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ABSTRACT

Testing for Granger Causality with Mixed Frequency Data*

It is well known that temporal aggregation has adverse effects on Granger
causality tests. Time series are often sampled at different frequencies. This is
typically ignored, and data are merely aggregated to the common lowest
frequency. We develop a set of Granger causality tests that explicitly take
advantage of data sampled at different frequencies. We show that taking
advantage of mixed frequency data allows us to better recover causal
relationships when compared to the conventional common low frequency
approach. We also show that the mixed frequency causality tests have higher
local asymptotic power as well as more power in finite samples compared to

conventional tests.

JEL Classification: C12 and C32

Keywords: granger causality, mixed data sampling (MIDAS), temporal
aggression and vector autoregression (VAR)

Eric Ghysels

Department of Economics
University of North Carolina
Gardner Hall CB 3305
Chapel Hill, NC 27599-3305
USA

Email: eghysels@unc.edu

For further Discussion Papers by this author see:

www.cepr.org/pubs/new-dps/dplist.asp?authorid=135789

Jonathan B. Hill
Department of Economics
Gardner Hall 208B
University of North Carolina
Chapel Hill, NC 27599-3305
USA

Email: jbhill@email.unc.edu

For further Discussion Papers by this author see:
www.cepr.org/pubs/new-dps/dplist.asp?authorid=177566



Kaiji Motegi

Department of Economics
Gardner Hall 208B
University of North Carolina
Chapel Hill, NC 27599-3305
USA

Email: motegi@email.unc.edu

For further Discussion Papers by this author see:
www.cepr.org/pubs/new-dps/dplist.asp?authorid=177567

*The first author acknowledges support of a Marie Curie FP7-PEOPLE-2010-
IIF grant and benefited from funding by the Federal Reserve Bank of New
York through the Resident Scholar Program as well as the European Central
Bank through the Duisenberg Scholar Program.

Submitted 09 September 2013



1 Introduction

It is well known that temporal aggregation may have spurious effectsstingefor Granger causality, as
noted by Clive Granger himself in a number of papers, see e.g. Grat8f#)( Granger (1988), Granger
(1995). In this paper we deal with what might be an obvious, yet largadyl@oked remedy. Time series
processes are often sampled at different frequencies and arelyypggregated to the common lowest
frequency to test for Granger causality. The analysis of the presgetr pertains to comparing testing
for Granger causality with all series aggregated to the common lowest freguend testing for Granger

causality taking advantage of all the series sampled at whatever frgoiherycare available. We rely on

mixed frequency vector autoregressive models to implement a new clasarm&s causality tests.

We show that mixed frequency data Granger causality tests better remusality patterns in an
underlying high frequency process compared to the traditional low &émsyapproach. We also formally
prove that mixed frequency causality tests have higher asymptotic poaigisatpcal alternatives and
show via simulation that this also holds in finite samples involving realistic data @f@rgeprocesses.
The simulations indicate that the mixed frequency VAR approach works webrhall differences in
sampling frequencies - like quarterly/monthly mixtures.

The paper is organized as follows. In Section 2 we first briefly review@ranger causality and
MIDAS literatures and then frame mixed frequency VAR models. In Sectiore levelop the mixed
frequency data causality tests. Section 4 discusses how we can recal@tying causality using a
mixed frequency (henceforth MF) approach compared to a traditionafryuency approach. Section
5 shows that the MF causality tests have higher local asymptotic power thinwtirequency ones do.
Section 6 reports Monte Carlo simulation results and documents the finite sarm@eipgprovements
achieved by MF causality test. Section 7 provides some concluding remarks.

2 Mixed Frequency Data Model Specifications

In this section we frame a mixed frequency vector autoregressivedftitMF-VAR) model and derive
some asymptotic properties. We first provide a short review of the relateatlite. We then formally
present the MF-VAR model. Finally, we establish large sample results fanper estimators and
corresponding Wald statistics.

In the remainder of the paper we will use the following notational conventicetsA € R™*!. Thel,-
normis| A| == (S0, Y4, a3)!/? = ([ A’ A])/%; the Lo-norm is|| A, -= (1, 5, Elay|)V/";
the determinant is det); and the transpose id’. 0,,; is ann x [ matrix of zeros. Var[A] is the
variance-covariance matrix of a stochastic ma#ix

IMIDAS, meaning Mi(xed) Da(ta) S(ampling), regression models haentput forward in recent work by Ghysels, Santa-
Clara, and Valkanov (2004), Ghysels, Santa-Clara, and Valkar@®6§2and Andreou, Ghysels, and Kourtellos (2010). See
Andreou, Ghysels, and Kourtellos (2011) and Armesto, EngemamhQavyang (2010) for surveys. VAR models for mixed
frequency data were independently introduced by Anderson, DeiBiésenstein, Funovits, Zadrozny, Eichler, Chen, and
Zamani (2012), Ghysels (2012) and McCracken, Owyang, andslyan (2013). An early example of related ideas appears
in Friedman (1962). Foroni, Ghysels, and Marcellino (2013) providaraey of mixed frequency VAR models and related
literature.



2.1 Brief Literature Review

The notion of causality introduced by Granger (1969) is defined in termsmental predictive ability,
beyond the past observations of a time series progedsy past observations of another time series
processy. Although so-calledsranger causalityhas been extended to fairly general settings including
nonlinear and random volatility models, it is typically discussed in a linear reigredramework, in
particular since Sims (1972).

Early contributions by Zellner and Montmarquette (1971) and Amemiya andl¥@2j pointed out
the potentially adverse effects of temporal aggregation on testing fog&raausality. The subject has
been extensively researched ever since. See e.g. Granger,(C3&aper (1988), iitkepohl (1993),
Granger (1995), Renault, Sekkat, and Szafarz (1998), Marcell®®@9), Breitung and Swanson (2002),
McCrorie and Chambers (2006), Silvestrini and Veredas (2008), gratirers. It is worth noting that
whenever Granger causality and temporal aggregation are discusgetypically done in a setting
whereall series are subject to temporal aggregation. In such a setting it is wellrktiat even the
simplest models, like a bivariate VAR(1) with stock (or skipped) sampling, mé#egrsfrom spuriously
hidden or generated causality, and recovering the original causaimistteery hard or even impossible
in general.

As in the single frequency VAR literature, exploring mixed frequency Geacausality among more
than two variables invariably relates to the notion of multi-horizon causality stigieitkepohl (1993),
Dufour and Renault (1998) and Hill (2007). Of direct interest to usu$obr and Renault (1998) who
generalized the original definition of single-horizon or short run diysta multiple-horizon or long
run causality to handle causality chains: in the presence of an auxiliaaplef, Y may be useful for
a multiple-step ahead prediction &f even if it is useless for the one-step ahead prediction. Dufour and
Renault (1998) formalize the relationship between VAR coefficients and radhiprizon causality and
Dufour, Pelletier, and Renault (2006) formulate accordingly single steld Wésts of multiple-horizon
non-causality. Their framework will be used extensively in our analyg® Hill (2007) for a sequential
method of testing for multiple-horizon non-causality.

In addition to the causality literature, the present paper also draws ujglocoatributes to the MI-
DAS literature originated by Ghysels, Santa-Clara, and Valkanov (2&@dGhysels, Santa-Clara, and
Valkanov (2005). A number of papers have linked MIDAS regressior{fatent) high frequency VAR
models, such as Foroni, Marcellino, and Schumacher (2013) and KJaircellino, and Schumacher
(2011), whereas Ghysels (2012) discusses the link between mixedfreg VAR models and MIDAS
regressions. None of these papers study in any detail the issue afeBiusality.

2.2 Mixed Frequency VAR Models

We want to characterize three settings which we will refer to as HF, MF &nd fespectively high,
mixed and low frequency. We begin by considering a partially latent uridgridF process. Using
the notation of Ghysels (2012), the HF process contgfas; (77, k) }i- }-, and{{xr (70, &)} }.,
wherer;, € {0,..., T} isthe LF time index (e.g. quarteR),c {1, ..., m} denotes the HF (e.g. month),
andm is the number of HF time periods between LF time indices. In the month versusigcase, for



example,m equals three since one quarter has three months. Observatigns, k) € R5#*! are
called HF variables, whereas, (17, k) € RX2*! are latent LF variables because they are not observed
at high frequencies - as only some temporal aggregates are available.

Note that two simplifying assumptions have implicitly been made. First, there anenadsto be
only two sampling frequencies. Second, it is assumedithit fixed and does not depend op. Both
assumptions can be relaxed at the cost of much more complex notation abchaildech we avoid for
expositional purpose - again see Ghysels (2012).

In reality the analyst's choice is limited to MF and LF cases. Only low frequesmaciables are
aggregated in a MF setting, whereas both high and low frequency variatdeggregated to form a LF
process. Following litkepohl (1987) we consider only linear aggregation schemes involviaights
w = [wy,...,wy,]| such that:

mH(TL) = Zwka(TL,k’) and wL(TL) = ZwkiﬂL(TLa k‘) (2.1)
k=1 k=1

Two cases are of special interest given their broad usestgtkor skippedsampling, wherev,, = I(k =
m); and (2)flow sampling, wherey,, = 1 for k = 1,...,m.? In summary, we observe:

e all high and low frequency variableggzx (71, 7)}L1 }r, and{{z (7L, )}, }7, in @ HF pro-
cess;

e all high frequency variable${xy(71,5)} >, }-, but only aggregated low frequency variables
{z(rr)}+, in a MF process;

¢ only aggregated high and low frequency varialles; (77,)}-, and{x(77)}-, in a LF process.

A key idea of MF-VAR models is to stack everything observable given a kiiegss according to
their order over time. This results in the followid§ = K; + m Ky dimensional vector:

X(TL) = [CCH(TL, 1),, ceey $H(TL, m)’, mL(TL),},. (22)

Note thatz (7,) is the last block in the stacked vector - a conventional assumption implying flsat it
observed aftew (71, m). Any other order is conceptually the same, except that it implies a different
timing of information about the respective processes. We will work with tleeifipation appearing in
(2.2) as it is most convenient.

In order to proceed, we will make a number of standard regulatory assunsp

Assumption 2.1. The processX (7,) is governed by a VARY):

X(rp) =Y ApX(r, — k) + e(rp), (2.3)
k=1

20One can equivalently lab, = 1/m for k = 1,...,m in flow sampling if the average is preferred to a summation.



whereAy isaK x K matrixfork =1,...,p,ande(r) = [e1(71), ..., ex(7r)] isaK x 1 error vector
that is assumed to be i.i.d. over.

Remark The main results in this paper do not rely on error independence. dndimdard asymp-
totics for our Wald test statistic holds whér(7;)} is a stationary second order white noise process
provided{ X (71.), e(71) } satisfy an additional weak dependence property like strong mixing, aldhg w
the stationarity, distribution and moment properties under Assumptions 2.2 €l®.bln this case
A;, does not necessarily carry all the usual information about first araesation, where the latter is
typically defined in terms of mean-squared-error improvement df-atep ahead linear forecast error
(cfr. Granger (1969), Sims (1972), Dufour and Renault (1998¢ (Section 3 for further detail). This is
irrelevant for our purposes, however, because in the tradition adfidwEnd Renault (1998) our analysis
is primarily about deducing nonlinear restrictions{od, ..., A, } that relate information about predic-
tive ability, and about recovering information on (non-)causation in ARWy using MF- or LF-VAR
models. Nevertheless, we impose the i.i.d. assumption in order to simplify somécsadmguments.
Furthermore, without independence the close relationship between&ms(P69) and Sims’ (1972)
notions of causality in terms of linear predictive improvement breaks dos/shawn in Florens and
Mouchart (1982).

In addition, the following standard assumptions ensure stationarity and g@oeieong mixing of
the observed time seriés.

Assumption 2.2. All roots of the polynomiatlet(Ix — Y F_, Axz*) = 0 lie outside the unit circle.

Assumption 2.3. €(,) has an absolutely continuous distribution with a bounded joint deffigity) <

M for all u € R and someM < (0, 00). FurtherE[e(r1)] = O x1, ||€(71)||215 € (0, 00) for some

d >0, andQ = E[e(rp)e(r)] is positive definite. Finally, the sigma-fields induced by the history
{e(r1), €(T, — 1),...} are strictly increasing.

We assume(7;,) has a bounded joint density so that, in combination with stationdtXyrz,)} is
geometrically strong mixing by classic arguments (cfr. Section 3.2 in Dedetké&n(2007) ). Recall that
strong mixing implies mixing (in the ergodic sense) and therefore ergodicigyRetersen (1983)). The
mixing property is useful since the necessary steps for inference fialte lag functions o€ () and
X (17) which are also mixing and therefore satisfy a standard limit theory (seecRedet al. (2007)}.

Note also that we do not include a constant term in (2.3) solely to reducéamotthus X (77,)
should be thought of as a de-meaned process. Finally, it is straighttbtavallow an infinite order VAR
structure, and estimate a truncated finite order VAR model as in Lewis anddR¢i985), litkeponhl
and Poskitt (1996), and Saikkonen andtkepohl (1996).

3Although a large body of literature exists on Granger causality in non-statia@T cointegrated systems (e.g. Yamamoto
and Kurozumi (2006)), the generalization is beyond the scope of therpa

4A continuous bounded distribution fefr,) can be dispensed with at the cost of additional steps in our limit theorygoroo
since{ X (r1)} is geometricallyL.  s-Near Epoch Dependent with respect to an i.i.d. bage)}. All functions of X (1)
ande(7z) in this paper are also Near Epoch Dependent, and a complete limit theaydo a weak dependence property is
available. See Davidson (1994) for a textbook treatment.



2.3 Estimators and Their Large Sample Properties

If the VAR(p) model appearing in (2.3) were standard, then the off-diagonal eleroéatsy matrix
A would tell us something about causal relationships for some specific hoiihe fact that MF-VAR
models involve stacked replicas of high frequency data sampled acresgif(high frequency) periods
implies that potentially multi-horizon causal patterns reside inside any of the ssa#ic It is therefore
natural to start with a multi-horizon setting. We do so, at first, focusing on nhellkgwv frequency
prediction horizons which we will denote liyc N.°

It is convenient to iterate (2.3) over the desired test horizon in orderdocdesimple testable pa-
rameter restrictions for non-causality. Recall that under Assumption Ztjaeistationary and ergodic
solution to (2.3) exists:

L) =Y Wie(r, — k), (2.4)
k=0

where W, satisfies® = I, ¥, = > " | AW, fork > 1and¥; = Oxxx for k < 0, and|¥|
= O(p") for somep € (0,1). We then have what Dufour, Pelletier, and Renault (2006) labeled as a
(p, h)-autoregression:

h—1
APX (41— k) + > Cre(rp +h— k), (2.5)
1 k=0

M=

X(TL+h):

B
Il

where
i—1

Al(j) = A, and A,(f) =Apri_1+ Z Ai_lAl(f) fori > 2.
I=1
By conventionA; = 0k« x Whenevelk > p. The MF-VAR causality test exploits Wald statistics based
on the OLS estimator of thi@, h)-autoregression parameter set

B(h) = (A", .,AM' € RPKXK. 2.6)

The OLS estimatoB(h) of B(h) is

-1

B(h) = arg min{vec [Uy(h)]' vec [Uy(h)]} = [W,(h) W ,(h)] " Wp(h) Wi(h),

B(h)
whereUy,(h) is a matrix of stacked sums §f, } and{e(r1)} while W ,(h) andW},(h) are matrices
of stacked{ X (71,)}. See Appendix A.1.1 for derivation §LJy(h), W ,(h), W,(h)}.
Assumptions 2.1 through 2.3 suffice f&(h) to be consistent foB(h) and asymptotically normal.
Limits are with respect td, — oo hencel} — oo, whereT; = Ty, — h + 1 is the effective sample size
for the (p, h)-autoregression.

SAnother reason for studying multiple horizons is the potential of causaliynshwhenKy > 1 or K;, > 1. Note,
however, that despite the MF-VAR being by design multi-dimensional ther@o causality chains whétiy = K1, = 1 since
them x 1 vector of the high frequency observations refers to a single variable.



Theorem 2.1. Under Assumptions 2.1 through 2B(h) % B(h) and
A d
Tivee | B(h) = B(h)| 5 N (02,1, 5y (h) 2.7)

whereX, (h) is positive definite.

Remark: See Appendix A.2 for a proof, and see Appendices A.1-A.2 for a camplearacterization of
2p(h).

If all variables were aggregated into a common low frequency and ergantb a(p, h)-autoregression,
thenh-step ahead non-causality has a simple parametric expression in temﬁg@ ptfr. Dufour, Pel-
letier, and Renault (2006). Recall, however, that the MF-VAR has aiapstructure because of the
stacked HF vector. This implies that the Wald-type test for non-causalityviinderive is slightly more
complicated than those considered by Dufour, Pelletier, and Renaub)(80@e in MF-VAR models
the restrictions will often deal with linear parametric restrictions across multiplatems. In a generic
sense, we show in Section 3 that non-causality between any set oflgariala MF-VAR model can be
expressed as linear constraints with respedB{@). Hence, the null hypothesis of interest is a linear
restriction:

Hy(h) : Rvec[B(h)] =, (2.8)

whereR is aq x pK? selection matrix of full row ranl, andr € RY. We leave complete details of the
construction ofR for Section 3.

With a consistent estimatd,,(h) for the least squares asymptotic variad@gh) which isalmost
surelypositive semi-definite fof’; > 1, we can define the Wald statistic

W [Ho()] = T3 (Rvee [B(h)| —7)" x (RS, (R (Rvec[B1)] ~7). (9

Implicitly, of course, RS, (h) R’ must be non-singular for anR € R?7*PE* with full row rank. In
view of positive definiteness &, (h) by Theorem 2.1, and the suppositiB (h) = 2, (h) + 0,(1), it
follows (Ri)p(h)R’)*1 is well defined asymptotically with probability approaching one.

We therefore obtain the following result, which we prove in Appendix A.2.

Theorem 2.2. Let 33,(h) be a consistent estimator &k, (1) that isalmost surelyositive semi-definite
foranyT; > 1. Given Assumptions 2.1 through 213;[H(h)] 4 Xg underHy(h).

Remark: A consistentalmost surelypositive semi-definite estimat(ﬁip(h) is easily constructed by
using Newey and West's (1987) HAC estimator, given the stronger morseatrgption e (77 )||*™ <
oo for somed > 0.. See Appendix A.1.3 for complete details.

In the remainder of the paper we will provide various tests for Grangesatiéy which are special
cases of the generic framework derived so far.



3 Testing Causality with Mixed Frequency Data

In this section we define non-causality when data are sampled at mixeefficgs and describe Wald-
type tests associated with it. We first cover some preliminary notions of multipieeimocausality and
extend it to the mixed sampling frequency case. We discuss in detail testinganeality from one
variable to another, and whether they are high or low frequency vasialife also cover non-causality
from all high frequency variables to all low frequency variables and virsa, cases for which we give
explicit formulae for the selection matri® used in the null hypothesis (2.8) and test statistic (2.9).

3.1 Preliminaries

We start with adopting the notion of non-causality to a mixed sampling frequaateyfiltration setting.
Using the notation of Dufour and Renault (1998) we define the relevéorniration sets for the purpose
of characterizing non-causality. In particular, It be a Hilbert space of covariance stationary real-
valued random variables defined on a common probability space, andvheace as inner product.
Moreover, letZ(r,) be a closed increasing subspacd.dfsuch thaZ (7)) C Z(r}) wheneverr;, < 7},
wherer;, 17 € Z.

Furthermore, define the indicés, i> € {1,...,Kg} andji,j2 € {1,..., K}, and writex g ;, =
{xw (o)}, Wherexy ;, (1) = [zmi (T2, 1), ..., w4, (7o, m))’. Note thatx g ;, (71) is a vector
of all m observations of the;-th high frequency variable available at pering whereascy ;, is the
collection of that vector over all periods. Similarly, we writg ;, = {zrj (77)}-, and note that
xrj, (T1) is a scalar since it is thf -th low frequency variable at periad . Finally, letxy = {x#, }4i,
andxy = {zrj }j -

Denote byz(—oo, 71 ] the Hilbert space spanned by (7)| 7 < 71 }. The information sef is said to
beconformablewith x if x(—oco, 7] C Z(7,) for all 71.. We call the information set derived frofi{7;, )
= X (—o0, 7], whereX (71,) is given in (2.2), as th®IF reference information set in periag,, whereas
Z ={Z(r)| 7. € Z} is theMF reference information sef herefore, the only information available up
to periodry, is the high frequency observations of all high frequency variablesttamdbw frequency
observations of all low frequency variables. In additionZlgt ; y denote the MF reference information
set except forr ;,, and letZ;, ;) denote the information set except for ;,. Similarly, Z 4y (Z(1,) is
the MF reference information set except & (). Notice that since high and low frequency variables
xpi (11)andzxy, j, (1) belong toX (r1) forall iy € {1,..., Ky} andj, € {1,..., K}, itis clear that
the MF reference information sét= {Z ()| 7, € Z} is conformable withe ;, (77) andxy, j, (77.).

Finally, let E and F be two subspaces df?, and letE + F denote the Hilbert subspace generated
by the elements of and F. Let Pz (71, + h)| Z(71,)] be the best linear forecast of 7., + h) based on
Z (1) in the sense of a covariance orthogonal projection.

For any generic information set and pair of processes (high or lowémy) the notion of non-
causality is defined as follows.

Definition 3.1. (Non-causality at Different Horizons). Suppose thas conformable withe. (i) y does



not causer at horizonh givenZ (denoted by x| Z) if:
Plz(rp + h)|Z(71)] = Ple(rp + h)|Z(7L) + y(—o0,7]] V7L € Z.

Moreover, (ii)y does not cause up to horizonk givenZ (denoted by -y | I) if y -, x| Z for
allk e {1,...,h}.

Definition 3.1 applies to a mixed sampling frequency setting when suitable informsdtand pro-
cesses are uséd.Consider, for example, non-causality from teth low frequency variable to the
i1-th high frequency variable. Similarly,;, ;, does not cause;;, at horizonh givenZ (denoted by
v~y | I) i Pleg, (o + h)| Lz (o)) = Pleg, (to + k)| Z(71) ] for all 7, € Z. When
we consider non-causality between a pair of high frequency serig®lnay ;, »n Thi,| Lip,,) it
should be noted that we focus exclusively on low frequency horizons equivalently horizong x m.

Any other horizon, not a multiple of., are not considered here. They can be handled with the existing
same frequency setting of Dufour and Renault (1998).
In a mixed sampling frequency setting, there are six basic cases to consider

Case 1 (low to low) Non-causality from thg;-th low frequency variableg;, ;,, to the ja-th low fre-
quency variablegy, ;,, at horizonh. The null hypothesis can be written &&} (h) : x1;, —n

RAVITANE
Case 2 (high to low) H§(h) : @m s, —=n zLj | Zam)-
Case 3 (low to high) H3(h) : x1j, +#h w4, | L1 j1)-
Case 4 (high to high) Hg (h) : @i, #h TH,is| Z(piy)-
Case | (all highto all low) H{(h) : g -4 @p| L)
Case Il (all low to all high) H{!(h) : @1, +4 x| Z(1).

Cases 1 through 4 handle individual variables, while Cases | and diiéentire groups of variables.
In the sequel we often consider Cases | and |l for simplicity since - vieaged bivariate system -
causality chains can be excluded in both cases since non-causalityladroran is synonymous to non-
causality at all horizons (see Dufour and Renault (1998: Propositi®y éfr. Florens and Mouchart
(1982: p. 590)). To avoid tedious matrix notation, we do not treat in detad<€involving non-causation
from a subset of all variables to another subset. Our results straiwyhtitly apply, however, in such
cases as well.

3.2 Causality Tests in Mixed Frequency VAR Models

Our next task is to construct the selection matrié&$or the various null hypotheses (2.8) associated
with the six generic cases. This requires deciphering parameter resgifmionon-causation based on
the (p, h)-autoregression appearing in equation (2.5).

SDefinition 3.1 corresponds to Definition 2.2 in Dufour and Renault () #&8covariance stationary processes.



Characterizing restrictions QA,(!L) for each case above requires some additional matrix notation. Let
N € R™", and leta,b,c,d, 1,/ € {1,...,n} witha < b, ¢ < d,and(b—a)/c and(d — c¢)/.’ being
nonnegative integers. Then we defiNga : ¢ : b,c: ¢/ : d) as the(2=2 + 1) x (43¢ + 1) matrix which
consists of thei-th, (a + ¢)-th, (a + 2¢)-th, ..., b-th rows andc-th, (¢ + //)-th, (¢ + 2/)-th, ... ,d-th
columns ofN. To put differently,a signifies the first element to pick,is the last, and is the increment
with respect to rowse, d, and.’ play analogous roles with respect to columns. It is clear that:

N(a:v:bc:t:d)) =N'(c:t:d,a:v:b). (3.1)

A short-hand notation is used whern=b : N(a : ¢ : b,c: ' : d) = N(a,c: : d). When. =1, we
write: N(a : ¢t:b,c: 1 :d)=N(a:b,c: :d). Analogous notations are used whea d or ./ = 1,

respectively.
By Theorem 3.1 in Dufour and Renault (1998) and in view of model (& &)|lows that H¢(h) are

equivalent to:

Afﬂh)(a :1:b,c: 1 d)=0foreachk € {1,...,p}, (3.2)
wherea, ¢, b, ¢, ¢/, d, and the size of the null vector differ across casesl, ..., 4 andl andII.” In

Table 1 we detail the specifics far ¢, b, ¢, //, d in these quantities for each of the six cases.

Table 1: Linear Parametric Restrictions of Non-causality

The null hypotheses of non-causality caﬂ{?(h) fori=1,...,4andl andII. can be written asaih)(a tev:ibye:d o d) = 0forall
ke {1,...,p}, whereqa, b, c, ', d, and the size of the null vector appear as entries to the.table

Cases a L b c J d 0

Hi(h) mKg+j» 1 mKg + jo mKg +j1 1 mKg + j1 1x1

HE(h) mKg+ 1 1 mKy + j1 i Ky i1+ (m—-1)Kg 1xm

H3(h) i1 Ky i1+(m—-1)Kg mKg+j 1 mKy + j1 m x 1

Hé‘(h) 79 Ky ’iQ-ﬁ-(TTL-l)KH /A Ky i1+(m—1)KH m X m

H{(h) mKg+1 1 K 1 1 mKpy Kr xmKg

HE () 1 1 mKy mKg+1 1 K mKg x KL,

Each case in Table 1 can be interpreted as follows. In Case (ytRg; + jo, m K + j1)-th element
of A,(Ch) (i.e., the impact of thg,-th low frequency variable on thg-th low frequency variable) is zero
if and only if HZ (k) is true. Likewise, in Case 2, thenKy + ji,i1)-th, (mKy + ji,i1 + Kg)-th,

.oy, (mKg + j1,i1 + (m — 1)Kp)-th elements om,ﬁ,h) are all zeros undeHZ(h). Note that we are
testing whether or not athp coefficients of the; -th high frequency variable on thye-th low frequency
variable are zeros, i.e., thg-th high frequency variable has no impact as a whole onjthth low
frequency variable at a given horizén

When H (k) holds, allmp coefficients of thej;-th low frequency variable on thi-th high fre-
quency variable are zeros at horizarNote that the parameter constraints run acrosstie, (i1 + Kz )-
th, ..., (i1 + (m — 1)Kg)-th rows ofA,(fh), not columns. This means that we are tessimgultaneous

"Recall thatzy, j, andax g, belongtoX in (2.2) forallj; € {1,..., K.} andi;, € {1,..., Ky}. This is why the
non-causality under mixed frequencies is well-defined and Theorkin Bufour and Renault (1998) can be applied directly.



linear restrictionsacross multiple equationsunlike Dufour, Pelletier, and Renault (2006) who focus
mainly onsimultaneoudinear restrictionsvithin one equatiopnand unlike Hill (2007) who focuses on
sequentialinear restrictiongcross multiple equations

In Case 4, thé; -th high frequency variable has no impact on th¢h high frequency variable if and
only if H§(h) is true. In this casen? elements out 054,(;‘) are restricted to be zeros for eakhso the
total number of zero restrictions jsn?. UnderH({(h), the K1, x mK g lower-left block ofA,gh) is a
null matrix. Finally, in Case Il, then Ky x K upper-right block ofA,(gh) is a null matrix if and only if
HIL(h) is true.

We can now combine thi, h)-autoregression parameter €2th) in (2.6) with the matrix construc-
tion (3.1), its implication for testable restrictions (3.2), and Table 1, to obtaiargeformulae forR and
r so that all six cases can be treated as special cases of (2.8).

The above can be summarized as follows:

Theorem 3.1. All hypothesesH | (h) for i € {1,2,3,4,1, 11} are special cases &fy(h) with
R=[A(61), A0, AlOyannyp)] (3.3)

and
r= Og(a,L,b)g(c,L’,d)pxla (34)

whereg(a,t,b) = (b—a)/t+ 1,01 = pK(a—1) +¢,
=01+ K+pK(—1)I(l—1= zpforsomez € N) (3.5)

fori =2,...,g(a,¢,b)p, andA(8) is ag(c,/,d) x pK? matrix whose(j, § + (j — 1)¢/)-th element is
1forje{l,...,9(c,//,d)} and all other elements are zeros.

Several key points will help us understand (3.3) through (3.5). Kifst., b) andg(c, !/, d) represent
how many rows and columns oi,ih) have zero restrictions for eaéhe {1, ..., p}, respectively. The
total number of zero restrictions is therefare- g(a, ¢, b)g(c, (', d)p as in (3.4). Second\(§) has only
one nonzero element in each row that is identicallgignifying which element ofec[B(h)| is supposed
to be zero. The location of 1 is determinedday. . ., 64(a,.4),» Which are recursively updated according
to (3.5). As seenin (3.5), the incrementpfs basicallyX’, but an extra increment @f (. — 1) is added
whenl — 1 is a multiple ofp in order to skip some columns @ (h).

Theorem 3.1 provides unified testing for non-causality as summarized.below

Step 1 For a given VAR lag ordep and test horizor, estimate dp, h)-autoregressiof.

8A potential drawback of our approach as well as Dufour, Pelletier,Remhult (2006) is that the prediction horizbris
fixed at each test and thus the entire set of results for multiplenay yield a contradiction. See footnote 2 in Hill (2007). Hill
(2007) avoids this problem by a sequential multiple-horizon non-caustgst, in which a series of individual non-causation
tests are performed to deduce causal chains and causation horimopregent paper takes the Dufour, Pelletier, and Renault
(2006) approach because of its simplicity. See Hill (2007) and SalanaaldiVenetis (2013) for a comparison of the two
methods.
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Step 2 Calculateu, ¢, b, ¢, ¢/, d according to Table 1 for a given case of non-causality relation. Pu¢thos
quantities into (3.3) and (3.4) to g& andr.

Step 3 Use R andr in order to calculate the Wald test statistic|Hy (k)] in (2.9).

Since Table 1 and Theorem 3.1 are rather abstract, we present ateaexample of houl? andr are
constructed based in our trivariate simulation. In Section 6.2 we fit a MF{YARodel with prediction
horizonsh € {1, 2, 3} to two high frequency variableX andY and one low frequency variabl& with
m = 3. In this case the mixed frequency vector appearing in (2.2) can be wriiten a

W(TL) = [X(Tln 1)7 Y(TL7 1)7 X(TL7 2)7 Y<TL7 2)7 X(T[n 3)7 Y(TLa 3)7 Z(TL)]/'

Notice thatKy; = 2, K, = 1, and hencd{ = 7 in this example. Although the construction Bfandr
do not depend on the value bf considerh = 1 for simplicity, and write the parameter matrix:

ailp ... aiy ailp ... ary
A= |+ or A} =

ar ... ary a7 ... agy

Sincep = h =1, B(h) appearing in (2.6) is simply.

Consider the null hypothesis thatdoes not caus& at horizon 1. This null hypothesis is equiva-
lently a17 = a3y = asy = 0 sinceay7, asr, andasr represent the impact &f (r, — 1) on X (7, 1),
X(7r,2), andX (7r, 3), respectively. Note that;7, a7, andas; are respectively the 7th, 21st, and 35th
element of veB (k)] appearing in (2.8). Hence, the proper choicdbéndr is:

Oi1x6 1 01x13 0 O1x13 0 O1x14
R= [0ix6 0 01x13 1 O1x13 0 Oixus and 7 = 03y1. (3.6)
O1x6 0 01x13 0 O1x13 1 O1x14

We now confirm that the sam® andr can be obtained via Table 1 and Theorem 3.1. Non-causality
from Z to X falls in Case 3 withi; = j; = 1 (i.e. non-causality from the first low frequency variable
to the first high frequency variable). Using Table 1, we have that b, ¢,./,d) = (1,2,5,7,1,7) and
thereforeg(a, t,b) = 3, g(c,/,d) = 1, and{d1,d2,d3} = {7,21,35} in view of Theorem 3.1. This
implies thatr = 037 andR = [A(7), A(21)", A(35))', whereA(d) is al x 49 vector whose)-th
element is 1 and all other elements are zerogfar{7,21,35}. We can therefore confirm that Table 1
and Theorem 3.1 provide correBtandr shown in (3.6).

4 Recovery of High Frequency Causality

The existing literature on Granger causality and temporal aggregationreask#y ingredients. Starting
with (1) a data generating process (DGP) for HF data, and (2) spegify{linear) aggregation scheme,
one is interested in (3) the relationship between causal patterns - or laekfth@mong the HF series
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and the inference obtained from LF data wlahHF series are aggregated. So far, we refrained from
(1) specifying a DGP for HF series and (2) specifying an aggregatibamse. We will proceed along
the same path as the existing literature in this section with a different purpasehnto show that
the MF approach recovers more underlying causal patterns than tloeustdr- approach does. While
conducting Granger causality tests with MF does not resolve all HF cpaiatns, using MF instead of
using exclusively LF series promotes sharper inference.

We first start with a fairly straightforward extension ofitkepohl (1984), establishing the link be-
tween HF-VAR and MF data representations. We then analyze the link betifed1F and LF causality.

4.1 Temporal Aggregation of VAR Processes

Litkepohl (1984) provides a comprehensive analysis of temporat¢gaion and VAR processes. We
extend his analysis to a MF setting. While the extension is straightforwardnitdas us with a frame-
work that will be helpful for the analysis in the rest of the paper.

Let K* = Ky + Ki, and defineX (17, k) = [z (71, k), (70, k)] € RE fork=1,...,m.
Note that part of theX vector process is obviously latent, namely the high frequency obsersatidne
LF process, represented by thg(7z,, k) elements of the vector process.

To proceed, leL;; denote thénigh frequencyag operator, in particular

,CZHY(TL, k)= X (1 —t,0)

with

0 fo<i<k , k—1 fo<i<k
L= and [ =
1+ | EE] if 1>k m+k—1 ifl>k

Note | x| is the largest integer not larger thanFor exampleL g X (71,2) = X (71, 1) andLy X (17, 1)
= X (1, —1,m). Letting £, be thelow frequencyag operator, we have thay, X (r,1) = L7 X (17, 1)
=X (rp —1,1).

Assume tha{{X (71, k) }x}-, follows a VAR({p) process wittp € N U {oo}:

p
X (11, k) =Y LY X (11, k) + 771, k), (4.1)
=1

wheren(7z,, k) g (Ox+x1, V). The coefficient matrix®, is partitioned in the following manner:

Py Pury
@l — y k)

)

Pru; Priy

where®,, ; € REv*K= with y, 2 € {H, L}.
A general linear aggregation scheme is considered, appearing inB2.4h application of Theorem
1 in Lutkepohl (1984), the mixed frequency vect®i(7; ) defined in (2.2) and the low frequency vector
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defined as
X(rp) =@y (ry),wp(rp)) € R (4.2)

follow VARMA processes. More specifically, we have the following.

Theorem 4.1. Suppose that an underlying high frequency process follows a MARThen the cor-
responding MF process is a VARMAY;, qar), and the corresponding low frequency process is a
VARMA( pyr, q1,). Moreover,

pu < deg[det(A(Ly))] = g andpr < g,
wherey is the degree of polynomial of det(£;)). Furthermore,
qu < max {deg[Ay(LL)] —g+pml k,1=1,...,mK*},
whereA; (L) is the(k, 1)-th cofactor ofA(L£y). Similarly,
qr < max {deg[Ay(Lr)] —g+prlkl=1,....,mK*}.

Finally, if the high frequency VAR process is stationary then so are the naixdtbw frequency VARMA
processes.

Remark: See Appendix B for a proof, and for completeness the constructianf 0f ).

In general it is impossible to characterizg, qar, pr, Or g1, exactly (cfr. Liitkepohl (1984)). Never-
theless, if the HF proceqsX (71, k) } is governed by a VARY) then the MF and LF processéX (77,)}
and{X (r)} have VARMA representations, and therefore VABYrepresentations under the assump-
tion of invertibility. Thus, one can still estimate those invertible VARMA procedsg using a finite
order approximation as in Lewis and Reinsel (198%jtkepohl and Poskitt (1996), and Saikkonen and
Litkepohl (1996). Moreover, the VARMA order can be characterizetker certain simple cases such as
stock sampling withp = 1.

Example : stock sampling witlp = 1: Suppose that an underlying HF process follows a VAR(1)
X (., k) = ®1LL X (11, k) + (71, k) wheren(rz, k) g (Ox+x1, V). Then it is easy to show that
the corresponding MF process also follows a VAR(1) if we considekstampling:

X () = A1 X (1 — 1) + e(71). (4.3)

The parameteA is

(1 (1
OKHx(m—l)KH P (I)HL,I

A= | [n:ﬂ [n:w] ’ (44)
Ok pyx(m—1)Ky @j['—lli[ 1 ‘I’HL] 1
Ok, x(m-1ky ®Prai1 ®rra
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where " "
‘I’HH,z ‘I’HL,z
(%]

tIJf = k]
i ®Proy

It follows thate(7y) g (0x«1,2) where2 can be explicitly characterized as a functiond®f
andV'. First, observe that

1—k
Zk 1 [ HH}l ‘I)ETJL,H n(rr, k)

G(TL) = m m—k : m—k
> ket ‘I’ELIH1] ‘I’HL 1] n(7r, k)

m m—k m—k
_Zk:l ‘I’[LHl]‘I’[LLll (7, k)

The covariance matri = E[e(7;)e(71)’] has a block representation

Q1 .. Qi Q11
Q= : - : : € RExK. (4.5)
Qi o Qam Q1
Qll ym+1 e Q;n ,m+1 Qm+1,m+1
with components
i [i—k]'
[i—F] [i—F] @HH 1 .
Q,; = [@HHJ ‘I’HL,J 14 Bl g | forije{l,...,m}andi <j, (4.6)
k=1 HL,1
LTk ik o
Qim’lri’l = Z [QHH,I @HL,11| V @[m—’k‘]’ fOI’Z c {1,,m}
k=1 LL,1
and
[ k] (k] o
Qm+1,m+1 = Z |:¢LH,1 QLL,I ] \ % @[m_’k}/ . (47)
k=1 LL,1
Similarly, the LF process follows a VAR(1):
X(mp) = A X (rp — 1) + €(71), (4.8)
where
Al - 71nu (49)

2.1

ande(r) "< (0g+x1,82). The covariance matrix follows by noting(r,) = 327", @7 *n(r, k)
hence

Q=> V(@ F) e RFHK (4.10)
k=1
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4.2 Causality and Temporal Aggregation

Felsenstein et al. (2013) explore conditions for identifying a HF prosased on MF data. When their
conditions are satisfied, recovery of HF causality is trivially feasible biitapat off-diagonal elements
of the identified HF-VAR coefficients. The conditions for identification arangent, however, and one
may therefore wonder what happens if they are not satisfied. In thigstibn we fill some of the gap by
focusing on testing for causality since this does not require full identificatidghe entire HF process.
Since Granger causality is based on information sets, we need to deBnened information sets
for HF- and LF-VAR processes. To this end, we rewrite a HF-ViAR{rocess in (4.1) with a single
time indext: Y; = Y7, ®,Y;_; + &, whereY; RE”" is simply a single-index version oX (77, k).
One way of mappingrz, k) to t is to lett = m(r, — 1) + k so thatY; corresponds t&X (1,1). The
same mapping is used betwegrandn (7., k). Recall from Section 3.1 th&t(r ) is the MFreference
information set in periodrr,, while Z = {Z(r)| 7, € Z} is the MFreference information setWe
now introduce HF and LF versions of the information set. Hiereference information set at timds
defined ag(t) = Y (—oo, t]. The HF reference information se$ defined ag = {Z(¢) |t € Z}. The
prediction horizon for non-causality givéhis in terms of the high frequency, denoted by= Z. For
example, non-causality from all high frequency variables to all low feegy variables at high frequency
horizonh givenZ is written asx 5 TL | Z. Similarly, theLF reference information set at time,
is defined ag (7)) = X (—o0,77], whereX (71) is given in (4.2). TheLF reference information set
is defined ag& = {Z(71) | 7. € Z}. Whether (non-)causality is preserved under temporal aggregation
depends mainly on three conditions: an aggregation scheme, VAR lagmraed the presence of an
auxiliary variable and therefore the possibility of causality chains. Thdiegibterature has found that
temporal aggregation may hide or generate causality even in very simpke &&lseshow that the MF
approach recovers underlying causality patterns better than the trablittoapproach.

Theorem 4.2. Consider the linear aggregation scheme appearing in (2.1) and assuméAR(ip) with
p € NU {oo}. Then, the following two properties hold when applied respectively to all logva! high
frequency processes: (i) #fy » x| Z, thenzy - x| Z. (i) If 1 - xy|Z, thenxy » xy | L.

Proof: See Appendix C.

Note that the prediction horizon in Theorem 4.2 is arbitrary since thereagaxiliary variables
involved. This follows since we only examine the relationship between all laadirhigh frequency
processes respectively.

Theorem 4.2 part (i) states that non-causality from all high frequeadgbies to all low frequency
variables is preserved between MF and LF processes, while part {es gteat non-causality from all
low frequency variables to all high frequency variables is preseretdden HF and MF processes. One
might incorrectly guess from Theorem 4.2 part (ii) that - =y |Z = x;, - xy | Z. This statement
does not hold in general. A simple counter-example is a HF-VAR(2) psogits stock samplingy = 2,
Kpgp=Kp=1,

“We can deduce virtually no theoretical results in the presence of auxilisighles since potential causal chains complicate
causality patterns substantially.
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B, = GHH

0
], and &, =
0

OHH2 0] '

OLH 0 0

Assume thatv 1, ¢rm2, and¢ry are all nonzero. Note that, giveh x;, does not causey
while z does cause,. In this particular case, we can derive the corresponding MF- andAR(Y)
processes. The MF coefficient is

OHH2 dHH 0
Ar= |¢umi9uE2 Ohp, + drH2 O, (4.11)
OLHOHH?2 GLHPHH 0

while the LF coefficient is

2
A = Ohp1t+ OHE2 OHHAOHH2/OLH (4.12)

GLHOHH OHH2

Equations (4.11) and (4.12) indicate that does not causey givenZ, butz; does cause givenZ.
Thus, we confirm that non-causality from all low frequency variableallthigh frequency variables is
not necessarilypreserved between MF and LF processes.

Summarizing Theorem 4.2 and the counter-example above, a crucial canfditimon-causality
preservation is that the information for the "right-hand side” variables #i;efor (i) and x for (ii))
is not lost by temporal aggregation. In this sense, the MF approach yieldsimplications on hidden
causality patterns than the LF approach, which switches directly from arbtiegs by aggregating all
variables.

To conclude the subsection we again focus on stock samplingswithas this particular case yields
much sharper results.

Example: stock sampling witly = 1: Whenp = 1 and stock sampling is of interest, the exact functional
form for the MF and LF processes is known and appear in (4.3) angd @gBation (4.4) highlights what
kind of causality information gets lost by switching from a HF- to MF-VAR. Simylaf4.9) reveals the
information loss when moving from a MF- to LF-VAR. This brings us to the follaywtheorem.

Theorem 4.3. Consider stock sampling with = 1. Then, the corresponding MF-VAR and LF-VAR
processes are also of order 1. Furthermore, non-causation amad§+théF-, and LF-VAR processes
is related as follows.

i. In Case 1 (low— low) and Case 2 (high~ low), non-causation up to HF horizom given the
HF information setZ implies non-causation at horizangiven the MF information sef, which
is necessary and sufficient for non-causation at horizgiven the LF information sef.

ii. In Case 3 (low— high) and Case 4 (high~ high), non-causation up to HF horizom given
T is necessary and sufficient for non-causation at horizgivenZ, which implies non-causation
at horizonl givenZ.
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jii. In Case I (all high— all low), non-causation at HF horizoh givenZ implies non-causation at
horizon1 givenZ, which is necessary and sufficient for non-causation at horizgivenZ.

iv. In Case Il (all low— all high), non-causation at HF horizohgivenZ is necessary and sufficient
for non-causation at horizoh givenZ, which implies non-causation at horizdrgivenZ.

Proof: See Appendix D.

Although Theorem 4.3 is much sharper than Theorem 4.2 due to much stasggemptions, they
share an interesting feature that causality tends to be contaminated mordemmral aggregation
discards information for "right-hand side” variables. For example, iterhdvs that no relevant infor-
mation for testing low-to-high or high-to-high causality is lost when moving fbro Z (i.e., when
aggregating low frequency variables), while some information is lost wherningmdrom Z to Z (i.e.,
when aggregating high frequency variables).

Theorem 4.3 suggests that the MF causality test should never perfage than the low frequency
causality test, and the former should be more powerful than the latter dgpedian Cases 3, 4, and |l
are of interest. Sections 5 and 6 verify this point by a local asymptotic pamadysis and a Monte Carlo
simulation, respectively.

5 Local Asymptotic Power Analysis

The goal of this section is to show that the MF causality tests have higheradggalptotic power com-
pared to the LF causality test. We need to constrain our attention to analyticatigti@ DGPs, which
is why we consider a bivariate HF-VAR(1) process with stock samplingsh&svn in the previous sec-
tion, for the bivariate HF-VAR(1) one can derive analytically the cqgroesling MF- and LF-VAR(1)
processes. Recall that Case | considers unidirectional causalitytfieimgh frequency variable to the
low frequency variable, while Case Il considers unidirectional caudadity the low frequency variable
to the high frequency variable. We first compute the local asymptotic pawmetibns for both cases,
and then plot them in a numerical exercise.

Case I: High-to-Low Causality In order to characterize local asymptotic power, assume that the high
frequency DGP is given by:

X(r1.k) = ®(v/VT) Ly X (1, k) + n(71, k), (5.1)
where
PH 0
&(v/VT) =
W) =1 WT o
with pg, pr, € (—1,1), wherev € R is the usual Pitman drift parameter. Assume for computational

i.1.d.

simplicity thatn(rz, k) "~ (02«1, I2), hence the errors are uncorrelated &idr;, k) has a strictly
stationary solution. In the true DGP, the low frequency variable does awtecthe high frequency
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variable, while forv = 0 the high frequency variable causes the low frequency variable with a naargin
impact ofv/+/T which vanishes a& — oo. First note we have = h = 1. We will therefore simplify
notation, namely denote the least squares asymptotic covariance BatfixasX;.

Assuming stock sampling and genernalc N, the corresponding MF-VAR(1) process of dimension
K=m+1(sinceKy =K =1)is as follows:

X (1) = A(w/VT)X (1, — 1) + €(71), (5.2)
where
01 (m-1) PH 0
A(v/VT) = : 5 : (5.3)
01 (m—1) P 0

O1u(m—1) opet Pl P " (w/VT) pf!

ande(7r) g (Oxx1,2) See (4.5)-(4.7) in Section 4.1 for a characterizatiof2ofThe MF-VAR(1)
being estimated is:
X(rp))=Ax X(r, — 1)+ €(rp)

with coefficient matrixA = A(v/+/T). Table 1 and Theorem 3.1 provide us the Case | selection matrix
R to formulate the null hypothesis of high-to-low non-causality:

H{ : Rvec[A'] = 0,41 where R € R"™*K”,
Thus, the corresponding local alternati\[éé’L are written as
HY" : Rvec [A'] = (v/VT)a,

where by (5.3) it followsa is them x 1 vector 0, ...,0, 37", p~1p ). Now let A be the least
squares estimator cd. Theorem 2.2 implies thaﬁ/[Hé] LA X2, asT — oo underH({. Similarly, by
classic arguments it is easy to verify uncféf"L thatW[Hfl’L] L\ X2, (karr), wherex?, (k) is the
non-central chi-squared distribution with degrees of freedom and non-centrality paramejgy: :

kur = v'a [RS R a, (5.4)

whereX; is the asymptotic variance of, in particular

=2 Y, with Yo=Y A'QA" where A= Jim A(v/VT). (5.5)
—00
=0

Equation (5.5) can be obtained from non-local least squares asymptiiticd = limy_,, A(v/VT).
See Appendices A.1.1 and A.1.2, in particular the example in Appendix A.I.2efails on deriving
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3, in (5.5). Using the discrete Lyapunov equatidfy can be characterized by:
vec[YXo] = (Ix2 — A® A) vec[€).

Let Fy : R — [0,1] be the cumulative distribution function (c.d.f.) of the null distributigs,.
Similarly, let 7} : R — [0, 1] be the c.d.f. of the alternative distributior?, (/). The local asymptotic
power of the MF high-to-low causality teg®, is given by:

P=1-F [F;'(1-a), (5.6)

wherea € [0, 1] is a nominal size.
We now derive the local asymptotic power of the LF high-to-low causality Fasdt, the LF-VAR(1)
process corresponding to (5.1) is given by:

X(r1) = A(w/VT)X (rp — 1) + (1), (5.7)

where

A(v/VT) = Pi 0 5.8
Al/VT) S ol e T /T P 58

ande(ry) g (02x1, 2). Note thatQ2 is characterized in (4.10).
Suppose that we fit a LF-VAR(1) model with coefficient matdxe R?*2, thatisX (1) = AX (7,
— 1) + €(7r). The null hypothesis of high-to-low non-causality is that the lower-left eterné A is
zero:
Hé : Rvec [A’] =0,

whereR = [0, 0, 1, 0]. The corresponding local alternative hypothesis is:

HiL Rvec [A Zp];{ Lom=k(w/VT).

Let A be the least squares estimator4f We have thatV'[H{] 4 x? asT — oo under H{, while
W[Hi’L} S XA(kLr) undeerl’L with k. r given by:

(V > ke Pl;I 1/’? k)
RLF = RE]_R/ ’

whereX, is the asymptotic variance ok = limy_,o{A(v/v/T)}, in particular as in (5.5) it can be
shownX; = Q ® Y;! with ¥, = 3°°, A’QA". The local asymptotic power of the LF high-to-low
causality test is given by (5.6), whefg is the c.d.f. ofy? and Fy is the c.d.f. of\3(kLr).
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Case II: Low-to-High Causality Assume that the true DGP is given by (5.1) with

®(v/VT) = P())L] V/p\L/T
ii.d.

with pg, pr, € (—1,1). Assume again thaj(rz, k) "~  (02x1, I2). In the true DGP, the high frequency
variable does not cause the low frequency variable, while the low freyueariable causes the high
frequency variable, a relationship which vanishe&'as oco.
Assuming stock sampling and general< N, the corresponding MF-VAR(1) process is given by
(5.2) with
O1x(m-1) PH She1 P o R/ VT

A(v/VT) = : (5.9)

Orim-1) PH St P L (w/VT)
O1x(m-1y O Pr
Our model is again a MF-VAR(1) model, so the local asymptotic power of thédWFo-high causality
test can be computed exactly as in Case | with only two changes. &irs(5.4) has different elements
hereza = [, phtpt ", 0 phr k). Second, the selection matriR is specified ac-
cording to Case Il in Section 3.2. These differences will produce aresitiag asymmetry between the
MF high-to-low causality test and the MF low-to-high causality test.
We now consider the LF low-to-high causality test. The LF-VAR(1) precegiven by:
AW VT) = P Yy o M w/VT) . (5.10)
0 Y

The local asymptotic power of the LF low-to-high causality test can agairobguated exactly as in
Case | with the only difference being thBt= [0, 1, 0, 0] here, so there is no asymmetry between the LF
high-to-low causality test and the LF low-to-high causality test.

Numerical Exercises To study the local asymptotic power analysis more directly, we rely on some
numerical calculations. In Figure 1 we plot the ratio of the local asymptotiepofithe MF causality

test to that of the LF causality test, which we call raver ratiohereafter. We assume a hominal size

= 0.05. Panel A focuses on high-to-low causality, while Panel B focuses ofideligh causality. Each
panel has four figures depending @i, pr. € {0.25,0.75}. The x-axis of each figure hasc [0.5,1.5],

while the y-axis has: € {3,...,12}. The case that: = 3 can be thought of as the month versus quarter
case, while the case that = 12 can be thought of as the month versus year case. Note that the scale of
each z-axis is different.

In Panel A, the power ratio varies withjf.5, 1], hence the MF causality test is as powerful as, or is
in factlesspowerful than, the LF causality test. This is reasonable since a MF prooesains the same
information about high-to-low causality test as the corresponding LFegsodoes (cfr. (5.3), (5.8), and
Theorem 4.3) and the former has more parameters: recalltigfm + 1) x (m + 1) while A is2 x 2.
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y-axis hasn € {3,...,12}.

Figure 1: Local Asymptotic Power of Mixed and Low Frequency Causakbisty
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The power ratio tends to be low in the bottom figures of Panel A, whgre= 0.75. This result is also
understandable since the information loss caused by aggregating adtgkericy variable is less severe
when it is more persistent.

Panel B highlights the advantage of the MF approach over the LF agpribate that the power ratio
always exceeds one and the largest value of the z-axis is 5, 15, 3yvle®(pr, pr,) = (0.25,0.25),
(0.25,0.75), (0.75,0.25), or (0.75,0.75), respectively. This result is consistent with (5.9), (5.10), and
Theorem 4.3, where we show that a MF process contains more informaitan law-to-high causality
test than the corresponding LF process does. Given the gantkee power ratio tends to be low when
the high frequency variable is more persistent. The reason for this resgjain that aggregating a high
frequency variable produces less severe information loss when it ispamsistent.

Another interesting finding from Panel B is that the power ratio is decrgasim for (pg, pr) =
(0.25,0.25) and increasing inn for (pg, pr,) = (0.75,0.75). To interpret this fact, lepy = pr =
p and consider a key quantity in the upper-right blockAf >~/ , pl;{_lpT_k = mp™ ! = f(m).
Givenm, the upper-right block ofA hasf(1),..., f(m) while that of A has f(m) only, therefore it
is{f(1),..., f(m — 1)} that determines the power ratio. Hence, whether the power ratio increases
decreases by switching from to m + 1 depends on the magnitude fpfm). If f(m) is close to zero,
then the power ratio decreases due to more parameters in a MF-VAR mod&gligible informational
gain fromf(m). If f(m) is away from zero, then the power ratio increases since such a larfieieoée
helps us reject the incorrect null hypothesis of low-to-high non-days&igure 2 plotsf(m) for p €
{0.25,0.75}. It shows thatf(m) converges to zero quickly as grows whenp = 0.25, while it does
much more slowly whep = 0.75. Thus, the power ratio is decreasinginfor p = 0.25 and increasing
in m for p = 0.75.

1.8

16 ﬁp o5 ———
14
1.2 /
ﬁ _ =
z:z — p=0.25 .
0.4 \
0.2 \

0 T T T T v T : U : T v 1 hd T v T v T v 1
7 8 9 10 11 12
(Sampling frequency m)

Note: The horizontal axis has € {1, ..., 12}, while the vertical axis hasi,p™ " for p € {0.25,0.75}.

Figure 2: Plot of the Functiomp™ ! - Driver of Local Asymptotic Power Ratios

In summary, the local asymptotic power of the MF low-to-high causality test lehithan that of
the LF counterpart. The ratio of the former to the latter increases as a bigeincy variable gets less
persistent, given the persistence of a low frequency variable. Merethe power ratio increasessin
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for persistent series, while it decreaseirior transitory series.

6 Power Improvements in Finite Samples

This section conducts Monte Carlo simulations for a bivariate case ancdaate/case to evaluate the fi-
nite sample performance of the mixed frequency causality test. In bivasisés @vith stock sampling, we
know how causality is transferred among HF-, MF-, and LF-VAR prees®ind hence we can compare
the finite sample power of MF and LF causality tests. In trivariate cases vedittée theoretical results
on how causality is transferred because of potential causality chamg st evaluate the performance
of the MF causality test itself by checking empirical size and power basedMR-VAR model. All
tests in this section are performed at the 5% level.

6.1 Bivariate Case

This section considers a bivariate HF-VAR(1) with stock sampling as in Se6tiso that the corre-
sponding MF- and LF-VAR models are known and correctly specifiec ddawback of this experimen-
tal design is that we cannot easily study flow sampling since the corresgohtiirand LF processes
only have VARMA representations of unknown order, and thereforg noh have a finite order VAR
representation, by Theorem 449..

6.1.1 Simulation Design

We draw.J independent samples from a HF-VAR(1) procé$X (7, k)}} according to (4.1) with®,
partitioned in two possible ways:

(a) OHH1 OHL1 _ 04 0.0 and (b) GHH1 OHL1 _ 04 0.2 '
L1 PLLA 02 04 drLu1  PLLa 0.0 0.4

Thus we have in (a) unidirectional causality from the high frequenciabbr to the low frequency
variable and in (b) unidirectional causality from the low frequency végitdbthe high frequency variable.
Since we assume stock sampling here, these causal patterns carry therctwresponding MF- and
LF-VAR processes under this parametrization. The innovations are muarallgerially uncorrelated
standard normaln(rz, k) g N(02x1, I2). The low frequency sample size 15, € {50,100, 500}.
The sampling frequency is taken from € {2, 3}, so the high frequency sample sizelis= mT}, €
{100, 150, 200, 300, 1000, 1500}. The case thatm, T7) = (3,100) can be thought of as a month versus
quarter case covering 25 years.

We extract the MF proces{sX’(rL)}lTL and the LF procesﬁ&(rL)}lTL according to (2.2) and (4.2)

respectively, and fit MF-VAR(1) and LF-VAR(1), which are cortigespecified. We then compute Wald

10 simulations not reported here we explordithepohl and Poskitt's (1996) finite-order approximation for VA®( The
resulting test exhibited large empirical size distortions and was therefvensidered in this paper.

23



statistics for two separate null hypotheses of high-to-low non-cauddlity.;: =y - xr and low-to-
high non-causalityd; _.;;: =1, - xg, each for horizorh = 1.1 The Wald statistic shown in (2.9) is
computed by OLS with two covariance matrix estimators. The first one is bastteBartlett kernel
HAC estimator discussed in Appendix A.1.3. We use a bandwidth of therfigem= max {1, \(T7)/3}
since this optimizes the estimator’s rate of convergence (Newey and V98g)|lwhile\ is determined
by Newey and West's (1994) automatic bandwidth selection. This so-ddi&ti casecorresponds to
a situation where the researcher merely uses one robust covaridimaties technique irrespective
of theory results$? The second covariance matrix is the true analytical matrix, and is theredtiesl ¢
the benchmark caseThis case corresponds to a complete-information situation where theatesea
knows the true parameters. The benchmark covariance matrix for theA®FMOdel can be computed
according to (5.5). In the LF-VAR modelA andf2 in that expression should be replaced wittand(2,
respectively (see (4.4), (4.5), (4.9), and (4.10)).

To circumvent size distortions for small samplgs < {50, 100}, we employ a parametric bootstrap
as in Dufour, Pelletier, and Renault (2006, p. 351 )Althoughp = h = 1 in this section, we present
the procedure with generalandh for completeness. We present the concrete procedure with respect to
HE(h) : @iy »n L] T(m,,), but all other cases can be treated analogously.

Step 1 Fit an unrestricted MF-VAR{) model for prediction horizon one to gé(l) and$ (cfr. (2.3)
and (2.6)). Also fit an unrestricted MF-VARX model for prediction horizot to getB(h) (cfr.

(2.5)).
Step 2 Using (2.9), compute the Wald test statistic based on the actualiéiafaz (h)].

Step 3 SimulateN samples from (2.5) using (h) = B(h) andQ2 = 2 and the hypothesis thatr; ) is
jointly standard normal, where we impose parametric constraints corrésgaod?Z(h), found
in (3.2) and Table 1. Estimates of the impulse response coefficieptsan be obtained using
B(1) and (2.4). We denote bi¥;[HZ(h)] the Wald test statistic based on th¢h simulated
sample, wherg¢ € {1,...,N}.

Step 4 Compute the resulting p-valyey (W [HZ(h))), defined as

N
By (WIHEW) = (1 + 3 IWH (1) = W[H&(h)])) .
i=1

The null hypothesigi3 (h) is rejected at level if py(W[HZ(h)]) < a.

"Notice from (4.3) and (4.8) thdf 7. -, corresponds td1(m + 1,1 : m) = O1x., inthe MF-VAR and toA,(2,1) =0
in the LF-VAR models, while .. g corresponds tA (1 : m,m + 1) = Oy, x1 in the MF-VAR and toA, (1,2) = 0 in the
LF-VAR models.

2In the special case wheén= 1, a consistent analmost surelyositive definite least squares asymptotic variance estimator
is easily computed without a long-run variance HAC estimator (see Appénd). Based on this insight, we also tried a
sufficiently small\ instead of Newey and West's (1994) automatic selection. The resultsindtar to those of the HAC case,
S0 are not reported here.

13Chauvet, ®tz, and Hecq (2013) explore an alternative approach of paraneeliertions based on reduced rank conditions,
the imposition of an ARX(1) structure on the high frequency variabled, tha transformation of MF-VAR into LF-VAR
models.
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For small sample sizeE;, € {50,100}, we draw.J = 1,000 samples withV = 100 replications in
bootstrap. For the larger sample siZe = 500, we draw.J = 100, 000 samples without bootstrap since
size distortions do not occur.

We expect the following two results based on Theorem 4.3 and Sectionsh. the MF high-to-low
causality test should have the same or lower power than the LF high-to-lesalis test does since they
contain the same amount of causal information and the former entails moregiara. Second, the MF
low-to-high causality test should have higher power than the LF low-to-¢tagisality test does since the
former contains more causal information than the latter.

6.1.2 Simulation Results

In Table 2 we report rejection frequencies for the simulation design ithesidn the previous subsection.
Notice that, in case (a), size is computed with respect to low-to-high causdliky power is computed
with respect to high-to-low causality. In case (b), size is computed witlect $p high-to-low causality,
while power is computed with respect to low-to-high causality. Values in plaesas are the benchmark
rejection frequencies based on the analytical covariance matrix, anesvadil in parentheses concern
the HAC case.

Empirical size varies withif0.035, 0.069], so there are no serious size distortions in any case. Focus-
ing on power, the results are consistent with the two conjectures abosge.tk& gap between rejection
rates for MF and LF causality tests féfy .7, is not large (see case (a) in Table 2). For example, when
(m,Tr) = (2,50) and the HAC covariance matrix is used, power for the MF high-to-low diyseast is
0.125 while power for the LF high-to-low causality test is 0.177. Secondyihéow-to-high causality
test has clearly higher power than the LF counterpart (see caseT{h})difference is most prominent
for the largestn and T, where the rejection frequencies in the HAC case are 0.997 and 0.58&for
MF- and LF-VAR models, respectively. These results indicate that the ddBatity test never performs
worse than the LF causality test in terms of size and power when sample sa@#dyiddrge, and the
former is much more powerful than the latter when low-to-high causality is oféste

6.2 Trivariate Case

We now focus on a trivariate MF-VAR model with multiple prediction horizons rideo to see if the
mixed frequency causality test can capture causality chains properige 8iare is no clear theory on
how causality is linked between MF- and LF-VAR processes in the presefincausality chains, we do
not consider LF-VAR models, and therefore the aggregation schensendbenatter here.

6.2.1 Simulation Design

Suppose that there are two high frequency varialdlesndY and one low frequency variablé with
sampling frequencyn = 3 so thatKy = 2, K;, = 1, andK = 7. The low frequency sample size is
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Table 2: Size and Power for Causality Tests Based on VAR (Stock Sampling)
Rejection frequencies at the 5% level for mixed and low freqyecausality tests at horizdn = 1. The two cases are (81,1 = 0 and
¢rH,1 = 0.2 (unidirectional high-to-low causality) and (@)1 = 0.2 and¢r 1 = 0 (unidirectional low-to-high causality). In case
(a), size is computed with respect to low-to-high causalityile power is computed with respect to high-to-low caugalih case (b), size
is computed with respect to high-to-low causality, while pois computed with respect to low-to-high causality. Estiieparentheses are
based on the benchmark analytical covariance matrix, anteemtot in parentheses are based on the HAC estimator. A paraiabtstrap

is employed fofT';, € {50, 100} to avoid size distortionsn is the sampling frequency arid, is the sample size in terms of low frequency.

Sample Sizd}, = 50

Case (a) Case (b)
= m: = m:
Size MF: 0. 065(0 051) MF: 0.046(0.046) MF: 0. 035(0 053) MF: 0.046(0.049)
LF: 0.048(0.048) LF: 0.064(0.055) LF: 0.037(0.044) LF: 0.050(0.041)
Power MF: 0.125(0.143) MF: 0.057(0.071) MF: 0.232(0.261) MF: 0.186(0.228)
LF: 0.177(0.203) LF: 0.072(0.092) LF: 0.178(0.200) LF: 0.104(0.109)
Sample Sizd;, = 100
Case (a) Case (b)
m=2 m=3 m=2 m=3
Size MF: 0.057(0.059) MF: 0.048(0.041) MF: 0.054(0.049) MF: 0.036(0. 6 )
LF: 0.047(0.053) LF: 0.040(0.047) LF: 0.042(0.045) LF: 0.046(0.052)
Power MF: 0.229(0.253) MF: 0.098(0.115) MF: 0.455(0.487) MF: 0.383(0.427)
LF: 0.301(0.330) LF: 0.133(0.140) LF: 0.317(0.329) LF: 0.136(0.168)
Sample Sizd, = 500
Case (a) Case (b)
= m=3 = m=3
Size MF: 0. 059(0 051) MF: 0.064(0.051) MF: 0. 06()(0 052) MF: 0.066(0.052)
LF: 0.056(0.052) LF: 0.055(0.051) LF: 0.056(0.050) LF: 0.056(0.053)
Power MF: 0.900(0.898) MF: 0.414(0.390) MF: 0.998(0.998) MF: 0.997(0.997)
LF:0.943(0.944) LF: 0.557(0.551) LF: 0.943(0.944) LF: 0.556(0.550)
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Tr, = 100. Define a mixed frequency vector:
W (r) = [X(71,1),Y (71,1), X (71,2), Y (71,2), X (71, 3), Y (71, 3), Z(71)] -
Our true DGP is MF-VAR(1):

Wi(rL) = AW (1, — 1) + e(r1), e(r) "% (071, I7)

with ) -
02 0 03 0 06 0 0
0.3 —0.4 05 0
0 0 -02 0 04 0 0
A=|[o] o 0.2 04 0], (6.1)
o 0 0 0 03 0 0
o] o [o] o 03 0
| 0 0 0 0.6]

where the nine elements in rectangles represent the impa<€tai Y, the three underlined elements
represent the impact of on Z, and the three boxed elements represent the impactasf Z. All other
non-zero elements are autoregressive coefficients, so not dirdethame for causal patterns. Equation
(6.1) thus implies that there are only two channels of causality-atl: X —; Y |Z andY —; Z|Z.

In particular, note tha does not caus& ath = 1. Forh > 2, we have three channels of causality
because of a causal chain froxhto Z viaY: X —, Y |Z,Y —;, Z|Z,andX — Z |Z. This point is
verified by observingd? and A3:

0.04 0 0 0 018 0 0
0.09 —0.04 0.14 0
0 0O 004 0 004 0 0
A?=| o] o [-008 004 [022 004 0O (6.2)
0 0 0 0 009 0 0
0 0 009 0
1009 (027 015 [0 030 0.36 ]
and ) -
000 0 001 0 008 0 0
0.30 —0.03 0.07 0
0 0 -001 0 003 0 0
A*=|[o] o —0.01 003 0 |. (6.3)
0 0 0 0 003 0 0
0 0 003 0
| 010 (0.19) 0.02 0.50 0.22]

We fit (p, h)-autoregression with = 1 andh € {1, 2, 3} to implement the mixed frequency causality
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test from an individual variable to another. We are particularly interast@hether we can fineshon-
causalityfrom X to Z ath = 1 andcausalityfrom X to Z ath = 2,3. We drawJ = 1,000 samples
and/N = 100 parametric bootstrap replications to avoid size distortions. The HAC coearstimator
with Newey and West’s (1994) automatic bandwidth selection is used as invémgale simulation.

6.2.2 Simulation Results

Table 3 reports the rejection frequencies (empirical size is accurate iro¥igwe parametric bootstrap).

Empirical power for the test ak -+, Y is 0.997, 0.815, and 0.161 for horizons 1, 2, and 3, respec-
tively. Diminishing power is reasonable given the diminishing impackobn Y'; see the elements in
rectanglesin (6.1), (6.2), and (6.3).

Power for the test ot” -, Z vanishes more slowly ak increases: 1.000, 0.996, and 0.700 for
horizons 1, 2, and 3, respectively. In fact the boxed elementd’énd A3 contain relatively large
loadings 0.63 and 0.47, respectively. The intuitive reason for this sldeeay is that” has a more
persistent impact o than.X does ony’; see the upper triangular structure of the rectangles in (6.1).

Finally, the rejection frequency fak -, Z is 0.047, 0.555, and 0.631 for horizons 1, 2, and
3, respectively. At horizon 1 we get the desired result of non-digyi$eom X to Z, while we have
relatively high power forh = 2,3 due to the indirect impact oK on Z via Y (see the underlined
elements in (6.1)-(6.3)). Thus, our mixed frequency causality testipesfaell even in the presence of
a causality chain.

Table 3: Rejection Frequency in Trivariate Simulation
This table lists rejection frequencies based(pnh)-autoregression with = 1 andh € {1, 2,3}. The upper right triangular matrices have
empirical size foY” »j, X, Z -, X, andZ -, Y. Each test deals with the null hypothesis of non-causalitsnfan individual variable
to another at horizoh. We drawJ = 1,000 samples andv = 100 bootstrap replications. The HAC covariance estimator wighwvily and
West’s (1994) automatic bandwidth selection is used. The nalnsize is 5%.

Null Hypothesis h=1 h=2 h=3
- Y »rn X Z-»p X — 0.050 0.052 — 0.055 0.047 — 0.052 0.062
X -»p,Y — Z »pY 0.997 — 0.052 0.815 — 0.047 0.161 — 0.062
X»n”Z Y -»pZ — 0.047 1.000 — 0.555 0.996 — 0.631 0.700 —

7 Concluding Remarks

Time series processes are often sampled at different frequencieseatygically aggregated to the com-
mon lowest frequency to test for Granger causality. This paper compestng for Granger causality
with all series aggregated to the common lowest frequency, and testingdng& causality taking ad-
vantage of all the series sampled at whatever frequency they are &vaildd rely on mixed frequency
vector autoregressive models to implement the new class of Grangelityatiesss.
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We show that mixed frequency causality tests better recover causalityngdtiean underlying high
frequency process compared to the traditional low frequency apprddoreover, we show formally
that mixed frequency causality tests have higher asymptotic power agaiaktlternatives and show
via simulation that this also holds in finite sample involving realistic data generatowpgses. The
simulations indicate that the mixed frequency VAR approach works wellrf@llsdifferences in sam-
pling frequencies (denoted by) like month versus quarter. Current work in progress (Ghysels, Hill,
and Motegi (2013)) considers MIDAS regression-based causalityitespired by Sims (1972) in order
to handle relatively large: like month versus year.
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Technical Appendices

A Asymptotic Properties of MF-VAR Parameter Estimators

In this section we derive the asymptotic distribution of MiE-VAR parameter estimators leading to the proofs of
Theorems 2.1 and 2.2. We additionally present a simple stargalmost surelypositive semi-definite estimator
of the least squares asymptotic variance that we use inridagion study.

A.1 Least Squares Estimator and Asymptotic Variance

In this subsection we present the compact model that leatietieast squares estimaté’r(h) of the parameter
setB(h) appearing in equation (2.6). We then characterize the xnadrnponents that enter into the least squares
asymptotic covariancE, (h) = (Ix ®I‘;5)Dp(h)(IK ®I‘;é)’ appearing in the proof of Theorem 2.1 below. We
save notation by writin@=,, instead of¥,, (k) throughout the appendix. We then explicitly derive the ciarace
matricesI’,, o and D, (h). Finally, we present a simple consistent HAC estimataEgfthat satisfies the require-
ments of Theorem 2.2. The proofs of Theorems 2.1 and 2.2 asepted in Appendix A.2 where we explicitly
verify the form ofX,,.

A.1.1 Least Squares Estimator

We require a more compact notation in order to derive the kpgares estimatcﬁ(h). Define

Wi(k) = [X(R), X(1+1),...,X(Ty — k+ h)]" € RTL—F+DxK
W(TLap) - [X(TL)Iv X(TL - 1)/7 cey X<TL —-p+ 1)/]l € RPHx (Al)
Wp(h) = [W(Oap)v W(]-?p)a R W(TL - hvp)]/ € R(TL_’H_UXPK?

and define the error -
uh (r) =" Wye(rp — k) (A.2)
k=0
stacked as follows:
/
Ui(k) = [u<h> O, uMA+1),..., u" (T — k+1)] € RTz—F+DxK (A.3)
Then the(p, h)-autoregression appearing in (2.5) has the equivalenéseptation
Wi(h) = Wp(h)B(h) + Up(h). (A.4)

The estimatod3 (h) = [W,(h) W ,(h)] "W ,(h) W, (h) then follows.

A.1.2 Asymptotic Variance Components: Covariance Matrices

We now derive the componeris, o and.D,,(h) of the asymptotic variancE,. First, letI’, o denote the variance
matrices forW (7, p) in (A.1):
]-‘p,() =F [W(TL,p)W(TLap)/] .
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By Assumptions 2.1 through 2.3 it is easily verified thgt, is positive definite. Second, by a standard first order
expansion we require the long-run variance of a vectori3&@-,, p)u(r, + h)’, denoted

Y (11, + h,p) = vec |W (11, p)u™ (1, + h)'| = (Ix @ W (1z,,p)) ™ (1, + h) € RPE* X1 (A.5)
By construction{Y (71, + h,p)},, IS a zero mean covariance stationary process with autorieoess
A,s(h)=E[Y (L +h+s,p)Y(rL + h,p)'] whereA, ;(h) =0Vs > h.

Of particular note, although in gener¥l(r;, + h,p) is not finite dependent, it has zero auto-covariances at
lag s > h. Analytical characterizations df, o and A, ;(h) are presented below. The partial sum variance of
Y (11 + h,p) is therefore:

;-1
1 L
Dy r;(h) = —= > Y(rL+h,p) (A.6)
TL 71,=0
h—1
= ) + Z {1 - ] ps(h) +Ap s(h)]
= A,o(l) if h=1,
whereT} =T, — h + 1. We defineD, (h) as the long-run variance &f (77, + h, p):
Dy(h) = lim Dyr;(h) = ) + Z )+ Ay ()]
= A,o(l) if h=1 (A7)

Observe thaiD, (k) is well defined for any: > 1 in view of the stationary geometric strong mixing property
of W (7, p), the i.i.d. property foe(z ), and theL, s-boundedness. In particuld, (h), andD,, 7; (h) for T
sufficiently large, are positive definite. Simply note thate X (7;,) is a stationary VAR with an i.i.d. erras(r,)
that has a positive definite variance, it follow(7;,) and thereforeY (7, + h,p) have a continuous bounded
spectral density that is positive definite at frequency z8foereforea’ D,,(h)a > 0 for all conformablea # 0
(see Theorem 2.2 in Ibragimov (1975)). Herddg(h) is positive definite, and sind®,, r: (h) = D, (h) + o(1) it
follows for N € N sufficiently large and all'; > N thatD,, r+ (h) is positive definite.

We now explicitly characterize the covariance matribgs = E[W (11, p) W (11, p)'] andA, ;(h) = E[Y (11,
+ h+s,p)Y (11 + h,p)’]. Denote the auto-covariancesXf(r,) as

S W QW if s >0

Yo = il = B X (r +5)X (1)) = - oo
—s S )

(A.8)

whereW,, is defined by the moving average representation (2.4). W efé ¥, | = O(p") for p € (0, 1) it follows
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Py |vij,s| < oo foranyi, j. The proces§W (z,,p)}-, defined by (A.1) therefore has auto-covariances

S=—00

Ts Ts+1 et Ts+p71
, Ts—l Ts e Ts+p—2
I‘p7s =F [W(TL + Sap)W(Tva) ] = . . ) . . (Ag)
‘rsfp%»l Tsfp+2 e Ts

Further,u") (1) has auto-covariances

P 00, if0<s<h
Qu(h) = E [u (ry + s)ul (r)'| = € Q_.(h)’ it —h <5 <0 (A.10)

0K><K if |S| Z h.
Using (A.10) andY (71, + h,p) = (Ix @ W (11, p))u™ (11, + h), the auto-covariances &f (7, + h,p) are

Qo(h) X I‘p’() ifs=0
Aps(h) =EY (rp+h+sp)Y(r +hp)]=q A, (k)  f-h<s<0 (A.11)

Oprowpie  if || > B

NoticeY (71, + h,p) is serially uncorrelated at Idg| > h, although in general we cannot s¥y(7., + h,p) is h
— 1 dependent. Evidently a convenient expressionXgr;(h) does not exist whes e {1,...,h —1}.

We now proveA,, ;(h) = 0,x2x,k> for |s| > h. Assume without loss of generality that> h. Equation
(A.5) and the definition ofA,, ;(h) imply that

A, (h)=FE [(IK @ W (rp + s,p) u™ (1L + s + B)u™ (7, + h) (Ix @ W (1,p)")] . (A.12)

Let I(ry + s) = of{e(t)|r < 11 + s}. Note thatW (71, p), W (71, + s,p), andu™ (1, + h) are all known

at periodr, + s, while u™ (7, 4+ s 4+ h) depends only ode(r; + s + 1),...,€(mr + s + h)} and therefore
E[u™ (1, 4+ 5 + h)|I(1, + s)] = E[u™ (11, + 5 4+ h)] = O 1 by the i.i.d. assumption. We can thus get the
desired result by applying the law of iterated expectation@.12). Similarly, A, o(h) = Qo(h) ® T'p o can be
shown by applying the law of iterated expectations givérn, ) to (A.12).

Example (b = 1): Itis useful to derive the least squares asymptotic vag@ic= (I ®F;3)Dp(h)(IK ®F;é)’
for the caseh = 1. Use (A.8) and (A.9) to deducE,, = Yo = > -, ¥,Q¥). Next, use A.7 and A.11
to deduceD, (1) = A, (1) = Qo(1) ® Ty, hence by (A.9) and (A.10) it followdD, (1) = Q@ T, =
Q® Yo7, ¥, Q). Kronecker product propertiesF therefore imply is identicalyQ @ ') j = Q@ Yy' =
Q@ (L5, Ur2w)) "

A.1.3 Consistent and Almost Surely Positive Semi-Definite HAC Estimato

We need only estimate the component$hf= (Ix ® I‘;é)Dp(h)(IK ® 1‘;(1))/. A natural estimator of', ¢ is
the sample conjugate:

Tr—1
Z W(TL7p)W(TL7p)/'

7r,=0

. 1
To= —
p,0 TE
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Under Assumptions 2.1—2]3310,0 is almost surelypositive definite.
Turning to the long-run variancB, (h), denote the least squares residlal(h) = W;,(h) — W ,(h) B(h)

for model (A.4) and the resulting residuai" (7,) = X () — >7_, A" X (r, — h + 1 — k) computed from
(A.3). Now compute the sample version¥f(r;, + h, p) defined in (A.5),

V(11 hop) = vee [W(rw,p)a (7o + 0]

and compute
Tr—1
" 1

Ay s(h) = T: Z Y (7L +h,p)Y (7L + h — 5,p).
r=s
If h = 1 then from (A.6) the estimator dD, () need only beD,, 7+ (1) = A, o(1). Otherwise, a rige estimator
of D,(h) simply substitute\, . (h) for A, ,(h) in the right-hand side of (A.6), but it is well-known that $uen
estimator may not be positive semi-definite unless 1.
We therefore exploit Newey and West (1987)'s Bartlett kebressed HAC estimator which ensurabnost
surepositive semi-definiteness for affif > 1 (see Newey and West (1987) and Andrews (1991)):

npx—1

Dy ) = Apalty+ Y (1= =) (Bt + A (n13)

s=1

with bandwidthnr:: h < nr: < T}, nys — oo andnr: = o(T7). Intuitively sinceY (7, p) is serially uncor-
related for all lags abovk — 1, andA, ,(h) = 1/T; fo;sl Y (1 + h,p)Y (7. + h — 5,0) + 0,(1) is easily
verified, we only need — 1 lags, thatisA, o(h) + Zi:ll(l - s/nTz)(Ap,s(h) + A, .(h)") is avalid estimator
in place of (A.13). But this estimator also need not be pasisemi-definite in small samples.

Our proposed estimator &, is therefore
8, = (I 0 Ty0) x Dy (0) x (I @ B,3) (A14)

In view of almost surepositive definiteness df,, o and positive semi-definiteness ﬁipﬁTz (h) it follows %, is
almost surelypositive semi-definite. Consistency can be shown givenagér moment condition for the error
term.

Lemma A.1. Let Assumptions 2.1 through 2.3 hold and assufag)|[** < oo for somes > 0. Then,, is
almost surelypositive semi-definite for any; > 1, and%, % X, whereX, is positive definite.

Proof. Almost surepositive semi-definiteness &, follows from almost surepositive definiteness df, ¢
under Assumptions 2.1 - 2.3, aatinost surgositive semi-definiteness dfvp,Tz (h) by Theorem 1 in Newey and
West (1987). In view o, = (Ix ® I‘;})) x Dp(h) x (Ix ® I‘;é) and the fact that by stationarity, ergodicity
and L, s-boundedness a consistent estimatodlgy is immediately available from its sample counterdayt,
it is sufficient to show the consistency ﬁfp,TL* (h). This can be done by verifying Assumptions 1-4 in de Jong
and Davidson (2000) due to their Theorem 2.2.

First, the Bartlett kernel satisfies their Assumption 1.d8ek their Assumptions 2 and 3 hold sineg: — oo
asT; — oo, ny; = o(T}), and by independence aiid , s-boundedness af(7z), and the fact thaW (7., p) is
stationary geometric strong mixing, it follows by measiuimghthat {1/@Y(TL +h,p)},, iIsanLyys-bounded

There is a large choice of valid kernels, including Parzen and TukeyriHg. See de Jong and Davidson (2000).
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geometrically strong mixing process.

Finally, in order to verify their Assumption 4, define the megsion error functiom") (r;,, B) = X (1) —
SP_AyX(r, — h + 1 — k) for any conformabled, where B = [A,,...,A,]', andY (7, + h,p, B) =
(Ix ® W(rr,p))u™ (1, + h, B). Now defineZ(ry, + h,p, B) = Y (r1, + h,p, B)/\/T; and noteY (;, +
h,p) =Y (rp + h,p,B(h)). In order to match (de Jong and Davidson 2000)’s standaidizaive work with
Z (7, + h,p, B). Assumption 4 consists of three parts, (a)-(c), with a scattof «,, that is simplyI, = in our
case. Part (a) applies sind®(h) is \/Tf-convergent. Next, (b) applies since under our assumptoasby
model linearity it foIIowsl/\/’ﬁ‘fo;o1 E[(8/0B)Z(r, + h,p, B)] is trivially continuous atB (k) uniformly
in T%. Finally, (c) involves a uniform LLN fo(d/dB)Z(r1, + h,p, B). The latter is not a function aB in view
of linearity, hence a uniform LLN reduces to a pointwise LLNiwsh hold instantly under Assumptions 2.1-2.3.
QED.

A.2 Proof of Theorems 2.1 and 2.2

Recall D, r: (h) = Var[1/\/Tf S0 -2, Y (71 + h,p)] in (A.6) and D,,(h) = limp: o D, r: (k). To prove

71,=0
Theorem 2.1 we require the following central limit theorem.

LemmaA.2. 1/,/T} ZTL —0 Y (o + h,p) 4 N(0pk2x1, D), (h)) whereD,(h) is positive definite.

Proof. By the Cranér-Wold theorem it is necessary and sufficient to sh%a*: ZfLL 01 'Y (17, + h,p) 4
L

N(0,e’D,(h)ex) for any pK? x 1 non-zero vectorx. Observe tha{a'Y (71, + h,p)},, iS @ zero mean geo-
metrically strongly mixing process. This follows froki(7;, + h,p) = vec[W (7, )u<h) (TL + h)'], W(rL,p)
is a finite dimensional vector of geometrically strong miX (7;), andu™) (17) Ek o Pre(tp —k)is a
finite lag of i.i.d.e(71). Moreover||&’Y (11, + h, p)||2+s < oo by the moving average representation (2.4), the
independence of(71,), and||e(7L)||2+s < oo under Assumption 2.3.

Further, sinc&”(y, + h, p) is auto-correlated only up to ldg— 1 it follows limr; oo Dy 1x (h) = Ay 0(h)
+ Z [ s(h) + Ay s(h)]. Bothlimrs o Dy, 7 (h), and Dy, 7+ (h) for sufficiently largeT’;, are positive
definite by the discussion in Appendix A.1. Therefdrg,/T; sz_(} 'Y (ry, + h,p)/(a' D, s (h)ex) A
N(0,1) by Theorem 2.2 in Ibragimov (1975). In view of D), 1+ (h)a — ' D, (h)c the claim now follows
from Crarér's TheoremQED.

We now prove Theorems 2.1 and 2.2. By the constructitﬁ(ﬁ), f‘p,o andY (7p + h, p) it follows

— — -1

Tj vec [B<h>—B<h>}= Tivee [(W, ()W, (1)~ W (h)YU(h)|

Wp(h)'Uh(h)]

Ix® (;W (bYW, (h))_ll X vec L/lTT

Y (12 + h,p).
\% LTLZO

NoticeT',.0 = 1/T; 37220 W (rs, p)W (11, p)' & E[W (71,p)W (1, p)'] = T in view of stationarity, er-

godicity andL,-boundedness dW (7, p). Further,D,, 1+ (h) = Var[l//T} ZfLL 01 (11 + h,p)] = Dy(h).
Now use

- [reotya]

2, = (Ix @ T,5) x Dy(h) x (Ix @ Tp),

15See Chapter 17 in Davidson (1994) for verification that geometric stntining satisfies the Near Epoch Dependence
property in de Jong and Davidson’s (2000) Assumption 2.
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combined with Lemma A.2, and Slutsky's and Cia Theorems, to deduGgT '} vec[B(h)—B/(h)] A N(Opr2x1,2p).
Finally, 33, is positive definite in view of the positive definitenessIdf, and D, (h) as discussed in Appendix
A.1. This proves Theorem 2.1.

The proof of Theorem 2.2 follows instantly from Theorem 2Hg assumptiorf]p LS ¥,, and the mapping
theorem.

B Proof of Theorem 4.1

In view of Theorem 1 in Litkepohl (1984) it suffices to show thAt(r;,) and X (7, ) are linear transformations of
a VAR process. Definen K* x 1 vectors:

X(r) = [X(r1,1), ..., X(r,,m)] and 7(7r) = [n(12,1)',...,n(rn,m)"].

We first show tha{ X ()} follows a VAR(s) process withs = [p/m/], the smallest integer not smaller thafm.
We then prove the claim.
The HF-VAR(p) process in (4.1) implies that:

S
NX(rp) =Y MX(r — k) +7(7p), (B.1)
k=1
where
I Orescrr oo Okcrscre Prm DPrm—1 e Plm1ymi
_P Trn DPrmi1 Prm coo P 1ymae
N = ! K and M, = ) ) )
: . Orcxxkc* :
—®,, P, Irx Phrym-1 Prrym-2 .- Prm
fork =1,...,s. Itisunderstood tha®, = 0« x+ Wheneverk > p. We have that:
N1 Ogexr+ ... Ogexi-
N_1 _ N2 Nl
: 05 x K=
N, ... Ny N,

where Ny = Ig« and N, = Zf;ll @, N; for k = 2,...,m. Using this property, (B.1) can be rewritten as
follows:
A(Lp)X (1) =€(11),

where £, is the low frequency lag operataly (L) = L+ — > 5oy ApLh, Ay = N1 My, ande(ry) =
N~'5(71). Hence,{ X (1)} follows a VAR(s) process.

Now considerX (71,) and X (7). Recall the generic aggregation schemes (2.1) detailedatioBe2 with
selection vectotw. DefineH = [Ik,,, Ok, xx, ), L = [0k, xxu> Ik, ) Fuom = [Im @ H', w® L', and

!
_ w ®IKH OKHXKL
Fyosp =
OKLX’HLKH IKL
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Observe thafX (77,) and X () are finite order linear transformations &f(7): X (7z) = Fy_ X (77) and
X(r1) = Fy_1 X (), whereFy_,;, = Fy s Fy , = [w® H', w® L'). Moreover, in view of the
transformation being a finite order, X (71, is stationary then so aX (7r) and X (77.).

C Proof of Theorem 4.2

We prove only part (ii) since part (i) is similar or even simplRecall that the high frequency reference information
set at timet is expressed d5(¢) and the mapping between single time indeand double time indicegr;, k) is
thatt = m(rr — 1) + k. We have that:

Pleg(rr +1)|Z(r)] = P [Plen (rr + 1) | Z(mr)] | Z(11)]

P [Pleg (o + 1) |Z ) (m7L)] | Z(1L)]
P [Play(r, + 1) | Ly (7)) | Z(71)]
P

[CBH(TL + 1) |I(L)(TL)].

The first equality follows from the law of iterated project®for orthogonal projections on a Hilbert space; the
second from the linear aggregation scheme and the assumtptibz;, —+ x| Z; and the third holds because
T(L)(mTL) = I(L)(TL)- Hencex; » x g |Ias claimed.

D Proof of Theorem 4.3

We prove claim (i) only since parts (ii)-(iv) are analogotise following two cases complete part 1:

Case 1 (low— low). Suppose that; ;, does not cause. ;, up to HF horizonm givenZ (i.e.,zL j, — (m)
zr.j,| 7). Then,é[L’“]L,l(jg,jl) = 0foranyk € {1,...,m} and hencer; ;, does not cause;, ;, at horizon 1
givenZ (i.e.,xr j, - xr j,| Z) in view of (4.4). The converse does not necessarily holinale counter-example
isthatKy =1, K, =2, m =2, (j1,72) = (1,2), and

¢ur 03 omr
P = |¢rg 02 orr|,
—-0.1 0.1 0.1

wheregy p, or 1. ¢ru, andey, are arbitrary coefficients. Itis evident thyg,;, 1(2,1) = 0.1 and<I>[L2]L’1(2, 1) =
0. The former denies that;, ;, - () z1;,| Z, While the latter implies that;, ;, - z1 j,| Z.

Suppose now thaty, ;, - z j,| Z. Then,@[lf'ﬁvl(jg,jl) = 0 and hencer; ;, - xr, ;,| Z in view of (4.9).
The converse is also true.

Case 2 (high-» low). Suppose thaty ;, —(n) zr,5| Z. Then,<I>[Lk1]q71(j17i1) =o0foranyk € {1,...,m}
and hencecy ;, - x1,j,| Z. The converse does not necessarily hold.

Suppose now that ;, - x| Z. Then,i)%,l(jh i1) = 0 and hencery;, - «r j,| Z. The converse is
also true.
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