp,0 can be

shown by applying the law of iterated expectations givenI(τL) to (A.12).

Example (h = 1): It is useful to derive the least squares asymptotic varianceΣp = (IK⊗Γ−1
p,0)Dp(h)(IK⊗Γ−1

p,0)
′

for the caseh = 1. Use (A.8) and (A.9) to deduceΓp,0 = Υ0 =
∑

∞

k=0 ΨkΩΨ′

k. Next, use A.7 and A.11

to deduceDp(1) = ∆p,0(1) = Q0(1) ⊗ Γp,0, hence by (A.9) and (A.10) it followsDp(1) = Ω ⊗ Γp,0 =

Ω ⊗∑∞

k=0 ΨkΩΨ′

k. Kronecker product propertiesF therefore implyΣp is identicallyΩ ⊗ Γ−1
p,0 = Ω ⊗Υ−1

0 =

Ω⊗ (
∑

∞

k=0 ΨkΩΨ′

k)
−1.

A.1.3 Consistent and Almost Surely Positive Semi-Definite HAC Estimator

We need only estimate the components ofΣp = (IK ⊗ Γ−1
p,0)Dp(h)(IK ⊗ Γ−1

p,0)
′. A natural estimator ofΓp,0 is

the sample conjugate:

Γ̂p,0 =
1

T ∗

L

T∗

L
−1
∑

τL=0

W (τL, p)W (τL, p)
′.
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Under Assumptions 2.1-2.3̂Γp,0 is almost surelypositive definite.

Turning to the long-run varianceDp(h), denote the least squares residualÛh(h) ≡ Wh(h) − W p(h)B̂(h)

for model (A.4) and the resulting residualû(h)(τL) ≡ X(τL) −
∑p

k=1 Â
(h)
k X(τL − h + 1 − k) computed from

(A.3). Now compute the sample version ofY (τL + h, p) defined in (A.5),

Ŷ (τL + h, p) = vec
[

W (τL, p)û
(h)(τL + h)′

]

,

and compute

∆̂p,s(h) =
1

T ∗

L

T∗

L
−1
∑

τL=s

Ŷ (τL + h, p)Ŷ (τL + h− s, p)′.

If h = 1 then from (A.6) the estimator ofDp(h) need only beD̂p,T∗

L
(1) = ∆̂p,0(1). Otherwise, a näıve estimator

of Dp(h) simply substituteŝ∆p,s(h) for ∆p,s(h) in the right-hand side of (A.6), but it is well-known that such an

estimator may not be positive semi-definite unlessh = 1.

We therefore exploit Newey and West (1987)’s Bartlett kernel-based HAC estimator which ensuresalmost

surepositive semi-definiteness for anyT ∗

L ≥ 1 (see Newey and West (1987) and Andrews (1991)):14

D̂p,T∗

L
(h) = ∆̂p,0(h) +

nT
∗

L

−1
∑

s=1

(

1− s

nT∗

L

)

(∆̂p,s(h) + ∆̂p,s(h)
′) (A.13)

with bandwidthnT∗

L
: h ≤ nT∗

L
≤ T ∗

L, nT∗

L
→ ∞ andnT∗

L
= o(T ∗

L). Intuitively sinceY (τL, p) is serially uncor-

related for all lags aboveh − 1, and∆̂p,s(h) = 1/T ∗

L

∑T∗

L
−1

τL=s Y (τL + h, p)Y (τL + h − s, p)′ + op(1) is easily

verified, we only needh− 1 lags, that is∆̂p,0(h) +
∑h−1

s=1 (1− s/nT∗

L
)(∆̂p,s(h) + ∆̂p,s(h)

′) is a valid estimator

in place of (A.13). But this estimator also need not be positive semi-definite in small samples.

Our proposed estimator ofΣp is therefore

Σ̂p =
(

IK ⊗ Γ̂−1
p,0

)

× D̂p,T∗

L
(h)×

(

IK ⊗ Γ̂−1
p,0

)

. (A.14)

In view of almost surepositive definiteness of̂Γp,0 and positive semi-definiteness of̂Dp,T∗

L
(h) it follows Σ̂p is

almost surelypositive semi-definite. Consistency can be shown given a stronger moment condition for the error

term.

Lemma A.1. Let Assumptions 2.1 through 2.3 hold and assume||ǫ(τL)||4+δ < ∞ for someδ > 0. ThenΣ̂p is

almost surelypositive semi-definite for anyT ∗

L ≥ 1, andΣ̂p
p→ Σp whereΣp is positive definite.

Proof. Almost surepositive semi-definiteness of̂Σp follows from almost surepositive definiteness of̂Γp,0

under Assumptions 2.1 - 2.3, andalmost surepositive semi-definiteness of̂Dp,T∗

L
(h) by Theorem 1 in Newey and

West (1987). In view ofΣp = (IK ⊗ Γ−1
p,0) × Dp(h) × (IK ⊗ Γ−1

p,0) and the fact that by stationarity, ergodicity

andL4+δ-boundedness a consistent estimator forΓp,0 is immediately available from its sample counterpartΓ̂p,0,

it is sufficient to show the consistency of̂Dp,T∗

L
(h). This can be done by verifying Assumptions 1-4 in de Jong

and Davidson (2000) due to their Theorem 2.2.

First, the Bartlett kernel satisfies their Assumption 1. Second, their Assumptions 2 and 3 hold sincenT∗

L
→ ∞

asT ∗

L → ∞, nT∗

L
= o(T ∗

L), and by independence andL4+δ-boundedness ofǫ(τL), and the fact thatW (τL, p) is

stationary geometric strong mixing, it follows by measurability that {1/
√

T ∗

LY (τL+h, p)}τL is anL4+δ-bounded

14There is a large choice of valid kernels, including Parzen and Tukey-Hanning. See de Jong and Davidson (2000).
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geometrically strong mixing process.15

Finally, in order to verify their Assumption 4, define the regression error functionu(h)(τL, B̃) ≡ X(τL) −
∑p

k=1 ÃkX(τL − h + 1 − k) for any conformableÃk whereB̃ ≡ [Ã1, . . . , Ãp]
′, andY (τL + h, p, B̃) =

(IK ⊗ W (τL, p))u
(h)(τL + h, B̃). Now defineZ(τL + h, p, B̃) ≡ Y (τL + h, p, B̃)/

√

T ∗

L and noteŶ (τL +

h, p) = Y (τL + h, p, B̂(h)). In order to match (de Jong and Davidson 2000)’s standardization, we work with

Z(τL + h, p, B̃). Assumption 4 consists of three parts, (a)-(c), with a scale factorκn that is simplyIpK2 in our

case. Part (a) applies sincêB(h) is
√

T ∗

L-convergent. Next, (b) applies since under our assumptionsand by

model linearity it follows1/
√

T ∗

L

∑T∗

L
−1

τL=0 E[(∂/∂B̃)Z(τL + h, p, B̃)] is trivially continuous atB(h) uniformly

in T ∗

L. Finally, (c) involves a uniform LLN for(∂/∂B̃)Z(τL + h, p, B̃). The latter is not a function of̃B in view

of linearity, hence a uniform LLN reduces to a pointwise LLN which hold instantly under Assumptions 2.1-2.3.

QED.

A.2 Proof of Theorems 2.1 and 2.2

RecallDp,T∗

L
(h) ≡ Var[1/

√

T ∗

L

∑T∗

L
−1

τL=0 Y (τL + h, p)] in (A.6) andDp(h) ≡ limT∗

L
→∞ Dp,T∗

L
(h). To prove

Theorem 2.1 we require the following central limit theorem.

Lemma A.2. 1/
√

T ∗

L

∑T∗

L
−1

τL=0 Y (τL + h, p)
d→ N(0pK2×1,Dp (h)) whereDp(h) is positive definite.

Proof. By the Craḿer-Wold theorem it is necessary and sufficient to show1√
T∗

L

∑T∗

L
−1

τL=0 α′Y (τL + h, p)
d→

N(0,α′Dp(h)α) for any pK2 × 1 non-zero vectorα. Observe that{α′Y (τL + h, p)}τL is a zero mean geo-

metrically strongly mixing process. This follows fromY (τL + h, p) ≡ vec[W (τL, p)u
(h)(τL + h)′], W (τL, p)

is a finite dimensional vector of geometrically strong mixing X(τL), andu(h)(τL) =
∑h−1

k=0 Ψkǫ(τL − k) is a

finite lag of i.i.d.ǫ(τL). Moreover||α′Y (τL + h, p)||2+δ < ∞ by the moving average representation (2.4), the

independence ofǫ(τL), and||ǫ(τL)||2+δ < ∞ under Assumption 2.3.

Further, sinceY (τL + h, p) is auto-correlated only up to lagh − 1 it follows limT∗

L
→∞ Dp,T∗

L
(h) =∆p,0(h)

+
∑h−1

s=1 [∆p,s(h) + ∆p,s(h)
′]. Both limT∗

L
→∞ Dp,T∗

L
(h), andDp,T∗

L
(h) for sufficiently largeT ∗

L, are positive

definite by the discussion in Appendix A.1. Therefore1/
√

T ∗

L

∑T∗

L
−1

τL=0 α′Y (τL + h, p)/(α′Dp,T∗

L
(h)α)

d→
N(0, 1) by Theorem 2.2 in Ibragimov (1975). In view ofα′Dp,T∗

L
(h)α → α′Dp(h)α the claim now follows

from Craḿer’s Theorem.QED.

We now prove Theorems 2.1 and 2.2. By the construction ofB̂(h), Γ̂p,0 andY (τL + h, p) it follows

√

T ∗

Lvec
[

B̂(h)−B(h)
]

=
√

T ∗

Lvec
[

(

W p(h)
′W p(h)

)−1
W p(h)

′Uh(h)
]

=

[

IK ⊗
(

1

T ∗

L

W p(h)
′W p(h)

)

−1
]

× vec

[

1
√

T ∗

L

W p(h)
′Uh(h)

]

=
[

IK ⊗ Γ̂−1
p,0

]

× 1
√

T ∗

L

T∗

L
−1
∑

τL=0

Y (τL + h, p).

Notice Γ̂p,0 = 1/T ∗

L

∑T∗

L
−1

τL=0 W (τL, p)W (τL, p)
′

p→ E[W (τL, p)W (τL, p)
′] = Γp,0 in view of stationarity, er-

godicity andL2-boundedness ofW (τL, p). Further,Dp,T∗

L
(h) = Var[1/

√

T ∗

L

∑T∗

L
−1

τL=0 Y (τL + h, p)] → Dp(h).

Now use

Σp ≡ (IK ⊗ Γ−1
p,0)×Dp(h)× (IK ⊗ Γ−1

p,0)
′,

15See Chapter 17 in Davidson (1994) for verification that geometric strongmixing satisfies the Near Epoch Dependence
property in de Jong and Davidson’s (2000) Assumption 2.
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combined with Lemma A.2, and Slutsky’s and Cramér’s Theorems, to deduce
√

T ∗

Lvec[B̂(h)−B(h)]
d→N(0pK2×1,Σp).

Finally, Σp is positive definite in view of the positive definiteness ofΓp,0 andDp(h) as discussed in Appendix

A.1. This proves Theorem 2.1.

The proof of Theorem 2.2 follows instantly from Theorem 2.1,the assumption̂Σp
p→ Σp, and the mapping

theorem.

B Proof of Theorem 4.1

In view of Theorem 1 in L̈utkepohl (1984) it suffices to show thatX(τL) andX(τL) are linear transformations of

a VAR process. DefinemK∗ × 1 vectors:

X(τL) = [X(τL, 1)
′, . . . ,X(τL,m)′]′ and η(τL) = [η(τL, 1)

′, . . . ,η(τL,m)′]′.

We first show that{X(τL)} follows a VAR(s) process withs = ⌈p/m⌉, the smallest integer not smaller thanp/m.

We then prove the claim.

The HF-VAR(p) process in (4.1) implies that:

NX(τL) =

s
∑

k=1

MkX(τL − k) + η(τL), (B.1)

where

N =

















IK∗ 0K∗×K∗ . . . 0K∗×K∗

−Φ1 IK∗

. . .
...

...
. . .

. . . 0K∗×K∗

−Φm−1 . . . −Φ1 IK∗

















andMk =













Φkm Φkm−1 . . . Φ(k−1)m+1

Φkm+1 Φkm . . . Φ(k−1)m+2

...
...

. . .
...

Φ(k+1)m−1 Φ(k+1)m−2 . . . Φkm













for k = 1, . . . , s. It is understood thatΦk = 0K∗×K∗ wheneverk > p. We have that:

N−1 =















N1 0K∗×K∗ . . . 0K∗×K∗

N2 N1
. ..

...
...

. ..
. .. 0K∗×K∗

Nm . . . N2 N1















,

whereN1 = IK∗ andNk =
∑k−1

l=1 Φk−lNl for k = 2, . . . ,m. Using this property, (B.1) can be rewritten as

follows:

A(LL)X(τL) = ǫ(τL),

whereLL is the low frequency lag operator,A(LL) = ImK∗ −∑s
k=1 AkLk

L, Ak = N−1Mk, andǫ(τL) =

N−1η(τL). Hence,{X(τL)} follows a VAR(s) process.

Now considerX(τL) andX(τL). Recall the generic aggregation schemes (2.1) detailed in Section 2 with

selection vectorw. DefineH = [IKH
, 0KH×KL

], L = [0KL×KH
, IKL

], FH→M = [Im ⊗H ′, w ⊗L′]′, and

FM→L =

[

w′ ⊗ IKH
0KH×KL

0KL×mKH
IKL

]

.
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Observe thatX(τL) andX(τL) are finite order linear transformations ofX(τL): X(τL) = FH→MX(τL) and

X(τL) = FH→LX(τL), whereFH→L = FM→LFH→M = [w ⊗ H ′, w ⊗ L′]′. Moreover, in view of the

transformation being a finite order, ifX(τL) is stationary then so areX(τL) andX(τL).

C Proof of Theorem 4.2

We prove only part (ii) since part (i) is similar or even simpler. Recall that the high frequency reference information

set at timet is expressed asI(t) and the mapping between single time indext and double time indices(τL, k) is

thatt = m(τL − 1) + k. We have that:

P [xH(τL + 1) | I(τL)] = P
[

P [xH(τL + 1) | I(mτL)] | I(τL)
]

= P
[

P [xH(τL + 1) | I(L)(mτL)] | I(τL)
]

= P
[

P [xH(τL + 1) | I(L)(τL)] | I(τL)
]

= P [xH(τL + 1) | I(L)(τL)].

The first equality follows from the law of iterated projections for orthogonal projections on a Hilbert space; the

second from the linear aggregation scheme and the assumption thatxL 9 xH | I; and the third holds because

I(L)(mτL) = I(L)(τL). HencexL 9 xH | I as claimed.

D Proof of Theorem 4.3

We prove claim (i) only since parts (ii)-(iv) are analogous.The following two cases complete part 1:

Case 1 (low9 low). Suppose thatxL,j1 does not causexL,j2 up to HF horizonm givenI (i.e.,xL,j1 9(m)

xL,j2 | I). Then,Φ[k]
LL,1(j2, j1) = 0 for anyk ∈ {1, . . . ,m} and hencexL,j1 does not causexL,j2 at horizon 1

givenI (i.e.,xL,j1 9 xL,j2 | I) in view of (4.4). The converse does not necessarily hold; a simple counter-example

is thatKH = 1, KL = 2, m = 2, (j1, j2) = (1, 2), and

Φ1 =







φHH 0.3 φHL

φLH 0.2 φLL

−0.1 0.1 0.1






,

whereφHH , φHL, φLH , andφLL are arbitrary coefficients. It is evident thatΦLL,1(2, 1) = 0.1 andΦ[2]
LL,1(2, 1) =

0. The former denies thatxL,j1 9(m) xL,j2 | I, while the latter implies thatxL,j1 9 xL,j2 | I.
Suppose now thatxL,j1 9 xL,j2 | I. Then,Φ[m]

LL,1(j2, j1) = 0 and hencexL,j1 9 xL,j2 | I in view of (4.9).

The converse is also true.

Case 2 (high9 low). Suppose thatxH,i1 9(m) xL,j1 | I. Then,Φ[k]
LH,1(j1, i1) = 0 for anyk ∈ {1, . . . ,m}

and hencexH,i1 9 xL,j1 | I. The converse does not necessarily hold.

Suppose now thatxH,i1 9 xL,j1 | I. Then,Φ[m]
LH,1(j1, i1) = 0 and hencexH,i1 9 xL,j1 | I. The converse is

also true.
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