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1 Introduction

Economic data is sampled at different frequencies, mostly because the cost of collecting or

measuring variables can vary considerably. Price (indices) are relatively easy to collect. The

most extreme example is the price of financial assets, such as stocks, commodities, etc. Such

series are in principle available on a trade-by-trade basis for exchange traded assets. At

the other end of the spectrum are demographic data, collected every 10 years via a Census

count. Most key macroeconomic variables are collected on a monthly or quarterly basis.

An additional complication is that some series are point sampled, such as prices, whereas

others are flows, such as the gross domestic product (GDP) which is measured quarterly.

Faced with such data, a typical strategy is to collect same-frequency series, and for most

economic relationships of interest a mixture of stock and flow variables are considered. For

example, if we were to study the relationship between prices and output (the latter measured

via GDP) across different countries we would end up with quarterly CPI (a stock variable)

and quarterly GDP (a flow variable) for each country. Note that in this case, CPI data are

available monthly but are aligned with GDP observations.

In this paper we show that, even though aggregation does not change the cointegrating

vector, aggregation can cause size distortion in cointegration tests.1 Several cases need to

be considered and depending on the case, size distortions can either be absent, mild or

severe. Consider a first example of inflation sampled quarterly in several countries and we

are interested in cointegration between prices. To be more specific, in the paper we consider

Johansen’s (1988) likelihood-based trace test (when in general more than one cointegrating

relationship is allowed) and Engle and Granger’s (1987) residual-based tests, or the modified

tests of Phillips and Ouliaris (1990) (when no more than one cointegrating relationship

1In contrast, Hooker (1993), Hu (1996), and Haug (2002) addressed power of cointegration tests with
aggregated data using simulations. These authors focused on varying the frequency of the series, while
keeping the aggregation scheme fixed: Hooker (1993) examined skip sampling, Haug (2002) examined flat
sampling, and Hu (1996) examined each separately. In contrast, we focus on the more fundamental problem
of size distortion under varying aggregation schemes, which would be of practical use when faced with either
aggregated data or data observed at different frequencies.
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allowed). The sampling scheme involved in this first example is the same, i.e. both series are

skip-sampled at a (low) quarterly frequency. This is a case where all series are skip-sampled.

We show that in such cases when all series skip-sampled in the same way, then there will

be no size distortions. Now consider a second case, where cointegration between GDP from

the different countries is of interest. In this case we expect size distortions, although one

can characterize an upper bound on the distortions and they are still acceptable. Third,

consider cointegration within a given country between output and prices. Here the series are

aggregated/sampled differently – namely flow versus stocks with the latter being available

at higher frequency. We show that in such cases size distortion can be quite severe. To

complicate matters further, suppose statistical agencies across countries skip-sample prices

but do so differently. In such cases we obtain the most severe size distortions.

The scope of our paper goes beyond characterizing size distortions. We also propose

novel ways to solve the size distortion problems. Recall that price and GDP series are actu-

ally available at different frequencies: prices are recorded monthly and GDP quarterly. We

will take mixed sampling frequencies to our advantage to address size distortions. Namely,

instead of running a low-frequency (henceforth LF) trace test, we propose to keep the high

frequency (henceforth HF) and run a mixed-frequency (henceforth MF) trace test. The

former will have size distortions, depending on the case as discussed above, while the latter

will not have size distortions. How do we run a MF trace test? We rely on MF vector

autoregressive (henceforth VAR) models to implement the new class of tests. VAR models

for MF data were independently introduced by Anderson et al. (2012), Ghysels (2012) and

McCracken et al. (2013).2 An extension of these models to cointegrated series has recently

been considered by Götz et al. (2012). An early example of related ideas appears in Fried-

man (1962). Foroni et al. (2013) provide a survey of mixed frequency VAR models and

2State space models provide a common alternative method for handling possibly nonstationary series
observed at different frequencies by treating the low-frequency series as containing missing observations
(see Jones (1980), Ansley and Kohn (1983), Harvey and Pierse (1984), Zadrozny (1988, 1990), Gomez and
Maravall, 1994, Mariano and Murasawa, 2003, 2010, inter alia, among others). Seong et al. (2013) analyzed
a cointegrated VAR in this context.
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related literature. In particular, MF VAR models can be viewed as a multivariate extension

of MIDAS regressions.3

The connection with MIDAS regressions also leads us to residual-based tests for cointe-

gration. Miller (2013) studies CoMIDAS regressions involving I(1) processes. We therefore

also propose MF residual-based tests, as opposed to LF residual-based tests involving ag-

gregate HF data. Indeed, the latter also feature size distortions, as above (despite given

results on efficiency – see Chambers (2003), inter alia). We show that CoMIDAS – while

featuring some size distortions – works surprisingly well.

The rest of the paper is organized as follows. In Section 2, we present a short and less

technical explanation for the size distortions driving our main results and detailed later in

the paper. We review popular cointegration testing procedures in the context of a possibly

infeasible HF data-generating process in Section 3. We then introduce the LF and MF

environments in Section 4, reassessing testing options and asymptotic null distributions

in these contexts. A detailed discussion of size distortion in the case of equal weighting

schemes is contained in Section 5. Section 6 contains simulation results, Section 7 contains

an empirical application to stock prices and dividends, and Section 8 concludes. The paper

contains two appendices: Appendix A contains the proofs of the main theoretical results and

two ancillary lemmas, and Appendix B extends the discussion of size distortion of Section

5 to additional cases.

We make use of the following notational conventions throughout the paper. C ⊕ D

(direct sum) creates a block diagonal matrix with diagonal blocks given by C and D. C⊗D

is the usual Kronecker product. We use ι to denote a unit vector of length given by the

context in which it is used.

3MIDAS, meaning Mi(xed) Da(ta) S(ampling), regression models have been put forward in recent work
by Ghysels et al. (2004, 2006) and Andreou et al. (2010). See Andreou et al. (2011) and Armesto et al.

(2010) for surveys.
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2 On the Genesis of Size Distortion

Consider a p-variate I(1) series (yt) with t = 1, ..., T . Leaving aside the possibility of

deterministic trends, it is common to write A′yt = et, with an r-variate I(0) series (et), when

such series are cointegrated by r ≤ p linearly independent cointegrating vectors given by the

r columns of A. In the context of single-equation Engle-Granger cointegrating regressions,

where a single cointegrating relationship α is assumed, α′yt = et. The most commonly used

cointegration tests are Johansen’s (1988) likelihood-based trace test for the first case (more

than one cointegrating relationship allowed) and Engle and Granger’s (1987) residual-based

tests, or the modified tests of Phillips and Ouliaris (1990), for the second case (no more

than one cointegrating relationship allowed).

Although these test statistics and their limit distributions under the null are quite

different, they fundamentally depend on the sample moment
∑

t yt−1△y′t. Size distortion

may be traced to deviations of the limiting distribution of this sample moment from what

we expect under the respective nulls. Suppose that the data-generating process (DGP)

occurs at a higher frequency: m < ∞ times more often.4 The series may be rewritten

as (y
(m)
t−i/m) with i = 0, ...,m − 1, and it will be convenient to let M = mT denote the

HF sample size. Stock (1987) and Granger (1990) noted that temporal aggregation and

sampling frequency do not affect cointegrating vectors, so A′y(m)
t−i/m = e

(m)
t−i/m is still I(0).

Therefore, the sampling frequency does not alter the nulls and alternatives of these tests.

Suppose that the HF series (y
(m)
t−i/m) is subject to end-of-period sampling, so that only i =

0 is observed and we observe only a LF series (y
(m)
t ). Because △y

(m)
t =

∑m−1
i=0 △(1/m)y

(m)
t−i/m,

where △(1/m) is defined to be the HF difference operator, some algebra shows that

T−1
∑

t
y
(m)
t−1△y

(m)′
t = m

[

M−1
∑m−1

i=0

∑

t
y
(m)
t−1/m△(1/m)y

(m)′
t

]

+ op(1) (1)

holds as T increases. Under standard assumptions, the square-bracketed factor has a limit-

4See Chambers (2011) for analysis of single-equation cointegration models as m → ∞.
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ing distribution that coincides with the well-known limiting distribution of T−1
∑

t yt−1△y′t

with (yt) generated at the low frequency. Thus, the limit of the sample moment using the

observed LF series (y
(m)
t ) differs from that using the infeasible high-frequency series (y

(m)
t−i/m)

by a factor of m. Because the test statistics are standardized, they are robust to such scalar

multiples by construction. Test size is therefore not distorted by end-of-period sampling.5

Size distortion arises when we do not observe the HF series (y
(m)
t−i/m), or even the LF series

(y
(m)
t ), but some LF series (zat ) resulting from temporally aggregating (y

(m)
t−i/m) by some other

method. Denoting the aggregation weights by ̟s,j+1 for j = 0, ...,m − 1 and s = 1, ..., p

and letting Πj ≡ (̟1j ⊕ · · · ⊕̟pj) represent a diagonal matrix of the weights for all series

in the vector (y
(m)
t−j/m), the aggregated series may be written as zat =

∑m−1
j=0 Πj+1y

(m)
t−j/m. Its

first difference is

△zat =
∑m−1

i,j=0
Πj+1△(1/m)y

(m)
t−(i+j)/m 6=

∑m−1

i=0
△(1/m)y

(m)
t−i/m = △yt (2)

in general. The inequality in (2) becomes an equality when Πj = I for j = 0 and 0 otherwise,

which is exactly the end-of-period sampling scheme just discussed.

The inequality in (2) more generally causes size distortion because, with T−1
∑

t z
a
t−1△zat

on the left-hand side, the square-bracketed factor on the right-hand side of (1) cannot be

isolated without leaving non-negligible terms.

We consider size distortion from two causes of the inequality in (2). First, the inequality

holds when an aggregation scheme other than end-of-period sampling is used on all p series.

Second, the inequality holds when not all series are aggregated in the same way. We refer to

the size distortion from these two cases as type A and type B size distortion, respectively.

As it turns out, type A size distortion may be zero asymptotically and has an upper bound

within an acceptable range. Type B size distortion may be quite severe.

5Shiller and Perron (1985) and Perron (1991) noted that the powers of univariate unit root tests are not
affected by the frequency. Hooker’s (1993) and Haug’s (2002) simulation results suggest that observing data
at a higher frequency can increase the power of residual-based cointegration tests, but Hu’s (1996) results
suggest that span matters much more than frequency, as in the univariate case.
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3 High-frequency DGP and Cointegration Tests

In this section, we describe the HF DGP, assumed to be infeasible given the data, but against

which we can compare the feasible models. We then review the standard cointegration tests

and their asymptotics. All of the results and discussions in this section are well known, with

the only complication being the index t− i/m accounting for the different frequencies. This

section thus provides a review of the relevant techniques and introduces essential notation.

Consider a p-variate HF DGP given by

△(1/m)yt−i/m = ΓA′yt−(i+1)/m + εt−i/m, (3)

where △(1/m) is the HF difference operator described above and i = 0, ...,m− 1. (We now

and henceforth suppress the superscript (m) on y
(m)
t−i/m employed in the previous section.)

The cointegrating rank is r, so that Γ and A are both p× r matrices. As usual, 0 ≤ r ≤ p

and the series are cointegrated if 0 < r < p.

We assume an invariance principle of the form M−1
∑[rM ]

j=1 εj/m →d B(r) as M → ∞,

where B is a vector Brownian motion with variance Σ. Thus, B = Σ1/2W , whereW is a vec-

tor of independent standard Brownian motions. It follows that (mT )−1
∑[rT ]

t=1

∑m−1
i=0 εt−i/m

→d mB(r) as T → ∞ and for finite m, which provides a translation of the parameters of

the LF asymptotics utilized below into those of the infeasible HF DGP. (See Miller, 2011,

for more details.)

Serial correlation is typically allowed by including lags of △(1/m)yt−i/m, in which case

△(1/m)yt−i/m and yt−(i+1)/m in (3) may be replaced by residuals from regressing these onto

the lagged differences. In that case, the variances of △(1/m)yt−i/m, etc., are conditional,

but the results do not otherwise change. For expositional simplicity, we assume no serial

correlation in (εt−i/m) and let var(εt−i/m) ≡ Σ.

The analysis of a model with deterministic trends would be more involved. As usual,

these trends would affect the limiting distributions. In order to avoid overly complicating
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the presentation of our results and because deterministic trends may be “sampled” at any

frequency, we assume that y0 = 0 and do not explicitly consider deterministic trends. We

expect that the main intuitions about size distortion gleaned from the simpler model would

hold for a more complicated model.

System of Regression Equations. For notational ease, authors typically define s0,t−i/m

≡ △(1/m)yt−i/m and s1,t−i/m ≡ yt−(i+1)/m, with the idea that these may be redefined as re-

gression residuals if serial correlation is allowed. The sample moments Sgh ≡ M−1
∑

t

∑m−1
i=0

sg,t−i/ms′h,t−i/m for g, h = 0, 1 are in turn defined by these random variables.

Johansen’s (1988) trace test allows for the possibility of more than one cointegrating

relationship. For known A, the maximum likelihood estimators Γ̂ and Σ̂ of Γ and Σ are

Γ̂(A) = S01A (A′S11A)
−1 and Σ̂ (A) = S00−S01A (A′S11A)

−1A′S10. The likelihood function

may be concentrated so that the maximal value (up to an irrelevant constant) is Lmax in

L−2/M
max = |S00 − S01A

(

A′S11A
)−1

A′S10|

= |S00||A′(S11 − S10S
−1
00 S01)A|/|A′S11A|, (4)

and A is chosen to minimize L−2/M . Specifically, A is estimated by finding the r largest

eigenvalues of |S11 − S10S
−1
00 S01| subject to |A′S11A| = I. The p ordered eigenvalues

λ̂1, . . . , λ̂p are the same as those obtained by solving the determinantal equation |λI −

S−1
11 S10S

−1
00 S01| = 0 to implement the test.

The null of the well-known trace test is H0 : r = r0, and the alternative is HA : r = p (all

series I(0), no cointegration). The second determinant in (4) equals the product of (1− λi)

corresponding to the first r0 eigenvalues under the null and equals the product corresponding

to all p eigenvalues under the alternative. The familiar trace test is a likelihood ratio test

therefore given by

−2 logQ(Hr0|p) = −M
∑p

i=r0+1
log(1− λ̂i),
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since the common factor |S00| cancels. Using properties of the log and of the trace,

−2 logQ(Hr0|p) = M tr{S−1
11 S10S

−1
00 S01}+ op (1)

as M → ∞. See Johansen (1995) for a very detailed discussion. Further references to

the trace test may be understood to refer either to −2 logQ(Hr0|p) or to its asymptotic

approximation M tr{S−1
11 S10S

−1
00 S01}.

Following the lead of Cheung and Lai (1993), Horvath and Watson (1995), and other

authors, we consider the null H0 : r = 0 against the full rank alternative.6 The asymptotic

distribution of the test employs the limits S00 →p Σ, S10 →d

∫

BdB′, and S11 →d

∫

BB′.

Canceling out the variance Σ, the test has a limiting null distribution given by

M tr{S−1
11 S10S

−1
00 S01} →d tr{

∫

(dW )′W (

∫

WW ′)−1

∫

WdW ′} (5)

as M → ∞. The number of stochastic trends under the null is the only nuisance parameter.

Single Regression Equation. Supposing that r ≤ 1, the DGP becomes △(1/m)yt−i/m =

γα′yt−(i+1)/m + εt−i/m, and a typical residual-based test for cointegration is simply a unit

root test of the fitted residuals êt−i/m = α̂′yt−i/m with one element of α normalized to

unity, so that α = (1,−β′)′. In the absence of serial correlation, the unit root test is just

a regression of △(1/m)êt−i/m onto êt−(i+1)/m with a null that the coefficient is zero (no

cointegration), along the lines of Engle and Granger (1987). The coefficient test and t-test

may be written as

ρM = M(α̂′S11α̂)
−1α̂′S10α̂ and τM = (α̂′S00α̂(M

−1α̂′S11α̂))
−1/2α̂′S10α̂,

6Extending to high-order nulls essentially requires redefining the rank of the limiting matrix inside of the
trace, but substantially complicates the proofs. This null allows us to focus exposition more specifically but
without any substantial loss of generality. Also, this null is analogous to the null in the single-equation case
(no cointegration), even though the tests have different alternatives.
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in this case.

Under the null, the rank of γα′ is zero and △(1/m)yt−i/m = εt−i/m, so that et−i/m =

α′∑mt−i
j=1 εj/m . Using the above invariance principle, we have β̂ →d (

∫

B2B
′
2)

−1
∫

B2B1,

where B = (B1, B
′
2)

′ is partitioned like α. Phillips and Ouliaris (1990) show that the

coefficient test and t-test have limiting distributions given by

ρM →d

(
∫

Q2

)−1 ∫

QdQ ≡ ρ and τM →d

(

κ′κ
∫

Q2

)−1/2 ∫

QdQ ≡ τ (6)

where Q(r) ≡ W1 (r) −
∫

W1W
′
2(
∫

W2W
′
2)

−1W2 (r) and κ′ ≡ (1,−
∫

W1W
′
2(
∫

W2W
′
2)

−1)

with W = (W1,W
′
2)

′ partitioned like B.

4 Temporal Aggregation and Mixed Sampling Frequencies

The main premise of this research is that temporal aggregation of at least one series is

unavoidable. From the analyst’s point of view, some or all of the data have already been

aggregated. With the well-known results from the previous section in hand, we now turn

to the task of introducing temporal aggregation of one or more of the component series in

(yt−i/m).

The ensuing analysis will employ LF asymptotics (as T → ∞) rather than the HF

asymptotics of the previous section. To this end, it will be useful to stack the HF series

into a single LF vector. We sort by series and then by HF time period. In contrast, Ghysels

(2012) sorts by time period and then by series, keeping the vector yt intact. The order is

not important for conducting the tests discussed in this paper, but only for the theoretical

analysis.

Define zst ≡ (yst, ys,t−1/m, ..., ys,t−(m−1)/m)′ and ust ≡ (εst, εs,t−1/m, ..., εs,t−(m−1)/m)′

for s = 1, . . . , p, and define zt ≡ (z′1t, . . . , z
′
pt)

′ and ut ≡ (u′1t, . . . , u
′
pt)

′. Transposing and



10

stacking the original DGP in (3) across m allows

(△(1/m)z1t, . . . ,△(1/m)zpt) = (z1,t−1/m, . . . , zp,t−1/m)AΓ′ + (u1t, . . . , upt),

and vectorizing both sides allows

△(1/m)zt = (ΓA′ ⊗ I)zt−1/m + ut,

equivalently to (3). This expression represents a system of mp equations with an error

variance given by var(ut) = Σ⊗ I.

The VECM estimated by the analyst will need a LF difference rather than a HF dif-

ference, because HF differences are infeasible for any temporally aggregated series. In

anticipation of the aggregation, a LF difference of the HF system may be rewritten as

△zt = (ΓA′ ⊗ I)zt−1 + ηt, (7)

where ηt ≡ (I + (ΓA′ ⊗ I))
∑m−1

i=1 △(1/m)zt−i/m + ut. Even though we have assumed no

serial correlation in the HF DGP, differencing the HF series at the low frequency in (7)

creates first-order serial correlation of (ηt). This correlation results not from aggregation,

but simply from the LF difference. Although Cheung and Lai (1993) and other authors have

shown that the trace test may suffer size distortion in the presence of serial correlation, most

of the serial correlation in (ηt) exists within but not between LF increments.

4.1 Low- and Mixed-frequency Models

The system in (7) is still infeasible, because for some or all of the p series the analyst

observes ̟′
kzkt, where ̟k ≡ (̟k1, ..., ̟km)′ is a vector of m non-negative deterministic

aggregation weights such that ̟′
kι = 1 (the weights sum to unity) for all k. Some algebra
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allows zkt = ιykt −H△(1/m)zkt, with H defined as

H ≡



















0 · · · · · · 0

1
. . .

...

...
. . .

. . .
...

1 · · · 1 0



















,

an m × m matrix. The decomposition makes clear what we intuitively know to be true:

that an I(1) series observed every m time periods must be cointegrated with the same series

observed every m periods with an overlapping interval. All m series share a single common

stochastic trend (ykt), and therefore have m−1 linearly independent cointegrating relation-

ships. Further, the restriction on the weights allows a notationally efficient representation

of the aggregated series: ̟′
kzkt = ykt −̟′

kH△(1/m)zkt.

System of Regression Equations. In the purely LF case, all of the series have been

temporally aggregated. We define Πa ≡ (̟′
1 ⊕ · · · ⊕ ̟′

p) to be a p × mp full aggregation

matrix (high frequency to low frequency) in order to operationalize this concept. We further

define the temporally aggregated series (zat ) such that zat ≡ Πazt. That is, zakt ≡ ̟′
kzkt for

each series k = 1, ..., p. Full aggregation transforms the system in (7) as

△zat = ΓA′zat−1 + ηat , (8)

which is a feasible LF system. Note that under the null of no cointegrating vectors, the

error is simply ηat = Πaηt.

The matrices Γ and A in the fully aggregated system in (8) are the same as those in the

HF DGP. Temporal aggregation does not change the cointegrating relationships, as pointed

out by Stock (1987) and Granger (1990), but it may substantially affect the short-run

properties of the series (Marcellino, 1999, inter alia).

Moving to a system of equations with series observed at different sampling frequen-
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cies, we assume that pl series in (△(1/m)yt−i/m) are aggregated and observed at the low

frequency, while ph series are observed at the high frequency, with pl + ph = p. Without

loss of generality, let the first pl series in (△(1/m)yt−i/m) be those observed only at the low

frequency.

The matrix Πm defined by

Πm ≡







̟′
1 ⊕ · · · ⊕̟′

pl
0

0 I







is a (pl +mph) ×mp partial aggregation matrix that operationalizes aggregation from the

infeasible HF DGP to a feasible MF model. Premultiplying zt by Πm temporally aggregates

the HF observations of the first pl series in (△(1/m)yt−i/m), but leaves the remaining ph

series. The resulting series (zmt ), defined by zmt ≡ Πmzt, contains pl LF series. The

remainingmph series are created from ph distinct series observed atm different LF intervals.

For example, if the first pl series are observed annually and only a single (ph = 1) monthly

(m = 12) HF series remains, the last 12 series are annual observations of that series observed

at distinct months.

A MF system contains both HF series regressed on lags of LF series and LF series

regressed on lags of HF series. Premultiplying both sides of the system in (7) by Πm does

not yield a VECM directly. Rather, it yields a system in which both HF and LF series are

regressed on lags of only HF series. That is, (△zmt ) is regressed on (zt−1), which is still

infeasible. To operationalize the VECM, (zmt−1) should be created using the same partial

aggregation matrix as that for (△zmt ).

Define the notation

Γm ≡







I 0

0 I ⊗ ι






Γ and Am ≡







I 0

0 ̟∗
pl+1 ⊕ · · · ⊕̟∗

p






A,

where the vectors ̟∗
pl+1, ..., ̟

∗
p satisfy the properties of ̟k above. Partial aggregation
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results in

△zmt = ΓmAm′zmt−1 + ηmt , (9)

which is a feasible MF VECM. The error is simply ηmt = Πmηt under the null of no cointe-

grating vectors.

The aggregation weight vectors ̟∗
k introduced here have no practical role, except to

impose known cointegrating relationships. In the systems context, we may set them to be

equal (̟∗
k = ̟∗ for all k). In the HF system in (7), the coefficient matrix (ΓA′ ⊗ I) is

mp × mp with rank of mr. The fact that its rank must be a multiple of m has practical

implications for testing, as it requires (m−1)p restrictions to be imposed. Total aggregation

of the HF DGP to a LF system imposes (m−1)p restrictions, so no additional restrictions are

necessary. Partial aggregation to obtain the MF system imposes (m− 1)pl restrictions, but

(m−1)ph remain to be imposed. We use ̟∗ to impose the remaining (m−1)ph restrictions

on the MF system. The only practical implication is on the rank of Am, affecting the

number of eigenvalues λ̂i in the test, as will be discussed below. The particular choice of ̟∗

is purely theoretical, as may be seen from the fact that (I ⊗̟′
∗)(I ⊗ ι) = I for any choice

of ̟∗, as long as its elements sum to unity. Consequently, the set of eigenvalues of ΓmAm′

are exactly those of ΓA′, but with the addition of (m− 1)ph zeros.

Since the eigenvalues are invariant with respect to the ordering of the series, it is worth

repeating that the ordering that Ghysels (2012) uses for impulse responses is also valid for

these tests.

Single Regression Equation. The fully aggregated LF Engle-Granger regression may

be written as

za1t = (za2t, ..., z
a
pt)β + eat , (10)

where zakt = ̟′
kzkt is a scalar aggregate of the vector zkt, as above. The Engle-Granger

testing strategy is a unit root test of the fitted residuals (êat ). The exact structure of
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the error term eat implied by aggregation is not needed for the analysis of the null of no

cointegration.

As in the case of a system, a MF single-equation regression is more complicated than

a LF regression. We again let α = (1, β′)′, so that the coefficient on one of the LF series

is normalized to unity.7 Under this convention, the cointegrating vector for the mixed-

frequency model may be written as

αm ≡













1 0 0

0 I 0

0 0 ̟pl+1 ⊕ · · · ⊕̟p

























1

−(β2, ..., βpl)
′

−(βpl+1, ..., βp)
′













=













1

−(β2, ..., βpl)
′

−(̟∗
pl+1 ⊕ · · · ⊕̟∗

p)(βpl+1, ..., βp)
′













.

The cointegrating regression to be tested may be expressed as za1t = (za2t, ..., z
a
plt
, ̟′

pl+1zpl+1,t,

..., ̟′
pzpt)β+eat , where we write ̟

′
kzkt rather than zakt to emphasize that the weights ̟k for

k = pl + 1, ..., p may be estimated. For the test, we must impose the known cointegrating

restrictions, which may be done by estimating

za1t = (za2t, ..., z
a
plt
, ypl+1,t, ..., ypt)β − (0, ..., 0, ̟′

pl+1H△(1/m)zpl+1,t,..., ̟
′
pH△(1/m)zpt)β + eat ,

(11)

In this expression, the error has the same structure as the fully aggregated equation in

(10). However, the fitted residuals will be different from those in (10), because they contain

additional errors from estimating the weights on the last ph series. These errors do not

collapse to zero under the null, leading to additional size distortion of the tests.

7From a theoretical perspective, there is no loss of generality. If the coefficient on a high-frequency series
is instead normalized to unity, then the I(0) terms in ιy1t − H△(1/m)z1t may be moved to the right-hand
side, so that their weights are estimated.
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4.2 Testing in Low- and Mixed-frequency Environments

Facing the task of conducting a likelihood-based or residual-based cointegration test on

series observed at different frequencies, the analyst may employ the MF system in (9) or

the regression in (11). Πm may be known to the analyst, but is assumed to be beyond

the analyst’s control, so that the MF models in (3) and (7) are infeasible. Alternatively,

the analyst may aggregate the available HF series and simply employ the LF system in (8)

or the regression in (10). The tests themselves do not need to be modified for aggregated

series, but some modification is necessary for series observed at different frequencies.

System of Regression Equations. Although we do not explicitly consider a trace test

based on the infeasible system in (7), it will be convenient to define some additional notation

along these lines. Specifically, let r0t ≡ △zt, r1t ≡ zt−1, and Rgh ≡ T−1
∑

rgtr
′
ht for

g, h = 0, 1. Note that the sample moments Rgh are LF averages, rather than the HF

averages of Sgh defined above.

When all series are aggregated, the system contains the same number of series as in

the HF DGP. No modifications to the procedure are necessary, except to accommodate the

smaller sample size associated with the aggregated series, but the test will generally have a

different limiting distribution. The trace test statistic is

−2 logQ(Hr0|p) = T tr{(Ra
11)

−1Ra
10(R

a
00)

−1Ra
01}+ op (1) ,

where Ra
gh ≡ ΠaRghΠ

′
a for g, h = 0, 1.

When only some series are aggregated, the MF model contains pl + mph series, but

(m−1)ph cointegrating relationships are prespecified. Thus, r is such that (m−1)ph ≤ r ≤
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pl +mph and the null r0 should be chosen accordingly. The trace test is therefore given by

−2 logQ(Hr0|pl+mph) = −T
∑pl+mph

i=r0+1
log(1− λ̂i)

= T tr{(Rm
11)

−1Rm
10(R

m
00)

−1Rm
01}+ op (1)

where Rm
gh ≡ ΠmRghΠ

′
m for g, h = 0, 1 and λ̂1, . . . , λ̂pl+mph solve the determinantal equation

|λI − (Rm
11)

−1Rm
10(R

m
00)

−1Rm
01| = 0.

For the limiting distributions of the trace test for the fully and partially aggregated

systems, it will be useful to define Ξa,m
00 ≡ Πa,m(Σ ⊗ m−1H00)Π

′
a,m, Ξa,m

11 ≡ Πa,m(Σ1/2 ⊗

I)(
∫

WW ′⊗ιι′)(Σ1/2′⊗I)Π′
a,m, and Ξa,m

10 ≡ Πa,m(Σ1/2⊗I)((
∫

WdW ′⊗ιι′)+(I⊗m−1H10))

(Σ1/2′ ⊗ I)Π′
a,m, with H00 ≡ (I + H ′)(I + H) + HH ′, H01 ≡ H(I + H), and H10 = H ′

01.

The limiting distributions are given in the following theorem.

Theorem 1. Consider the null hypothesis of no cointegrating relationships: r0 = 0 in the

LF system, r0 = (m− 1)ph in the MF system.

(a) The trace test statistic T tr{(Ra
11)

−1Ra
10(R

a
00)

−1Ra
01} based on the fully aggregated

(LF) system in (8) has an asymptotic distribution coinciding with tr{Ξa′
10(Ξ

a
11)

−1Ξa
10(Ξ

a
00)

−1}

as T → ∞. The limiting distribution further simplifies to

tr{(
∫

(dW )′W + (Za
10)

′)(
∫

WW ′)−1(

∫

WdW ′ + Za
10)(Z

a
00)

−1}

where Za
i0 ≡ Σ−1/2Πa(Σ⊗m−1Hi0)Π

′
aΣ

−1/2′ for i = 0, 1.

(b) The trace test statistic T tr{(Rm
11)

−1Rm
10(R

m
00)

−1Rm
01} based on the partially aggregated

(MF) system in (9) has an asymptotic distribution coinciding with tr{Ξm′
10 (Ξ

m
11)

−1Ξm
10(Ξ

m
00)

−1}

as T → ∞.

It is important to note that the benchmark distribution is not generally obtained, and some

size distortion may be expected.
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If m−1̟′
sH00̟u = 1 and m−1̟′

sH10̟u = 0 for all s, u = 1, ..., p, then Za
00 = I, Za

10 = 0,

and the benchmark distribution is obtained for the fully aggregated model in part (a). It is

straightforward to verify that the diagonal elements of H00 are given by m and that those

of H10 are given by 0. Hence, if ̟s is a binary vector with a unit in any element and zeros

elsewhere for all s = 1, ..., p, the benchmark distribution is obtained. In practical terms,

the benchmark is obtained if all series are skip-sampled in any way – but all in exactly the

same way.

Single Regression Equation. In the full aggregation case, the residual-based test statis-

tics are simply replaced by their LF analogs, ρaT ≡ T (α̂′Ra
11α̂)

−1α̂′Ra
10α̂ and τaT ≡ (α̂′Ra

00α̂

(T−1α̂′Ra
11α̂))

−1/2α̂′Ra
10α̂, using the notation from above. Calculating these statistics poses

no additional computation complications – one may simply run unit root tests on the fitted

residuals of (10).

When some series are aggregated but others are observed at the high frequency, the

weights (̟k) for k = pl+1, ..., p on the HF observations may be fixed or estimated. If fixed,

then the analyst simply aggregates the remaining HF observations to the low frequency,

resulting in the LF model in (10). Otherwise and assuming there are sufficient degrees of

freedom to do so, the weights may be estimated for each HF regressor. The test statistics

are then calculated from these fitted residuals, so that they are ρmT ≡ T (α̂′Rm
11α̂)

−1α̂′Rm
10α̂

and τmT ≡ (α̂′Rm
00α̂(T

−1α̂′Rm
11α̂))

−1/2α̂′Rm
10α̂ in this case.

The following theorem shows the limiting distributions of these test statistics. We

employ the decomposition of Phillips and Ouliaris (1990): Σ = L′L, where

L =







√

σ2
1 − σ12Σ

−1
22 σ21 0

Σ
−1/2′
22 σ21 Σ

1/2′
22







with Σ partitioned in the usual way.

Theorem 2. Consider the null hypothesis of no cointegrating relationships: r0 = 0.
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(a) The coefficient and t-tests calculated from the fitted residuals of the fully aggregated

(LF) regression in (10) have limiting distributions given by

ρaT →d

∫

QdQ+ κ′L−1′Πa(Σ⊗m−1H10)Π
′
aL

−1κ
∫

Q2
≡ ρ(Πa)

τaT →d

∫

QdQ+ κ′L−1′Πa(Σ⊗m−1H10)Π
′
aL

−1κ
√

κ′L−1′Πa(Σ⊗m−1H00)Π′
aL

−1κ
∫

Q2
≡ τ(Πa)

as T → ∞.

(b) The coefficient and t-tests calculated from the fitted residuals of the partially aggre-

gated (MF) regression in (11) have limiting distributions given by ρmT →d ρ(Πa)+Op(1)

and τmT →d τ(Πa) +Op(1) as T → ∞.

The notations κ and Q are the same as in (6) above. As in the case of a system, the

benchmark distributions in the single-equation case are obtained when m−1̟′
sH00̟u = 1

and m−1̟′
sH10̟u = 0 for all s, u = 1, ..., p. In other words, size is not distorted when all

series are skip-sampled in the same way.

5 Aggregation and Size Distortion

With the limiting distributions of the test statistics from the previous section, we now

examine size distortion of the tests in more detail. It is already clear that no size distortion

occurs if all p HF series in the DGP are skip-sampled in the same way. Of course, this

optimum may be infeasible.

System of Regression Equations. Size distortion in the LF system depends critically

on the matrices Za
i0 = Σ−1/2Πa(Σ ⊗ m−1Hi0)Π

′
aΣ

−1/2′ for i = 0, 1 in the limiting distri-

bution of Theorem 1(a). Multiplicative separability of Σ from Π eliminates the impact

of the error covariance, isolating the effect of ̟s on size distortion and allowing tractable
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analysis. Otherwise, size may be distorted both directly by ̟s and indirectly by the fact

that aggregation prevents cancellation of the Σ from the limiting distributions.

Multiplicative separability is obtained when either Σ is diagonal or when ̟s = ̟0 for all

s = 1, ..., p (each series has the same aggregation scheme). When Σ is diagonal, Za
i0 becomes

a diagonal matrix with diagonals given by m−1̟′
sHi0̟s for s = 1, ..., p. When ̟s = ̟0, Z

a
i0

becomes a diagonal matrix given by (m−1̟′
0Hi0̟0)I. We analyze size distortion resulting

from the latter case, referred to as type A size distortion, relegating discussion of type B

size distortion to Appendix B.

Define random variables U1, U2, and U3 with distributions given by tr{
∫

(dW )′W (
∫

WW ′)−1

∫

WdW ′}, 2 tr{(
∫

WW ′)−1
∫

WdW ′}, and tr{(
∫

WW ′)−1}, respectively, and define ai̟ ≡

m−1̟′
0Hi0̟0 for i = 0, 1. The limiting distribution of the test statistic based on the HF

benchmark system coincides with that of U1. When ̟s = ̟0 the limiting distribution of

the test statistic in Theorem 1(a) based on the fully aggregated system coincides with that

of 1
a0̟

U1 +
a1̟
a0̟

U2 +
a21̟
a0̟

U3.

At the critical value k∗, the test has a size given by

P

{

1

a0̟
U1 +

a1̟
a0̟

U2 +
a21̟
a0̟

U3 ≥ k∗
}

= 1−
∫ ∞

−∞

∫ ∞

−∞

∫ τ̟(k∗,u2,u3)

−∞
p(u1, u2, u3)du1du2du3

where τ̟(k
∗, u2, u3) ≡ a0̟k

∗ − a1̟u2 − a21̟u3 and p(u1, u2, u3) is the joint density of the

three random variables. The size distortion of the test is given by

∫ ∞

−∞

∫ ∞

−∞

[

∫ k∗

−∞
p(u1, u2, u3)du1 −

∫ τ̟(k∗,u2,u3)

−∞
p(u1, u2, u3)du1

]

du2du3,

and the integral in square brackets simplifies to
∫ k∗

τ̟(k∗,u2,u3)
p(u1, u2, u3)du1 for non-negative

size distortion.

Size distortion clearly increases as τ̟ decreases. Because τ̟ is quadratic in a1̟ and

since U3 has no support on the negative part of the real line (Σ1/2′Ξ−1
11 Σ

1/2 cannot be

negative definite), size is minimized at a1̟ = 0. In order for the test to be properly sized,
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a0̟k
∗ = k∗ must hold – i.e., a0̟ = 1. As already discussed above, a0̟ = 1 and a1̟ = 0 are

obtained by any skip-sampling scheme, as long as each series is skip sampled in the same

way.

Because of the quadratic nature of τ̟, size distortion is maximized as a1̟ increases and

as a0̟ decreases, but these are checked by the constraint that the weights sum to unity. To

find the weighting scheme that causes the worst size distortion, we choose ̟0 to maximize

ǫ̟ ≡ a1̟ − a0̟. Imposing the constraints that the weights must be positive and must sum

to unity yields a Lagrangian of the form

L1(̟0, λ1, λ0) = ǫ̟ + λ1

(

̟′
0ι− 1

)

+ λ′
0̟0

to be maximized. λ1 is a scalar multiplier on an equality constraint, while λ0 is a vector of

m multipliers on inequality constraints. One of the first-order conditions of this Lagrangian

is that λ1ι = −∂ǫ̟/∂̟0 − λ0. Moreover, noting that ̟′
0ι − 1 =

(

̟′
0 − (ι′ι)−1ι′

)

ι and

substituting this first-order condition back into the Lagrangian yields a new Lagrangian

given by

L2(̟0, λ1, λ0) = ǫ̟ −
(

̟′
0 − (ι′ι)−1ι′

)

∂ǫ̟/∂̟0 + (ι′ι)−1ι′λ0.

Some algebra reveals that this new Lagrangian has a first-order condition given by

− ∂2ǫ̟
∂̟0∂̟′

0

(

̟0 − ι(ι′ι)−1
)

= 0,

which is satisfied for ̟0 = ι(ι′ι)−1 – that is, when flat sampling is employed.

To check for other maxima, note that

∂2ǫ̟
∂̟0∂̟′

0

=
1

m
(H11 − 2H00)

where H11 = H10 +H01. The second derivative matrix cannot be zero due to the structure

of the deterministic matrices H11 and H00.
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Noting that a0,ι(ι′ι)−1 = (1 + 2m2)/3m2 and a1,ι(ι′ι)−1 = (m2 − 1)/6m2, the asymptotic

test size at ̟ = ι(ι′ι)−1 is given by

P

{

U1 ≥
1 + 2m2

3m2
k∗ −

(

m2 − 1

6m2

)

U2 −
(

m2 − 1

6m2

)2

U3

}

, (12)

which is illustrated by simulations in Table 1.8

The main intuition to be gleaned from the case of equal aggregation weights is that we

obtain no type A size distortion from skip sampling, but we obtain maximum size distortion

from flat sampling.

The limiting distribution in Theorem 1(b) provides guidance for the MF case. No

additional size distortion – beyond what might already exist from the LF series – is created

by running the test on a MF system, as long as it is feasible to do so and only nulls

r0 ∈ [(m− 1)ph, pl +mph] are considered.

Comparing the size distortions that might result from using the distributions in Theorem

1(a) and (b), we can solidly recommend conducting the trace test on a MF system if feasible,

rather than aggregating the HF series to run the test on a low-frequency system. Further

aggregation will most likely aggravate any existing size distortion, unless the analyst knows

the way in which the existing LF series were aggregated.9

Single Regression Equation. Some of the intuition above carries over to residual-based

tests. Looking at the distribution in Theorem 2(a), size distortion is zero when all series

have been skip sampled, so that a0̟ = 1 and a1̟ = 0, in this case, too. These results are

the opposite of those expected from the literature on efficient estimation of the cointegrating

vector in a MF cointegrating regression. For efficient estimation of the cointegrating vector,

Chambers (2003) and Miller (2011) suggest flat sampling all series, if possible, and Pons and

8The table is constructed by simulating the asymptotic test size in (12), with k∗ calculated for a nominal
size of 0.05, using a bivariate DGP. Empirical probabilities from 1, 000 simulations are shown. Similar results
for p > 2 suggest that this size distortion increases with p.

9Even in this case, the optimal aggregation of the remaining series might not be straightforward, unless
the existing LF series were skip sampled in the same way.
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Sansó (2005) suggest flat sampling the regressors if the regressand has been skip sampled.

Our results suggest that both of these approaches entail size distortion in testing for the

presence of a cointegrating vector.

Much of the intuition about systems does not carry over to a single regression equation,

however. Since the residual-based test statistics lack a quadratic form similar to the trace

test statistic, size distortion may be negative. Optimality is thus difficult to ascertain.

A second, and perhaps more important, fundamental difference is that the limiting

distribution in the MF case of Theorem 2(b) includes Op(1) terms – not op(1) – that cause

additional size distortion. The presence of these terms may be explained by the fact that the

MF regression aims to estimate weights that are otherwise set by the aggregation scheme.

Under the null of no cointegration, the MF regression in (11) is spurious and these weights

are estimated inconsistently.

The only restriction imposed on the aggregation weights by estimating the model in (11)

with least squares is that they sum to unity. They are otherwise unrestricted. Although

it seems counterintuitive, it may be preferable to impose arbitrary aggregation weights,

using the LF regression in (10), than to estimate them. Even though both approaches will

generally lead to inconsistency and size distortion, using arbitrary weights imposes a limit

on size distortion. This counterintuitive recommendation runs against our recommendation

to base trace tests on MF rather than LF systems.

As an alternative, each of the coefficients may be restricted. A CoMIDAS (cointegrating

mixed data sampling) regression, introduced by Miller (2013) and based on the MIDAS

regression of Ghysels et al. (2004), may accomplish this. MIDAS models typically employ

a parsimonious nonlinear distributed lag structure. Many of the lag structures used in the

literature, such as the exponential Almon lag (Ghysels et al., 2005), impose that the weights

sum to unity and that they are non-negative. An ith-order exponential Almon lag generates
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weights of the form

̟sk (γ1, . . . , γi) =
exp(γ1k + · · ·+ γik

i)
∑m

j=1 exp(γ1j + · · ·+ γiji)
,

for s = 1, ..., p and k = 1, ...,m. This function is chosen for its flexibility in mimicking

empirically relevant weighting schemes, including flat sampling and end- or beginning-of-

period skip sampling. If feasible, an mth-order (unparsimonious) exponential Almon lag

could be used to estimate the model in (11) in a more restrictive way than least squares, in

order to limit size distortion.

6 Finite-sample Comparisons

Simulations provide evidence in support of type A size distortions analyzed above and

shed light on the possible magnitudes of less tractable type B size distortions. Similarly to

Cheung and Lai (1993), we use a bivariate (p = 2) HF DGP given by △(1/m)yt−i/m = εt−i/m

with

Σ = var(εt−i/m) =







1 ς

ς 1







under the null. Consequently,

△zmt = ηmt = Πm(I ⊗ (I +H ′ +HL))ut, and (13)

△zat = ηat = Πa(I ⊗ (I +H ′ +HL))ut (14)

are the MF and LF null models.

Four parameters may be varied: m, ̟1, ̟2, and ς. We consider m = 12 and T = 200,

suggestive of monthly series aggregated to an annual frequency.10 We vary ς and the

aggregation weight vectors ̟1, ̟2, and we conduct 1, 000 simulations for each model.

10Qualitatively similar results obtained with m = 3 are not shown.
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Specifically, in the Tables 2 and 3 below, F-F denotes that both series have been flat sampled

to the low frequency, while F- denotes that the first series has been flat sampled, while the

remaining series is observed at the high frequency. We use similar notations for end-of-period

sampling (E), beginning-of-period sampling (B), and a seasonal weighting pattern (S), given

by (1, 3, 9, 1, 3, 9, 1, 3, 9, 1, 3, 9)/52. MF-OLS denotes a single MF regression estimated using

least squares, while MIDAS(i) denotes a MIDAS model with an ith-order exponential Almon

lag.

We calculate critical values based on those that gave a size of 0.05 for the HF DGP, so

that we can eliminate any distortion from the random seeds used in the simulations.

Tables 2 and 3 show no cross-correlation, ς = 0, and strong cross-correlation, ς =

0.9, respectively. As discussed above, a lack of cross-correlation simplifies the limiting

distributions of the test statistics. The optimization in Appendix B suggests that the worst

size distortion occurs when all series are aggregated using flat sampling. In other words,

type B size distortion is zero, and the worst size distortion occurs when type A size distortion

is maximized. Table 2 clearly supports this proposition. Note that the size 0.078 in Table

2 is almost identical to that identified by the analysis of the previous section (see Table 1).

It is also clear that skip-sampling (either beginning- or end-of-period) of all series provides

the least size distortion across all models and techniques. Overall, it is hard to go wrong

with any of the aggregation schemes or combinations thereof, since size distortion does not

appear to be very large in any case where ς = 0. Type A size distortion does not appear to

be serious.

The story is drastically different in the more realistic case of cross-correlation, ς = 0.9

reported in Table 3. For fully aggregated LF series, the only sizes less than 0.10 are for

those models in which both series have been aggregated using the same scheme: type A size

distortion only. Moreover, the only sizes close to the nominal size are for those in which the

scheme is some kind of skip sampling, consistent with our analysis above. The worst size

distortion is caused by mixing different skip-sampling techniques, which suggests the use of
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extreme caution when aggregating data for the purposes of such tests. If the aggregation

scheme for the first series is unknown, then skip sampling could either minimize or maximize

size distortion! Flat sampling is more conservative, but mixing flat and skip sampling still

leads to an unacceptably large size. Clearly, aggregating a MF model to the lowest frequency

is risky.

Results for partially aggregated MF series vary greatly across tests and estimation meth-

ods when ς = 0.9. The only test that has acceptable size in every MF case is the trace

test, supporting our results above. (Incidentally, the trace test is the worst by a small

margin when ς = 0, but only because the other tests and methods improve so dramatically

with no cross-correlation.) The remaining methods are all inconsistent, so size distortion

is expected. Using unrestricted least squares on a MF regression performs the worst of all

single-equation MF methods, but not necessarily worse than arbitrarily aggregating every

series to the low frequency. MIDAS(2) does reasonably well, which is not surprising since

the weight restrictions limit the size distortion from inconsistency and since the MIDAS(2)

scheme nests F, E, and B. Even though MIDAS(m) is more flexible than MIDAS(2), the

inconsistency appears to be problematic in the two skip-sampling cases.

Overall, we recommend using a MF system over an aggregated LF system when feasible.

Similarly, we recommend using a MF regression over an aggregated LF regression, but the

latter requires some restrictions on the coefficients to limit the size distortion. A MIDAS(2)

regression seems to limit size distortion well.

7 Empirical Application

We study data made available by Shiller and pertaining to his 2000 book entitled Irrational

Exuberance. This data set consists of monthly stock price, annual dividends, and earnings

data (and the monthly consumer price index to allow conversion to real values), all starting



26

January 1871.11 The dividend (denoted D) and earnings series represent flows, whereas

stock prices (denoted P ) are point-sampled. Annual data run through 2012, hence T = 142.

Monthly data are through 2012, hence m = 12, M = mT = 1704. For the purpose of testing,

we use the log of nominal price P and the log of nominal dividends D.

We compare testing cointegration with annual data versus mixed frequency using annual

dividends versus annual and monthly stock price data. Regarding the annual P data we

consider various configurations. Shiller sets annual price equal to January daily average –

which we will refer Annual-B, a begin of period sampling. Alternatively, we also consider

annual price series which are average monthly prices, which we will refer to as Annual-F

and finally to contrast beginning of period we also consider end-of-period sampling, denoted

Annual-E which is a December daily average price.

The appeal of the series which we consider fit models that coincide with the setting of our

theoretical analysis. We do not include any lagged first differences, since serial correlation

in financial markets is not expected. We expect that each series follows a random walk with

drift, so we add a constant in the cointegrating relationship – i.e., in the Engle-Granger

regression or in the error correction term – but not in the VECM itself. This is because

although each series has a drift, we expect them to have the same drifts, so that the drifts

cancel out.12 Figure 1 displays the log price dividend ratio – i.e., with the cointegrating

vector (1,−1)′ imposed on log dividends and log prices. The plot suggests that there does

not appear to be a cointegrating relationship. A closer look reveals that the series may

(or may not) be cointegrated up until mid-1990’s, which corresponds to the tech bubble,

where tech companies tend not to pay dividends. This drop in dividend paying companies

suggests that (log) dividends and prices are not cointegrated after mid-1990’s, and the

evident structural break means that cointegration should fail for the whole sample.13 Since

11Monthly dividends are available too, but they are linear interpolations of the annual data. Testing with
interpolated data brings about a host of issues not covered in the current paper. Data from Robert Shiller’s
website is available at: http://www.econ.yale.edu/\symbol{126}shiller/data.htm.

12This corresponds Case 1* (restricted constant) in Osterwald-Lenum’s (1992) critical values.
13Note that we unfortunately do not have enough annual data to estimate a model for the subsample since

1995.
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we believe that cointegration does not hold, we do not impose (1,−1)′ as the cointegrating

vector in the subsequent tests, in order to err on the side of favoring cointegration.

In light of this, we consider the following hypotheses and tests:

• Trace test:

– H0(0) : No cointegrating vector (2 distinct unit roots), versus HA(2) : 2 cointe-

grating vectors (all series stationary).

– H0(1) : 1 cointegrating vector (1 distinct unit root), versus HA(2) : 2 cointegrat-

ing vectors (all series stationary).

• Coefficient test:

– H0(0) : No cointegrating vector (2 distinct unit roots), versus HA(1) : 1 cointe-

grating vector (1 distinct unit root).

• t-test:

– H0(0) : No cointegrating vector (2 distinct unit roots), versus HA(1) : 1 cointe-

grating vector (1 distinct unit root).

Unit root tests (not shown) strongly support unit roots in the individual series. With

each series following a random walk with driftHA(2) should never be true. Hence, we should

fail to reject H0(0) or H0(1) against HA(2). Similarly, H0(1) should not hold and therefore

we should fail to reject H0(0) against H0(1) as well. The empirical results appear in Table 4.

Recall that Annual-F uses annual D with average P, Annual-B uses annual D with January

P, Annual-E uses annual D with December P. Finally, “MF” is unrestricted MF model,

using OLS in the single-equation case, “MIDAS(2)” and “MIDAS(m)” use NLS with 2nd-

order and mth-order exponential Almon lags (single-equation case only). Estimation is a

two step procedure: We first demean P and D (but not their first differences), and then run
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cointegration tests on demeaned data. The critical values are taken from Osterwald-Lenum

(1992) and Phillips and Ouliaris (1990).

Recall that we expect that all tests reported in Table 4 should fail to reject their respec-

tive nulls. The theory in the previous sections tells us that the “safest” strategy (in terms

of possible size distortion) would be to average the monthly P. Indeed, if we do this, we

fail to reject any of the nulls, as expected. However, we also know that we can do better

(lower size distortion) if we use the “right” skip sampling for P. Looking at Annual-B and

Annual-E, we note from the results in Table 4 that the last three test statistics are slightly

smaller using beginning of period rather than using flat aggregation (simple average) and

much smaller using Annual-B versus Annual-E. This finding is indeed consistent with the

theory if in fact annual D are sampled using something close to beginning-of-period sam-

pling. Using Annual-B, which is what Shiller actually did to create his annual data set, we

fail to reject any of the nulls as expected.

Now, continuing along the lines of the theory developed in the previous sections, what

happens if we use the MF data directly? The results in Table 4 show that the trace test

statistics are very close to the Annual-B case, which is also consistent with the theory if in

fact annual D is sampled using something close to beginning of period sampling. Likewise,

the residual-based test statistics are not close to the Annual-B case, which is again consistent

with the theory, since size distortion is unavoidable in such a case.

To limit – but not eliminate – the size distortion in the residual-based tests, we can use

a MIDAS regression strategy with exponential Almon lag. We see from Table 4 that the

test statistics are about the same as using Annual-B, which appeared to have the least size

distortion above. Again, we fail to reject any of the nulls, as expected.

Of course, we may/do not know how exactly D was aggregated. In such cases we

should use the MF trace test and MIDAS for single-equation tests. Since the MF trace test

and MIDAS gave us test statistics very similar to the Annual-B, using annual dividends

and sampling January prices from each year, it would be reasonable to use the Annual-B
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strategy, which is what Shiller (1989) actually did to create the annual data set in his earlier

book.

8 Concluding Remarks

Standard tests for cointegration are affected by aggregation schemes. While it is well known

that aggregation and sampling frequency do not affect the long-run properties of time series,

we find that the effects of aggregation on the size of the tests may be severe. Faced with this

fact, we propose novel ways to solve the size distortion problems exploiting mixed frequency

time series techniques which are of recent date. The issues we cover in the paper can be

extended to the reverse of aggregation, namely interpolation – another approach to the

creation of same frequency series. The impact of interpolation on inference is a topic we

leave for future research.
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Technical Appendices

A Proofs

Lemma A1. Suppose that the null of no cointegrating vectors is true. Letting Γη(k) =

Eηtη
′
t−k denote the autocovariance function of (ηt),

Γη(0) = Σ⊗H00, Γη(1) = Σ⊗H01, Γη(−1) = Σ⊗H10

and Γη(k) = 0 for |k| > 1, with H00 ≡ (I + H ′)(I + H) + HH ′, H01 ≡ H(I + H), and

H10 = H ′
01. The long-run variance of (ηt) is

∑∞
k=−∞

Γη(k) = Σ⊗ (H00 +H01 +H10) = Σ⊗ ιι′

under the null.

Proof of Lemma A1. Note that
∑m−1

i=1 △(1/m)zk,t−i/m = (H ′ +HL)△(1/m)zkt, so that

ηt = (I + (ΓA′ ⊗ I))(I ⊗ (H ′ +HL))△(1/m)zt + ut (A.1)

using this notation. Under the null of no cointegrating vectors, △zt = ηt = (I ⊗ (I +H ′ +

HL))ut. The autocovariances and long-run variance follow in a straightforward way from

this expression. �

Lemma A2. Letting “a,m” denote either a or m on both sides,

(a) Ra,m
00 →d mΞa,m

00 ≡ mΠa,m(Σ1/2 ⊗ I)(I ⊗m−1H00)(Σ
1/2′ ⊗ I)Π′

a,m

(b) T−1Ra,m
11 →d mΞa,m

11 ≡ mΠa,m(Σ1/2 ⊗ I)(
∫

WW ′ ⊗ ιι′)(Σ1/2′ ⊗ I)Π′
a,m

(c) Ra,m
10 →d mΞa,m

10 ≡ mΠa,m(Σ1/2 ⊗ I)((
∫

WdW ′ ⊗ ιι′) + (I ⊗m−1H10))(Σ
1/2′ ⊗ I)Π′

a,m
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Proof of Lemma A2. (a) Ra
00 and Rm

00. Under the null hypothesis, the HF increments are

△(1/m)zt = ut, so that the LF increments are △zt =
∑m−1

i=0 ut−i/m = (I⊗ (I+H ′+HL))ut.

Since (ut) is iid,

plim T−1
∑

utu
′
t = plim T−1

∑

ut−1u
′
t−1 = Eutu

′
t = Σ⊗ I,

while

plim T−1
∑

utu
′
t−1 = plim T−1

∑

ut−1u
′
t = 0

by an LLN. Thus,

R00 →p (I ⊗ (I +H ′))(Σ⊗ I)(I ⊗ (I +H)) + (I ⊗H)(Σ⊗ I)(I ⊗H ′),

which simplifies to Σ⊗H00 in our notation.

(b) Ra
11 and Rm

11. We may write the LF series (zt−1) in terms of (ut) by noting that

zt−1 =
∑t−1

j=1△zj and then proceeding as above. Specifically, we have

zt−1 = (I ⊗ (I +H ′))
∑t−1

j=1
uj + (I ⊗H)

∑t−2

j=1
uj .

The outer product zt−1z
′
t−1 thus involves four terms containing

∑t−a
j=1

∑t−b
i=1 ujui for a, b =

1, 2. For finite integers a, b,

T−2
∑∑t−a

j=1

∑t−b

i=1
ujui = T−2

∑∑t

j=1

∑t

i=1
ujui + op (1)

by applying standard covariance asymptotics to the Op(T
−1) remainder terms. Thus,

T−1R11 = (I ⊗ (I +H ′ +H))T−2
∑∑t

j=1

∑t

i=1
ujui(I ⊗ (I +H ′ +H)) + op (1)

= (I ⊗ ιι′)T−2
∑∑t

j=1

∑t

i=1
ujui(I ⊗ ιι′) + op (1)
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since I +H ′ +H = ιι′ by construction.

Since the sum
∑t

i=1 uj is not iid, the increment by which the sample moment above is

defined affects the asymptotic distributions. Specifically, a LF moment does not have the

same dependence structure – and therefore not the same limit – as a HF moment. It is

convenient to note that (I ⊗ ι′)uj = (
∑m−1

k=0 εj−k/m ⊗ 1), so that

T−1R11 = m

(

T−1
∑

(

1√
mT

∑t

j=1

∑m−1

k=0
εj−k/m

)(

1√
mT

∑t

i=1

∑m−1

l=0
ε′i−l/m

)

⊗ ιι′
)

+ op (1)

Now, 1√
mT

∑t
j=1

∑m−1
k=0 εj−k/m →d B(r) by appealing to an invariance principle (see Miller,

2011), so that T−1R11 →d m(
∫

BB′ ⊗ ιι′).

(c) Ra
10 and Rm

10. The sample moment T−1
∑

zt−1△z′t may be rewritten as

T−1
∑

zt−1△z′t = T−1
∑

[

(I ⊗ (I +H ′))
∑t−1

j=1
uj + (I ⊗H)

∑t−1

j=1
uj−1

]

u′t(I ⊗ (I +H))

+ T−1
∑

[

(I ⊗ (I +H ′))
∑t−1

j=1
uj + (I ⊗H)

∑t−1

j=1
uj−1

]

u′t−1(I ⊗H ′)

(A.2)

using arguments similar to those above. The square-bracketed factor in (A.2) may be

written as
(

∑t−1

j=1

∑m−1

k=0
εj−k/m ⊗ ι

)

+ (I ⊗H)(u0 − ut−1)

by noting that
∑t−1

j=1 uj−1 =
∑t−1

j=1 uj + (u0 − ut−1) and recognizing that I +H ′ +H = ιι′.

Since (ut) is an iid series, the whole first term of (A.2) may be written as

T−1
∑

(

∑t−1

j=1

∑m−1

k=0
εj−k/m ⊗ ι

)

u′t(I ⊗ (I +H)) + op (1) .
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The square-bracketed factor may be written as

(

∑t−2

j=1

∑m−1

k=0
εj−k/m ⊗ ι

)

+ (I ⊗ (I +H ′))ut−1 + (I ⊗H)u0

by noting that
∑t−1

j=1 uj =
∑t−2

j=1 uj+ut−1 and
∑t−1

j=1 uj−1 =
∑t−2

j=1 uj+u0. The second term

of (A.2) is thus

T−1
∑

(

∑t−2

j=1

∑m−1

k=0
εj−k/m ⊗ ι

)

u′t−1(I ⊗H ′) + (I ⊗ (I +H ′))T−1
∑

ut−1u
′
t−1(I ⊗H ′)

(A.3)

+ op (1) ,

with the key difference between the two terms of (A.2) being the nondegenerate limit of

T−1
∑

ut−1u
′
t−1 in the second. The iid assumption on (ut) allows (A.3) to be rewritten as

T−1
∑

(

∑t−1

j=1

∑m−1

k=0
εj−k/m ⊗ ι

)

u′t(I ⊗H ′) + (Σ⊗H10) + op (1) ,

so that the whole expression in (A.2) is

R10 = T−1
∑

(

∑t−1

j=1

∑m−1

k=0
εj−k/m ⊗ ι

)

u′t(I ⊗ ιι′) + (Σ⊗H10) + op (1)

=
∑m−1

l=0

(

T−1
∑

(

∑t−1

j=1

∑m−1

k=0
εj−k/m

)

ε′t−l/m ⊗ ιι′
)

+ (Σ⊗H10) + op (1) ,

which has a limiting distribution given by m(
∫

BdB′ ⊗ ιι′) + (Σ⊗H10). The stated results

follow by again considering the weight matrices Πa and Πm. �

Proof of Theorem 1. Writing (
∫

WW ′ ⊗ ιι′) = (I ⊗ ι)
∫

WW ′(I ⊗ ι′), note that the

weights ̟s in Πa must sum to one and thus Πa(I ⊗ ι) = I. The results for the fully

aggregated system then follow from continuity of the trace and matrix multiplication using

the results of Lemma A2. The results for the partially aggregated system follow in the same
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way, but do not simplify without imposing additional assumptions. �

Proof of Theorem 2. Low-frequency Case. The least squares estimator β̂ of β using the

aggregated low-frequency model in (10) may be written as

β̂ =
(

T−2
∑

t
E′

2Πaztz
′
tΠ

′
aE2

)−1
T−2

∑

t
E′

2Πaztz
′
tΠ

′
aE1

where E1 and E2 are the vector and matrix that select the first column and all but the first

column, respectively, of the preceding matrix. From the proof of the previous theorem, it

follows that

T−2
∑

t
ztz

′
t = T−1R11 + op(1) →d m

(
∫

B(r)B(r)′dr ⊗ ιι′
)

so that T−2
∑

tΠaztz
′
tΠ

′
a →d m

∫

BB′, similarly to the result in that theorem. Hence,

β̂ →d (
∫

B2B
′
2)

−1
∫

B2B1 using the partition defined above: B1 = E′
1B and B2 = E′

2B.

The series on which the unit root tests are conducted is êat = z′tΠ
′
a(1,−β̂′)′, and the tests

may be written as T ρ̂T = (T−2
∑

t(ê
a
t−1)

2)−1T−1
∑

t ê
a
t−1△êat or T ρ̂T = (α̂′T−1Ra

11α̂)
−1α̂′Ra

10α̂

and τ̂T = (σ̂2T−2
∑

t(ê
a
t−1)

2)−1/2T−1
∑

t ê
a
t−1△êat with σ̂2 = T−1

∑

t(△êat )
2 or τ̂T = (α̂′Ra

00α̂

α̂′T−1Ra
11α̂)

−1/2α̂′Ra
10α̂. (Using algebra along the lines of Phillips and Ouliaris, 1990, along

with the limiting distributions established in Lemma A2 yields the stated results.)

Mixed-frequency Case. The MF model in (11) may be rewritten as

za1t = (za2t, ..., z
a
pt)β + w′

tγ + eat

z′tΠ
′
a(1,−β′)′ = w′

tγ + eat

where zakt ≡ ykt for k = pl + 1, ..., p, wt ≡ (△(1/m)z′pl+1,tH
′, ...,△(1/m)z′ptH

′)′, and γ ≡

(βpl+1̟
′
pl+1, ..., βp̟

′
p)

′. Note that the first term now contains no weights to be estimated,

and that the second term contains only I(0) series, and that while βk̟k is estimated jointly
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in the second term, β is identified by the first term. The choice of zakt is for simplification but

not relevant for the results of the proof. If instead zakt ≡ ykt−̟∗
kH△(1/m)zkt for some other

weight vector ̟∗
k, additional terms of the type (̟k−̟∗

k)
′△(1/m)z′ktH

′ will not qualitatively

affect the results.

It straightforward to establish that the limit of β̂ is the same as that which omits

the stationary regressors (wt). A fundamental difference arises from comparing the fitted

residuals. In the LF case, these are êat = z′tΠ
′
a(1,−β̂′)′ = eat − z′tΠ

′
aE2(β̂ − β), while they

are êat = z′tΠ
′
a(1,−β̂′)′−w′

t(T
−1
∑

twtw
′
t)
−1T−1

∑

twtz
′
tΠ

′
a(1,−β̂′)′ = eat − z′tΠ

′
aE2(β̂−β)−

w′
t(γ̂−γ) in the MF case. The reason for the additional Op(1) terms in the results is that γ̂

does not estimate γ consistently under the null of a spurious regression (no cointegration).

The details are tedious but follow using the same logic as that used by Phillips and Ouliaris

(1990) and above. �

B Type B Size Distortion

General Weights, Diagonal Variance

Because Σ is diagonal, Π(Σ⊗m−1Hi0)Π
′ = ΣH∗

i0(̟) with H∗
i0(̟) ≡ m−1(̟′

1Hi0̟1⊕· · ·⊕

̟′
pHi0̟p). The inverse of Π(Σ⊗m−1H00)Π

′ is thus easy to obtain: (H∗
00(̟))−1Σ−1. The

trace may therefore be rewritten as

tr
{

(Ξ∗
11)

−1Ξ∗
10(Ξ

∗
00)

−1Ξ∗
01

}

= tr{Ξ−1
11 Ξ10(H

∗
00(̟))−1Σ−1Ξ01}

+ tr{2Ξ−1
11 Ξ10(H

∗
00(̟))−1H∗

01(̟)}

+ tr{Ξ−1
11 ΣH

∗
10(̟)(H∗

00(̟))−1H∗
01(̟)}

= V ′
1b1(̟) + V ′

2b2(̟) + V ′
3b3(̟)
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where

V1 ≡ vec(Σ−1Ξ01Ξ
−1
11 Ξ10) b1(̟) ≡ vec

[

(H∗
00(̟))−1

]

V2 ≡ vec(2Ξ−1
11 Ξ10) b2(̟) ≡ vec

[

(H∗
00(̟))−1H∗

01(̟)
]

V3 ≡ vec(Ξ−1
11 Σ) b3(̟) ≡ vec

[

H∗
10(̟)(H∗

00(̟))−1H∗
01(̟)

]

by the property of the vec operator.

For expositional clarity, consider the case of p = 2 and let Vj1 and Vj4 denote the first

and last element of the 4 × 1 vector Vj for j = 1, 2, 3. Note that Uj = Vj1 + Vj4 and that

Vj1 and Vj4 are statistically independent due to the diagonal structure of Σ. The diagonal

structure multiplies V12, V13, etc., by zero, so that the test size is now equal to

P
{

V11/a0̟1 + V14/a0̟2 + V21a1̟1/a0̟1 + V24a1̟2/a0̟2 + V31a
2
1̟1

/a0̟1 + V34a
2
1̟2

/a0̟2 ≥ k∗
}

= P
{

V11 + V14a0̟1/a0̟2 + V21a1̟1 + V24a0̟1a1̟2/a0̟2 + V31a
2
1̟1

+ V34a0̟1a
2
1̟2

/a0̟2 ≥ k∗a0̟1

}

= P
{

U1 + U2a1̟1 + U3a
2
1̟1

+ V14c1̟ + V24c2̟ + V34c3̟ ≥ k∗a0̟1

}

,

where ci̟ ≡ ai−1
1̟2

a0̟1/a0̟2 − ai−1
1̟1

.

We now recycle the notation

τ̟(k
∗, u2, u3) ≡ k∗a0̟1 − u2a1̟1 − u3a

2
1̟1

− v14c1̟ − v24c2̟ − v34c3̟,

and again we wish to set this equal to τ̟ = k∗ to minimize size distortion. This is accom-

plished by any weights that make a0̟1 , a0̟2 = 1 and a1̟1 , a1̟2 = 0.

We wish to minimize τ̟ to maximize positive size distortion. The first three terms are

already minimized at ̟1 = ι(ι′ι)−1, but can the entire expression be decreased by varying

̟2? Note that the last quadratic term is

a21̟2
a0̟1/a0̟2 − a21̟1

= a21̟1

(

a21̟2
/a0̟2

a21̟1
/a0̟1

− 1

)

,
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so we must increase a21̟2
and decrease a0̟2 to increase size. However, we already know

that the a21̟2
/a0̟2 is maximized at ̟2 = ι(ι′ι)−1.

Let ̟ ≡ (̟′
1, ̟

′
2)

′, a 2m× 1 vector containing possibly distinct weight subvectors. Size

may be maximized with a new Lagrangian of the form

L1(̟,λ1, λ0) = ǫ̟ + λ′
1((I ⊗ ι′)̟ − ι2) + λ′

0̟

where ι2 = (1, 1)′. λ1 is now a bivariate vector of multipliers reflecting the constraint that

each weight subvector must sum to unity, and λ0 is now a 2m-vector of non-negativity

constraints. Similarly to the case of equal weights, we substitute a first-order condition,

(I ⊗ ι)λ1 = −∂ǫ̟/∂̟ − λ0, into the Lagrangian:

L2(̟,λ1, λ0) = ǫ̟ + λ′
1(I ⊗ ι′)(̟ − (I ⊗ ι(ι′ι)−1)ι2) + λ′

0̟

= ǫ̟ − (̟′ − ι′2(I ⊗ (ι′ι)−1ι′))∂ǫ̟/∂̟ + ι′2(I ⊗ (ι′ι)−1ι′))λ0

This Lagrangian has a first-order condition given by

− ∂2
̟ǫ̟

∂̟∂̟′ (̟ − (I ⊗ ι(ι′ι)−1)ι2) = 0,

which is almost identical to the previous case and gives the same result: ̟1 = ̟2 = ι(ι′ι)−1.

Generalizing the result to p > 2 creates additional quadratic terms of the form a21̟s
a0̟1/a0̟s−

a21̟1
, which are also maximized at ̟s = ι(ι′ι)−1.

In other words, size cannot be any worse than matching flat aggregation schemes when

the variance matrix Σ is diagonal. Even choosing different aggregation schemes cannot

make the test size any worse. This is still a special case.



38

General Weights, General Variance

More generally, we do not obtain the multiplicative separability above. Note that

Π(Σ⊗m−1Hi0)Π
′ = Σ⊙













m−1̟′
1Hi0̟1 · · · m−1̟′

1Hi0̟p

...
. . .

...

m−1̟′
pHi0̟1 · · · m−1̟′

pHi0̟p













which means that the minimum size is obtained when

Π(Σ⊗m−1H00)Π
′ = Σ⊙ ι2ι

′
2 and Π(Σ⊗m−1H10)Π

′ = 0

as above.

Maximization is much more complicated, and we take a more heuristic approach here.

New potential for size distortion arises from the off-diagonal terms ̟′
sHi0̟u for s 6= u.

Roughly speaking, size distortion increases as m−1̟′
sH00̟u decreases from unity (its max-

imum value) and as m−1̟′
sH10̟u increases from zero (its minimum value). Because of

the structure of these matrices, the smallest elements of H00 are the corners furthest from

the diagonal, which have unit elements. On the contrary, these corners have the largest

elements of H10 +H01, which are m− 1. Consequently, when Σ is not diagonal, the worst

size distortion occurs when skip sampling opposite ends of the LF interval – i.e., mixing

end-of-period with beginning-of-period sampling. The degree of size distortion depends on

the magnitude of the off-diagonal elements of Σ, as our simulations illustrate.
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Figure 1: S&P Annual Log Dividend Price Ratio

Table 1: Simulated Size for Flat Weights

m = 1 2 3 . . . 6 . . . 12 . . . 18

T = 600 0.05 0.065 0.073 . . . 0.078 . . . 0.079 . . . 0.079
T = 2400 0.05 0.054 0.062 . . . 0.063 . . . 0.064 . . . 0.064
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Table 2: Size: m = 12 ς = 0

Case Test F-F E-E B-B S-S F-E F-B E-B

Low-freq Trace 0.078 0.057 0.056 0.077 0.068 0.061 0.055
Rho 0.006 0.047 0.046 0.006 0.018 0.017 0.047
Tau 0.010 0.046 0.046 0.010 0.019 0.019 0.046

Case Test F- E- B- S-
Mixed-freq Trace 0.072 0.056 0.062 0.071
MF-OLS Rho 0.018 0.047 0.051 0.018

Tau 0.019 0.046 0.051 0.020
MIDAS(2) Rho 0.011 0.042 0.041 0.012

Tau 0.013 0.045 0.042 0.013
MIDAS(m) Rho 0.012 0.038 0.038 0.013

Tau 0.015 0.041 0.042 0.014

Bold denotes |size− 0.05| < 0.02.

Table 3: Size: m = 12 ς = 0.9

Case Test F-F E-E B-B S-S F-E F-B E-B

Low-freq Trace 0.078 0.057 0.056 0.077 0.489 0.475 0.821
Rho 0.011 0.048 0.050 0.011 0.397 0.400 0.743
Tau 0.012 0.051 0.049 0.012 0.383 0.393 0.735

Case Test F- E- B- S-
Mixed-freq Trace 0.068 0.052 0.051 0.069
MF-OLS Rho 0.397 0.048 0.732 0.452

Tau 0.383 0.051 0.722 0.436
MIDAS(2) Rho 0.021 0.053 0.056 0.026

Tau 0.021 0.053 0.054 0.024
MIDAS(m) Rho 0.064 0.229 0.355 0.068

Tau 0.065 0.227 0.336 0.067

Bold denotes |size− 0.05| < 0.02.
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Table 4: Cointegration Tests: Log Stock Price and Log Dividend

Trace Test Coeff. Test T-test
H0(1)/HA(2) H0(0)/HA(2) H0(0)/HA(1) H0(0)/HA(1)

Annual-F 1.41 12.47 −19.37 −3.11
Annual-B 1.17 10.39 −17.40 −2.95
Annual-E 1.41 28.29 −36.55 −4.27

Mixed-freq 1.05 10.95 −23.22 −3.41
MIDAS(2) − − −16.16 −2.84
MIDAS(m) − − −17.42 −2.95

Critical Values 9.24 19.96 −20.5 −3.37


